Search results for: proof of payment

Fare Payment Without the Stasi

Last year, I saw a tip by the Metropolitan Police: if you witness any crime on a London bus and wish to report it later, you should tell the police the number on your Oyster card and then they’ll already be able to use the number to track which bus you rode and then get the names and bank accounts of all other passengers on that bus. Londoners seem to accept this surveillance as a fact of life; closed-circuit TV cameras are everywhere, even in front of the house where Orwell lived and wrote. Across the Pond, transit agencies salivate over the ability to track passenger movements through smartcards and contactless credit cards, which is framed either as the need for data or as a nebulous anti-crime measure. Fortunately, free countries have some alternative models.

In Germany, the population is more concerned about privacy. Despite being targeted by a string of communist terrorist attacks in the 1970s and 80s, it maintained an open system, without any faregates at any train station (including subways); fare enforcement in German cities relies on proof of payment with roving inspectors. Ultimately, this indicates the first step in a transit fare payment system that ensures people pay their fares without turning the payment cards into tracking devices. While Germany resists contactless payment, there are ways to achieve its positive features even with the use of more modern technology than paper tickets.

The desired features

A transit fare payment system should have all of the following features:

  1. Integration: free transfers between different transit vehicles and different modes should be built into the system, including buses, urban rail, and regional rail.
  2. Scalability: the system should scale to large metro areas with variable fares, and not just to compact cities with flat fares, which are easier to implement. It should also permit peak surcharges if the transit agency wishes to implement them.
  3. No vendor lock: switching to a different equipment manufacturer should be easy, without locking to favored contractors.
  4. Security: it should be difficult to forge a ticket.
  5. Privacy: it should not be possible to use the tickets to track passengers in most circumstances.
  6. Hospitality: visitors and occasional riders should be able to use the system with ease, with flexible options for stored value (including easy top-up options) and daily, weekly, and monthly passes, and no excessive surcharges.

Smartcard and magnetic card systems are very easy to integrate across operators; all that it takes is political will, or else there may be integrated fare media without integrated fares themselves, as in the Bay Area (Clipper can store value but there are no free transfers between agencies). Scalability is easy on the level of software; the hardest part about it is that if there are faregates then every station must have entry and exit gates, and those may be hard to retrofit. Existing smartcard technologies vary in vendor lock, but the system the US and Britain are standardizing on, contactless credit cards, is open. The real problem is in protecting privacy, which is simply not a goal in tracking-obsessed Anglo-American agencies.

The need for hospitality

Hospitality may seem like a trivial concern, but it is important in places with many visitors, which large transit cities are. Moreover, universal design for hospitality, such as easily recognizable locations for topping up stored value, is also of use to regular riders who run out of money and need to top up. Making it easy to buy tickets without a local bank account is of use to both visitors and low-income locals without full-service bank accounts. In the US, 7% of households are unbanked and another 20% are underbanked; I have no statistics for other countries, but in Sweden banks will not even give debit cards to people with outstanding debts, which suggests to me that some low-income Swedes may not have active banking cards.

New York’s MetroCard has many faults, but it succeeds on hospitality better than any other farecard system I know of: it is easy to get the cards from machines, there is only a $1 surcharge per card, and season tickets are for 7 or 30 days from activation rather than a calendar week or month. At the other end of the hospitality scale, Navigo requires users to bring a passport photo and can only load weekly and monthly passes (both on the calendar); flexible 5-day passes cost more than a calendar weekly pass.

In fact, the main reason not to use paper tickets is that hospitality is difficult with monthly passes printed on paper. Before the Compass Card debacle, Vancouver had paper tickets with calendar monthly passes, each in a different color to make it easy for the driver to see if a passenger was flashing a current or expired pass. The tickets could be purchased at pharmacies and convenience stores but not at SkyTrain stations, which only sold single-ride tickets.

ID cards and privacy

The Anglosphere resists ID cards. The Blair cabinet’s attempt to introduce national ID cards was a flop, and the Britons I was reading at the time (such as the Yorkshire Ranter) were livid. And yet, ID cards provide security and privacy. Passports are extremely difficult to forge. Israel’s internal ID cards are quite difficult to forge as well; there are occasional concerns about voter fraud, but nothing like the routine use of fake drivers’ licenses to buy drinks so common in American college culture.

At the same time, in countries that are not ruled by people who think 1984 was an uplifting look at the future, ID cards protect privacy. The Yorkshire Ranter is talking about the evils of biometric databases, and Israeli civil liberties advocates have mounted the same attack against the government’s attempt at a database. But German passports, while biometric, store data exclusively on the passport, not in any centralized database. ID cards designed around proving that you paid your fare don’t even have to use biometrics; the security level is lower than with biometrics, but the failure mode is that the occasional forger can ride without paying $100 a month (which is much less than the cost of the forgery), not that a ring of terrorists can enter the country.

Navigo’s ID cards are not hospitable, but allowing passengers to ride with any valid state-issued ID would be. Visitors either came in from another country and therefore have passports, drove in and therefore have drivers’ licenses, or flew in domestically and therefore still have ID cards. Traveling between cities without ID is still possible here and in other free European countries, but everyone has national ID cards anyway; the ID problem is mainly in the US with its low passport penetration (and secondarily Canada and Australia), and the US has no intercity public transit network to speak of outside the Northeast Corridor.

What this means is that the best way to prevent duplication of transit passes is to require ID cards. Any ID card must be acceptable, including a passport (best option), a national ID card (second best), or an American driver’s license (worst).

Getting rid of the faregates

There are approximately three first-world Western cities that have any business having faregates on their urban rail networks: London, Paris, New York. Even there, I am skeptical that the faregates are truly necessary. The Metro’s crowd control during the World Cup victory celebration was not great. New York’s faregates sometimes cause backups to the point that passengers just push the emergency doors open to exit, and then rely on an informal honor system so that passengers don’t use the open emergency doors to sneak in without payment.

Evidently, the Munich S-Bahn funnels all traffic through a single two-track city center tunnel and has 840,000 weekday users, without faregates. Only one or two trunk lines are busier in Paris, the RER A with about a million, and possibly the RER B and D if one considers them part of the same trunk (they share a tunnel but no platforms); in London, only the Central, Victoria, and Jubilee lines are busier, none by very much; in New York, none of the two-track trunks is as busy. Only the overcrowded lines in Tokyo (and a handful in Osaka, Beijing, and Shanghai) are clearly so busy that barrier-free proof-of-payment fare enforcement is infeasible.

The main reason not to use faregates is that they are maintenance-intensive and interfere with free passenger flow. But they also require passengers to insert fare media, such as a paper ticket or a contactless card, at every station. With contactless cards the system goes well beyond exact numbers of users by station, which can be obtained with good accuracy even on barrier-free systems like Transilien using occasional counts, and can track individual users’ movements. This is especially bad on systems that do not have flat fares (because then passengers tag on and off) and on systems that involve transferring with buses or regional trains and not just the subway (because then passengers have to tag on and off at the transfer points too).

Best industry practice here is then barrier-free systems. To discourage fare evasion, the agency should set up regular inspections (on moving vehicles, with unarmed civilian inspectors), but at the same time incentivize season passes. Season passes are also good for individual privacy, since all the system registers is that the passenger loaded up a monthly pass at a certain point, but beyond that can’t track where the passenger goes. All cities that have faregates except for the largest few should get rid of them and institute POP, no matter the politics.

Tickets and ID cards

In theory, the ID card can literally be the ticket. The system can store in a central database that Alon Levy, passport number [redacted], loaded a monthly pass valid for all of Ile-de-France on 2018-08-16, and the inspector can verify it by swiping my machine-readable passport. But in practice, this requires making sure the ticket machine or validator can instantly communicate this to all roving fare inspectors.

An alternative approach is to combine paper tickets with ID cards. The paper ticket would just say “I am Alon Levy, passport number [redacted], and I have a pass valid for all of Ile-de-France until 2018-09-14,” digitally signed with the code of the machine where I validated the ticket. This machine could even be a home printer, via online purchase, or a QR code displayed on a phone. Designing such a system to be cryptographically secure is easy; the real problem is preventing duplication, which is where the ID card comes into play. Without an ID card, it’s still possible to prevent duplication, but only via a cumbersome system requiring the passenger to validate the ticket again on every vehicle (perhaps even every rail car) when getting on or off.

The same system could handle stored value. However, without printing a new ticket every time a passenger validates, which would be cumbersome, it would have to fall back on communication between the validator and the handheld readers used by the inspectors. But fortunately, such communication need not be instant. Since passengers prepay with stored value, the ticket itself, saying “I am Alon Levy, passport number [redacted], and I loaded 10 trips,” is already valid, and the only communication required is when passengers run out of money; moreover, single-use tickets have a validity period of 1-2 hours, so any validator-to-inspector communication lag time of less than the validity period will be enough to ensure not to validate expired tickets. The same system can also be used to have a daily cap as in Oyster, peak surcharges, and even generally-undesirable station-to-station rather than zonal fares.

It’s even possible to design a system without single-use tickets at all. Zurich comes close, in that a 24-hour pass costs twice as much as a single-use ticket (valid for just an hour), so passengers never have any reason to get a single-use ticket. In this system there would not be any stored value, just passes for a day or more, valid in prescribed zones, with printable tickets if regular riders in one zone occasionally travel elsewhere.

The upshot here is that advanced technology is only required for printing and reading QR codes. The machines do not need to be any more complicated than ATMs or Bitcoin ATMs (insert money, receive a Bitcoin slip of paper); I don’t know how much Bitcoin ATMs cost, but regular ATMs are typically $2,000-3,000, and the most expensive are $8,000, unlike the $75,000 ticket machines used at New York SBS stations. The moving parts are software and not hardware, and can use multi-vendor cryptographic protocols. In effect, the difficult part of verifying that there is no duplication or forgery is offloaded to the state ID system.

How to Spend Money on Public Transport Better

After four posts about the poor state of political transit advocacy in the United States, here’s how I think it’s possible to do better. Compare what I’m proposing to posts about the Green Line Extension in metro Boston, free public transport proposals, federal aid to operations, and a bad Green New Deal proposal by Yonah Freemark.

If you’re thinking how to spend outside (for example, federal) money on local public transportation, the first thing on your mind should be how to spend for the long term. Capital spending that reduces long-term operating costs is one way to do it. Funding ongoing operating deficits is not, because it leads to local waste. Here are what I think some good guidelines to do it right are.

Working without consensus

Any large cash infusion now should work with the assumption that it’s a political megaproject and a one-time thing; it may be followed by other one-time projects, but these should not be assumed. High-speed rail in France, for example, is not funded out of a permanent slush fund: every line has to be separately evaluated, and the state usually says yes because these projects are popular and have good ROI, but the ultimate yes-no decision is given to elected politicians.

It leads to a dynamic in which it’s useful to invest in the ability to carry large projects on a permanent basis, but not pre-commit to them. So every agency should have access to public expertise, with permanent hires for engineers and designers who can if there’s local, state, or federal money build something. This public expertise can be in-house if it’s a large agency; smaller ones should be able to tap into the large ones as consultants. In France, RATP has 2,000 in-house engineers, and it and SNCF have the ability to build large public transport projects on their own, while other agencies serving provincial cities use RATP as a consultant.

It’s especially important to retain such planning capacity within the federal government. A national intercity rail plan should not require the use of outside consultants, and the federal government should have the ability to act as consultant to small cities. This entails a large permanent civil service, chosen on the basis of expertise (and the early permanent hires are likely to have foreign rather than domestic experience) and not politics, and yet the cost of such a planning department is around 2 orders of magnitude less than current subsidies to transit operations in the United States. Work smart, not hard.

However, investing in the ability to build does not mean pre-committing to build with a permanent fund. Nor does it mean a commitment to subsidizing consumption (such as ongoing operating costs) rather than investment.

Funding production, not consumption

It is inappropriate to use external infusions of cash for operations and, even worse, maintenance. When maintenance is funded externally, local agencies react by deferring maintenance and then crying poverty whenever money becomes available. Amtrak fired David Gunn when the Bush administration pressured it to defer maintenance in order to look profitable for privatization and replaced him with the more pliable Joe Boardman, and then when the Obama stimulus came around Boardman demanded billions of dollars for state of good repair that should have built a high-speed rail program instead.

This is why American activists propose permanent programs – but those get wasted fast, due to surplus extraction. A better path forward is to be clear about what will and will not be funded, and putting state of good repair programs in the not-funded basket; the Bipartisan Infrastructure Framework’s negotiations were right to defund the public transit SOGR bucket while keeping the expansion bucket.

Moreover, all funding should be tied to using the money prudently – hence the production, not consumption part. This can be capital funding, with the following priorities, in no particular order:

  • Capital funding that reduces long-term operating costs, for example railway electrification and the installation of overhead wires (“in-motion charging“) on bus trunks.
  • Targeted investments that improve the transit experience. Bus shelter is extremely cost-effective on this point and a federal program to fund it at a level of around $15,000/stop (not more – it’s easy to make local demands that drive it up to $50,000) would have otherworldly social rates of return. Washington bureaucrats are loath to be this explicit about what to do – they try to speak in circumlocutions, saying “standards for bus stops” instead of just funding shelter, or “transit asset management” instead of just committing to not playing the SOGR game.
  • Accessibility upgrades. This require close federal control to eliminate local waste, because much of the money would be going to New York, which has a long-term problem of siphoning accessibility money to other priorities like adding station access points or repairing stations, and has a uniquely incompetent local environment when it comes to construction costs.
  • Planning aid for improving bus-rail interface; these two modes are often not planned together in American cities, and commuter rail is not planned in conjunction with other modes. San Jose, for example, has a proposal for large expansion of bus service, part of which is parallel to Caltrain; the local agency, VTA, owns one third of Caltrain and could expand rail service within the county and integrate it with bus service better, but does not do so.
  • Rail automation, to reduce long-term operating costs. Bus automation could go in this bucket too but is at this point too speculative; save it for one or two stimuli in the future.

Avoiding local extraction

Local government has very little democratic legitimacy. It’s based on informal power arrangements, in which direct elections play little role; partisan elections are rare and instead primaries reign with severe democratic deficits (for example, it’s hard to form any kind of base for opposition to challenge a sitting New York mayor or governor). Without national ideology to guide it, it is the domain of cranks and people with the time and leisure to attend community meetings on weekdays at 3 pm. Local community takes its illegitimate power and thieves what others create, whether it is the market or the state.

Recognizing this pattern means that federal funding should not under any circumstances coddle local arrangements. If, for example, California cannot spend money cost-effectively because it is constrained by referendum, federal funding can be used to bypass this system, but never work under its rules. If the local business community is traumatized by cut-and-cover construction in the distant past, the feds should insist that subway money that they give will be used for cut-and-cover instead of mined stations.

The typical surplus extraction pattern concerns car dominance. State DOTs are in effect highway departments; transit planning is siloed, usually at separate agencies. They use their power to demand the diversion of transit money to roads. For example, in Tampa, a plan to increase bus service led to a DOT demand to pave the routes with concrete lanes at transit agency expense (with federal or state transit funding). The list of BRT projects that were just highway widenings is regrettably too long. The feds should actively demand to keep transit funding for transit, and not roads, social services, policing, or other priorities.

In particular, the feds should give money for some bus improvements, but demand that agencies prioritize the bus over the car. No bus lanes? No signal priority? No money. Similarly, they should demand they engage in internal efficiency measures like stop consolidation and all-door boarding with proof of payment ticket collection, which a larger and more expert FTA can give technical assistance for.

It may also be prudent to give transitional resources, up to a certain point. Funding private-sector retraining for workers displaced by automation is good, and in some limited cases public-sector retraining, as long as it doesn’t turn into workfare (there is no way for the subway in New York to absorb redundant conductors or surplus maintenance staff). If moderate amounts of capital funding are required for bus improvements, such as traffic signal upgrades to have active control and conditional TSP, then they are good investments as well.


Funding public transportation is useful, provided there is enough of a connection between the source of funds and the management thereof that the money is not wasted. A larger and more technocratic federal government is an ideal organ for this, with enough planning power to propose bus network redesigns, rail planning, integrated fare systems, and intermodal coordination. It can and should have technical priorities – shelter is far and away the lowest-hanging fruit for American bus systems – and state them clearly rather than hiding behind bureaucratic phrases (again, “transit asset management” is a real phrase).

It’s fundamentally an investment rather than consumption. And as with all investments, it’s important to ensure one invests in the right thing and the right people. A local transit agency with a track record of successful projects, short lead times from planning to completion, technical orientation, and the ability to say no to highway departments and other organs that extract surplus is a good investment. One that instead genuflects before antisocial groups that launch nuisance lawsuits is not so good an investment, and funding for such an agency should be contingent on improvement in governance of the kind that will make local notables angry.

The German Way of Building Rapid Transit

Continuing my series on different traditions of building urban rapid transit, today it’s time for Germany and Austria, following the posts on the US, the Soviet bloc, Britain, and France. Germany had a small maritime empire by British and French standards and lost it all after World War 1, but has been tremendously influential on its immediate neighbors as a continental power. This is equally true of rapid transit: Germany and Austria’s rail traditions have evolved in a similar direction, influential also in Switzerland, Denmark, the Netherlands, and Belgium to varying extents.

S-Bahns and U-Bahns

Germany is one of the origins of urban regional rail, called S-Bahn here in contrast with the U-Bahn subway. The first frequent urban rail service in the world appeared in London in 1836, but trains ran every 20 minutes and the stop spacing was only borderline urban. Berlin in contrast innovated when it opened the east-west elevated Stadtbahn in 1882, running frequent steam trains with local spacing.

As elevated steam-powered urban rail, the Stadtbahn was not particularly innovative. New York had already been running such service on its own els going back to 1872. But the Stadtbahn differed in being integrated into the mainline rail system from the start. Berlin already had the Ringbahn circling the city’s then-built up area to permit freight trains to go around, but it still built the Stadtbahn with four tracks, two dedicated to local traffic and two to intercity traffic. Moreover, it was built to mainline rail standards, and was upgraded over time as these standards changed with the new national rail regulation of 1925. This more than anything was the origin of the concept of regional rail or S-Bahn today.

Vienna built such a system as well, inspired by many sources, including Berlin, opening in 1898. Hamburg further built a mainline urban rail connection between Hauptbahnhof and Altona, electrifying it in 1907 to become the first electrified S-Bahn in the world. Copenhagen, today not particularly German in its transportation system, built an S-Bahn in the 1930s, naming it S-tog after the German term.

However, German cities that built such S-Bahn systems would also build separate U-Bahn systems. U-Bahns in Germany have short stop spacing and tend to mostly serve inner areas: for example, on this map of Munich, the U-Bahn is in blue, and the trams are in red. Berlin has some farther-reaching U-Bahn lines, especially U7, a Cold War line built when the West got the U-Bahn and the East got the S-Bahn; had the city not been divided, it’s unlikely it would have been built at all.

Some of the early U-Bahns were even elevated, similarly to New York subway lines and a few Paris Métro lines. Hamburg’s operator is even called Hochbahn in recognition of the elevated characteristic of much of its system. Like Paris and unlike New York, those elevated segments are on concrete viaducts and not steel structures, and therefore the trains above are not very noisy, generally quieter than the cars at street level.

Light rail and Stadtbahns

The early els of Berlin and Vienna were called Stadtbahn when built in the 19th century, but since the 1960s, the term has been used to refer to mixed subway-surface systems.

Germany had long been a world leader in streetcar systems – the first electric streetcar in the world opened in Berlin in 1881. But after World War Two, streetcars began to be viewed as old-fashioned and just getting in the way of cars. West German cities generally tore out their streetcars in their centers, but unlike American or French cities, they replaced those streetcars with Stadtbahn tunnels and retained the historic streetcar alignments in outer neighborhoods feeding those tunnels.

The closure of the streetcars was not universal. Munich and Vienna retained the majority of their tram route-length, though they did close lines parallel to the fully grade-separated U-Bahn systems both cities built postwar. Many smaller cities retained their trams, like Augsburg and Salzburg, though this was generally more consistent in the Eastern Bloc, which built very little rapid transit (East Berlin) or severed itself from the German planning tradition and Sovietized (Prague, Budapest).

The Stadtbahn concept is also extensively used in Belgium, where it is called pre-metro; the Vienna U-Bahn and even the generally un-German Stockholm T-bana both have pre-metro history, only later transitioning to full grade separation. Mixed rapid transit-streetcar operations also exist in the Netherlands, but not in the consistent fashion of either the fast-in-the-center-slow-outside Stadtbahn or its fast-outside-slow-in-the-center inverse, the Karlsruhe model of the tram-train.

Network design

Rail network design in German-speaking cities is highly coordinated between modes but is not very systematic or coherent.

The coordination means that different lines work together, even across modes. In the post about France, I noted that the Paris Métro benefited from coordinated planning from the start, so that on the current network, there is only one place where two lines cross without a transfer. This is true, but there are unfortunately many places where a Métro line and an RER line cross without a transfer; the central RER B+D tunnel alone crosses three east-west Métro lines without a transfer. In Berlin, in contrast, there are no missed connections on the U-Bahn and the S-Bahn, and only one between the U-Bahn and S-Bahn, which S21 plans do aim to fix. Hamburg has two missed connections on the U-Bahn and one between the U- and S-Bahn. Munich has no missed connections at all.

But while the lines work well as a graph, they are not very coherent in the sense of having a clear design paradigm. Berlin is the most obvious example of this, having an U-Bahn that is neither radial like London or Moscow nor a grid like Paris. This is not even a Cold War artifact: U6 and U8 are parallel north-south lines, and have been since they opened in the 1920s and early 20s. Hamburg and Vienna are haphazard too. Munich is more coherent – its U-Bahn has three trunk lines meeting in a Soviet triangle – but its branching structure is weird, with two rush hour-only reverse-branches running as U7 and U8. The larger Stadtbahn networks, especially Cologne, are a hodgepodge of mergers and splits.


The German planning tradition has distinguishing characteristics that are rare in other traditions, particularly when it comes to fare payment – in many other respects, the Berlin U-Bahn looks similar to the Paris Métro, especially if one ignores regional rail.

Proof of payment: stations have no fare barriers, and the fare is enforced entirely with proof of payment inspections. This is common globally on light rail (itself partly a German import in North America) and on European commuter rail networks, but in Germany this system is used even on U-Bahns and on very busy S-Bahn trunks like Munich and Berlin’s; in Paris there’s POP on the RER but only in the suburbs, not in the city.

Unstaffed stations: because there are no fare barriers, stations do not require station agents, which reduces operating expenses. In Berlin, most U-Bahn stations have a consistent layout: an island platform with a stairway exit at each end. This is also common in the rest of the German-speaking world. Because there is no need for fare barriers, it is easy to make the stations barrier-free – only one elevator is needed per station, and thus Berlin is approaching fully wheelchair accessibility at low cost, even though it’s contemporary with New York (only 25% accessible) and Paris (only 3% accessible, the lowest among major world metros).

Fare integration: fares are mode-neutral, so riding an express regional train within the city costs the same as the U-Bahn or the bus, and transfers are free. This is such an important component of good transit that it’s spreading across Europe, but Germany is the origin, and this is really part of the coordination of planning between U- and S-Bahn service.

Zonal fares: fares are in zones, rather than depending more granularly on distance as is common in Asia. Zones can be concentric and highly non-granular as in Berlin, concentric and granular as in Munich, or non-concentric as in Zurich.

Monthly and annual discounts: there is a large discount for unlimited monthly tickets, in order to encourage people to prepay and not forget the fare when they ride the train. There are even annual tickets, with further discounts.

No smartcards: the German-speaking world has resisted the nearly global trend of smartcards. Passengers can use paper tickets, or pay by app. This feature, unlike many others, has not really been exported – proof-of-payment is common enough in much of Northern and Central Europe, but there is a smartcard and the fare inspectors have handheld card readers.

Verkehrsverbund: the Verkehrsverbund is an association of transport operators within a region, coordinating fares first of all, and often also timetables. This way, S-Bahn services operated by DB or a concessionaire and U-Bahn and bus services operated by a municipal corporation can share revenue. The first Verkehrsverbund was Hamburg’s, set up in 1965, and now nearly all of Germany is covered by Verkehrsverbünde. This concept has spread as a matter of fare integration and coordinated planning, and now Paris and Lyon have such bodies as well, as does Stockholm.

Germany has no head

The American, Soviet, British, and French traditions all rely on exports of ideas from one head megacity: New York, Moscow, London, Paris. This is not at all true of the German tradition. Berlin was the richest German city up until World War 2, and did influence planning elsewhere, inspiring the Vienna Stadtbahn and the re-electrification of the Hamburg S-Bahn with third rail in the late 1930s. But it was never dominant; Hamburg electrified its S-Bahn 20 years earlier, and the Rhine-Ruhr region was planning express regional service connecting its main cities as early as the 1920s.

Instead, German transportation knowledge has evolved in a more polycentric fashion. Hamburg invented the Verkehrsverbund. Munich invented the postwar S-Bahn, with innovations like scheduling a clockface timetable (“Takt”) around single-track branches. Cologne and Frankfurt opened the first German Stadtbahn tunnels (Boston had done so generations earlier, but this fell out of the American planning paradigm). Karlsruhe is so identified with the tram-train that this technology is called the Karlsruhe model. Nuremberg atypically built a fully segregated U-Bahn, and even more atypically was a pioneer of driverless operations, even beating Paris to be the first city in the world to automate a previously-manual subway, doing so in 2010 vs. 2012 for Paris.

There’s even significant learning from the periphery, or at least from the periphery that Germany deigns acknowledge, that is its immediate neighbors, but not anything non-European. Plans for the Deutschlandtakt are based on the success of intercity rail takt planning in Switzerland, Austria, and the Netherlands, and aim to build the same system at grander scale in a larger country.

The same polycentric, headless geography is also apparent in intercity rail. It’s not just Germany and Switzerland that build an everywhere-to-everywhere intercity rail system, in lieu of the French focus on connecting the capital with specific secondary cities. It’s Austria too, even though Vienna is a dominant capital. For that matter, the metropolitan area of Zurich too is around a fifth of the population of Switzerland, and yet the Swiss integrated timed transfer concept is polycentric.

Does this work?

On the most ridiculously wide definition of its metropolitan area, Vienna has 3.7 million people, consisting of the city proper and of Lower Austria. In 2012, it had 922 million rail trips (source, PDF-p. 44); the weighted average work trip modal split in these two states is 40% (source, PDF-p. 39). In reality, Vienna is smaller and its modal split is higher. Zurich, an even smaller and richer city, has a 30% modal split. Mode shares in Germany are somewhat lower – nationwide Austria’s is 20%, Germany’s is 16% – but still healthy for how small German cities are. Hamburg and Stuttgart both have metropolitan public transport modal splits of 26%, and neither is a very large city – their metro areas are about 3.1 and 2.6 million, respectively. Munich is within that range as well.

In fact, in the developed world, one doesn’t really find larger modal splits than these in the 2 million size class. Stockholm is very high as well, as are 1.5th-world Prague and Budapest, but one sees certain German influences in all three, even though for the most part Stockholm is its own thing and the other two are Soviet. Significantly higher rates of public transport usage exist in very large Asian cities and in Paris, and Germany does deserve demerits for its NIMBYism, but NIMBYism is not why Munich is a smaller city than Taipei.

To the extent there’s any criticism of the German rapid transit planning tradition, it’s that construction costs lately have been high by Continental European standards, stymieing plans for needed expansion. Märkisches Viertel has been waiting for an extension of U8 for 50 years and it might finally get it this decade.

The activist sphere in Germany is especially remarkable for not caring very much about U-Bahn expansion. One occasionally finds dedicated transport activists, like Zukunft Mobilität, but the main of green urbanist activism here is bike lanes and trams. People perceive U- and S-Bahn expansion as a center-right pro-car plot to remove public transit from the streets in order to make more room for cars.

The high construction costs in Germany and the slow, NIMBY-infused process are both big drags on Germany’s ability to provide better public transportation in the future. It’s plausible that YIMBYer countries will overtake it – that Korean and Taiwanese cities of the same size as Munich and Hamburg will have higher modal splits than Munich and Hamburg thanks to better transit-oriented development. But in the present, the systems in Munich and Zurich are more or less at the technological frontier of urban public transportation for cities of their size class, and not for nothing, much of Europe is slowly Germanizing its public transport planning paradigm.

Recession and Efficiency

Question. In what ways can a recession be useful for forcing inefficient public-sector agencies to lay off redundant workers and reduce bloat?

Answer. None.

Every recession, going at least back to the Great Depression, you get economists and others who are certain that high unemployment can discipline firms into greater productivity. Back in the 1930s, this was Joseph Schumpeter saying that there was no need to fear a depression because it was good, like “a cold douche.” Liquidating unproductive firms and forcing the rest to get leaner was supposed to improve economy-wide efficiency. Today, you can find people arguing the same for inefficient public-sector agencies strapped by budget cuts.

It doesn’t happen. Productivity decreases in bad economic times; labor-saving productivity improvements happen when wages are high, not when sales are low. Cash-strapped firms do not have the ability to invest for the long run – they just sell portions of themselves and shrink to be easier to manage, to limit the loss.

In public-sector public transportation, this really is the same. The best time for converting a metro line to driverless operation is when unemployment is 3%, not when it’s 15%. When unemployment is 3%, it’s possible to place workers in the private sector, which means they’ll work well through the transition. This goes doubly so when the productivity improvement lets one person do a job that previously took three rather than eliminating the job entirely: workers can go on strike if they’re unhappy, and transit as an industry is very amenable to unionization, to the point that unions have succeeded in organizing the tech shuttles in Silicon Valley in an otherwise union-hostile setting. (Of note, American public-sector anti-union successes have mostly been about screwing young workers, who are already the least empowered within the union, rather than doing anything to 20-year veterans who are about to retire with a full pension.)

The issue here is that very, very few workers are redundant on a next-day basis, even in severely overstaffed agencies. New York can eliminate subway conductors but requires some planning in advance to do so, for example to move mirrors around and place CCTV cameras to enable drivers to see the platform and close the doors. American commuter rail agencies can eliminate rail conductors, in what is as close to next-day redundancy as I can think of, but even that requires hiring fare inspectors for proof of payment checks and often also buying ticketing machines at outlying stations where previously passengers bought tickets directly on the train.

More often, eliminating a large amount of waste requires spending a bit more money in the short run. It can be on capital, like more ticketing machines. It can be on labor, like more dispatchers to make the buses run more regularly to reduce delays and bus driver overtime. But it’s usually not something that can be done by the Chainsaw Al school of management. It takes time, and in a lot of cases, the cooperation of the workforce is necessary.

Time and time again, we see transit managers who think in terms of just cutting avoid making long-term investments to improve efficiency. We see hiring freezes, wage freezes, reticence to engage in any long-term hiring and planning even in temporary recessions, and hostility to electrification even among American governors who propose to spend billions of dollars on parking more trains in city center between the morning and afternoon peaks. Even below the top political level, managers who develop a siege mentality never think in terms of long-term improvement. That’s not what will get them ahead; avoiding short-term controversy will, and they adapt to bad practices readily.

The workers adapt, too. If they expect sudden layoffs, their morale will tank and so will their productivity doing anything but the most routinized work. Maintenance workers will skip things – nobody will notice until it’s too late. Cleaners will slack, and if the message sent from the top is that it’s time to retrench, it will be hard to argue for aggressive standards for cleanliness. Even absent unionization, productivity will flounder, and there will not be much room to replace truly lazy workers if there is a hiring slowdown.

So what works for increasing efficiency? The answer is growth. Kopicki-Thompson’s report on best practices for rail privatization has a chapter about the history of the breakup of Japan National Railways in the 1980s, which makes the connection between growth and efficiency clear. Between 1980 and the breakup of JNR into seven constituent JRs in 1987, the company laid off two-thirds of its workforce, after complex negotiations with the unions, some of which were militant socialists. Japanese work culture is that a man is expected to work for the same firm for his entire working life, from age 22 for a university graduate to retirement at 65; JNR had to place these workers in the private sector for a mid-career layoff. This could happen because Japan’s economic growth in that era was famously high, to the point that Americans soon bought business books about how to think like a Japanese manager.

It is best to instead use weak periods to plan for the long term. If there’s stimulus spending, take it and go build things. Even if there isn’t, remember that the recession won’t last forever and plan in advance. Part of the plan should be knowing which workers are supernumerary and making a plan to place them at private-sector jobs as soon as they become available. But don’t expect to be able to send masses of pink slips in a recession; that must be saved for when jobs elsewhere in the economy are plentiful.

The Different Travel Markets for Regional Rail

At a meeting with other TransitMatters people, I had to explain various distinctions in what is called in American parlance regional rail or commuter rail. A few months ago I wrote about the distinction between S-Bahn and RegionalBahn, but made it clear that this distinction was about two different things: S-Bahns are shorter-distance and more urban than RegionalBahns, but they’re also more about service in a contiguous built-up area whereas RegionalBahns have the characteristics of interregional service. In this post I’d like to explore the different travel markets for regional rail not as a single spectrum between urban and long-range service, but rather as two distinct factors, one about urbanity or distance and one about whether the line connects independent centers (“interregional”) or a monocentric urban blob (“intraregional”).

This distinction represents a two-dimensional spectrum, but for simplicity, let’s start with a 2*2 table, so ubiquitous from the world of consulting:

Connection \ Range Short Long
Intraregional Urban rail, S-Bahn Big-city suburban rail
Interregional Polycentric regional rail RegionalBahn

The notions of mono- and polycentricity are relative. Downtown Providence, Newark, and San Jose all have around 60,000 jobs in 5 km^2. But Caltrain and the Providence Line are both firmly in the RegionalBahn category, the other end being Downtown San Francisco or Boston, 70-80 km away with 300,000-400,000 jobs in 5-6 km^2. Newark, in an essentially contiguous urban area with New York, 16 km from Midtown and its 1.2 million jobs in 6 km^2, is relatively weaker and does not fit into the interregional category; a New York-Newark line is an S-Bahn.

Size matters

On the 2*2 table, the appellations “big-city” and “polycentric” are necessary. This is because longer-range rail lines are likelier to get out of the city and its immediate suburbs and connect to independent urban centers. Exceptions mostly concern the size of the primary urban cluster. If it is large, like New York, it can cast a shadow for tens of kilometers in each direction: commuter volumes are high from deep into Long Island, as far up the Northeast Corridor as Westport, as far up the Hudson as northern Westchester, and so on. In Paris, I wouldn’t be comfortable describing any of the RER and Transilien lines as RegionalBahn. In London, the closest independent cities of reasonable size are Cambridge, Brighton, Oxford, and Portsmouth, the first two about 80 km away and the last two about 100.

Tokyo, about as big as New York and London combined, casts an even longer shadow. In my post on S-Bahns and RegionalBahns I called some of its outer regional rail branches RegionalBahn, giving the examples like the Chuo Line past Tachikawa. But even that line is not really interregional in any meaningful way. It stays within the Tokyo prefecture as far as Takao, 53 km from Tokyo Station, and commuter service continues until Otsuki at kp 88, but everything along the line is bedroom communities for Tokyo or outright rural. The branching and short-turns at Tachikawa mean that the Chuo Line through Tachikawa is a long S-Bahn, and past Tachikawa is really a suburban commuter line too long to be an S-Bahn but too monocentric and peaky to be Regionalbahn (the peak-to-base frequency ratio is about 2:1, whereas German RegionalBahn is more commonly 1:1).

At the other end, we can have regional rail that is short-range but connects two distinct centers. This occurs when relatively small cities are in proximity to each other. In a modern first-world economy, these cities would form a polycentric region, like the Rhine-Ruhr or Randstad. Smaller regions with these characteristics include the Research Triangle, where relatively equal-size Raleigh and Durham are 40 rail kilometers apart, and Nord, where Lille is 30-50 km from cities like Douai and Valenciennes. This may even occur in a region with a strong primary center, if the secondary center is strong enough, as is the case for Winterthur, 28 km from Zurich, which has Switzerland’s fourth highest rail ridership.

Size is measured in kilometers, not people. Stockholm is a medium-size city region, but Stockholm-Uppsala is firmly within RegionalBahn territory, as the two cities are 66 km apart. Randstad’s major cities are all closer to each other – Amsterdam-Rotterdam is about 60 km – and that’s a region of 8 million, not 3 million like Stockholm and the remainder of Uppland and Södermanland.

The issue of frequency

The importance of the 2*2 table is that distance and urban contiguity have opposite effects on frequency: high frequency is more important on short lines than on long lines, and matching off-peak frequency to peak frequency is more important on interregional than intraregional lines.

Jarrett Walker likes to say that frequency is freedom, but what frequency counts as freedom depends on how long passengers are expected to travel on the line. Frequency matters insofar as it affects door-to-door travel time including wait time, so it really ought to be measured as a fraction of in-vehicle travel time rather than as an absolute number. An urban bus with an average passenger trip time of 15 minutes should run every 5 minutes or not much longer; if it runs every half hour, it might as well not exist, unless it exists for timed connections to longer-range destinations. But an intercity rail line where major cities are 2 hours apart can easily run every half hour or even every hour.

The effect of regional contiguity is more subtle. The issue here is that an intraregional line is likely to be used mostly by commuters at the less dense end. The effect of distance can obscure this, but within a large urban area, a 45-minute train will be full of commuters traveling to the primary city in the morning and back to the suburbs in the afternoon or evening; the same train between two distinct cities, like Boston and Providence, will not have so many commuters. In contrast, the same 45-minute trip will get much more reverse-commute travel and slightly more non-commute travel if it connects two distinct cities, because the secondary city is likelier to have destinations that attract travelers.

In no case are the extreme peak-to-base ratios of American commuter lines justifiable. Lines with tidal commuter flows can run 2:1 peak-to-base ratios, as is common in Tokyo, but much larger ratios waste capacity. The marginal cost of service between the morning and afternoon peaks is so low until it matches peak service that having less midday than peak service at all is only justifiable in very peaky environments. The 45-minute suburbs of New York, Tokyo, and other huge cities can all live with a 2:1 ratio, but other lines should have lower ratios, and interregional lines should have a 1:1 ratio.

The implication is that just as peak-to-base ratios going as high as 2:1 are acceptable for long-range intraregional lines, short-range interregional lines must run a constant, high frequency all day. I would groan at the thought of even half-hourly frequency on a 40-km interregional line; the worst I’m comfortable with is 15-20 minutes all day. Of note, such lines are necessarily pretty fast, since by assumption they make few intermediate stops to speed up travel between the two main cities – if there are significant cities in the middle then the lines connect even shorter-range cities and should be even more frequent.

Urban, suburban, intercity

Individual lines may have the characteristics of multiple variants of regional rail. They pass through urban neighborhoods on their way to outlying areas, which may be suburbs or independent cities; they may also pass through multiple kinds of independent areas.

In practice, in big cities this leads to three tiers on the same line: urban at the inner end, suburban at the middle end, interregional at the outer end. Inversions, in which there are independent cities and then suburbs, are possible but extremely rare – I can’t think of any in Paris, London, or New York, and arguably only three in Tokyo (Chiba, Saitama, Yokohama); fundamentally, if there are suburbs of the primary city beyond your municipality, then your municipality is likely to itself be popular as a suburb of the primary city.

That regional lines have these three tiers of demand type does not mean that every single regional line does. Some lines don’t reach any significant independent city. Some don’t usefully serve close-in urban areas – for example, the Providence Line barely serves anything urban, since the stop spacing is wide in order to speed up travel to high-demand suburbs and to Providence and the closest-in urban neighborhoods have Orange Line subway service. In rare cases, the suburban tier may be skipped, because there just isn’t much tidal suburban commuter ridership; in Boston, the Newburyport Line is an example, since its inner area has unbroken working-class urban development almost all the way to Salem, and then there’s almost nothing between Salem and Newburyport.

This does not mean that suburbs are always in between urban areas and independent cities – this is just a specific feature of large metropolitan areas. In smaller ones, the middle tier between urban and long-range interregional service is occupied by short-range interregional service rather than suburban commuter rail. Skipping the suburban tier, which is rare enough in large cities that in the cities I think about most often the only example I can come up with is the Newburyport Line, is thus completely normal in smaller cities.


There are common best practices for commuter rail: electrification, level boarding, frequent clockface schedules, timed transfers, fare integration, proof of payment fare collection.

However, high frequency means different things on lines of different characteristics. An interregional line should be running consistent all-day frequency, and if it is long enough could make do with half-hourly trains with timed connections to suburban buses; an urban line should be running every few minutes as if it were a metro line. Regional rail lines with characteristics off the main diagonal of the S-Bahn to RegionalBahn spectrum have different needs – suburban lines can have high peak frequency to reduce road congestion, although they should still have useful off-peak frequency; short-range interregional lines should run every 10-20 minutes all day.

The distinctions between intraregional and interregional lines and between short- and long-range lines may also affect other aspects of planning: station spacing, connections to local surface transit, connections at the city center end, through-running, etc. Even when the best industry practices are the same in all cases, the relative importance of different aspects may change, which changes what is worth spending the most money on.

Since an individual line can serve multiple markets on its way from city center to a faraway outlying terminal, it may be useful to set up a timetable that works for all of these markets and their differing needs. For example, urban lines need higher frequency than suburban and interregional ones, so a regional line with significant urban service should either branch or run short-turn trains to beef up short-range frequency. If there is a suburban area in the middle with demand for high peak frequency but also a secondary city at the outer end, it may be useful to give the entire line high all-day frequency, overserving the line off-peak just because the cost of service is low.

Ultimately, regional rail is about using mainline rail to fulfill multiple functions; understanding how these functions works is critical for good public transportation.

Fare Evasion

There’s a moralistic discourse in the United States about fare evasion on public transport that makes it about every issue other than public transport or fares. It’s a proxy for lawlessness, for police racism, for public safety, for poverty. In lieu of treating it as a big intra-urban culture war, I am going to talk about best practices from the perspective of limiting revenue loss to a minimum.

This is an issue where my main methodology for making recommendations for Americans – looking at peer developed countries – is especially useful. The reason is that Americans practically never look at other countries on hot-button culture war issues, even less than (say) the lip service the center-left pays to foreign universal health care systems. Americans who support immigration liberalization practically never listen when I try bringing up the liberal work visa, asylum, and naturalization policies of Germany or Sweden. Knowing stuff about the rest of the world is a type of competence, and competence is not a factor in a culture war. The upshot is that successful policies regarding fare collection in (for example) Germany are obscure in the United States even more than policies regarding wonkier transportation issues like train frequency.

The current situation in New York

In the summer, Governor Cuomo announced a new initiative to hire 500 cops to patrol the subway. The justification for this scheme has varied depending on who was asking, but the primary goal appears to be to defeat fare evasion. Per Cuomo’s office, fare evasion costs $240 million a year on the subway and buses, about 5% of total revenue. The MTA has also mentioned a higher figure, $300 million; I do not know if the higher figure includes just urban transit or also commuter rail, where conductors routinely miss inspections, giving people free rides.

But New York fare evasion is mostly a bus problem: the rate on buses is 22%. On the subway the rate is only 4%, and there is somewhat more revenue loss on buses than on subways. This, in turn, is because bus fares are enforced by drivers, who for years have complained that fare disputes lead to assaults on them and proposed off-board fare collection as an alternative. On many buses, drivers just let it go and let passengers board without paying, especially if nearly all passengers are connecting from the subway and therefore have already paid, as on the B1 between the Brighton Beach subway station and Kingsborough Community College or on the buses to LaGuardia.

So realistically the subway fare evasion level is closer to $110 million a year. The total cost of the new patrol program is $56 million in the first year, escalating by 8% annually thanks to a pre-agreed pay hike scale. Whereas today the program is a net revenue generator if it halves subway fare evasion, a level that already seems strained, within ten years, assuming normal fare escalation, it will need to cut fare evasion by about 90%, which is a complete fantasy. A sizable proportion of riders who do not pay would just stop riding altogether, for one. The governor is proposing to spend more on fare enforcement than the MTA can ever hope to extract.

The American moral panic about fare evasion regrettably goes far beyond New York. Two years ago, BART announced that it would supplement its fare barriers with proof-of-payment inspections, done by armed cops, and lied to the public about the prevalence of such a belts-and-suspenders system. More recently, it trialed a new turnstile design that would hit passengers in the face, but thankfully scrapped it after public outcry. Boston, too, has its moral panic about fare evasion, in the form of campaigns like the Keolis Ring of Steel on commuter rail or Fare is Fair.

There is another way

In talking to Americans about fare evasion, I have found that they are generally receptive to the idea of minimizing revenue loss net of collection costs. However, what I’ve encountered more resistance about is the idea that people should just be able to walk onto a bus or train.

In the urban German-speaking world, everyone with a valid fare can walk onto a bus, tram, or train without crossing fare barriers or having to pay a driver. This system has been copied to American light rail networks, but implementation on buses and subways lags (except on San Francisco buses). In New York, the SBS system uses proof of payment (POP), but passengers still have to validate fares at bus stops, even if they already have paid, for example if they have a valid monthly pass.

In the vast majority of cities, no excuse exists to have any kind of overt fare control. Tear down these faregates. They are hostile to passengers with disabilities, they cost money to maintain, they constrain passenger flow at busy times, and they don’t really save money – evidently, New York’s subway fare evasion rate is within the range of Berlin, Munich, and Zurich. Fare enforcement should be done with POP alone, by unarmed civilian inspectors, as in Berlin. Some people will learn to dodge the inspectors, as is the case in Berlin, and that’s fine; the point is not to get fare evasion to 0%, but to the minimum level net of enforcement costs.

New York itself may have an excuse to keep the faregates: its trains are very crowded, so peak-hour inspections may not be feasible. The question boils down to how New York crowding levels compare with those on the busiest urban POP line, the Munich S-Bahn trunk. But no other American city has that excuse. Tear down these faregates.

What’s more, the fare inspection should be a low-key affair. The fine in Berlin is €60. In Paris on the RER I can’t tell – I believe it’s three figures of which the first is a 1. Inspectors who can’t make a citation without using physical violence should not work as inspectors.

Make it easy to follow the law

The most important maxim when addressing a low-level crime is to make it easy to follow the law. Mistakes happen; I’ve accidentally fare-dodged in Berlin twice, only realizing the error at the end of the trip. This is much more like parking violations or routine mistakes in tax filing.

The turnstile acts as a reminder to everyone to pay their fare, since it’s not possible to fare-dodge without actively jumping it. (I did turnstile-jump in Paris once, with a valid transfer ticket that the turnstile rejected, I think because Paris’s turnstile and magnetic ticket technology is antediluvian.) However, turnstiles are not necessary for this. A better method is to ensure most passengers have prepaid already, by offering generous monthly discounts. My fare dodges in Berlin happened once before I got monthlies and once on my way to the airport on my current trip, in a month when I didn’t get a monthly since I was only in Berlin 6 days.

New York does poorly on the metric of encouraging monthlies. Passengers need to swipe 46 times in a 30-day period to justify getting a monthly pass rather than a pay-per-ride. This is bad practice, especially for passengers who prefer to refill at a ticketing machine rather than at home or on their phone with an app, since it means passengers visit the ticketing machines more often, requiring the agency to buy more to avoid long lines. In Berlin, the breakeven point is 36 trips. In Zurich, it’s 20 trips; ZVV does whatever it can to discourage people from buying single tickets. In both cities, there are further discounts for annual tickets.

Unfortunately, the problem of indifference to monthlies on urban rail is common around the Anglosphere. Singapore has no season passes at all. In Vancouver, Cubic lobbying and a New Right campaign about fare evasion forced TransLink to install faregates on SkyTrain, and when the faregate project had predictable cost overruns, the campaigners took that as evidence the agency shouldn’t get further funding. London’s fare capping system is weekly rather than monthly – there are no monthly passes, and all fares are set at very high levels. Britain generally overuses faregates, for example on the commuter trains in London. London generally gives off an impression of treating everyone who is not a Daily Mail manager as a criminal. Paris is better, but not by much. The German-speaking world, as irrational as Britain and France about urban crime rates that are far lower than they were a generation ago, still treats the train and bus rider as a law-abiding customer unless proven otherwise.

Social fares

American transit agencies and activists resist calls for large monthly discounts, on a variety of excuses. The most common excuse is revenue loss, which is weird since realistically New York would transition to a large discount through holding the monthly fare constant and hiking the single-ride fare. It’s the second most common excuse that I wish to deal with here: social fares, namely the fact that many low-income riders don’t have the savings to prepay for an entire month.

On social fares, as on many other socioeconomic issues, it is useful for Americans to see how things work in countries with high income compression and low inequality under the aegis of center-left governments. In Paris, various classes of low-income riders, such as the unemployed, benefit from a solidarity fare discount of 50-75%. In both Paris and Stockholm, the monthly pass is flat regionwide, an intentional program of subsidizing regular riders in the suburbs, which are on average poorer than the city.

The flat fare is not really applicable to American cities, except possibly the Bay Area on BART. However, the large fare reductions to qualifying low-income riders are: a number of cities have used the same definition, namely Medicaid eligibility, and give steep discounts for bikeshare systems. On the same principle, cities and states can discount fares on buses and trains.

The right way to view fares

Fares are an important component of public transport revenue; the taxes required to eliminate fares are significant enough that there are probably better uses for the money. By the same token, the issue of fare evasion should be viewed from the lens of revenue loss, rather than that of crime and disorder. The transit agency is not an individual who is broken by being mugged of $100; it should think in terms of its own finances, not in terms of deterrence.

Nor is making it easier to follow the law going to encourage more crime – to the contrary. Transit agencies should aim at a fare system, including enforcement, that allows passengers to get on and off trains quickly, with minimum friction. Turnstiles do not belong in any city smaller than about 10 million people. The fare structure should then encourage long-term season passes, including annual passes, so that nearly all residents who take public transport have already paid. Random inspections with moderate fines are the layer of enforcement, but the point is to make enforcement largely unneeded.

And tear down the faregates.

Free Public Transportation

Note: this may turn into a long series of posts about public transportation fare systems and payments.

From time to time, people propose free public transport. Supporters have a variety of motivations, including an attempt to mirror cars (“do state roads charge tolls?”), ideological socialism, positive externalities, and the efficiencies of getting rid of fare collection.

In reality, making service free at the point of use means spending money on subsidies from other sources – money that could be spent on other things than zeroing out the fares. There are opportunity costs, and robust public transportation networks do not gain much efficiency from being free. If there is money to make service free, there is money to spend on service improvements, including more metro lines, higher frequency, and wheelchair accessibility where it isn’t already present.

Literature review

A tweetstorm from two days ago includes references to a number of studies on this issue:

Proof of payment

One argument for free transit is that it simplifies operations because no fare collection is needed. Front-door boarding and paying the drivers slow down bus boarding – each passenger takes 2.6-3 seconds to board (source, PDF-p. 20). Rapid transit systems also suffer from the complexity of fare collection infrastructure: batteries of faregates create chokepoints and require maintenance, and usually rapid transit agencies also have to hire station agents to watch the gates.

However, proof-of-payment fare enforcement, or POP, gets around most of these issues. If passengers do not need to pay at entry, everything becomes much simpler: they can board buses from any door, and get onto the train without crossing faregates. Berlin has all-door boarding and open, unstaffed U-Bahn stations. There are fare-vending machines, which are not free, but they are cheap. There are fare inspectors working on consignment – they get paid by catching non-paying riders.

Better uses for money

New York City Transit has $9.1 billion in operating and maintenance expenses as of 2016, and $4.3 billion in fare revenue (source). Ile-de-France Mobilités has a total of about €10 billion in annual operating and capital expenses, with about 10% of this being capital and the rest operating, and €2.8 billion in fare revenue. As of 2015, BVG had a total transport income of €1.344 billion (PDF-p. 7) and an additional subsidy of €620 million (PDF-p. 21).

In all of these cities, if there is money for fare elimination, there is money for further improvements in service. A disability rights advocacy group in Paris estimates the cost of making the Metro accessible at €4-6 billion, or 1.5-2 years’ worth of fares. Parisian construction costs for further Metro extensions are such that the budget for free fares could instead be spent on adding around 14 annual kilometers of new tunnels. In Berlin, a third S-Bahn trunk line running northwest-southeast would require about a year and a half’s worth of present-day fares to construct; adding service to guarantee 5-minute frequency on all trunk lines even on weekends and evenings would require a small increase in operating expenses.

New York’s construction costs are much higher than those of Paris and Berlin, and even its operating costs are elevated, but then it also charges higher fares. If there is $4.3 billion a year for free fares, there is much less $4.3 billion a year for boosting off-peak frequency on every named route (2, 4, A, etc.) to at worst 6 minutes, with 2- and 3-minute off-peak frequencies on interlined trunk lines. As with Paris, there is also a dire need for wheelchair accessibility; thanks to very high costs, full installation would not cost just 1.5-2 years’ worth of fare revenue, but more like 3 years’ worth.

Cities with and without public transport

The above discussion centers where the vast majority of public transportation takes place – that is, in cities with serious public transportation systems. The argument changes completely in smaller cities, which run the occasional bus but not at the required speed, coverage, or frequency for it to count as a real public transport network.

In Germany, there is no free transit, but the difference between big-city and small-city fare enforcement is telling: only relatively big cities have POP systems. Small-town Germany makes bus passengers pay the fare to the driver, and runs trains with conductors checking tickets. The reason is that roving inspectors only work on systems with enough frequency and coverage, or else they can’t efficiently ride the buses and trains and check tickets.

If POP is not possible, then the cost of collecting fares rises: buses are slowed down by every additional passenger, and trains require a second crew member. Such systems often have very low farebox recovery in the first place, and a very low-income rider profile, since everyone who can afford to drive drives rather than waits 25 minutes for the bus. In Los Angeles, total fare revenue on Metro (which includes most buses) is $350 million a year and total operating and maintenance expenses amount to $1.57 billion, and the average public transport commuter has about half the average income of the average solo driver. In that specific use case, making public transport free may be justified.

The one caveat is that if the plan is to convert a city from one without public transportation to speak of to one with a good system, for example in Los Angeles, then in the future, revenue will become more important. Even if free public transport is a good idea in the conditions of 2019, it may not be such a good idea in those of 2035, at least if grandiose transit city plans materialize (and I don’t think they will – the state of American local governance just isn’t good enough for cities to follow through).

Positive and Negative Interactions

This is a theoretical post about a practical matter that arises whenever multiple variables interact. Two variables x and y, both correlated positively a dependent variable z, are said to positively interact if when x is larger, the effect of y on z gets larger and vice versa, and to negatively interact if when x is larger, the effect of y on z gets smaller. If z is transit ridership, let alone any of the direct benefits of good transit (good job access, environmental protection, public health, etc.), then it is affected by a slew of variables concerning service provision, infrastructure, and urban design, and they interact in complex ways.

I have not found literature on this interaction, which does not mean that this literature does not exist. The papers I’ve seen about correlates of bus ridership look at it one variable at a time, and yet they are suggestive of positive as well as negative interactions. More broadly, there are interactions between different types of service.

Positive interactions tend to involve network effects. These include the interaction between transit and transit-oriented development, as well as that between different aspects of rail modernization. Whenever there is positive interaction between variables, half-measures tend to flop; some are a reverse 80/20 situation, i.e. 80% of the cost yields 20% of the benefits. In some cases, compromises are impossible without making service useless. In others, some starter service is still viable, but in its presence, the case for expansion becomes especially strong, which can lead to a natural virtuous cycle.

Negative interactions occur when different improvements substitute for one another. One straightforward example is bus stops and frequency: frequency and the quality of bus shelter both impact bus ridership, but have a negative interaction, in that at higher frequency, the inconvenience coming from not having bus shelter is less important. In some cases, negative interactions can even lead to either/or logic, in which, in the presence of one improvement, another may no longer be worth the economic or political cost. In others it’s still useful to pursue multiple improvements, but the negative interaction implies the benefits are not as great as one might assume in isolation, and transit planners and advocates must keep this in mind and not overpromise.

Door-to-door trip times

The door-to-door trip time includes walking distance to and from the station, waiting time, transferring time, and in-vehicle time. Each of these components affects ridership in that longer trips reduce people’s propensity to choose public transport.

There is strong positive interaction between variables affecting the trip time. This is not directly attested in the literature that I know of, but it is a consequence of any ridership model that lumps the different components of trip time into one. If public transportation runs faster, that is if the in-vehicle time is reduced, then the share of the other components of the trip time rises, which means that the importance of frequency for reducing wait time is increased. Thus, speed and frequency have a positive interaction.

However, at the same time, there is a subtle negative interaction between speed and service provision on buses. The reason is that bus operating expenses are largely a linear function of overall service-hours, since costs are dominated by driver wages, and even maintenance is in practice a function of service-hours and not just service-km, since low speeds come from engine-stressing stop-and-go traffic conditions. In this case, increasing the speed of buses automatically means increasing their frequency, as the same resources are plugged into more service-km. In that case, the impact of a further increase in service is actually decreased: by speeding up the buses, the transit agency has reduced the share of the door-to-door trip time that is either in-vehicle or waiting at a stop, and thus further reductions in wait time are less valuable.

In the literature, the fact that investing in one portion of the trip makes its share of the overall trip length smaller and thus reduces the impact of further investments is seen in research into ridership-frequency elasticity. My standard references on this – Lago-Mayworm-McEnroe and Totten-Levinson – cite lit reviews in which the elasticity is far higher when frequency is low than when it is high, about 1 in the lowest-frequency cases and 0.3 in the highest-frequency ones. When frequency is very low, for example hourly, the elasticity is so high that adding service increases ridership proportionally; when frequency is a bus every few minutes, the impact of service increase on ridership is much smaller.

I’ve focused on in-vehicle time and waiting time, but the other two components are sometimes within the control of the transit agency as well, especially on rapid transit. Station design can reduce transfer time by providing clear, short passageways between platforms; it can also reduce access time by including more exits, for example at both ends of the platform rather than just at one end or in the middle. As such design positively interacts with other improvements to speed, it makes sense to bundle investments into more exits and better transfers with programs that add train service and speed up the trains.

Network effects

There is positive interaction between different transit services that work together in a network. In the presence of a north-south line through a city, the case for east-west transportation strengthens, and vice versa. This is not a new insight – Metcalfe’s law predicts usage patterns of communications technologies and social networks. The same effect equally holds for fixed infrastructure such as rail, and explains historical growth patterns. The first intercity steam railway opened in 1830, but the fastest phase of growth of the British rail network, the Railway Mania, occurred in the late 1840s, after main lines such as the London and Birmingham had already been established. 150 years later, the first TGV would start running in 1981, but the network’s biggest spurt of growth in terms of both route-km and passenger numbers occurred in the 1990s.

Using a primitive model in which high-speed rail ridership is proportional to the product of city populations, and insensitive to trip length, the United States’ strongest potential line is naturally the Northeast Corridor, between Boston and Washington. However, direct extensions of the line toward Virginia and points south are extremely strong per the same model and, depending on construction costs, may have even higher return on investment than the initial line, as 180 km of Washington-Richmond construction produce 540 km of New York-Richmond passenger revenue. In some places, the extra link may make all the difference, such as extending New York-Buffalo high-speed rail to Toronto; what looks like a basic starter system may be cost-ineffective without the extra link.

Network effects produce positive interactions not just between different high-speed rail lines, but also between transit services at lower levels. Rail service to a particular suburb has positive interaction with connecting bus service, for which the train station acts as an anchor; in some cases, such as the Zurich model for suburban transit planning, these are so intertwined that they are planned together, with timed transfers.

Network effects do not go on forever. There are diminishing returns – in the case of rail, once the biggest cities have been connected, new lines duplicate service or connect to more marginal nodes. However, this effect points out to a growth curve in which the first application has a long lead time, but the next few additions are much easier to justify. This is frustrating since the initial service is hard to chop into small manageable low-risk pieces and may be canceled entirely, as has happened repeatedly to American high-speed rail lines. And yet, getting over the initial hurdle is necessary as well as worth it once subsequent investments pan out.

Either-or improvements

In the introduction, I gave the example of negative interaction between bus shelter amenities and frequency: it’s good to have shelter as well as shorter waits, but if waits are shorter, the impact of shelter is lessened. There are a number of other negative interactions in transit. While it is good to both increase bus frequency and install shelter at every stop, some negative interactions lead to either-or logic, in which once one improvement is made, others are no longer so useful.

Fare payment systems exhibit negative interactions between various positive features. The way fare payment works in Germany and Switzerland – paper tickets, incentives for monthly passes to reduce transaction costs, proof of payment – is efficient. But the same can be said about the smartcard system in Singapore, EZ-Link. EZ-Link works so rapidly that passengers can board buses fast, which reduces (but does not eliminate) the advantage of proof-of-payment on buses. It also drives transaction costs down to the point of not making a monthly pass imperative, so Singapore has no season passes, and it too works.

Interior circulation displays negative interactions as well. There are different aspects of rolling stock design that optimize for fast boarding and disembarking of passengers, which is of critical importance on the busiest rail lines, even more than interior capacity. Trains so designed have a single level, many doors (four pairs per 20-meter car in Tokyo), interiors designed for ample standing space, and level boarding. Each of these factors interacts negatively with the others, and in cities other than Tokyo, regional trains like this are overkill, so instead designers balance circulation with seated capacity. Berlin has three door pairs per car and seats facing front and back, Zurich has double-deckers with two pairs of triple-wide doors and has been quite tardy in adopting level boarding, Paris has single-level cars with four door pairs and crammed seats obstructing passageways (on the RER B) and bespoke double-deckers with three pairs of triple-wide doors (on the RER A).

Finally, speed treatments on scheduled regional and intercity trains may have negative interactions. The Swiss principle of running trains as fast as necessary implies that once various upgrades have cut a route’s trip time to that required for vigorous network connections – for example, one hour or just a few minutes less between two nodes with timed transfers – further improvements in speed are less valuable. Turning a 1:02 connection into a 56-minute one is far more useful than further turning a 56-minute service into a 50-minute trip. This means that the various programs required to boost speed have negative interactions when straddling the boundary of an even clockface interval, such as just less than an hour, and therefore only the cheapest ones required to make the connections should receive investment.


Good transit advocates should always keep the complexities that affect transportation in mind. Negative interactions between different investments have important implications for activism as well as management, and the same is true for positive interactions.

When variables interact negatively, it is often useful to put a service in the good enough basket and move on. In some cases, further improvements are even cost-ineffective, or require unduly compromising other priorities. Even when such improvements remain useful, the fact that they hit diminishing returns means advocates and planners should be careful not to overpromise. Cutting a two-hour intercity rail trip to an hour is great; cutting a 40-minute trip to a 20-minute one may seem like a game changer, but really isn’t given the importance of access and egress times, so it’s usually better to redeploy resources elsewhere.

Conversely, when variables interact positively, transit service finds itself in an 80% of the cost for 20% of the benefits situation. In such case, compromises are almost always bad, and advocates have to be insistent on getting everything exactly right, or else the system will fail. Sometimes a phased approach can still work, but then subsequent phases become extremely valuable, and it is useful to plan for them in advance; other times, no reasonable intermediate phase exists, and it is on activists to convince governments to spend large quantities of upfront money.

Transportation is a world of tradeoffs, in which benefits are balanced against not just financial costs but also costs in political capital, inconvenience during construction, and even activist energy. Positive and negative interactions have different implications to how people who want to see better public transport should allocate resources; one case encourages insisting on grand plans, another encourages compromise.

Focus on What’s Common to Good Transit Cities, not on Differences

Successful transit cities are not alike. There are large differences in how the most expansive transit networks are laid out. It takes multiple series of posts across several blogs (not just mine but also Human Transit and others) covering just one of them, for example stop spacing or how construction contracts are let. With so much variation, it’s easy to get caught up in details that differentiate the best systems. After all, the deepest communities of railfans tend to sprout in the cities with the largest rail networks; arguing with railfans with experience with London, Tokyo, or Paris is difficult because they know intricate details of how their systems work that I am catching up on but only know in the same depth for New York. Add in the fact that London and Paris view each other as peer cities and from there the route to arguing minutiae about two cities that by most standards have good public transit is short.

But what if this is wrong? What if, instead of or in addition to figuring out differences among the top transit cities, it’s useful to also figure out what these transit cities have in common that differentiates them from auto-oriented cities? After all, in other aspects of development or best practices this is well-understood: for example, a developing country can choose to aim to be hyper-capitalist like Singapore or the US or social democratic like Sweden or France, but it had better develop the institutions that those four countries have in common that differentiate them from the third world.

Unfortunately, before discussing what the common institutions to transit cities are, it’s necessary to discuss things that may be common but don’t really matter.

The US as a confounding factor

The biggest problem with figuring out things all good transit cities have in common is that in the developed world, the US (and to some extent Canada and Australia) is unique in having bad transit. Frequent commenter Threestationsquare has a list of cities by annual rapid transit ridership (counting BRT but not infrequent commuter rail, which lowballs parts of the US); New York is near the top, but the second highest in the US, a near-tie between Boston, Chicago, and Washington, would rank #22 in Europe. As a result, some social, political, and technical features that appear to differentiate good and bad transit are not really about transit but about the US and must be discarded as confounding factors. Fortunately, most of these confounding factors are easy to dispose of since they also occur in New York.

The more difficult question concerns factors that are distantly related to the weakness of US transit but are not direct explanations. I wrote about racism as such a factor a few months ago, arguing that high US construction costs come from weak civil service, which in turn comes from the way American segregation works. The US is not uniquely racist or even uniquely segregated; the unique aspect is that it a) has a long-settled oppressed minority and not just immigrants who arrived after the characteristic of the state was established, and b) has segregation within metro areas (unlike Singapore, which has social but not spatial segregation) but not between them (unlike Israel, where the built-up area of Tel Aviv has very few Arabs). But while this can explain why institutions developed in a way that’s hostile to transit, it’s not a direct explanation for poor US transit except in Atlanta, where the white state underinvests in the black city. White people in Boston, Los Angeles, Houston, and other cities with little to no public transit do not avoid the bus or the train out of stereotypes that match typical American racial stereotypes, such as crime; they avoid the train because it doesn’t go where they’re going and the bus because it is slow and unreliable.

There are two ways to avoid confounding factors. The first is the sanity check, where available: if some feature of transit exists across major transit cities but is absent in auto-oriented cities not just in the US but also in Canada, Australia, New Zealand, Israel, and Italy, then it’s likely to be relevant. Unfortunately, clean examples are rare. The second and more difficult method is to have theoretical understanding of what matters.

Size artifacts

London and Paris are transit cities. So are Prague and Stockholm. I’ve stressed the importance of scale-variance before: features that work in larger cities may fail in smaller ones and vice versa. Thus, it’s best to look at common features of successful transit cities within each size class separately.

In fact, one way cities can fail is by adopting transit features from cities of the wrong size class. China is making the mistake in one direction: Beijing and Shanghai have no express subway trains or frequent regional rail services acting as express urban rail, and as a result, all urban travel has to slow down to an average speed of about 35 km/h, whereas Tokyo has express regional lines averaging 60 km/h. China’s subway design standards worked well for how big its cities were when those standards were developed from the 1970s to the 1990s, but are too small for the country’s megacities today.

In contrast, in the developed world, the megacities with good public transit all have frequent express trains: Tokyo and Osaka have four-track (or even eight-track!) regional lines, Paris has the RER, New York has express subways (and the premium-price LIRR trains from Jamaica to Penn Station), London has fast regional rail lines and Thameslink and will soon have Crossrail, Seoul has a regional rail network with express trains on Subway Line 1, and Moscow stands alone with a strictly two-track system but has such wide stop spacing that the average speed on the Metro is 41 km/h. Smaller transit cities sometimes have frequent express trains (e.g. Zurich and Stockholm) and sometimes don’t (e.g. Prague), but it’s less important for them because their urban extent is such that a two-track subway line can connect the center with the edge of the built-up area in a reasonable amount of time.

And if China failed by adopting design standards fitting smaller cities than it has today, the US fails in the other direction, by adopting design standards fitting huge megacities, i.e. New York. Small cities cannot hope to have lines with the crowding levels of the Lexington Avenue Line. This has several implications. First, they need to scale their operating costs down, by using proof of payment ticketing and unstaffed stations, which features are common to most European transit cities below London and Paris’s size class. Second, they need to worry about train frequency, since it’s easy to get to the point where the frequency that matches some crowding guideline is so low that it discourages riders. And third, they need to maximize network effects, since there isn’t room for several competing operations, which means ensuring buses and trains work together and do not split the market between them.

The best example of an American city that fails in all three aspects above is Washington. While railfans in Washington lament the lack of express tracks like those of New York, the city’s problems are the exact opposite: it copied aspects of New York that only succeed in a dense megacity. With interlining and reverse-branching, Washington has low frequency on each service, down to 12 minutes off-peak. The stations are staffed and faregated, raising operating costs. And there is no fare integration between Metro and the buses, splitting the market in areas with price-sensitive riders (i.e. poor people) like Anacostia.

The political situation

While I’ve written before about what I think good metro design standards are, these standards themselves cannot separate the major transit cities from cities like Los Angeles (which has about two and a half rail trunks in a metro area larger than that of London or Paris) or Tel Aviv (which has no metro at all). Instead, it’s worth asking why these cities have no large subway systems to begin with.

In the case of Tel Aviv, Israel has had an official policy of population dispersal since independence. After independence the North and South of the country had Arab majorities, and the government wished to encourage Jews to settle there to weaken any Palestinian claims to these areas. As a result, Prime Minister David Ben Gurion rejected a plan to develop an urban rail network centered on Tel Aviv and instead encouraged low-income Jewish immigrants to move far away, either to depopulated Arab towns or to new towns (“development towns”) built at strategic points for national geopolitics. Decentralization was national policy, and with it came auto-oriented urbanism. A less harsh but equally politicized environment led to Malaysia’s auto-centric layout: Paul Barter’s thesis outlines how Malaysia choked informal transit and encouraged auto-oriented suburbanization in order to create an internal market for state-owned automakers.

In the case of the US, the situation is more complex, since there were several distinct political trends in different eras favoring cars. In postwar suburbia (and in Los Angeles going back to the 1920s) it was the association of cars with middle-class normality, and in California also with freedom from hated railroads; it’s related to the fact that American suburbanization was led by the middle class rather than by the working class as with more recent exurbanization. In Israel suburbanization was led by the working class, but the deliberate government policy of decentralization meant that the urban middle class’s demands for better transportation were ignored until the 1990s.

Without enough of an urban middle class to advocate for more transit, US transit withered. New cities in the Sunbelt had little demand for public transit, and in the older cities the middle class cared little for any transit that wasn’t a peak-only commuter train from the suburbs to the CBD. Moreover, in existing transit cities the middle class demanded that the urban layout change to fit its suburban living situation, leading to extensive job sprawl into office parks that are difficult to serve on transit. This paralleled trends in Canada, Australia, and New Zealand; Sydney in particular saw middle-class suburbanization early, like Los Angeles.

The political situation changed in the 1970s, 80s, and 90s, but by then high construction costs, NIMBYism constraining the extent of TOD (unlike in Canada), and indifference to leveraging regional rail for urban transit (as in Canada and until recently Israel but unlike in Australia) made it difficult to build more public transit lines.

Regional rail and TOD

The largest transit cities in the rich and middle-income world all make extensive use of regional rail, with the aforementioned exception of Chinese cities, where the lack of regional rail is creating serious travel pain, and New York, where the city itself is transit-oriented but its suburbs are not. Smaller transit cities usually make use of regional rail as well, but this isn’t universal, and to my understanding is uncommon in Eastern Europe (e.g. Kyiv has one semi-frequent ring line) even in cities with very high metro and tramway usage.

However, smaller transit cities that do not have much regional rail have full metro systems and not just tramways, let alone BRT. Curitiba and Bogota are famous for their BRT-only transit networks, but both instituted their systems in a context with low labor costs and both are building metro systems right now.

The other common element to transit cities is TOD. Here, we must distinguish old cities like London, Paris, Berlin, and Vienna, whose urban layout is TOD because it was laid out decades before mass motorization, and newer cities like Stockholm, Tokyo, and every city in Eastern Europe or the East Asian tiger states. The latter set of cities built housing on top of train stations, often public housing (as in the communist world or in Stockholm) but not always (as in Tokyo and to some extent Hong Kong), in an era when the global symbol of prosperity was still the American car-owning middle class.

The importance of TOD grows if we compare countries with relatively similar histories, namely, the US and Canada. Neither country does much regional rail, both have had extensive middle-class suburbanization (though Canada’s major cities have maintained bigger inner-urban middle classes than the US’s), and English Canada’s cities came into the 1970s with low urban density. The difference is that Canada has engaged in far more TOD. Calgary built up a large CBD for how small the city is, without much parking; Vancouver built up Downtown as well as transit-oriented centers such as Metrotown, New Westminster, Lougheed, and Whalley, all on top of the Expo Line. Nowhere in the US did such TOD happen. Moreover, American examples of partial TOD, including Arlington on top of the Washington Metro and this decade’s fast growth in Seattle, have led to somewhat less awful transit usage than in the rest of the country.

Most cities in the developed world are replete with legacy rail networks that can be leveraged for high-quality public transit. We see cities that aim at transit revival start with regional rail modernization, including Auckland and to some extent Tel Aviv (which is electrifying its rail network and building new commuter lines, but they run in freeway medians due to poor planning). Moreover, we see cities that are interested in transit build up high-rise CBDs in their centers and high- and mid-rise residential development near outlying train stations.

“Regional rail and TOD” is not a perfect formula; it elides a lot of details and a lot of historical factors that are hard to replicate. But both regional rail and TOD have been major elements in the construction of transit cities over the last 60 years, and while they both have exceptions, they don’t have many exceptions. In the other direction, I don’t know of examples of failed TOD – that is, of auto-oriented cities that aggressively built TOD on top of new or existing rail lines but didn’t manage to grow their transit ridership. I do know some examples of failed regional rail, but usually they make glaring mistakes in design standards, especially frequency but also station siting and fare integration.

At a closer in level of zoom, it’s worthwhile to talk about the unique features of each transit city. But when looking at the big picture, it’s better to talk about what all transit cities of a particular size class have in common that auto-oriented cities don’t. Only this way can an auto-oriented city figure out what it absolutely must do if it wants to have better public transit and what are just tools in its kit for achieving that goal.

The MTA’s Bus Redesign Plan

Two weeks ago I wrote about the Brooklyn bus redesign I’m working on with Eric Goldwyn. The MTA, which is aware of our efforts, came up with its own plan. So far details are scant; there is a presentation available online, which talks about goals (“network redesign,” “higher frequency”) but no specifics (“a more gridded network,” “6-minute off-peak frequency on the main routes”).

At least so far, the goals seem solid. The MTA has the following list of improvements:

  • Redesign the network from top to bottom based on customer input, demographic changes, and travel demand analysis. Provide better connectivity and more direct service in every neighborhood
  • Optimize the existing network with community consultation by removing closely-spaced and underutilized stops and making street design changes on select corridors in coordination with NYC DOT
  • Expand off-peak service on strategic routes using a toolbox of service strategies including increased frequency and demand based service adjustments
  • Expand Traffic Signal Priority (TSP) to allow an approaching bus to hold a green light or shorten a red light
  • Seek exclusive busways on priority corridors to give buses full access in major congested areas
  • Identify opportunities for new bus lanes and queue jumps in 2018
  • Advocate for strengthened NYPD enforcement of bus lanes to keep bus stops and travel lanes clear throughout the system
  • Recommend dedicated transit-priority traffic teams to focus enforcement in key areas to ensure buses move quickly through trouble spots
  • Use Bus Lane Enforcement Cameras mounted on buses to automatically identify violations and issue tickets. Advocate for legislation to expand beyond the existing 16 authorized routes
  • Install tap readers to speed up the boarding process so buses spend less time waiting at stops
  • Introduce all-door boarding to allow riders to get on through any door of the bus
  • Explore options for a future cashless system to maximize reductions in boarding time
  • Expand fare enforcement on regular bus service to reduce evasion and restore fare revenue

The main problems only appear toward the end, with the implementation of off-board fare collection and all-door boarding. The insistence on “fare enforcement,” which could mean regular proof of payment (POP) inspections but could also mean worse, such as armed cops (not practiced in New York on SBS but practiced on some other US systems, like BART) or holding the bus during inspection (which New York does practice, unlike Berlin and other German-speaking cities). Overall I’m relatively sanguine about Andy Byford specifically – he’s not American and is not used to American levels of police militarization.

However, another aspect of the POP proposal is troubling: the connection with tap readers. The plan’s full text (which is barely more detailed than what I quote above) mentions that POP should come with the so-called New Fare Payment System, or NFPS, which New York is currently planning to roll out starting in 2019, continuing until 2023. The NFPS is based on worst industry practices cobbled from American and British ideas. Here is my second post ever, discussing the plans for smartcards in New York in 2011. New York ignored (and keeps ignoring) the smartcard implementations in a number of East Asian cities in its zeal to make people treat their credit card as a transit fare card, ensuring the agency can surveil all passengers; perhaps Americans lack the values of freedom and individual privacy of Japan and Singapore.

New York also ignored (and keeps ignoring) the POP implementations in cities with paper tickets, such as most of Central Europe. Smartcards are not required for POP: the German-speaking world has POP with paper tickets, as did Vancouver on SkyTrain and some bus lines even before the Compass Card debacle. In Singapore I saw a ticket inspection on a bus even before EZ-Link; I had a magnetic farecard at the time. Given the enormous waste coming from making passengers line up and pay the driver, it’s imperative to move toward POP as soon as possible, even if it means equipping inspectors with MetroCard readers rather than smartcard readers. MetroCard may only last for five years if the NFPS schedule doesn’t keep slipping, but handheld magnetic card readers are a cheap technology whereas making buses idle while passengers dip cards one at a time is not so cheap.

The zeal to go cash-free is the final troubling aspect of New York’s ideas about fare payment, especially when bundled with the idea that the bank card is the fare card. Not everyone has a local bank account. Tourists don’t (and even cards that are supposed to work abroad don’t always). Low-income city residents don’t, either: 11.7% of New York households have no bank account, and they disproportionately appear to be in poverty, judging by which neighborhoods they are most concentrated in. The MTA has always treated anonymous smartcards as an afterthought, and going cash-free means there is no recourse for the unbanked or even for many tourists.

Nor is cash-free operation even necessary. An on-board farebox is compatible with POP. In this system, riders can board from any door, and the driver will begin moving as soon as all passengers have boarded, even if not all passengers have paid yet. Riders with valid transfers or season passes need not do anything. Riders with a pay-per-ride smartcard and no transfer should tap their card at a validator at any bus door or bus stop (validators are cheap that blanketing the system with them is practically free). The remaining passengers should walk to the farebox and pay there; perhaps some busy stations should get fareboxes, as all SBS stops do in New York today, but if the MTA only expects a few smartcard-free, non-transfer passengers at a stop, then having them pay on board a moving bus should not be a problem.

I’d like to stress that other than the ongoing hiccups of the English-speaking world with fare payment systems (hiccups that it seems to export to Paris), the plan appears good, from what few details the MTA has released. There are plans for increasing the average distance between bus stops, adding more bus lanes, getting serious about signal preemption, raising off-peak frequency, and letting passengers board from all doors. The MTA really is noticing that its bus system is collapsing and really is making serious plans to avert a death spiral.