Category: New York
Empire High-Speed Rail
At the beginning of the month, New York State released its draft environmental impact statement for high-speed rail from New York to the Upstate cities. The costs of HSR as proposed by the state are excessive, and as a result the state has eliminated the high-speed option. It is only considering medium-speed options – the fastest is 125 mph, for the cost of full-fat high-speed rail; it sandbagged the full-speed options. Consider the following passage, from the main document, section 3.2.2:
The dedicated right-of-way of the very high speed (VHS) alternatives would result in significant travel time savings (5:17 and 4:23 respectively for 160 mph MAS and 220 mph MAS), and commensurately higher estimated ridership (4.06 and 5.12 million respectively for 160 mph MAS and 220 mph MAS).
The length of New York-Buffalo is about 690 km. At 4:23, it is an average speed of 157 km/h. To put things in perspective, the Hikari express trains in the 1960s achieved an average of 162 km/h (515 km in 3:10) in 1965, with a maximum speed of 210 km/h.
In section 3.3.5, the 125 mph alternative, which involves greenfield dedicated track from Albany to Buffalo, is said to have an average speed of 77 mph, or 124 km/h. Considering that British express trains on the legacy East Coast and West Coast Main Lines restricted to the same top speed average about 130-140 km/h, this is unimpressive.
Likewise, the cost estimates seem too high. The cost proposed for 125 mph is $14.71 billion. That’s on existing track south of Albany with minor improvements; as per exhibits 3-19 and 3-21, 83% of the cost is said to be Albany-Buffalo, a distance of 380 km on new track plus 76 on existing track. This makes sense for a full-speed, 350 km/h line. But the cost of the full-speed 220 mph option is $39 billion, around $55 million per km from New York to Buffalo in an area with a topography that justifies at most half that.
The study also sandbags the higher-speed options, from 125 mph up, by overplaying the importance of skipped small cities. A greenfield line cannot reasonably serve Schenectady, Amsterdam, and Rome. It could serve Utica, but with some takings because the sharp curve from the tracks at the downtown station to the I-90 right-of-way to the west. Lack of service to Utica would be a drawback, but the study for some reason thinks that those four stations would need their own dedicated intercity line to New York, using a connection to Metro-North, which is said on PDF-p. 37 to have capacity problems on the Hudson Line (the Hudson Line runs 12 trains per hour at the peak today, and is four-tracked). I am told that people drive all the way from Watertown to Syracuse to take Amtrak; none of the skipped four stations is that far from Albany or Syracuse. If a regional train is needed, it can connect at Albany.
The problem is that the alignments studied are uninspiring. I don’t just mean it as a synonym for bad. I mean they avoid locations that look difficult at first glance but are actually reasonably easy. CSX bypasses Albany already; it is not a problem to run high-speed trains at low speed on the existing line between Rensselaer and a spot west of Albany where the line could transition to the Thruway, and yet exhibit 3-20 shows a passenger rail bypass of Albany.
For the full-speed option, I do not know how much tunneling and bridging the state thinks is necessary for its west-of-Hudson I-87 alignment from New York to Albany, but there’s an alignment east of the Hudson with only about 7 km of tunnel, all through the Hudson Highlands. Briefly, such a line would go east of the built-up area in Dutchess County and points north, with a possible station at the eastern edge of the Poughkeepsie urban area and another near Rhinebeck, closer to the city and to the bridge to Kingston than the present Rhinecliff station. In Putnam and northern Westchester Counties, it would utilize the fact that the ridge lines go northeast to southwest to swing to the southwest, to hook up to the Hudson Line slightly north of Croton-Harmon. With a curve radius of 4 km, and a maximum grade of 3.5%, only two tunnels are needed, one under Peekskill of about 2 km and one under the crest in Putnam County of about 5 km. Some additional viaducts are needed through the valleys in the Hudson Highlands, but from Dutchess County north the line would be almost entirely at-grade.
There is generally a tunnel vision in American high-speed rail documents like this, consisting of any of the following features:
– Excessive avoidance of greenfield alignments, even in relatively flat areas. The flip side is excessive usage of freeway rights-of-way. The Syracuse-Rochester segment is actually greenfield in the study, which is good, but there is no thought given to greenfield New York-Albany alignments, which are frankly much easier east of the Hudson than west of the Hudson.
– Questionable assumptions about the abilities of existing track in urban areas to have higher capacity, which often leads to excessive multi-tracking (as in California); there is never any effort to construct an integrated timetable to limit the construction of new tracks.
– No rail-on-rail grade separations. The study talks about Spuyten Duyvil capacity problems, which are very real if traffic grows, but says nothing about the possibility of grade-separating the junction from the Empire Connection to the Metro-North mainline to Grand Central.
– With the exception of California, which erred in the other direction, uninspiring speeds. It’s actually hard to construct a 350 km/h line that only averages 157; actual high-speed lines around the world in the 270+ range average about 180 or higher.
It’s not surprising New York is sandbagging HSR. A year and a half ago, the Cuomo administration killed an HSR study on the grounds that in a recession, the state can’t afford to build such an expensive project. Given how long it takes from the initial study to the beginning of construction, the argument is so transparently wrong that it raises the question of what the real motivation was. But whatever the real reason was, the state is not interested in HSR, and wrote a lengthy environmental impact study to justify its disinterest.
Metro-North-Everything Compatibility
The Regional Plan Association has a new study warning that Metro-North’s infrastructure is falling apart, and demands $3.6 billion in immediate spending on state of good repair. In general, my line on deferred maintenance is “you mean the agency deferred maintenance all those years and didn’t tell us?”. But in this case, despite the language, most of the proposed spending is improvements, namely rehabilitation or replacement of old movable bridges with low speed limits, rather than ongoing maintenance folded into long-term capital spending.
$2.8 billion of the proposed program is for replacing five bridges: Pelham Bay, Cos Cob (over the Mianus), Walk (over the Norwalk River), Saga (over the Saugatuck), and Devon (over the Housatonic). I believe all five should be replaced in the medium term, but the cost proposed is much higher than it should be. $560 million per bridge is quite high, and out of line with Amtrak found on PDF-pp. 29 and 56 of the Northeast Corridor Master Plan. Amtrak cites the cost of replacing the Pelham Bay Bridge alone at $100 million, and the cost of both replacing it and modifying curves on the Hell Gate Line at $500 million. It cites the cost of replacing both the Saga and Walk Bridges at $600 million.
Now, the RPA lists Saga as the easiest bridge to replace since it’s two two-track bridges, so work can be done one bridge at a time with less disruption to ongoing service, but conversely Pelham Bay is also quite cheap according to Amtrak.
But there’s a more serious problem, which is the avoidance of talking about service plans for commuter and intercity rail. If there is serious effort at adding Metro-North service to Penn Station or at raising intercity rail speeds, then the worst speed and capacity restrictions should get priority, and the infrastructure construction should be based on what promotes the desired service plans. It is very expensive and probably cost-ineffective to six-track everything from New Rochelle to Stamford, to allow three speed regimes: local, express, and intercity. I have argued before that it’s better to leave it at four tracks and bypass bad curves, around Port Chester, and make this the six-track segment. This is of course independent of maintenance issues, but suggests which bridge replacements are necessary to support these bypasses (Cos Cob) and which aren’t (the rest are less critical, especially Walk, which intercity trains should bypass on a straighter I-95 segment).
Likewise, there’s a capacity crunch west of Stamford but not one east of Stamford, and this again suggests Cos Cob as the most important priority. Finally, the slowest segment of the NEC away from immediate station areas is the western corner of Connecticut, from the state line to Stamford; Stamford’s curves are mild, while those heading out of Port Chester all the way across the Mianus are quite bad, and straightening the segment would also require straightening the bridge, which can be done easily if it’s replaced. Despite all this, the RPA and Amtrak are saying Cos Cob needs rehabilitation and not replacement, which misses opportunities to both improve reliability and speed up a slow segment.
Moreover, there is no mention of grade-separating Shell Interlocking, just south of New Rochelle. While not a state of good repair issue even in theory, the interlocking’s tight curves impose a limit of either 30 or 45 mph (so, 50-70 km/h), depending on source, in an area that could otherwise support 200 km/h or more. It is very difficult to straighten New Rochelle to sufficient curve radius for that, but 150 requires only minor takings. This may be necessary, independent of speed issues, to raise capacity enough to allow Metro-North service to both Grand Central and Penn Station. It’s possible to schedule trains through the flat junction, but this imposes an additional constraint on the schedule, on top of track-sharing with Amtrak and, in the East River Tunnels, the LIRR.
The Metro-North Accident and Train Control
Early in the morning on Sunday, a Metro-North train derailed on the Hudson Line, immediately south of the junction with Amtrak’s Empire Connection: maps of the derailment area can be found on the BBC, while The LIRR Today has a map and a diagram with speed limits. Four cars overturned, and four people died while more than 70 others were injured. The train was going at 82 mph (132 km/h) through a tight curve at Spuyten Duyvil with a 30 mph limit; the speed limit on the straight segment before the curve is 75 mph according to Rich E. Green’s map, which may be a few years out of date, and 70 mph according to the first New York Times article about the derailment. The curve radius appears to be 230 meters on Google Earth, putting the lateral acceleration rate at 5.8 m/s^2, minus a small amount of superelevation (at most 0.8 m/s^2, or 125 mm, to perfectly match the centrifugal force at the curve’s speed limit, and likely lower); the cutting edge of tilting trains allows about 2 m/s^2 lateral acceleration (see PDF-p. 2 of this article about the Pendolino), or 300 mm cant deficiency.
Initial reports of a mechanical brake failure seem unfounded: a National Transportation Safety Board briefing mentions that the brakes had functioned properly on brake tests and at previous stops on the journey (starting at 00:40 in the video). The focus is now on human error: the NTSB refused to say this outright, but beginning at 03:00 in its briefing video it trumpets positive train control as something that “could have” prevented the accident. Rick Gallant, who led California’s rail regulatory agency at the time of the 2005 Glendale crash, is also quoted as saying positive train control “probably could have” prevented the accident on NBC. Moreover, the train driver is quoted as having told investigators “he had become dazed before the accident, suffering what his lawyer referred to as ‘highway hypnosis.'” Metro-North’s spokeswoman made the strongest statement: “if the accident was caused by speeding, positive train control would have stopped it.”
It is extremely likely that a robust train control system would have prevented the accident, as it is capable of slowing the train sufficiently before it reaches a speed restriction. The bulk of this post will be dedicated to talking about what train control systems can do. There’s a large array of acronyms, some of which mean different things in different countries, and one of which has two different meanings.
Broadly speaking, train control can prevent two types of dangerous driving: crashing into another train on the same track, and excessive speeding. If the system detects dangerous behavior, it will automatically stop or slow down the train. Driverless trains are based on robust enough systems that are so automated they no longer need the driver. The hard part is having an on-board system figure out whether the train is traveling too close to another train or too fast, which requires communication with the signaling system; automatically slowing the train down is comparatively easy. In nearly all cases, the signals are static and embedded in the track systems, but in a few, usually high-frequency subways rather than mainline rail, the system directly communicates with the train ahead on the same track (this is moving block signaling, or communication-based train control).
It is century-old technology to stop a train that is about to enter a segment of track too close to another train (“signal passed at danger,” or SPAD). A train’s steel wheels close an electric circuit that detects whether there is a train on a block of track, and this communicates to the signals entering this block of track to prohibit trains from proceeding; see diagrams in the moving-block signaling link, which also show how it works in the more common fixed-block setup. A situation that electrically insulates the train from the track is therefore extremely dangerous and may lead to line shutdowns for safety. Any system with the capability to stop a train in such a situation is called automatic train stop, or ATS. The 79 mph speed limit on nearly all passenger train lines in the US comes from a 1947 regulation by the Interstate Commerce Commission (which has since morphed into the FRA) requiring ATS or in-cab signaling at higher speed; the intention was to force the railroads to install ATS by threatening a crippling speed limit, not to actually reduce train speed.
It is much harder to enforce speed limits. ATS systems do not have to enforce speed limits: at Amagasaki, there was an ATS system that would have stopped a train running a stop signal (as it had earlier on the trip), but no protection from excessive speeding, which is what led to the crash. The signaling system needs to be able to communicate both permanent and temporary speed restrictions. It is nontrivial to maintain an up-to-date database of all speed restrictions on an on-board computer, or alternatively communicate many different speeds from wayside track signals to the train’s computer.
In 2008, the FRA mandated positive train control (PTC) as a result of the Chatsworth crash; PTC is a term that doesn’t exist outside North America, and refers to an automatic train control system capable of not just ATS but also enforcement of all speed restrictions. In Europe it is called automatic train protection, or ATP, and in Japan it is called automatic train control, or ATC. It is common in the US to do trackwork on one track of a multiple-track railroad and slap a temporary speed restriction on adjacent track, and enforcing such limits to protect wayside workers is specifically part of PTC.
Because the ATC system requires trainside equipment, a train that travels between different systems will need more equipment, raising its cost. In Europe, with its hodgepodge of national standards, some international trains require 7 different systems, raising locomotive costs by up to 60%. This led to the development of a unified Europe-wide standard, European Train Control System (ETCS), which combined with GSM radio for communication between lineside signals and the train is called European Rail Traffic Management System (ERTMS). The obligatory cost and schedule overruns of any IT project have plagued this system, and led to delays in installing train protection on some lines, which led to a fatal accident in Belgium. However, the agony of the ERTMS project has for the most part already passed, and now there is a wide variety of vendors manufacturing equipment to the specified standards, leading to widespread installations on new and upgraded lines outside Europe. As of September of 2013, ETCS is installed on 68,000 track-km and 9,000 vehicles worldwide.
Although ETCS is an emerging global standard (outside Japan, which has a vast system of domestic ATC with multiple domestic vendors), American agencies forced to install PTC have not used it. California HSR is planning to use ETCS, and Amtrak’s signaling system on much of the Northeast Corridor, Advanced Civil Speed Enforcement System (ACSES), with full implementation on the Northeast Corridor expected by this year, is similar to ETCS but not the same. Elsewhere in the US, systems have been bespoke (e.g. on Caltrain), or based on the lower-capacity systems used by the freight operators.
Metro-North does not have PTC. It has an ATS system that protects against SPAD, but can only enforce one speed limit, the maximum speed on the line (MAS). As the maximum speed on the outer Hudson Line is 90 mph, the system cannot enforce any lower speed, and so the train could travel at 82 mph even in 70 or 75 mph territory, let alone 30 mph territory. More modern systems can enforce several speed limits (e.g. the TGV’s TVM), and the most modern can enforce any speed limit, in 1 km/h or 1 mph increments.
Metro-North and the LIRR have been trying to wrangle their way out of the PTC mandate, saying it offers “marginal benefits”; a year and a half ago, the New York Post used the word “outrageous” to describe the PTC mandate, saying it would cost over a billion dollars and that the money could go to capacity improvements instead, such as station parking. Lobbying on behalf of Metro-North and the LIRR, Senator Charles Schumer made sure to amend a proposed Senate transportation bill to give the railroads waivers until 2018, so that they could devote resources to more rush hour capacity from the outer suburbs (such as Ronkonkoma) to Manhattan and fewer to safety. According to Siemens, the work will actually take until 2019, and Siemens says it “has developed PTC specifically for the North American market,” in other words built a bespoke system instead of ETCS. (ACSES was developed by Alstom.)
Because the systems developed for the US are based on the needs of American freight railroads and perhaps Amtrak, which do not need as much capacity in terms of trains per hour as the busiest commuter lines, they are much lower-capacity than those used in Europe. The LIRR and Metro-North have far busier mainline tracks than any other US commuter rail system with the exception of the inner part of New Jersey Transit, which is equipped with ACSES as part of the Northeast Corridor; to modify the system to their needs raises costs, as per the New York Post article. The MTA released the following statement (see also mirrors on Fox and CBS):
The MTA began work to install Positive Train Control on the Long Island Rail Road and Metro-North Railroad in 2009. To date, the MTA has budgeted nearly $600 million for elements of PTC installation, including a $428 million procurement last month for a system integrator. Full implementation is estimated to cost $900 million, and the MTA will make sure the appropriate funding is made to implement PTC on the most aggressive schedule possible. However, implementing PTC by the 2015 deadline will be very difficult for the MTA as well as for other commuter railroads, as the Federal Railroad Administration (FRA) and the Government Accountability Office (GAO) have both concluded. Much of the technology is still under development and is untested and unproven for commuter railroads the size and complexity of Metro-North and LIRR, and all of the radio spectrum necessary to operate PTC has not been made available. The MTA will continue its efforts to install PTC as quickly as possible, and will continue to make all prudent and necessary investments to keep its network safe.
Of course, the technology is no longer under development or untested. Just ask the Belgians, the Swiss, the Chinese, the Saudi, or the Taiwanese. Older technologies meeting the definition of PTC exist practically everywhere on mainline trains in the European and Asian first world. Urban commuter lines in Tokyo such as the Tokaido Main Line and the Yamanote Line, each with more ridership than all North American commuter lines combined, are equipped with ATC. The RER A, with slightly less ridership than all North American commuter lines combined, has a train control system providing moving-block signaling capability on the central trunk. A Swiss mainline with 242 passenger and freight trains per day and minimum train spacing of 110 seconds at 200 km/h has ERTMS as its only ATP system, and Switzerland expects to fully equip its network with ERTMS by 2017.
Although the US mainline rail system is freight-primary, with different needs from those of Europe south of Scandinavia (e.g. critical trunk lines are thousands of kilometers long and lie in sparsely-populated territory), the same can’t be said of the Northeastern commuter rail lines, most of which only see a few daily freight trains and are dominated by tidal flows of commuter trains with high traffic density at rush hour. Rush hour traffic levels approaching 20 tph per track are routine, with 24-26 on the Northeast Corridor entering Penn Station from New Jersey. It is incompetent to try to adapt a system developed for long-distance low-cost freight railroads and ignore one developed for busy commuter lines just because it has an E for European in its name.
While most European countries have long implementation timelines coming from a large installed base of good but not top-line legacy signaling, countries with inferior systems sometimes choose to replace their entire signaling systems, as the passenger-primary parts of the US should. Denmark, whose intercity rail far lags that of most peer European countries, decided to replace its signaling system entirely with ERTMS. The projected cost is €3.2 billion, of which €2 billion is for ERTMS on the network, €400 million is for equipping the Copenhagen S-Bahn with CBTC, and €800 million is contingency; the total length of the system is 2,132 route-km and 3,240 track-km.
At a million euros per route-km, exclusive of contingency, Metro-North could install the system on all east-of-Hudson lines, except the New Haven Line, where Amtrak plans to install ACSES, for about $450 million, and the LIRR could install the system on its entire system (including parts currently without any signaling) for about $650 million. Denmark has about 700 trainsets and locomotives to install the system on, in addition to tracks; on the LIRR and Metro-North, those figures are about 150 each, although this assumes that trainsets would be permanently coupled, whereas today they run in married pairs, so that in an eight-car unit there are four cabs where only two are needed. If the LIRR and Metro-North agreed to treat trains as permanently-coupled sets, then the scope of the order would be about 40% of the size of the Danish fleet, consistent with a total cost of about a billion dollars.
This would also allow higher capacity than the current systems, which could squeeze more trains onto busy lines, so it wouldn’t be at the expense of capacity improvements. In particular, the LIRR could keep postponing the $1.5 billion Main Line third track to Hicksville project, and instead run trains on the currently double-track bidirectionally (today they run one-way at rush hour, to accommodate local and express service) using the very high frequency that ETCS permits. Another project, which Sen. Schumer thinks is more important than PTC, a $400 million plan to double-tracking the outer part of the Main Line from Farmingdale to Ronkonkoma, could also be postponed while still providing the necessary capacity.
Although both of the LIRR multi-tracking projects’ cost figures are enormous – the third track is about $100 million per kilometer, almost what a subway in suburbia should cost, and the outer second track is $15 million per km, more reasonable but still very high – adding tracks is in general more expensive than adding signals. IT procurement is expensive and prone to cost overruns, but once the initial system has been developed, the marginal cost of implementing it in new but similar environments is relatively low; ETCS would cost about the same on the LIRR and Metro-North as the MTA plans to spend on signaling, but provides better functionality as it’s compatible with their high traffic density. Organisation vor Elektronik vor Beton.
Of course the first step in the organization before electronics before concrete slogan is improving the state of the organization. In terms of safety, there may be scope for better training, but the train driver according to the NTSB has 10 years’ experience (start at 02:20 in the video) and based on his work schedule would have had enough time to get a full night’s sleep before his shift started (start at 07:25). Since there is no obvious organizational way to further improve safety, electronics is the next step, and this means installing a good PTC system in a timely manner.
However, in terms of cost, there is something to be done. While the MTA claims PTC is too expensive and provides little benefit, Metro-North spent $80 million a year on conductors’ salaries in 2010 (although it’s been going down, to about $65 million by 2012) and the LIRR spent another $95 million (in either 2010 or 2012), both numbers coming from the Empire Center’s SeeThroughNY. About six years’ worth of conductor salaries would pay for full PTC; future savings are free. The NTSB briefing said there were 4 conductors on the train (start at 09:15). The main duty of conductors is to sell, check, and punch tickets, an old-time rail practice that has been abolished in modern commuter railroads throughout the first world.
A commuter train needs between 0 and 1 conductor. Stephen Smith quotes Vukan Vuchic, a professor of transportation engineering at Penn who was involved in the implementation of SEPTA’s through-running in the 1980s, as saying that ticket-punching is “extremely obsolete” and “very 19th century.” A tour of any of the major urban commuter rail systems of Europe will reveal that a few, such as the Paris RER and the London systems, use turnstile, while most use proof-of-payment, in which roving teams of ticket inspectors only check a small proportion of the trains, slapping fines on people caught without a valid ticket. On American light rail lines, which are often similar in role to German commuter rail lines (especially tram-trains) except that they run on dedicated greenfield tracks, this is routine; this can and should extend to commuter mainlines. While the electronics is needed to handle safety, this organizational improvement would pay for the electronics.
Although the investigation seems to be going in a competent manner, the MTA’s position on the relevant issues in general does not come from a position of competence. It is not competent to have this many redundant employees but then cry poverty when it comes to avoiding crashes and derailments. And it is not competent to pretend that there is nothing in Europe or Japan worth using for American signaling systems. The US did not invent PTC – at most, it invented the term for what’s called ATP or ATC elsewhere. It shouldn’t act like it’s the only place in the world that uses it.
Who Regional Rail is For
A few rail proposals have happened in the last few months that begin with the concept of improving transit access in the suburbs, and end in a bad direction. These center on airport-oriented rail extension, which in the case of New York means building transit to Newark, JFK, and LaGuardia, as a high priority; consider Chris Christie’s proposal for a PATH link to Newark Airport, and proposals on PDF-pp. 17-18 of Next New York for airport service. Instead of this, let me expound a bit on what the most promising travel markets for regional rail are:
1. The through-running aspect is useful for people whose commute requires them to cross the CBD or go around it. In New York, this means people who live in New Jersey and work in Brooklyn, Queens, the Bronx, or Long Island, or vice versa; and people who live in Westchester and points north, including Connecticut, and work in Brooklyn, Staten Island, possibly Queens or Long Island, or Newark and points south, and again vice versa. None of these travel markets is by itself very large, but some, especially those involving people working in Brooklyn and Queens, are of moderate size and together they’re about 150,000 commuters, about as many as use each of New York’s three commuter rail system at two trips per person. (All numbers are as of 2000 and come from the census.)
2. Additional lines allow travel even on markets that are not really through-running. A Staten Island-Manhattan tunnel is likely to be used primarily by people from Staten Island working in Manhattan or Downtown Brooklyn rather than by suburb-to-suburb commuters. Staten Island itself produces about 80,000 commuters bound toward Manhattan and Brooklyn, and electrification of the Erie Lines and a connection to Lower Manhattan opens up rail service to about 70,000 Manhattan-bound commuters from Bergen and Passaic Counties.
3. As a continuation of point 2, lines laid out in a way that serves secondary CBDs on the way from the suburbs to the primary CBD can produce additional ridership. For example, the LIRR already has some Brooklyn-bound commuters, and New Jersey Transit some Newark-bound ones; the Erie Lines could produce Jersey City-bound commuters, and one of the reasons to build the Lower Manhattan tunnel via Pavonia or Exchange Place rather than Hoboken is to serve the larger secondary CBDs there. Hudson County has about 30,000 workers commuting in from Bergen and Passaic Counties and 50,000 from Essex County and points west and south.
4. High all-day frequency of local trains together with fare integration with local transit allows people living and working within each inner-suburban region to use regional rail to get to work. The urban analog is that Brooklynites who work in Brooklyn often use the subway, and drive mainly if their commute is orthogonal to the Manhattan-bound orientation of the subway lines. Residents of Newark, Yonkers, Elizabeth, Paterson, Mount Vernon, New Rochelle, and Hempstead drive at higher rates than residents of the Outer Boroughs even when the poverty rates are comparable: a transit trip from Elizabeth to Newark today is either a bus that gets stuck in traffic or an expensive train that comes twice every hour off-peak and only stops at Downtown Elizabeth, the airport, and Downtown Newark. In 2000, only 26% of people working in Downtown Newark got there on public transit (see PDF-p. 13 of this report).
Airports are not very significant traffic generators. The AirTrain JFK has 5.5 million annual riders; the average ratio of annual to weekday ridership on the subway is 300 (on commuter rail, which has a more pronounced peak, it’s about 270), so that’s equivalent to about 18,000 weekday riders. The Newark version has 2 million annual riders. Regional rail is a way to build low-cost rapid transit in areas where there already are mainline railroads that can be used for local and regional service. Deviations need very high ridership to be justified. The tunnels through the CBD, such as the central RER and S-Bahn tunnels or the tunnels under Manhattan that I propose, bring in commuters from many suburbs into the primary CBD and also connect multiple secondary CBDs. Greenfield lines used for some airport extensions, such as in Zurich, are justified by their short length, connections to trains from all over Switzerland, and very high traffic (with nearly 50% mode share) coming from the use of the airport’s landside concessions as a shopping destination.
In contrast, an examination of the four above main travel markets suggests specific ways regional rail must be built and operated to maximize its usefulness. Brooklyn is the largest destination in the region outside Manhattan, and this means that tunnels serving it from more directions than just that of Long Island should be a higher priority. Queens is the second largest destination, and this means that commuter trains using the Northeast Corridor should stop there, with easy transfers to Jamaica, Flushing, and Long Island City for trains not serving those destinations; Sunnyside Junction would especially useful for this.
Moreover, travel market #4 is the most underrated. The potential traffic volume dwarfs all others. Newark has about 4,000 workers who live in areas who would be served by through-running, such as Brooklyn and the Bronx. It has 36,000 workers who live in the city itself, 30,000 who live in the rest of Essex County, 17,000 who live in Union County, and another 17,000 who live in points farther south. The Northeast Corridor, North Jersey Coast, and Morris and Essex Lines already exist, but provide expensive, infrequent service, with stations spaced too far apart for walking to the station. Christie’s PATH extension tellingly does not include a stop at South Street, but instead goes nonstop from Newark Penn Station to the Newark Airport train station. It’s of paramount importance to raise the transit mode share on these internal inner-suburban travel markets.
Tokyo’s CBD has about 2 million workers, the same as Downtown and Midtown Manhattan. The reason Tokyo has so much more rail ridership than New York is not a bigger downtown, or better airport service, but better rail service to secondary job centers, which themselves grow around train stations more closely than in New York. But Downtown Brooklyn, parts of Queens, and Downtown Newark at least already have the transit access, both by subway/PATH and by commuter rail. Present-day commuter rail just doesn’t provide good enough service to compete with parking rates and traffic jams outside Manhattan.
Quick Note: Why Quinn is Unfit to be Mayor
The Triboro RX plan calls for using preexisting freight rail rights-of-way with minimal freight traffic to build a circumferential subway line through the Bronx, Queens, and Brooklyn. It was mentioned as a possible project by then-MTA head Lee Sander and more recently by Scott Stringer and on The Atlantic Cities by Eric Jaffe. Despite not having nearly as much ridership potential as Second Avenue Subway or a future Utica subway, the presumed low cost of reactivating the right-of-way makes it a promising project.
According to Capital New York, leading mayoral contender Christine Quinn has just made up a price tag of $25 billion for Triboro, while claiming that paving portions of the right-of-way for buses will cost only $25 million. This is on the heels of city council member Brad Lander’s proposal for more investment in bus service. The difference is that Lander proposed using buses for what buses do well, that is service along city streets, and his plan includes bus lanes on major street and what appears to be systemwide off-board fare collection. In contrast, Quinn is just channeling the “buses are always cheaper than rail” mantra and proposing to expand bus service at the expense of a future subway line.
There is no support offered for either of the two cost figures Quinn is using, and plenty of contradictory evidence. Paving over rail lines for bus service is expensive; a recent example from Hartford and a proposal from Staten Island both point to about $40 million per km in the US. The map in the Capital New York article suggests significant detours away from the right-of-way, including on-street turns making the bus as slow as the existing circumferential B35 route, but also several kilometers on the railroad in Queens. Conversely, reusing rail lines for rail service is not nearly as expensive as building a subway. The MTA’s own biased study says a combined on-street and existing-right-of-way North Shore service would cost 65% more if it were light rail than if it were a busway; since the Triboro right-of-way is intact, the cost of service is in the light rail range, rather than the $25 billion for 35 km Quinn says.
But the reason Quinn is unfit for office rather than just wrong is the trust factor coming from this. She isn’t just sandbagging a project she thinks is too hard; the MTA is doing that on its own already. She appears to be brazenly making up outlandish numbers in support of a mantra about bus and rail construction costs. Nor has anyone else proposed a Triboro busway – she made the logical leap herself, despite not having any background in transit advocacy. Politicians who want to succeed need to know which advocates’ ideas to channel, and Quinn is failing at that on the transit front. If I can’t trust anything she says about transit, how can I trust anything she says about the effectiveness of stop-and-frisk, or about housing affordability, or about the consequences of labor regulations?
Update: Stephen Smith asked Quinn’s spokesperson, who cited a $21 billion figure for a far larger RPA plan including Second Avenue Subway and commuter rail through-running with new lines through Manhattan. I am not holding my breath for a retraction of the bus paving plan from the Quinn campaign.
Update 2: Quinn admitted the mistake on the rail plan, and revised the estimate of the cost down to $1 billion, but sticks to the bus plan and its $25 million estimate.
Quick Note: More on Urban Absolutism
In previous posts, I brought up the theory that American cities are run in a feudal fashion, despite the nominally democratic system, and that the failings of feudalism are leading proponents of livable streets and public transit to demand elected absolute monarchs instead. The recent 125th Street bus debacle, and the online livable streets community’s response to it, represent another example of this trend.
To recap: New York City’s Department of Transportation proposed a bundle of bus upgrades along 125th Street: dedicated bus lanes on most of the street for the use of all four bus routes running along 125th, and Select Bus Service on the M60, which connects Morningside Heights with Astoria and LaGuardia. The M60 is by a small margin the top route for boardings along 125th (not necessarily for boardings elsewhere for trips ending on 125th), but it’s third in overall ridership among the four routes. Because of its Morningside Heights bend at the west end and its LaGuardia service it’s perceived as a whiter route than the other three routes: the Bx15, connecting to Third Avenue in the Bronx; the M100, connecting to Washington Heights and Inwood; and the M101, connecting to Washington Heights at one end and going along Third and Lexington at the other. Harlem politicians were livid that DOT were only giving SBS upgrades to the whiter route. State Senator Bill Perkins opposed the plan’s ban on double parking and got the bus lanes truncated from Central and West Harlem to just Central Harlem; he and City Councillor Robert Jackson continued to oppose the plan, Jackson doing so explicitly on the grounds of privileging the M60, and DOT just dropped it.
It is not my intention here to rehash my argument for why Jackson was right and DOT should have proposed SBS upgrades for all four routes, or if it had to pick one then the M101. I have said this on Streetsblog and Second Avenue Sagas in comments. Rather, I bring this up because while many commenters said “we lost, let’s try again” or “we lost, let’s defeat Perkins and Jackson for opposing our interests,” other responded with fantasies of absolute power: fantasies of the city cutting bus routes to West Harlem to punish Jackson and Perkins, fantasies of the city making the Harlem communities beg for any further livable streets improvements (as already happens with bike lanes in East Harlem), fantasies of a Robert Moses for livable streets, fantasies of Bloomberg buying election campaigns to defeat all livable streets opponents.
An absolute ruler is not going to do anything positive. He doesn’t have to – either his rule is secure and he doesn’t need to care, or it’s not and he needs to spend his effort shoring it up with patronage and attacks on opponents. A city government strong enough to do things over the objections of black politicians who are concerned with racial inequality, or over those of pro-car NIMBYs, will also be strong enough to do things over the objections of the livable streets community. Robert Moses’s problem wasn’t just that he was pro-car; it’s that he was authoritarian and didn’t need to care too much about what people thought, so that his own biases for segregation could become city policy.
Are Express Trains Worth It?
So, you have your urban rail line. It’s mostly above ground, so constructing new express overtakes is feasible. It has decent frequency, and carries trains to destinations at a variety of distances from city center. But it’s not an overcrowded subway line that brushes up against line capacity, requiring all trains to run at the same speed. Do you run express trains?
I’m going to focus on regional rail in this post, since with two Tokyo-area exceptions, proper subways are incapable of running express trains without dedicated express tracks due to their high frequency. On a line with a train every 10 minutes it’s feasible to mix trains of different speeds with timed overtakes; on a line with a train every 2 minutes, it’s not. I’m going to use the LIRR and Caltrain as examples, and then apply the derived general principles to other cases in the US, including future regional rail schemes.
The basic tradeoff of express service is that it provides faster service to the express stations at the cost of frequency at the local ones. This can be done in two ways: expresses that stop once every few stations, and local-then-express patterns. Jarrett Walker calls this limited versus express, based on bus service patterns; with trains, both types are called express. The subway in New York, the Chuo Rapid Line, Seoul Subway Line 1, and Caltrain baby bullets are examples of the first kind; the Caltrain limited-stop trains and the peak-hour trains on some LIRR lines are examples of the second kind.
Express trains of either kind but especially the first reduce line capacity, even with very long overtake segments. If train X overtakes train L, then there needs to be an available slot ahead of train L, and after the overtake there’s a slot opening up behind L. The Chuo Rapid Line runs a mixture of local (“rapid”) and express (“special rapid”) trains for most of the day, but at rush hour, there are only local trains, peaking at 28 trains per hour; on the shoulders of rush hour, there are some express trains, with total traffic of about 20 tph. The LIRR runs 23 tph on the Main Line at the peak, so this is an issue, which the LIRR unsatisfyingly resolves by running trains one-way at rush hour. It’s less an issue on Caltrain given constructable overtake locations, but right now the overtake locations are inconvenient and the trains are pulled by diesel locomotives, increasing the stop penalty and reducing the capacity of a mixed local-express line.
The second kind of express service is bad industry practice and should not be used. It avoids the capacity problems of the first kind at low traffic levels, but at high traffic levels the speed difference is still too large. It is used when the trains are a special CBD shuttle and makes it impossible to serve passengers who are cheap to serve, i.e. those getting off short of city center. Caltrain’s limited-stop trains do this because of capacity problems during rush hour, when they need to get out of the baby bullets’ way. The LIRR does this because of a cultural belief that trains exist only to shuttle people from Long Island to Manhattan and back; due to the same belief, it runs trains one-way at rush hour rather than giving up on rush hour express runs as JR East does.
The first kind of express service may or may not be warranted. It depends on the following questions:
1. What is the line’s expected traffic level? Low traffic, up to about 4 tph for a regional line, favors an all-local configuration to prevent cutting local stations’ frequency unacceptably. Very high traffic favors all-local configuration for capacity reasons, or else investment into long overtakes or even full four-tracking. Intermediate traffic, in the 6-12 tph range, is the best zone for express trains.
2. Have local trains already been sped up by use of good industry practices? Level boarding, high-acceleration EMUs, better track maintenance allowing higher speeds between stations, good timetable adherence allowing less schedule padding, and infrastructure preventing delays on one train from cascading to others allowing even less padding can all significantly reduce the speed difference between local and express trains. In some extreme cases, a local train can end up not much slower than an express train hauled by a diesel locomotive.
3. How long is the line, and how many stations does it have? Longer lines and shorter interstations both favor express trains, all else being equal. Intercity rail, which also has higher stop penalties because of the higher line speed, deserves more than one stopping pattern even at low frequencies.
4. How big is the difference between minor and major stations? It is crucial not to confuse current ridership with ridership potential, since lines with express service often pick winners and losers, after which the better-served express stations steal riders who live closer to bypassed minor stops. This is common on Caltrain, where some but not all express stops are major job centers.
5. Can intercity trains plausible substitute for express service?
It is question 4 that makes the difference in many cases. On the LIRR, the Main Line has a clear distinction between major stops (Mineola, Hicksville) and minor ones (all the rest). The Montauk Line does not. Note the ridership levels of the stations, going eastward from Jamaica to the end of electrification:
Main Line:
Hollis: 114
Queens Village: 791
Floral Park: 1495.5
New Hyde Park: 1725.5
Merillon Avenue: 766.5
Mineola: 5174
Carle Place: 386
Westbury: 1951.5
Hicksville: 8107.5
Syosset: 2748.5
Cold Spring Harbor: 2083
Huntington: 5556.5
Bethpage: 2481.5
Farmingdale: 2312.5
Pinelawn: 25
Wyandach: 1758.5
Deer Park: 2708.5
Brentwood: 1375
Central Islip: 1787
Ronkonkoma: 8639
Montauk Line:
St. Albans: 93.5
Lynbrook: 2738
Rockville Centre: 3425
Baldwin: 3371.5
Freeport: 2514.5
Merrick: 3383.5
Bellmore: 3267.5
Wantagh: 2890.5
Seaford: 1804
Massapequa: 2959.5
Massapequa Park: 1672.5
Amityville: 1542.5
Copiague: 1430.5
Lindenhurst: 1791.5
Babylon: 3293
There are three ends of electrification: Babylon, Huntington, and Ronkonkoma. All have markedly more ridership than nearby stations, especially Ronkonkoma, though in all cases it’s an artifact of their being the ends of electrification, with many people driving in from farther east. Ronkonkoma has nothing nearby that justifies its ridership level, the highest of any suburban LIRR station; it’s a park-and-ride that has a lot of ridership because it’s the end of electrification and has express service.
In contrast, in Mineola and Hicksville, there really is a concentration of activity justifying their status. Both have trivial transit usage as job centers, but there’s enough of a core, especially around Mineola, to justify higher service, and Hicksville is also the junction of the Main Line with the Port Jefferson Branch: see the census bureau’s OnTheMap tool.
But there are no special stations on the Montauk Line. Excluding St. Albans, which is in New York itself and has to compete with cheaper and more frequent if slower bus-to-subway options, the ratio between the busiest and least busy stations is 2.4:1. A similarly flat situation occurs east of Hicksville, excluding the two end-of-electrification stations.
What this means is that the LIRR should only run local trains on the Babylon Branch and east of Hicksville, while maintaining express service on the Main Line west of Hicksville when there’s enough capacity for it. A similar analysis of other lines in the New York area should give the following answers:
Hempstead, West Hempstead, Long Beach, and Far Rockaway Branches: all local due to short length.
Port Washington Branch: probably all local due to short length, but if additional local stations are added in Queens, then some express trains to Great Neck may be warranted.
New Haven Line: very long, sharp distinction between major and minor stops all the way but especially west of Stamford, high frequency, four tracks give enough capacity for everything. The current configuration of nonstop trains to Stamford continuing as local to New Haven and local trains turning at Stamford is fine, except that the express trains should also stop at New Rochelle (a junction with the Hell Gate Line, which deserves service, but also a major stop in and of itself, with the third highest weekday ridership of Metro-North’s suburban stations) and maybe also Greenwich; HSR overtake considerations may require stopping also at Rye and Port Chester.
Harlem Line: generally favors local trains, except that White Plains is a major job center and thus a far more important stop than all others, independently of its better service. There are four tracks south of Wakefield, favoring express trains, but conversely charging subway fares and allowing free transfers to the subway would lead to a ridership spike as people switch from the overcrowded 4 and 5 trains. There’s a big dropoff in ridership north of North White Plains, so the current configuration of locals that turn at North White Plains and expresses that go nonstop south of White Plains is fine, as long as off-peak frequency is raised.
Hudson Line: favors express trains because of length and four-tracking. Although on paper there are more and less important stations, this is an artifact of service patterns. The secondary stations in Yonkers serve higher density than the busier stations in the proper suburbs, and the dense parts near Tarrytown are actually in Sleepy Hollow, about equidistant from the Tarrytown and Philipse Manor stations: see the New York Times’ population density map.
Erie Lines and West Shore Line: probably all local since the population density thins too uniformly going north, with Paterson as the major exception. There are somewhat denser anchors at the outer ends of some lines – Spring Valley and Nyack – but Harlem Line-style nonstops run against a capacity problem, coming from the fact that this part of the network is necessarily highly branched.
Rest of New Jersey Transit: the main lines (Northeast Corridor, Morristown) are very long and have some distinguished suburban job and population centers (Metropark, New Brunswick Morristown) deserving express service, but the branches (North Jersey Coast, Montclair, Gladstone) do not. However, the fare structure and off-peak frequency lead to much less ridership on the inner-urban segments in Newark, Orange, etc., than would be expected based on population density. In addition, the difference between major and minor stops is fairly small on all lines when taking electrification into account, sometimes as small as on the Babylon Branch: see ridership data per line and per station.
Although my initial decision in my regional rail plan to pair the Erie lines with the Atlantic and Babylon Branches of the LIRR was aesthetic, creating a northwest-to-southeast line, in reality the systems are fairly similar in their characteristics. More or less the same can be said about the Staten Island-Harlem system. There are no direct connections to intercity rail except at Jamaica and in the Metro-North tunnel to Grand Central, the lines pass through urban or dense-suburban areas, the interstations are fairly short, and there’s relatively little distinction between major and minor stops. (White Plains is the major exception, and Paterson is a secondary one.) This makes the Lower Manhattan-based system much more RER-like than the Penn Station-based one, which is longer-distance and practically intercity at places.
Finally, the same set of questions in the other three major Northeastern cities generally lead to the conclusion that no express trains are needed.
In Boston, there’s too little difference between major and minor stops on each line (see PDF-page 70) – somewhat more than on the Babylon Branch, but much less than on the LIRR Main Line. The most prominent major station is Salem, but the low-ridership stations farther in on the Rockport/Newburyport Line are in working-class suburbs; the ridership there is depressed because of fare and schedule issues coming from competition with buses, and good regional rail would get much more additional ridership from Lynn and Chelsea than from Salem and the suburbs farther out.
In Washington, current traffic demand is so low that express service would seriously eat away at the frequency offered to local stations. MARC and VRE ridership is so low that any analysis of travel demand has to start from geographic and demographic information rather than from preexisting ridership; the only major outlying destination on any of the lines is Baltimore, which can be connected to Washington by intercity rail, and which conversely has much less Washington-bound commuter traffic than the Washington suburbs. The closest thing to justifiable express service is that when the commuter lines closely parallel Metro, they should have wider stop spacing.
In Philadelphia, on most lines, express service eats away at frequency too much. The one exception is the PRR Main Line, with the SEPTA Main Line a possibility. Many lines have sharp differences between local and express stations: for example, Cornwells Heights on the Trenton Line is much busier than the rest. But a combination of low frequency and lack of easy overtakes (on the Trenton Line, the inner tracks should be mainly used by intercity trains, with only the occasional regional rail overtake if required) makes this not useful. The PRR Main Line actually has less difference between major and minor stops than many others, but it is longer and has short interstations and higher frequency. The SEPTA Main Line has the frequency to support multiple stopping patterns, though the population density near the minor stations is high and the problem, as in other Northeastern cities, is high fares and lack of integration with urban transit.
Large-Diameter TBMs
Deep-level subway tunnels are usually built with tunnel-boring machines (TBMs), which can dig and create their own lining even under other infrastructure, such as older intersecting tunnels. But then deep-level stations require larger caverns, which are expensive to dig from the surface. Three-quarters of the cost of Second Avenue Subway Phase 1 is the three stations. As commenters Jim and Anon256 noted a year and a half ago, to avoid this problem, such cities as Barcelona pioneered the use of large-diameter TBMs, which have enough space to accommodate tracks together with platforms by their sides. This is especially useful for construction in dense city centers, where surface disruption must be minimized and demolitions of buildings that are in the way are expensive. I claim that this is the optimal construction method for both regional rail to Lower Manhattan and the North-South Rail Link in Boston.
In Barcelona, the internal diameter of the TBM used for Line 9, 11.7 meters, is enough to have both directions of a two-track line use one tunnel. With an internal horizontal slab, trains can be stacked so that each direction gets one track and one platform at a station, which looks about 4.5 meters wide in diagrams. Between stations, there is enough space for each of the two levels to have two tracks, allowing crossovers. The only required construction outside the tunnel is access points, which can be drilled straight down for elevators or at an angle for escalators.
While the cost of Barcelona Metro Line 9 is about $170 million per kilometer, more than three times the original budget, compared with $40-60 million per kilometer for most Spanish tunneling projects, it is still much lower than the cost of comparable projects tunneling under preexisting subway systems that have stations built by blasting caverns or cut-and-cover construction. In addition, the standards are relatively easy to adapt to the standards of American mainline construction, since the Line 9 trains are powered by catenary and are only ten centimeters shorter than the LIRR’s M-7s. Mainline catenary is energized at 25 kV and requires more clearance than low-voltage rapid transit catenary, but this adds only about half a meter to the total diameter: German standards call for 27 centimeters of clearance from 25 kV.
To allow two lines to meet at cross-platform transfers, there are two possibilities, both used by narrower-diameter TBMs (or older tunneling shields). One, used by the London Underground’s tube lines, is to have two parallel circular tunnels with numerous passages drilled between them. Another, used by some subway lines in Shanghai and Tokyo as well as by the Harlem River tunnels of New York’s Lexington Avenue Line, is to overlap the two circular tunnels, using a tunneling shield with a double-O tube (DOT) design. The DOT design is more complex and would also require any access point to either obstruct the platforms or go at the platform edges, but would create a wider platform allowing easier cross-platform circulation.
In Boston, regardless of which design is used, the North-South Rail Link involves three central stations in which two tubes (one feeding the Worcester and Providence Lines, one feeding the Fairmount and Old Colony Lines) meet: South Station, Aquarium, and North Station. Each should have a cross-platform transfer, in the style of the Hong Kong MTR: at Aquarium northbound Providence and Worcester trains should face northbound Fairmount and Old Colony trains and likewise for southbound trains, whereas at South and North Stations, northbound trains should face southbound trains. This way, people transferring between two points south of the link could transfer cross-platform at South Station, and people transferring between two points north of the link could transfer cross-platform at North Station.
A large-diameter TBM has enough space not only for crossovers, but for trains to switch what levels they’re on. With a design speed of 100 km/h, a curve radius of 500 meters, and a superelevation ramp lasting 2 seconds, it takes about half a kilometer for the track on the lower level to swerve sideways so as to no longer be directly under the upper-level track, climb to the upper level while the upper-level track descends, and then swerve sideways again so that both tracks are on the correct side of the tunnel to allow a cross-platfom transfer. There is space to do this between both pairs of successive stations. The portals could be constructed where convenient on the approaches to South Station and immediately north of the Charles, and the infrastructure for pairing lines at the north end with the two tubes could be done above or below ground, based on local tradeoffs between disruption and cost.
In Lower Manhattan, the problem is capacity. The system would involve a line from Atlantic Terminal to Jersey City or Hoboken intersecting a line from Grand Central to Staten Island. There is room for only one station, and some configurations, notably any in which the New Jersey end is at Exchange Place, require a cruciform station, without cross-platform transfers. Moreover, this station is at a site with much more intensive development than Downtown Boston, and close attention must be paid to capacity. This is why I bring up DOTs in the first place: London-style passages may not allow sufficient circulation of transferring passengers. The platforms would be obstructed with many escalators between the upper and lower levels since there is no room for Hong Kong’s three-station cross-platform transfers, and peak demand for egress to both street level and intersecting subways is also likely to be very high.
The optimal solution seems to be to have no real Lower Manhattan station beyond the platforms and access points. Most ticket-vending machines should be placed at street level next to the escalator and elevator banks, and the blocks above the station should be pedestrianized to allow for access from the middle of the street, avoiding the need for a mezzanine. The width and pedestrian volume of Lower Manhattan streets are such that it would be at good human scale.
The remaining capacity issue is sufficient space for escalators. There are four tracks in total, each of which is inbound from some direction, and at the peak there could be a 12-car, 300-meter long train with 2,000 passengers every 2 minutes per track. If all passengers are discharged and the trains leave the station empty in the morning peak, then the required capacity is 240,000 people per hour. This is in fact quite unlikely, even though there is only one Lower Manhattan stop: many Staten Islanders work in Brooklyn or Midtown, people from points north of Grand Central are more likely to get off the train at Grand Central than to stay on until Lower Manhattan, and there is a substantial volume of commuters between Brooklyn and points west or north of Manhattan, who would benefit the most from through running.
Factsheets by Kone and ThyssenKrupp suggest each meter-wide escalator has a practical capacity of 6,000-7,000 passengers per hour. If we assume half of a full train capacity’s worth of passengers get off at the station, not including passengers who transfer, then we need 120,000 passengers per hour, i.e. seventeen to twenty escalators. This can be done quite easily with two parallel circular bores, at the cost of restricted capacity for connecting passengers. With a DOT design with 8-meter wide platforms, it’s still possible to have an escalator bank at each end of each platform; the large separation between the upper and lower levels, about 6 meters, allows independent escalators at the end, though not anywhere else. The widest standard escalator is a meter wide at the step and requires a 1.6-meter wide pit (see above ThyssenKrupp link as well as brochures by Kone and Otis), enough for a three-and-one or three-and-two escalator bank at each end, giving twelve peak-direction escalators. Eight additional escalator banks in a one-and-one configuration (or perhaps four in a two-and-one configuration, which is a wider platform obstruction) can be placed roughly evenly along the upper-level platform, along with elevator shafts, escalators that only connect the two platforms, and access points to intersecting subway lines.
The advantage in both New York and Boston is that there’s no need to construct a station beyond those shafts and bores. The station mezzanine in this configuration is a street, most likely Broadway in Lower Manhattan and (according to prior North-South Rail Link plans) the greenway above the Central Artery tunnel in Boston. The station retail is ordinary street retail. Fare control is roving inspectors riding the trains or patrolling the platforms. It’s still a multi-billion dollar undertaking due to all the underwater access tunnels, but the cost per kilometer could be held down to normal first-world levels even while crossing the difficult infrastructure of Lower Manhattan and Downtown Boston.
Who are the Opponents of Transportation Alternatives?
Streetsblog has traditionally lashed at multiple factions that oppose bicycle and transit infrastructure, but reserved the harshest criticism for entrenched community groups and NIMBYs, and their representatives including most of the high-profile Democratic mayoral candidates in New York. Early community board opposition to some of Janette Sadik-Khan’s bike lanes and pedestrian plazas turned into full-fledged attacks by the livable streets community on NIMBYs, of which some were justified but some were cases without any evidence of community opposition.
But now the Wall Street Journal has run an editorial video calling New York’s new bikeshare totalitarian, adding to a Front Page article from a month ago saying that bikeshare was a failure in Paris and Montreal and that Sadik-Khan’s grandfather was a Nazi. Paul Krugman chimed in with an explanation relating the opposition to upper-class politics, New York Magazine tried to explain how bikeshare goes against conservative ideology more broadly, and suddenly there’s supposed to be a partisan realignment on the matter. When I reminded Robert Cruickshank on Twitter that Charles Schumer and Anthony Weiner were against bike infrastructure, he responded, “no, that’s not driven by values or ideology but by a search for votes.”
There’s a real danger in reducing the world to a struggle between Us and Them, in which the bad aspects on the Us side show that people on the Us side need to be nudged in the right direction while the bad aspects on the Them side show that people on that side need to be defeated. People who spend too much time in national or even state-level partisan politics think in those terms even in places where they are completely inappropriate, such as local blue-city transportation matters. Streetsblog has occasionally engaged in this as well, with the factions being pro- and anti-Bloomberg: it has let the city’s DOT off the hook for the truncation of the 125th Street dedicated bus lanes, though in past years it did attack the city for not extending 1st and 2nd Avenue’s bike lanes into Harlem despite community support.
What both of those sides – Krugman and the Streetsblog crowd – miss is that there’s considerably diversity of opinion in both the Us camp and the Them camp. Although there is something like an Us camp comprising supporters of rail, urban density, and livable streets, there are still sharp internal disagreements that shouldn’t be papered over. On the Them side there isn’t even a recognizable camp: what do Michele Bachmann, Chris Christie, Andrew Cuomo, Charles Schumer, and Anthony Weiner have in common except their opposition to bikes or transit? Instead of a binary Manichean view it’s important to understand that politics, especially urban politics, has multiple factions, of which none can obtain a persistent majority, requiring some measures of negotiation and consensus.
First, the Them sides. The easiest segment to explain is right-wing populism: as a movement, it tends to be anti-urban and pro-road, even in Switzerland, whose Swiss People’s Party opposes rail investment and supports roads. The support base of right-wing populism is rarely urban, because as a movement it tends to be against what it views as cultural deviance of (mainly urban) immigrants; since transit ridership tends to be concentrated in the cities, populists have less reason to support it.
Non-populist conservatives sometimes borrow from right-wing populism and sometimes do not. Christie canceled ARC and transferred the state money for it toward roads, but he is quite influenced by populism in style even if his actual politics is mainline conservative. But the British Tories support high-speed rail, as did the Sarkozy administration. Contrary to popular belief, Thatcher never said that bus riders over the age of 30 are failures in life; the quote comes from a writer who, far from being a Thatcherist, worked for The New Statesman. However, with exceptions such as Sarkozy’s support for Arc Express, conservatives and right-wing liberals tend to be less supportive of urban transit and of taxing cars on environmental grounds. For examples, the Skyscraper Page posters believe the BC Liberal election victory is likely to make it harder to find money for SkyTrain extensions, Boris Johnson canceled proposals to extend London’s congestion charge to other parts of the city, and the Swedish right-wing parties originally opposed Stockholm’s congestion charge and eventually implemented it but with a caveat that the proceeds go to roads only.
Among centrist liberals, opinions are more split. Bloomberg is unabashedly neo-liberal; he’s also spent $2 billion of city money on a subway extension and championed congestion pricing and bike lanes. Andrew Cuomo is less explicitly neo-liberal but ran on such a platform; he’s championed the Tappan Zee Bridge replacement, opposed including transit on the new bridge, and spent money that was supposed to go to the MTA on other things. The opposition to transit and livable streets that exists in this group is less a matter of hating what cities stand for and more a matter of fiscal conservatism that views roads as normal service used by the upper middle class and transit as wasteful and serving the poor. Charles Schumer’s opposition to bike lanes in his neighborhood should be placed in the same category, as should Richard Brodsky’s claim that congestion pricing is unfair while he represented a rich Westchester district. It’s here that the faction Krugman describes belongs, but it includes board swaths of the upper middle class rather than the top 0.5% of the population that Krugman argues is pro-road because they’re chauffeured around Manhattan.
The community boards who oppose transit and livable streets, for examples in Washington Heights and Sheepshead Bay, are a more mixed bunch. I believe Weiner falls in this category too: instead of congestion pricing he proposed a commuter tax, which would not fall on his outer-urban district, a proposal that more recently the other mayoral hopefuls supported. In the forums I spent time in, mainly The Straphangers forums, the opposition seemed to be from the left and not just from the right. It’s probably best understood as a general populism as well as personal dislike for Bloomberg; while this populism may not be leftist, it is not really right-wing either, and often comes from minorities, which right-wing populists almost universally spurn. I believe it’s Cap’n Transit who noted the disconnect between the elite even in poor neighborhoods and the average residents, who rarely own cars, leading to a kind of populism in leftist areas that is not by itself really leftist.
Now, the Us side. There is, in fact, a coherent movement that calls for more investment in rail for intercity transportation, proposes local transit and bike and pedestrian projects, and supports taxes on driving when they are politically feasible. The arguments between various factions, such as more left-wing versus more right-wing transit supporters or supporters of restoration of pre-WW2 streetcars and interurbans versus supporters of more modern technologies like light rail and high-speed rail, really are internal to a movement.
However, there really are problems, coming from the cores of the movement in supporting more spending and in having leaders who are quite neo-liberal and indifferent to issues of racism and disinvestment. New York really did take its time to extend bike lanes into East Harlem despite community support; the same neighborhood is now not getting a 125th Street dedicated bus lane. While the first five bus routes to receive Select Bus Service upgrades were chosen as one per borough for trial, the newer lines so chosen, first on 34th Street and now the M60 to LaGuardia, are not very high-ridership; the M60 in particular is at least in perception the highest-income and whitest among the buses that use 125th Street while its ridership rank is third out of four routes on the corridor.
Likewise, the transit investment decisions made not only in New York but also in cities ranging from Boston and Providence to San Francisco are development-oriented and tend to serve residents of rich suburbs and inner-urban gentrification projects at the expense of high-productivity transit routes in low-income neighborhoods in between. Bloomberg spent $2 billion of city money on a subway extension, but it was the wrong one, a development-oriented project to Hudson Yards rather than an extension of Second Avenue Subway or a new subway line following Utica, which is currently in a near-tie with First and Second Avenues for highest bus ridership in the city.
While neo-liberalism as an ideology also supports efficient government and reducing red tape, the built-in bias for prestige projects makes it hard to support vanilla improvements in efficiency. This combines with a particular leftist opposition to anything that sounds like reduced spending; the fact that it’s Christie who began the wave of cancellations adds a partisan dimension. As a result, the people who are most sensitive to costs tend to be far outside political power: Stephen Smith is not a major libertarian pundit, Aaron Renn occasionally talks to city leaders but has no real power, I am a mathematician who writes about transit and urban issues. The (neo-)liberal centrists who’d be best placed to implement a program that would reduce transit construction costs are the ones with the least political incentive to do so.
That said, despite the above essentially multi-partisan and multi-factional picture, it could be that the Wall Street Journal’s video and Krugman’s response will lead to partisan realignment. High-speed rail used not to be a partisan issue either: in 2009, Newt Gingrich said he envisioned medium-speed rail together with maglev. But after Christie canceled ARC, canceling rail projects became a test of right-wing bona fides, and conversely, defending infrastructure spending became a test of left-wing bona fides even when infrastructure was a small component of the stimulus. It is possible that the American political world will soon become bipolar on matters of local transit and livable streets issues. It’s just not there now.
Quick Note: Why the Focus on Penn Station?
Penn Station is in the news again: the Municipal Art Society ran a public competition for a rebuilt station house, involving proposals by four different architectural firms. This does not include any track-level improvements at all: only the concourses and above-ground infrastructure are to be rebuilt, at a cost of $9.5 billion according to one of the four firms. The quotes from the architects and other backers of rebuilding use language like “great train station” and “gateway to the city,” and this is where the subtle hate of the city’s actual residents lies: why the focus on Penn Station? Why not a subway station?
The headline figure for the ridership at Penn Station is 600,000-650,000 a day, but this is a wild exaggeration. First, this includes both entries and exits, so the real number is half that. Second, about half of the number comes from subway riders, who these discussions always ignore. And third, there is a large number of passengers transferring between commuter rail and the subway who are doubled-counted; at subway stations, passengers transferring between lines are not even single-counted, since the subway counts entries at the turnstiles. Taking an average of boardings and alightings when both numbers are given or just boardings otherwise, Penn Station has 100,000 weekday LIRR riders, 80,000 weekday New Jersey Transit riders, and 170,000 weekday subway riders between the two stations. However, people transferring between the subway and commuter rail are double-counted.
In contrast, not counting any connecting passengers, there are 195,000 weekday Times Square subway riders. Without detailed data about transfer volumes at each station we can’t compare the two, but since the proposals for a better Penn Station focus only on the mainline station, the number of passengers served is certainly less than that of Times Square passengers.
Indeed, every single problem that the architects are trying to fix with Penn Station exists at Times Square. Times Square has low ceilings. The corridors between different lines and between the platforms and the exits are as labyrinthine as at Penn Station. In my experience rush hour passenger crowding levels within the station itself are comparable. Most platforms are wider, but nobody is proposing to widen platforms at Penn Station, and the 42nd Street Shuttle platforms are narrow and curvy and have been this way since 1918. The tickets are all integrated because the trains are all run by one operator, but again nobody who proposes to replace Penn Station is talking about the separate LIRR, NJ Transit, and Amtrak fiefs.
There are some legitimate changes that could be done if Penn Station is knocked down and rebuilt: instead of a hack involving paving over platforms to increase their width, the platform level could be rebuilt, two tracks at a time, with six approach tracks in each direction each splitting into two platform tracks, giving twelve tracks on six platforms; the train box appears about 140 meters wide, enough for 15-meter-wide platforms (compare 10 meters on the Chuo Line platform at Tokyo Station, where 28 trains per hour turn on two tracks).
However, the technical issues here are a lot less important than the fact that city leaders, architects, and even transit commentators assume that it is more important for New York to have a great train station used by 200,000 suburban commuters than for it to have a great subway station used by (at least) 200,000 city residents. It speaks to the utter hatred most city leaders have of the people who live in what they consider their fief or perhaps their playground. For most people in the city, there are more important transportation facilities, and even on a metro area level Penn Station isn’t unusually important.
This leaves the argument that Penn Station is a gateway to the city. But if the point is to impress a few thousand tourists, why not spend the same money on improving tourist amenities at Times Square, building more hotels? Or maybe building free housing for tens of thousands of homeless people (both the ones at Penn Station and the ones in the rest of the city) so that they stop being homeless and disturbing the rest of the population? If the point is to have great art, why not spend the money on employing artists to produce more work or to improve the aesthetics of the city’s ordinary spaces?
Of course, none of those options involves city leaders getting together and building important edifices with plaques with their names on them. So at the end the idea is to tax actual city inhabitants $10 billion to build a monument to the vision of city leaders. Large corporations pay their executives hundreds of millions a year in stock options and bonuses; governments cannot pay top political power brokers this way, so instead they spend large quantities of money on monuments that glorify them.