Category: Good/Interesting Studies

Britain Remade’s Report on Construction Costs

The group Britain Remade dropped a report criticizing Britain for its high infrastructure construction costs three days ago. I recommend everyone read Sam Dumitriu and Ben Hopkinson’s post on the subject. Sam and Ben constructed their own database. Their metro tunneling costs mostly (but not exclusively) come from our database but include more detail such as the construction method used; in addition, they have a list of tram projects, another list of highway projects, and a section about rail electrification. Over the last three days, this report has generated a huge amount of discussion on Twitter about this, with appearances in mainstream media. People have asked me for my take, so here it is. It’s a good report, and the recommendations are solid, but I think it would benefit from looking at historical costs in both the US and UK. In particular, while the report is good, the way it’s portrayed in the media misses a lot.

What’s in the report

Sam and Ben’s post talks about different issues, affecting different aspects of the UK, all leading to high costs:

NIMBYism

The report brings up examples of NIMBYs slowing down construction and making it more expensive, and quotes Brooks-Liscow on American highway cost growth in the 1960s and 70s. This is what has been quoted in the media the most: Financial Times call it the “NIMBY tax,” and the Telegraph spends more time on this than on the other issues detailed below.

The NIMBYs have both legal and political power. The legal power comes from American-style growth in red tape; the Telegraph article brings up that the planning application for a highway tunnel under the Thames Estuary is 63,000 pages long and has so far cost 250 million £ in planning preparations alone (the entire scheme is 9 billion £ for 23 km of which only 4.3 are in tunnel). The political power is less mentioned in the report, but remains important as well – High Speed 2 has a lot of gratuitous tunneling due to the political power of the people living along the route in the Home Counties.

Start-and-stop construction

British rail electrification costs are noticeably higher than Continental European ones. The report points out that construction is not contiguous but is rather done in starts and stops, leading to worse outcomes:

Lack of standardization

Sam and Ben bring up the point Bent Flyvbjerg makes about modularization and standardization. This is the least-developed point in the report, to the point that I’m not sure this is a real problem in the United Kingdom. It is a serious problem in the United States, but while both American and British costs of infrastructure construction are very high, not every American problem is present in the UK – for example, none of the British consultants we’ve spoken to has ever complained about labor in the UK, even though enoguh of them are ideologically hostile to unions that they’d mention it if it were as bad as in the US.

What’s not in the report?

There are some gaps in the analysis, which I think compromise its quality. The analysis itself is correct and mentions serious problems, but would benefit from including more things, I believe.

Historical costs

The construction costs as presented are a snapshot in time: in the 21st century, British (and Canadian, and American) costs have been very high compared with Continental Europe. There are no trends over time, all of which point to some additional issues. In contrast, I urge people to go to my post from the beginning of the year and follow links. The biggest missing numbers are from London in the 1960s and 70s: the Victoria and Jubilee lines were not at all atypically expensive for European subway tunnels at the time – at the time, metro construction costs in London, Italian cities, and German cities were about the same. Since then, Germany has inched up slightly, Italy has gone down due to the anti-corruption laws passed in the 1990s, and the United Kingdom has nearly quadrupled its construction costs over the Jubilee, which was already noticeably higher than the Victoria.

The upshot is that whatever happened that made Britain incapable of building happened between the 1970s and the 1990s. The construction cost increase since the 1990s has been real but small: the Jubilee line extension, built 1993-9, cost 218.7 million £/km, or 387 million £/km in 2022 prices; the Northern line extension, built 2015-21, cost 375 million £/km, or 431 million £/km in 2022 prices. The Jubilee extension is only 80% underground, but has four Thames crossings; overall, I think it and the Northern extension are of similar complexity. It’s a real increase over those 22 years; but the previous 20 years, since the original Jubilee line (built 1971-9), saw an increase to 387 million £/km from 117 million £/km.

The issue of soft costs

Britain has a soft costs crisis. Marco Chitti points out how design costs that amount to 5-10% of the hard costs in Italy (and France, and Spain) are a much larger proportion of the overall budget in English-speaking countries, with some recent projects clocking in at 50%. In the American discourse, this is mocked as “consultants supervising consultants.” Every time something is outsourced, there’s additional friction in contracting – and the extent of outsourcing to private consultants is rapidly growing in the Anglosphere.

On Twitter, some people were asking if construction costs are also high in other Anglo countries, like Australia and New Zealand; the answer is that they are, but their cost growth is more recent, as if they used to be good but then learned bad practices from the metropole. In Canada, we have enough cost history to say that this was the case with some certainty: as costs in Toronto crept up in the 1990s, the TTC switched to design-build, supposed inspired by the Madrid experience – but Spain does not use design-build and sticks to traditional design-bid-build; subsequently, Toronto’s costs exploded, going, in 2022 prices, from C$305 million/km for the Sheppard line to C$1.2 billion/km for the Ontario Line. Every cost increase, Canada responds with further privatization; the Ontario Line is a PPP. And this is seen the most clearly in the soft cost multiplier, and in the rise in complaints among civil servants, contractors, and consultants about contracting red tape.

Britain Remade’s political recommendations

Britain Remade seems anchored not in London but in secondary cities, judging by the infrastructure projects it talks most about. One of its political recommendations is,

Britain is one of the most centralised countries in the world. Too often, Westminster prioritises investments in long-distance intercity rail such as HS2 or the Northern Powerhouse Rail when they would be better off focusing on cutting down commuting times. Local leaders understand local priorities better than national politicians who spend most of their time in Westminster. If we really devolved power and gave mayors real powers over spending, we’d get the right sort of transport more often.

Britain Remade is campaigning for better local transport. We want to take power from Westminster and give it to local leaders who know better. But, we also want to make sure transport investment stretches further. That’s why we are calling for the government to copy what other countries do to bring costs down, deliver projects on time, and build more.

https://www.britainremade.co.uk/building_better_local_transport

Devolution to the Metropolitan counties – those covering Birmingham, Manchester, Liverpool, Leeds, Sheffield, and Newcastle – has been on the agenda in the UK for some time now. This reform is intended to give regions more power over spending, inspired by the success of devolution to London, where Transport for London has good operating practices and plenty of in-house capacity. More internationally-minded Brits (that is, to say, European-minded – there’s little learning from elsewhere except when consultants treat Singapore and Hong Kong as mirrors of their own bad ideas) will even point out the extensive regional empowerment in the Nordic countries: Swedish counties have a lot of spending power, and it’s possible to get all stakeholders in the room together in a county.

And yet, the United States is highly decentralized too, and has extreme construction costs. Conversely, Britain knew how to build infrastructure in the 1960s and 70s, under a centralized administrative state. Devolution to the Metropolitan counties will likely lead to good results in general, but not in infrastructure construction costs.

The media discourse

The report raises some interesting points. The start-and-stop nature of British electrification is a serious problem. To this, I’ll add that in Denmark, electrification costs are higher than in peer Northern European countries because its project, while more continuous, suffered from political football and was canceled and then uncanceled.

Unfortunately, all media discussion I can see, in the mainstream as well as on Twitter, misses the point. There’s too much focus on NIMBYism, for one. Britain is not the United States. In the United States, the sequence is that first of all the system empowered NIMBYs politically and legally starting in the 1960s and 70s, and only then did it privatize the state. In the United Kingdom, this is reversed: the growth in NIMBY empowerment is recent, with rapid expansion of the expected length of an environmental impact statement, and with multiplication of conflicting regulations – for example, there are equity rules requiring serving poor and not just rich neighborhoods, but at the same time, there must be a business case, and the value of time in the British benefit-cost analysis rules is proportional to rider income. This explosion in red tape is clearly increasing cost, but the costs were very high even before it happened.

Then, there are the usual incurious ideas from the Twitter reply gallery, including some people with serious followings: Britain must have stronger property rights (no it doesn’t, and neither does the US; look at Japan instead), or it’s related to a general cost disease (British health care costs are normal), or what about Hong Kong (it’s even more expensive).

Push and Pull Factors and Measuring Modal Shift

There’s a longstanding debate among activists and academics about what the best way of effecting modal shift from cars to public transport is. Pull factors concern making public transport better through building more rail lines, running them more frequently, improving service convenience, or reducing fares. Push factors concern making driving harder through speed limits, fuel taxes, congestion pricing, and reallocation of street space from cars to public and non-motorized transport. There’s a tendency on the New Left to favor push factors (but the East Asian developmental states are best characterized as push-before-pull and not pure pull).

This has been refined by researchers at the climate research institute, the Ariadne Project, who published a paper in late 2021 rating various push and pull policies on effectiveness for reducing transport emissions. They conclude that push factors dominate, and pull factors are small, with construction of new public transit almost insignificant, only worth a reduction of around 300,000 tons of CO2 a year Germany-wide, 0.039% of national emissions as of 2021; instituting a 120 km/h speed limit on the Autobahn is said to have about 10 times that effect, while the biggest effects yet would come from carbon taxes. The study laments that pull factors are so much more popular than push factors, which they admit suppress society-wide consumption.

The research suffers from the same problem as other work in this direction, in that it is bad at estimating the impact of public transport on mode shift. It briefly argues that construction of public transport increases overall consumption and therefore doesn’t do much to reduce emissions. This way, it’s like 2020’s carbon critique of U-Bahn expansion, which I criticized two months ago; the carbon critique argues that each kilometer of U-Bahn built only reduces CO2 emissions by 714 tons a year through mode shift, under the assumption that only 20% of public transport riders are diverted from cars.

This doesn’t pass a sanity check. 300,000 divided by 714 is 420 km, which is about comparable to the total route length of the four grade-separated U-Bahn systems in Germany plus the Wuppertal Schwebebahn; I think the two figures, 300,000 and 714/km, come from different sources, and judging by the other elements in the study, I suspect 300,000 assumes less construction than a full doubling of Germany’s rapid transit network length. Nonetheless, even under a more generous assumption, this is far too low compared with macro trends in public transport usage.

The best way to use macro trends as a sanity check is to look at some cases with much more and much less public transport than the present. Do they look like it’s a total difference of 0.039%? No, and that’s even taking into account that transit cities tend to be wealthier, stimulating more consumption and more production. As I pointed out in my post two months ago, while Germany averages 9.15 t-CO2/capita, Berlin only does 5.38, and while Germany averages 580 cars per 1,000 people, Berlin only does 327. The difference is largely about Berlin’s pull factors. Push factors in the city are not extensive, and what exists is implemented only in areas that already have very low car use.

Even lower household emissions in Berlin must be viewed as downstream of the density that is enabled by the presence of a large urban rail network. Cars are a low-capacity mode of transport, so an auto-oriented region, like American metro regions, has to spread out its homes and destinations to limit congestion, and this increases household emissions (single-family houses emit more than apartment buildings) and also encourages people to travel longer distances for their commute and routine non-commute trips.

This is not easy to measure. Public transport projects have gotten fairly good in the last generation at estimating ridership, but estimating the responsibility of one particular project to modal shift is hard. It interacts with the entire city region. For example, building one rail line can be measured to shift modes in the neighborhoods it serves, but it also encourages destinations to locate in city center since people from the neighborhoods the line serves can now access it, and the increase in office, retail, and community development then leads to a small modal shift citywide. Worse, trying to tease out the effect of the rail line on modal shift sufficiently carefully may lead researchers to count this citywide effect negatively, since one econometric technique is to compare the neighborhoods near the line with neighborhoods in the same city not on the line.

In practice, the construction of rail lines tends to co-occur with other policies that improve public transport, which may be pull or push factors. This means that it’s very easy to misattribute the effect of urban rail expansion to those other factors. I am convinced that this is what is happening here; the proper comparison must be at the level of an entire region, looking at the emissions of different regions with different levels of public transport usage.

The upshot is that if it is hard to measure the effect of public transport construction on modal shift and emissions, then the uncertain factors should not be set to zero. Rather, they should be set to sanity-check levels. For example, one can compare New York with the rest of the United States, since it’s a starker difference between a transit city and an auto-oriented country than anywhere in Europe, and correct for non-transport effects like climate and electricity mix, both of which are easy to measure.

Within Germany, Berlin has 42% lower emissions than the rest of the country per capita. Berlin achieves this with an urban rail network that, in 2019, got 1,289 million rail trips, nearly all within the city of 3.7 million, a minority in the suburban region of perhaps 1.3 million. This is around 250 trips/person regionwide, and 320/person citywide assigning around 20% of S-Bahn ridership to suburbs like Potsdam and Oranienburg. What’s more, Germany doesn’t start from zero; this is not the United States, with multiple large cities with around 10 annual rail trips per capita. Netting out buses from VDV’s data (p. 25) gets around 6.3 billion rail trips in Germany in 2019 including trams, or 75 per capita.

The difference between 320 and 75 is around 250 – I know it’s actually 245 but at this point I’m deliberately reducing precision because those are sanity-check estimates and I don’t want people thinking they’re correct to three significant figures (try 1.5). If we attribute the entire Berlin-Germany difference of about 3.8 t-CO2/capita to public transport and downstream changes to the urban layout, then we get 0.015 t saved per annual trip generated. To get from there to 300,000 tons saved, we just need 20 million annual rail riders, or around 65,000 daily ones, which is easy to generate on a single line; the approximately 2 km extension of U8 to Märkisches Viertel that Berlin keeps postponing is estimated to generate 25,000-30,000.

Now, to sanity-check the sanity check, the estimate here is that every trip on urban rail saves 15 kg-CO2. This is an aggressive figure; new cars nowadays average 100 g/km and averaged 180 g/km in 2001 (source, PDF-p. 15), and the average displaced car trip is not 150 km or even 80 km – Americans average around 45 km/day, or somewhat more when only adults are considered. Rather, the issue is a combination of factors:

  • Because the limiting factor to car transport is capacity, in practice what happens in an auto-oriented region is that it fills from the inside outward, and any modal shift ends up displacing the outermost and longest car trips. I proposed a model for that in a blog post from four years ago.
  • Public transport displaces car trips on a more than one-to-one basis (and certainly more than 20% as in the carbon critique of the U-Bahn). This is because public transport users also walk and bike, and transit cities have high modal splits for active transport by the standards of auto-oriented cities, if not by the standards of Dutch cities. Berlin’s all-trip modal split in 2018 was 26% car, 27% public transport, 18% bike, 30% walking – and the high active transport modal split exists not because of road diets, which are few and far between, but because of the presence of a large core fed by the U- and S-Bahn.
  • Public transport reduces household energy usage by encouraging people to live in apartment buildings with shared walls rather than in single-family houses, which have much greater heating requirements; this is also the mechanism through which transit cities have relatively high usage of active transport even without trying very hard.

I don’t think these factors fully explain away the gap between 45 km/day and 150 km per trip (so around 300/day), but they explain a large enough fraction of it that the installation of a system like what Berlin has – or, better, what Tokyo has – should be a climate priority. If your model says it doesn’t, it needs a lot more work than to just talk about the consumption effects of more public transport (if you’re bothered by how Berlin is poor for its size, compare New York with the rest of the United States).

In fact, if estimating modal shift is hard, then it’s best to approximate it by ridership. It’s imperfect because there is the effect of walking and biking; some lines really do just compete with walking, like city-center streetcars, but usually, to first order, it’s a good enough estimate. If it’s hard to estimate the benefits then they should not be set to zero, but rather set proportionally to something easier to measure, in this case ridership. Investment should follow ridership-maximizing strategies, and only deviate from them in corner cases.

TransitCenter’s Commuter Rail Proposal

Last week, TransitCenter released a proposal for how to use commuter rail more effectively within New York. The centerpiece of the proposal is to modify service so that the LIRR and Metro-North can run more frequently to stations within the city, where today they serve the suburbs almost exclusively; at the few places near the outer end of the city where they run near the subway, they have far less ridership, often by a full order of magnitude, which pattern repeats itself around North America. There is much to like about what the proposal centers; unfortunately, it falls short by proposing half-hourly frequencies, which, while better than current off-peak service, are far short of what is needed within the city.

Commuter rail and urban ridership

TransitCenter’s proposal centers urban riders. This is a welcome addition to city discourse on commuter rail improvement. The highest-ridership, highest-traffic form of mainline rail is the fundamentally urban S-Bahn or RER concept. Truly regional trains, connecting distinct centers, coexist with them but always get a fraction of the traffic, because public transit ridership is driven by riders in dense urban and inner-suburban neighborhoods.

A lot of transit and environmental activists are uncomfortable with the idea of urban service. I can’t tell why, but too many proposals by people who should know better keep centering the suburbs. But in reality, any improvement in commuter rail service that does not explicitly forgo good practices in order to discourage urban ridership creates new urban ridership more than anything else. There just aren’t enough people in the suburbs who work in the city (even in the entire city, not just city center) for it to be any other way.

TransitCenter gets it. The proposal doesn’t even talk about inner-suburban anchors of local lines just outside the city, like Yonkers, New Rochelle, and Hempstead (and a future update of this program perhaps should). No: it focuses on the people near LIRR and Metro-North stations within the city, highlighting how they face the choice between paying extra for infrequent but fast trains to Midtown and riding very slow buses to the edge of the subway system. As these neighborhoods are for the most part on the spectrum from poor to lower middle-class, nearly everyone chooses the slow option, and ridership at the city stations is weak, except in higher-income Northeast Queens near the Port Washington Branch (see 2012-4 data here, PDF-pp. 183-207), and even there, Flushing has very little ridership since the subway is available as an alternative.

To that effect, TransitCenter proposes gradually integrating the fares between commuter rail and urban transit. This includes fare equalization and free transfers: if a bus-subway-bus trip between the Bronx and Southern Brooklyn is covered by the $127 monthly pass then so should a shorter bus-commuter rail trip between Eastern Queens or the North Bronx and Manhattan.

Interestingly, the report also shows that regionwide, poorer people have better job access by transit than richer people, even when a fare budget is imposed that excludes commuter rail. The reason is that in New York, suburbanization is a largely middle-class phenomenon, and in the suburbs, the only jobs accessible by mass transit within an hour are in Midtown Manhattan, whereas city residents have access to a greater variety of jobs by the bus and subway system. But this does not mean that the present system is equitable – rich suburbanites have cars and can use them to get to edge city jobs such as those of White Plains and Stamford, and can access the entire transit network without the fare budget whereas poorer people do have a fare budget.

The issue of frequency

Unfortunately, TransitCenter’s proposal on frequency leaves a lot to be desired. Perhaps it’s out of incrementalism, of the same kind that shows up in its intermediate steps toward fare integration. The report suggests to increase frequency to the urban stations to a train every half an hour, which it phrases in the traditional commuter rail way of trains per day: 12 roundtrips in a six-hour midday period.

And this is where the otherwise great study loses me. Forest Hills, Kew Gardens, and Flushing are all right next to subway stations. The LIRR charges higher fares there, but these are fairly middle-class areas – richer than Rosedale in Southeast Queens on the Far Rockaway Branch, which still gets more ridership than all three. No: the problem in these inner areas is frequency, and a train every half hour just doesn’t cut it when the subway is right there and comes every 2-3 minutes at rush hour and every 4-6 off-peak.

In this case, incremental increases from hourly to half-hourly frequency don’t cut it. The in-vehicle trip is so short that a train every half hour might as well not exist, just as nobody runs subway trains every half hour (even late at night, New York runs the subway every 20 minutes). At outer-urban locations like Bayside, Wakefield, and Rosedale, the absolute worst that should be considered is a train every 15 minutes, and even that is suspect and 10 minutes is more secure. Next to the subway, the absolute minimum is a train every 10 minutes.

All three mainlines currently radiating out of Manhattan in regular service – the Harlem Line, the LIRR Main Line, and the Port Washington Branch – closely parallel very busy subway trunk lines. One of the purposes of commuter rail modernization in New York must be decongestion of the subway, moving passengers from overcrowded 4, 5, 7, E, and F trains to underfull commuter trains. The LIRR and Metro-North are considered at capacity when passengers start having to use the middle seats, corresponding to 80% of seated capacity; the subway is considered at capacity when there are so many standees they don’t meet the standard of 3 square feet per person (3.59 people/m^2).

To do this, it’s necessary to not just compete with buses, but also directly compete with the subway. This is fine: Metro-North and the LIRR can act as additional express capacity, filling trains every 5 minutes using a combination of urban ridership and additional ridership at inner suburbs. TransitCenter has an excellent proposal for how to improve service quality at the urban stations but then inexplicably doesn’t go all the way and proposes a frequency that’s too low.

Quick Note on Los Angeles and Chicago Density and Modal Split

A long-running conundrum in American urbanism is that the urban area with the highest population density is Los Angeles, rather than New York. Los Angeles is extremely auto-oriented, with a commute modal split that’s only 5% public transit, same as the US average, and doesn’t feel dense the way New York or even Washington or Chicago or Boston is. In the last 15 years there have been some attempts to get around this, chiefly the notion of weighted or perceived density, which divides the region into small cells (such as census tracts) and averaged their density weighted by population and not area. However, even then, Los Angeles near-ties San Francisco for second densest in the US, New York being by far the densest; curiously, already in 2008, Chris Bradford pointed out that for American metro areas, the transit modal split was more strongly correlated with the ratio of weighted to standard density than with absolute weighted density.

DW Rowlands at Brookings steps into this debate by talking more explicitly about where the density is. She uses slightly different definitions of density, so that by the standard measure Los Angeles is second to New York, but this doesn’t change the independent variable enough to matter: Los Angeles’s non-car commute modal split still underperforms any measure of density. Instead of looking at population density, she looks at the question of activity centers. Those centers are a way to formalize what I tried to do informally by trying to define central business districts, or perhaps my attempts to draw 100 km^2 city centers and count the job share there (100 km^2 is because my French data is so coarse it’s the most convenient for comparisons to Paris and La Défense).

By Rowlands’ more formal definition, Los Angeles is notably weaker-centered than comparanda like Boston and Washington. Conversely, while I think of Los Angeles as not having any mass transit because I compare it with other large cities, even just large American cities, Brookings compares the region with all American metropolitan areas, and there, Los Angeles overperforms the median – the US-wide 5% modal split includes New York in the average so right off the bat the non-New York average is around 3%, and this falls further when one throws away secondary transit cities like Washington as well. So Los Angeles performs fairly close to what one would expect from activity center density.

But curiously, Chicago registers as weaker-centered than Los Angeles. I suspect this is an issue of different definitions of activity centers. Chicago’s urban layout is such that a majority of Loop-bound commutes are done by rail and a supermajority of all other commutes are done by car; the overall activity center density matters less than the raw share of jobs that are in a narrow city center. Normally, the two measures – activity center density and central business district share of jobs – correlate: Los Angeles has by all accounts a weak center – the central 100 km^2, which include decidedly residential Westside areas, have around 700,000 jobs, and this weakness exists at all levels. Chicago is different: its 100 km^2 blob is uninspiring, but at the scale of the Loop, the job density is very high – it’s just that outside the Loop, there’s very little centralization.

One- and Two-Seat Rides

All large urban rail networks rely on transfers – there are too many lines for direct service between any pair of stations. However, transfers are still usually undesirable; there is a transfer penalty, which can be mitigated but not eliminated. This forces the planners who design urban and suburban rail systems to optimize: too many transfers and the trips are too inconvenient, too few and the compromises required to avoid transfers are also too inconvenient. How do they do it? And why?

Of note, the strategies detailed below are valid for both urban rail and suburban commuter rail systems. Multi-line commuter rail networks like the RER and the Berlin S-Bahn tend to resemble urban rail in their core and work in conjunction with the rest of the urban rail network, and therefore strategies for reducing the onerousness of transferring work in much the same way for both kinds of systems. Suburban strategies such as timing half-hourly trains to meet connecting buses are distinct and outside the scope of this post.

Transfer penalties

Passengers universally prefer to avoid transfers between vehicles, keeping everything else constant. The transportation studies literature has enough studies on this pattern that it has a name: transfer penalty. The transfer penalty consists of three elements:

  • Walking time between platforms or bus curbs
  • Waiting time for the connecting train or bus
  • An independent inconvenience factor in addition to the extra time

One meta-study of this topic is by Iseki-Taylor-Miller of the Institute for Transportation Studies. There’s a bewildering array of different assumptions and even in the same city the estimates may differ. The usual way this is planned in elasticity estimates is to bundle the inconvenience factor into walking and waiting times; passengers perceive these to be more onerous than in-vehicle time, by a factor that depends on the study. Iseki-Taylor-Miller quote a factor as low as 1.4-1.7 and Lago-Mayworm-McEnroe’s classic paper, sourced to a Swedish study, go up to 3; Teulings-Ossokina-de Groot suggest it is 2, which is the figure I usually use, because of the convenience of assuming worst-case scenario for waiting time (on average, the wait is half the headway).

The penalty differs based on the quality of station facilities, and Fan-Guthrie-Levinson investigate this for bus shelter. However, urban rail estimates including those in the above meta-studies are less dependent on station facilities, which are good in all cases.

Mitigating the transfer penalty

Reducing the transfer penalty for riders can be done in three ways, if one believes the model with a constant penalty factor (say 2):

  • Reducing the number of transfers
  • Reducing walking time between platforms
  • Reducing waiting time for trains

All three are useful strategies for good urban rail network planning, and yet all three are useful only up to a point, beyond which they create more problems than they solve.

Reducing transfers

The most coherent network planning principle for reducing passengers’ need to transfer is to build radial rail networks. Such networks ideally ensure each pair of lines intersects once in or near city center, with a transfer, and thus there is at most one transfer between any pair of stations. A circumferential line may be added, creating some situations in which a three-legged trip is superior in case it saves a lot of time compared with the two-legged option; in Moscow, the explicit purpose of the Circle Line is to take pressure off the congested passageway of the central transfer connecting the first three lines.

In general, the most coherent radial networks are those inherited from the Soviet tradition of metro building; the London Underground, which influenced this tradition in the 1920s, is fairly radial itself, but has some seams. It’s important in all cases to plan forward and ensure that every pair of lines that meets has a transfer. New York has tens of missed connections on the subway, and Tokyo has many as well, some due to haphazard planning, some due to an explicit desire to build the newer lines as express relief lines to the oversubscribed older lines.

On a regional rail network, the planning is more constrained by the need to build short tunnels connecting existing lines. In that case, it’s best to produce something as close to a coherent radial network with transfers at all junctions as possible. Through-running is valuable here, even if most pairs of origins and destinations on a branched commuter line trunk still require a transfer, for two reasons. First, if there is through-running, then passengers can transfer at multiple points along the line, and not just at the congested city center terminus. And second, while through-running doesn’t always cut the transfer for suburb-to-suburb trips, it does reliably cut the transfer for neighborhood-to-suburb trips involving a connection to the metro: a diameter can be guaranteed to connect with all radial metro lines, whereas a radius (terminating at city center) will necessarily miss some of them, forcing an extra transfer on many riders.

Reducing walking time

The ideal transfer is cross-platform, without any walking time save that necessary to cross a platform no more than 10-15 meters wide. Some metro building traditions aim for this from the outset: London has spent considerable effort on ensuring the key Victoria line transfers are cross-platform and this has influenced Singapore and Hong Kong, and Berlin has accreted several such transfers, including between the U- and S-Bahn at Wuhletal.

However, this is not always viable. The place where transfers are most valuable – city center – is also where construction is the most constrained. If two lines running under wide streets cross, it’s usually too costly to tilt them in such a way that the platforms are parallel and a cross-platform transfer is possible. But even in that case, it’s best to make the passageways between the platforms as short as possible. A cruciform configuration with stairs and an elevator in the middle is the optimum; the labyrinthine passageways of Parisian Métro stations are to be avoided.

Reducing waiting time

The simplest way to reduce waiting time is to run frequently. Passengers’ willingness to make untimed transfers is the highest when frequency is the highest, because the 2-minute wait found on such systems barely lengthens one’s trip even in the worst case, when one has frustratingly just missed the train.

Radial metro networks based on two- rather than one-seat rides pair well with high frequency. Blog supporter and frequent commenter Threestationsquare went viral last month when he visited Kyiv, a Soviet-style three-line radial system, and noted that due to wartime cuts the trains only run every 6-7 minutes off-peak; Americans amplified this and laughed at the idea that base frequency could be so high that a train every 7 minutes takes the appellation “only.”

When frequency is lower, for example on a branch or at night, cross-platform transfers can be timed, as is the case in Berlin. But these are usually accidental transfers, since the core city center transfers are on frequent trunks, and thus the system is only valuable at night. Moreover, timed transfers almost never work outside cross-platform transfers, which as noted above are not always possible; the only example I’m aware of is in Vienna, where a four-way transfer with stacked parallel platforms is timed.

This is naturally harder on a branched commuter rail system. In that case, it’s possible to set up the timetable to make the likeliest origin-destination pairs have short transfer windows, or even one-seat rides. However, in general transfers may require a wait as long as the system’s base clockface intervals, which is unlikely to be better than 20 minutes except on the busiest trunks in the largest cities; even Paris mixes 10-, 15-, and occasionally 20- and 30-minute intervals on RER branches.

More on Six-Minute Service in New York

Two years ago I wrote about how New York should aim to run every bus and subway service every six minutes off-peak. Buses would require a combination of aggressive bus redesign and speedup treatments for this to be viable. The subway already has very low variable operating costs off-peak and such a boost in frequency would naturally increase efficiency; New York City Transit gets around 550 service-hours annually per train driver, whereas the Berlin U-Bahn with its flat all-day schedule gets around 900. But now, the more mainstream New York-area transit advocacy group Riders’ Alliance has its own proposal for six-minute service, which it has aggressive marketed using the hashtag #6minuteservice.

This is a good campaign and I hope more people in the region take notice and push for it until the state implements it in full. The impact on passenger convenience is massive, not just in the form of shorter waits but also higher reliability coming from better timetabling, and hopefully also slightly more speed coming from said higher reliability. The proposal says that it would take $250 million a year in extra spending to effect this system, and it’s unknown but plausible that it would increase ridership by enough to defray this cost entirely, even without any efficiency treatments to reduce unit costs.

What’s in the Riders’ Alliance proposal?

Between 5 am and 9 pm on weekdays, and between 8 am and 10 pm on weekends, all subway routes and the top 100 bus routes in the city should run at worst every six minutes. This echoes a report by the comptroller’s office from last year, recommending this as an alternative to rush hour-focused service by bringing up corona-related ridership decreases.

It’s not stated but I think the subway routes in question are reckoned by letter or number, which means the A train runs every six minutes but each of its two branches runs every 12. This is fine – the two branches of the A are exceptionally far out, which is why a single service splits to them, where elsewhere in New York each branch gets its own number or letter.

The implications for timetabling

Timetabling a consistent all-day service is much easier than timetabling bespoke service patterns. The Riders’ Alliance proposal aims to face the general public rather than planners and therefore omits this benefit, but this benefit reaches passengers as well, in non-obvious ways.

First, if all trains and buses run every six minutes, then it’s possible to set up clockface timetables. These don’t matter very much if they run every six minutes, but they do if they run every 12, as I expect the two A branches to. The same is true of buses that branch: some outer ends may run every 12 minutes, in which case they can and should run on repeating clockface timetables that passengers can memorize. Passengers who can remember “my bus leaves at :01, :13, :25, :37, and :49” without having to consult timetables or trip planners all the time are likelier to take the trip; this was my commute for a year in Vancouver.

The A train today runs every 15 minutes on each branch but it’s not on a consistent clockface schedule, which depresses ridership. In effect, current practice is little different from what Swiss planners warn of: they say the best way to reduce ridership is to run service every 11, 13, or 17 minutes, rather than every 12 or 15 on a clockface pattern.

Second, if all trains run on the same frequency, then service planning on a complexly interlined system like New York’s becomes more tractable. Today, every train runs on a separate frequency, often different from the services it shares track with. The 2 and 3 trains share track most of the way, from Franklin Avenue to 135th Street, but the 2 is just a little more frequent, resulting in the following northbound timetable at Franklin:

10:03: 2
10:07: 3
10:12: 2
10:15: 3
10:21: 2
10:28: 3
10:32: 2
10:34: 3
10:37: 2
10:41: 3
10:43: 2
10:49: 2
10:51: 3
10:57: 3
11:01: 2
11:03: 3
11:09: 2
11:15: 3
11:17: 2
11:22: 3
11:24: 2
11:28: 3

This is irregular both on the trunk and on each individual service – the 2 on average runs every eight minutes but has a 12-minute gap, and the 3 runs on average every nine but also has a 12-minute gap. It’s an unavoidable consequence of the combination of extensive reverse-branching and subway frequency guidelines that run different services at different headways. The six-minute service proposal straightens this by aligning the trains to a single frequency, with regular alternation between successive trains on trunks.

And third, another benefit of a regular frequency to planning is that schedule planners can reliably avoid merge conflicts. This, in turn, speeds up service, which is full of planned delays and schedule padding at pain points. It’s not a full substitute for deinterlining, which would eliminate the merge conflicts at the worst junctions, but it makes it viable to no longer write impossible schedules with the planning department that New York City Transit has.

Service quality and demographics

Both Riders’ Alliance and the comptroller report it uses as its source point out demographic differences between peak and off-peak riders: rush hour subway commuters have a median income of $50,783 a year, even higher (slightly) than drivers, but off-peak subway commuters have a median income of $37,048 and bus commuters have a median income of $30,374.

In both reports this is taken to be indicative that off-peak service is mostly for poorer people, but it’s not the right analysis. The picture that emerges from the data is not that in general rush hour commuters outearn off-peak commuters; for one, most off-peak commutes are done by car, not by public transportation. Rather, what’s going on is that off-peak public transit quality is bad and this suppresses ridership among those who can afford a car.

By the same token, we can look at the incomes of commuters in regions of the United States that have no public transit to speak of – maybe some buses or even a few trains but with rounding-error ridership and low single-digit modal split. In metro New York, public transit and car commuters have about the same median income, and in some secondary transit cities like Chicago public transit commuters actually outearn drivers, since service to non-CBD destinations is so bad it suppresses ridership below median income more than above it. But in places like Los Angeles, the median income of transit commuters is not much more than half that of car commuters, because service quality is so bad that anyone who can afford to drive does.

The upshot of this is that better off-peak transit service is going to increase the average income of off-peak transit users, by attracting people who currently drive. This is also going to lead to higher-socioeconomic status shifts: higher levels of degree attainment, a larger proportion of white riders, a larger proportion of native-born riders.

I bring this up because a rise in the relative average income of users as service quality improves means the improvement is working as intended. It doesn’t mean the subway is gentrifying or turns away poorer riders, it just means it no longer repels riders who can afford to drive. This is important, because too much American transit planning is based on market segmentation in which service is supposed to be for a specific class of rider, and if the demographics are changing it means it’s being revamped for a different class. In reality, there’s just one transit system for one city and income differences are indicative of quality differences and not of inherent differences in the travel market.

How much does this cost? What is the ridership impact?

The Riders’ Alliance proposal says the additional cost of the program is $250 million a year in operating expenses. In 2019, NYCT spent $8.8 billion on operations and got $4.6 billion in fares, so this is in theory a 6% increase in subsidy, and in practice a little less as better service attracts more fare-paying riders. This is without any concurrent attempts to use the increase in service to increase efficiency (read: reduce unit staffing levels) and, I think, without bus speedups that permit much higher frequency for the same cost.

It’s unclear what the revenue impact should be; the ridership impact can be estimated from longstanding results in the literature about ridership-frequency elasticity, which in the case of NYCT should be about 0.4. The proposal increases off-peak service on the subway by around 50% in principle and a bit more in practice because of the reduced variability in frequency, say two-thirds: most lines are to go from 10- to six-minute headways and the rest, which are mostly more frequent than this, get a smaller increase that we round up to two-thirds by taking the impact of higher reliability into account. This means an increase in off-peak ridership of around 23%. The bus impact is even larger – in Brooklyn the median bus headway is right between 12 and 15 minutes, and even taking into account that the busiest buses do much better, this is close to a doubling of the effective frequency.

In turn, most ridership is off-peak. In 2019, peak (7-10 am) ridership into the Manhattan core was 923,000 per weekday, amounting to 44% of ridership entering the Manhattan core on a weekday, or around 33% of all inbound weekday ridership and 27% of all ridership. Even adding a bit to account for peak ridership that doesn’t enter Manhattan, only about a third of subway ridership in New York was at the peak before corona; the peak share has fallen since, but is slowly creeping back up as workers slowly return to the office. Raising two-thirds of ridership by 23% is massive – it’s a 15% systemwide increase for a much smaller increase in operating costs, and a somewhat larger increase in bus ridership to boot.

Unfortunately, I can’t turn this into a revenue impact estimate. While the demographics in the section above specify off-peak commuters, the studies that my ridership estimate is based on measure riders, including peak commuters who ride more often for non-work trips. Such riders already have monthly passes, so making it easier for them to ride is excellent for the city’s long-term health but doesn’t defray the added cost. Converted riders who are not already on the system as well as the odd peak rider who doesn’t already have a pass do generate more revenue, but I don’t know how many there are; these need to be a little more than a third of the overall increase in ridership to fully defray costs, which sounds plausible to me.

Eno’s Project Delivery Webinar

Eno has a new report out about mass transit project delivery, which I encourage everyone to read. It compares the American situation with 10 other countries: Canada, Mexico, Chile, Norway, Germany, Italy, South Africa, Japan, South Korea, and Australia. Project head Paul Lewis just gave a webinar about this, alongside Phil Plotch. Eno looks at high-level governance issues, trying to figure out if there’s some correlation with factors like federalism, the electoral system, and the legal system; there aren’t any. Instead of those, they try teasing out project delivery questions like the role of consultants, the contracting structure, and the concept of learning from other people.

This is an insightful report, especially on the matter of contract sizing, which they’ve learned from Chile. But it has a few other gems worth noting, regarding in-house planning capacity and, at meta level, learning from other people.

How Eno differs from us

The Transit Costs Project is a deep dive into five case studies: Boston, New York, Stockholm (and to a lesser extent other Nordic examples), Istanbul (and to a lesser extent other Turkish examples), and the cities of Italy. This does not mean we know everything there is to know about these cases; for example, I can’t speak to the issues of environmental review in the Nordic countries, since they never came up in interviews or in correspondence with people discussing the issue of the cost escalation of Nya Tunnelbanan. But it does mean knowing a lot about the particular history of particular projects.

Eno instead studies more cases in less detail. This leads to insights about places that we’ve overlooked – see below about Chile and South Korea. But it also leads to some misinterpretations of the data.

The most significant is the situation in Germany. Eno notes that Germany has very high subway construction costs but fairly low light rail costs. The explanation for the latter is that German light rail is at-grade trams, the easiest form of what counts as light rail in their database to build. American light rail construction costs are much higher partly because American costs are generally very high but also partly because US light rail tends to be more metro-like, for example the Green Line Extension in Boston.

However, in the video they were asked about why German subway costs were high and couldn’t answer. This is something that I can answer: it’s an artifact of which subway projects Germany builds. Germany tunnels so little, due to a combination of austerity (money here goes to gas subsidies, not metro investments) and urbanist preference for trams over metros, that the tunnels that are built are disproportionately the most difficult ones, where the capacity issues are the worst. The subways under discussion mostly include the U5 extension in Berlin, U4 in Hamburg, the Kombilösung in Karlsruhe, and the slow expansion of the tunneled part of the Cologne Stadtbahn. These are all city center subways, and even some of the outer extensions, like the ongoing extension of U3 in Nuremberg, are relatively close-in. The cost estimates for proposed outer extensions like U7 at both ends in Berlin or the perennially delayed U8 to Märkisches Viertel are lower, and not too different per kilometer from French levels.

This sounds like a criticism, because it mostly is. But as we’ll see below, even if they missed the ongoing changes in Nordic project delivery, what they’ve found from elsewhere points to the exact same conclusions regarding the problems of what our Sweden report calls the globalized system, and it’s interesting to see it from another perspective; it deepens our understanding of what good cost-effective practices for infrastructure are.

The issue of contract sizing in the Transit Costs Project

Part of what we call the globalized system is a preference for fewer, larger contracts over more, smaller ones. Trafikverket’s procurement strategy backs this as a way of attracting international bidders, and thus the Västlänken in Gothenburg, budgeted at 20,000 kronor in 2009 prices or around $2.8 billion in 2022 prices, comprises just six contracts. A planner in Manila, which extensively uses international contractors from all over Asia to build its metro system (which has reasonable elevated and extremely high underground costs), likewise told us that the preference for larger contracts is good, and suggested that Singapore may have high costs because it uses smaller contracts.

While our work on Sweden suggests that the globalized system is not good, the worst of it appeared to us to be about risk allocation. The aspects of the globalized system that center private-sector innovation and offload the risk to the contractor are where we see defensive design and high costs, while the state reacts by making up new regulations that raise costs and achieve little. But nothing that we saw suggested contract sizing was a problem.

And in comes Eno and brings up why smaller contracts are preferable. In Chile, where Eno appears to have done the most fieldwork, metro projects are chopped into many small contracts, and no contractor is allowed to get two adjacent segments. The economic logic for this is the opposite of Sweden’s: Santiago wishes to make its procurement open to smaller domestic firms, which are not capable of handling contracts as large as those of Västlänken.

And with this system, Santiago has lower costs than any Nordic capital. Project 63, building Metro Lines 3 and 6 at the same time, cost in 2022 PPP dollars $170 million/km; Nya Tunnelbanan is $230 million/km if costs don’t run over further, and the other Nordic subways are somewhat more expensive.

Other issues of state capacity

Eno doesn’t use the broader political term state capacity, but constantly alludes to it. The report stresses that project delivery must maintain large in-house planning capacity. Even if consultants are used, there must be in-house capacity to supervise them and make reasonable requests; clients that lack the ability to do anything themselves end up mismanaging consultants and making ridiculous demands, which point comes out repeatedly and spontaneously for our sources as well as those of Eno. While Trafikverket aims to privatize the state on the British model, it tries to retain some in-house capacity, for example picking some rail segments to maintain in-house to benchmark private contractors against; at least so far, construction costs in Stockholm are around two-fifths those of the Battersea extension in London, and one tenth those of Second Avenue Subway Phase 1.

With their broader outlook, Eno constantly stresses the need to devolve planning decisions to expert civil servants; Santiago Metro is run by a career engineer, in line with the norms in the Spanish- and Portuguese-language world that engineering is a difficult and prestigious career. American- and Canadian-style politicization of planning turns infrastructure into a black hole of money – once the purpose of a project is spending money, it’s easy to waste any budget.

Finally, Eno stresses the need to learn from others. The example it gives is from Korea, which learned the Japanese way of building subways, and has perfected it; this is something that I’ve noticed for years in my long-delayed series on how various countries build, but just at the level of a diachronic metro map it’s possible to see how Tokyo influenced Seoul. They don’t say so, but Ecuador, another low-cost Latin American country, used Madrid Metro as consultant for the Quito Metro.

The Nine-Euro Ticket

A three-month experiment has just ended: the 9€ monthly, valid on all local and regional public transport in Germany. The results are sufficiently inconclusive that nobody is certain whether they want it extended or not. September monthlies are reverting to normal fares, but some states (including Berlin and Brandenburg) are talking about restoring something like it starting October, and Finance and Transport Ministers Christian Lindner and Volker Wissing (both FDP) are discussing a higher-price version on the same principle of one monthly valid nationwide.

The intent of the nine-euro ticket

The 9€ ticket was a public subsidy designed to reduce the burden of high fuel prices – along with a large three-month cut in the fuel tax, which is replaced by a more permanent cut in the VAT on fuel from 19% to 7%. Germany has 2.9% unemployment as of July and 7.9% inflation as of August, with core inflation (excluding energy and food) at 3.4%, lower but still well above the long-term target. It does not need to stimulate demand.

Moreover, with Russia living off of energy exports, Germany does not need to be subsidizing energy consumption. It needs to suppress consumption, and a few places like Hanover are already restricting heating this winter to 19 degrees and no higher. The 9€ ticket has had multiple effects: higher use of rail, more domestic tourism, and mode shift – but because Germany does not need fiscal stimulus right now and does need to suppress fuel consumption, the policy needs to be evaluated purely on the basis of mode shift. Has it done so?

The impact of the nine-euro ticket on modal split

The excellent transport blog Zukunft Mobilität aggregated some studies in late July. Not all reported results of changes in behavior. One that did comes from Munich, where, during the June-early July period, car traffic fell 3%. This is not the effect of the 9€ ticket net of the reduction in fuel taxes – market prices for fuel rose through this period, so the reduction in fuel taxes was little felt by the consumer. This is just the effect of more-or-less free mass transit. Is it worth it?

Farebox recovery and some elasticities

In 2017 and 2018, public transport in Germany had a combined annual expenditure of about 14 billion €, of which a little more than half came from fare revenue (source, table 45 on p. 36). In the long run, maintaining the 9€ ticket would thus involve spending around 7 billion € in additional annual subsidy, rising over time as ridership grows due to induced demand and not just modal shift. The question is what the alternative is – that is, what else the federal government and the Länder can spent 7 billion € on when it comes to better public transport operations.

Well, one thing they can do is increase service. That requires us to figure out how much service growth can be had for a given increase in subsidy, and what it would do to the system. This in turn requires looking at service elasticity estimates. As a note of caution, the apparent increase in public transport ridership over the three months of more or less free service has been a lot less than what one would predict from past elasticity estimates, which suggests that at least fare elasticity is capped – demand is not actually infinite at zero fares. Service elasticities are uncertain for another reason: they mostly measure frequency, and frequency too has a capped impact – ridership is not infinite if service arrives every zero minutes. Best we can do is look at different elasticity estimates for different regimes of preexisting frequency; in the highest-frequency bucket (every 10 minutes or better), which category includes most urban rail in Germany, it is around 0.4 per the review of Totten-Levinson and their own work in Minneapolis. If it’s purely proportional, then doubling the subsidy means increasing service by 60% and ridership by 20%.

The situation is more complicated than a purely proportional story, though, and this can work in favor of expanding service. Just increasing service does not mean doubling Berlin U-Bahn frequency from every 5 to every 2.5 minutes; that would achieve very little. Instead, it would bump up midday service on the few German rail services with less midday than peak frequency, upgrade hourly regional lines to half-hourly (in which case the elasticity is not 0.4 but about 1), add minor capital work to improve speed and reliability, and add minor capital work to save long-term operating costs (for example, by replacing busy buses with streetcars and automating U-Bahns).

The other issue is that short- and long-term elasticities differ – and long-term elasticities are higher for both fares (more negative) and service (more positive). In general, ridership grows more from service increase than from fare cutting in the short and long run, but it grows more in the long run in both cases.

The issue of investment

The bigger reason to end the 9€ ticket experiment and instead improve service is the interaction with investment. Higher investment levels call for more service – there’s no point in building new S-Bahn tunnels if there’s no service through them. The same effect with fares is more muted. All urban public transport agencies project ridership growth, and population growth is largely urban and transit-oriented suburban.

An extra 7 billion € a year in investment would go a long way, even if divided out with direct operating costs for service increase. It’s around 250 km of tramway, or 50 km of U-Bahn – and at least the Berlin U-Bahn (I think also the others) operationally breaks even so once built it’s free money. In Berlin a pro-rated share – 300 million €/year – would be a noticeable addition to the city’s 2035 rail plan. Investment also has the habit to stick in the long term once built, which is especially good if the point is not to suppress short-term car traffic or to provide short-term fiscal stimulus to a 3% unemployment economy but to engage in long-term economic investment.

How to Waste Money on Public Transportation

This is the fourth in a series of five (not four) posts about the poor state of political transit advocacy in the United States, following posts about the Green Line Extension in metro Boston, free public transport proposals, and federal aid to operations, to be followed by a post about how to do better instead.

I think very highly of Yonah Freemark. His academic and popular work on public transport and urbanism ranges from good to excellent, and a lot of my early thinking (and early writing!) on regional rail and high-speed rail owes a debt to him.

But I think he’s wrong in his proposal for a Green New Deal for transportation. This is a proposal by the Climate and Community Project (not the Urban Institute as I said in previous posts – sorry) to decarbonize transport in the United States, through fleet electrification and investments in public transport. Yonah is one of several authors; I identify him with the public transit-related parts of the report, but I want to make it clear that it’s the report I’m criticizing, regardless of who wrote what.

The fundamental problem of the CCP report is what I’ve been building up to in the last three posts in this series: it tries to please everybody by throwing money everywhere and making conflicting promises. The Green Line Extension was built this way under Deval Patrick, and costs ballooned, and what passed for discipline under Charlie Baker just reinforced the same long-term loss of state capacity that led to the cost explosion.

For example, here’s its take on fleet electrification:

In other words, there is a compelling and immediate need to decarbonize this fleet within a decade. And that’s feasible: buses are replaced every 10 to 15 years on average, and commuter rail trains about every 25 years; currently, commuter trains in the United States are on average 22 years old. Publicly owned vehicles would be replaced with the electric equivalent; for privately owned contracted vehicles (the case for many school buses), and requirements for electrification would be written into contracts and tax credits given to assist the transition of buses from fossil fuels to electric. The commissioning of thousands of new transit vehicles would produce new, good-paying union jobs in manufacturing. The shift to electric transit vehicles would affect maintenance requirements, and the Department of Transportation must ensure the mechanic and operator workforce is fully prepared for the electric transition through workforce retraining assistance. This may require retraining, such as encouraging mechanics to retrain as electric vehicle charging installers.

(…)

Electrifying existing diesel railways would require overhead catenary electrical wires to be useful for electrified trains (though the trains themselves actually cost less than diesel vehicles). The cost of railway electrification infrastructure alone is between roughly $1 and $5 million per mile. There are roughly 6,600 miles of non-electrified commuter rail in the United States, plus roughly 20,800 miles of non-electrified Amtrak service (with some overlap between the two). Amtrak’s routes are mostly owned by freight rail companies, but we suggest joint electrification that includes both passenger trains and freight trains, using this program for Amtrak and another we lay out below for the freight lines. To electrify the national passenger rail network of existing lines would cost between $27 and $137 billion. In addition, new trains would have to be purchased to run on these electrified lines.

I cite this pair of paragraphs because of something they show about the study: it is not uniformly bad. The second paragraph is a decent idea (though $1m/mile is very cheap), and trying to workshop how to wire the national freight network is not necessarily a bad idea, even if the report doesn’t go into enough detail about what the business barrier to electrification is for the private carriers.

But the first quoted paragraph is awful. Here’s the key thing: “The commissioning of thousands of new transit vehicles would produce new, good-paying union jobs in manufacturing” is a giant waste of money. Bus vendors outside North America consistently produce equipment for much less than the protected North American market; the Boris Bus, at £350,000 per unit (around $500,000), is both cheaper than American buses and locally considered expensive, a prime example of Boris Johnson’s poor performance as mayor of London.

The passenger rail industry does not exist in the United States, and attempts by American governments to coerce it to build factories domestically in order to create well-paying jobs have resulted in ballooning costs. The premium for recent American rolling stock orders, behind bespoke regulations, protectionism, informal state-level protectionism, and agency heads that know less than recently-graduated interns who make one quarter of what they do (less, if those interns are European), looks like 50% over European equivalents. Nor does this do much job creation, except perhaps for sitework consultants: the premium for some recent orders has been $1 million per $20/hour 4-to-6-year job created. Those are not objectively good jobs – the wages are not much higher than present-day retail, food service, and delivery jobs – but backward-looking politicians consider them inherently moral, and the report coddles them instead of looking forward.

Then, the report has the following recommendations for how to spend money on improving public transportation:

End the use of federal infrastructure funding for new highway infrastructure, except for focused opportunities that improve equity. Provide immediate funds for a quick-start infrastructure program for walking and cycling. Vastly expand support for transit and metropolitan network planning.

Appropriate $250 billion over 10 years, or $25 billion annually, in federal funding bill to support transit operations funding throughout the United States.

Increase federal support for transit and intercity rail capital projects to $400 billion over 10 years, or $40 billion annually, providing funds for new lines, maintenance of existing infrastructure, and upgrades designed for equitable accessibility.

Require metropolitan planning organization voting systems to be proportional to resident population. Mandate adjustments to local zoning policy to enable more dense, affordable housing near transit in exchange for federal aid. Implement regional commuter benefits throughout the nation.

This, I’m sorry, is a bad program. The $40 billion/year capital investment is not bad, but the proposal explicitly includes maintenance, making it vulnerable to the state of good repair scam, in which agencies demand escalating amounts of money for infrastructure with nothing to show for it. The $25 billion/year operating aid is likely to be a waste as well.

Transit agencies can invest money prudently, but the report says nothing about how to do it, instead proposing to zero out highway funding (which is a good way to save money, but is less relevant to mode shift than American transit advocates think it is). The one concrete suggestion for what to do with the money is “One goal, for example, would be for all residents to have access to a bus or train with a short wait within at most a 15-minute walk at all times of the day.” This is a standard I can get behind in a dense place like New York; nearly everywhere else, it means overfunding coverage routes in low-density areas, often middle-class white flight suburbs, ahead of workhorse urban routes. Writing years ago about New Haven, Sandy Johnston noted that a bus reform there would cannibalize the circuitous suburban bus branches to add service on the core routes through the city and Hamden. The CCP report would do the opposite, boosting frequencies where they are least useful.

Finally, the MPO rules seem weak. I get what Yonah (and perhaps the other authors) wants to do here: he wants to incentivize more housing production near mass transit nodes. But MPO voting weights are not especially relevant. What is relevant is using state power to disempower local communities, which are dominated by NIMBYs even in places where the residents vote YIMBY at the state level, such as San Francisco. The report talks about banning single-family zoning (okay, but duplexes are not TOD), but that’s it. Then it suggests extracting developer profits through mandatory inclusionary housing, which acts as a tax on TOD and reduces housing production. The authors of the study are left-wing, but do not propose public housing, only taxes on TOD to subsidize some local housing; Yonah knows this is not how social housing works in Paris, but he still proposes this for the United States.

The theme of lack of willingness to prioritize flow throughout these recommendations. There is no discussion of how to prioritize good investments, how to increase efficiency (the report points out operating costs for all US transit combined are $50 billion/year; this is 2.5 times the German level, for similar ridership, not per capita), how to make sure that progress does not get extracted by programs for groups thought inherently moral.

Quick Note: the LaGuardia Transit Connector

It’s amazing how much good can happen when an obstacle like Andrew Cuomo is removed. In lieu of his backward air train proposal, hated by just about everyone not on his payroll, Governor Kathy Hochul is moving forward on a better set of alternatives for a mass transit connection to LaGuardia. It’s interesting to see what the process is looking at but also what it isn’t; so far this looks better than the alternatives analysis for Interborough Express (ex-Triboro).

So far I have not seen analysis, only drawings of 14 alternatives. As with the IBX study, the LGA plan distinguishes different modes of public transit – there are bus, light rail, subway, and even ferry options. But it doesn’t stop there. It looks at multiple alignments: the scope is how to connect LGA to the rest of the city the best, and this can be done from a number of different directions – even a backward train (as light rail) along an alignment similar to Cuomo’s is present, and will likely not advance further because of its circuitous route.

Among the 14 alternatives, I think the obviously best one is a subway extension (slide 12 above); another subway option, a branch following the Grand Central Parkway (slide 11), is inferior because of branching splits frequencies and ridership at the cut off Astoria-Ditmars Boulevard station is high. A subway extension promises a connection in around 30 minutes to Times Square, every 5 minutes all day, with good connections to other destinations via the transfers at Queensboro Plaza and in Midtown.

The one thing that I’m sad the analysis hasn’t looked at is intermediate stations. It’s around 4.5 km from Ditmars to the main LGA terminal along the proposed alignment, passing through redevelopable industrial land and through residential land in Astoria Heights awkwardly tucked between airport grounds and Astoria proper. The same quality of service that the airport could get, these neighborhoods could get as well, except a hair faster because they’re closer.

Extending the Astoria Line is especially useful since it is short and not especially crowded until it hits Queensboro Plaza and inherits the crowding of the 7 train and its riders. In the context of deinterlining the subway, this is especially valuable: right now 60th Street Tunnel carries the N and W from Astoria but also the R from Queens Boulevard, and under deinterlining the tunnel would carry only Astoria riders, and so to match the high demand to 60th Street it’s valuable to create as much ridership as possible on the Astoria Line past Queensboro Plaza.

I hope that the alternatives analysis considers multiple stopping patterns in the future – that is, not just a nonstop route from Ditmars to the airport, but also an option with intermediate stations. (This does not mean local and express trains – either all trains should run locals, or all should run nonstop.) The cost of those stations is not high as it’s an elevated line, and the stop penalty on the subway is less than a minute since the top speed is so low (it looks like 45 seconds in practice comparing local and express trains on the same line).