Category: High-Speed Rail

Electronics Before Concrete, not Instead of Concrete

The Swiss slogan electronics before concrete, and related slogans like run trains as fast as necessary, not as fast as possible, is a reminder not to waste money. However, I worry that it can be read as an argument against spending money in general. For many years now, Cap’n Transit has complained that this slogan is used to oppose bad transit like the Gateway Tunnel and if the money is not spent on public transportation then it may be spent on other things. But in reality, the Swiss slogans, all emphasizing cost minimization, must be reconciled with the fact that Switzerland builds a lot of concrete, including extensive regional rail tunneling in Zurich and intercity rail tunneling. Electronics precedes concrete, but does not always substitute for it; it’s better to think of these planning maxims as a way to do more with a fixed amount of money, and not as a way to do the same amount of project with less money.

The extent of tunneling in Switzerland

Here is a list of tunnels built in Switzerland since the 1980s, when its modern program of integrated timetable-infrastructure-rolling stock investment began:

This is not a small program. Zurich and Geneva are not large cities, and yet they’ve build regional rail trunk tunnels – and Zurich has built two, the most of any German-speaking country, since Berlin and Hamburg only have one of their trunk lines each in tunnel, the rest running above ground. The Mattstetten-Rothrist line likewise does not run at high speed, topping at 200 km/h, because doing so would raise the cost of rolling stock acquisition without benefiting the national integrated timetable – but it was an extensive undertaking for how small Switzerland is. Per capita, Switzerland has built far more intercity rail tunnels by length than France, and may even be ahead of Germany and Italy – and that’s without taking into account the freight base tunnels.

The issue of passenger experience

It’s best to think of organization-before-electronics-before-concrete as a maxim for optimizing user experience more than anything. The system’s passengers would prefer to avoid having to loiter 20 minutes at every connection; this is why one designs timed transfers, and not any attempt to keep the budget down. The Bahn 2000 investments were made in an environment of limited money, but money is always limited – there’s plenty of austerity at the local level in the US too, it just ends up canceling or curtailing useful projects while bad ones keep going on.

In Europe, Switzerland has the highest modal split for rail measured in passenger-km, 19.3%, as of 2018; in 2019, this amounted to 2,338 km per person. The importance of rail is more than this – commuters who use trains tend to travel by train shorter than commuters who use cars drive, since they make routine errand trips on foot at short distance, so the passenger-km modal split is best viewed as an approximation of the importance of intercity rail. Europe’s #2 and #3 are Austria (12.9%) and the Netherlands (11.2%), and both countries have their own integrated intercity rail networks. One does not get to scratch 20% with a design paradigm that is solely about minimizing costs. Switzerland also has low construction costs, but Spain has even lower construction costs and it wishes it had Switzerland’s intensity of rail usage.

Optimizing organization and electronics…

A country or region whose network is a mesh of lines, like Switzerland or the Netherlands, had better adopt the integrated timed transfer concept, to ensure people can get from anywhere to anywhere without undue waiting for a connecting train and without waiting for many hours for a direct train. This includes organizational reforms in the likely case there are overlapping jurisdictions with separate bus, urban rail, and intercity rail networks. Fares should be integrated so as to be mode-neutral and offer free transfers throughout the system, and schedules should be designed to maximize connectivity.

This should include targeted investments in systems and reliability. Some of these should be systemwide, like electrification and level boarding, but sometimes this means building something at a particular delay-prone location, such as a long single-track segment or a railway junction. In all cases, it should be in the context of relentlessly optimizing operations and systems in order to minimize costs, ensure trains spend the maximum amount of time running in revenue service and the minimum amount of time sitting at a yard collecting dust, reduce the required schedule padding, etc.

…leads to concrete

Systemwide optimization invariably shows seams in the system. When Switzerland designed the Bahn 2000 network, there was extensive optimization of everything, but at the end of the day, Zurich-Bern was going to be more than an hour, which would not fit any hourly clockface schedule. Thus the Mattstetten-Rohrist line was born, not out of desire to run trains as fast as possible, but because it was necessary for the trains to run at 200 km/h most of the way between Olten and Bern to fit in an hourly takt.

The same is true of speed and capacity improvements. A faster, more reliable system attracts more passengers, and soon enough, a line designed around a train every 15 minutes fills up and requires a train every 10 minutes, 7.5 minutes, 6 minutes, 5 minutes, 4 minutes. An optimized system that minimizes the need for urban tunneling soon generates so much ridership that the tunnels it aimed to avoid become valuable additions to the network.

The Munich S-Bahn, for example, was built around this kind of optimization, inventing many of the principles of coordinated planning in the process. It had a clockface schedule early, and was (I believe) the first system in the world designed around a regionwide takt. It was built to share tracks with intercity and freight trains on outer branches rather than on purely dedicated tracks as in the older Berlin and Hamburg systems, and some of its outermost portions are on single-track. It uses very short signaling blocks to fit 30 trains per hour through the central tunnel in each direction. And now it is so popular it needs a second tunnel, which it is building at very high cost; area activists invoked the organization before electronics before concrete principle to argue against it and in favor of a cheaper solution avoiding city center, but at the end of the day, Munich already optimized organization and electronics, and now is the time for concrete, and even if costs are higher than they should be by a factor of 2-3, the line is worth it.

Electronics before concrete, not instead of concrete

Switzerland is not going to build a French-style national high-speed rail network anytime soon. It has no reason to – at the distances typical of such a small country, the benefits of running at 300 km/h are not large. But this does not mean its rail network only uses legacy lines – on the contrary, it actively builds bypasses and new tunnels. Right now there are plans for an S-Bahn tunnel in Basel, and for an express tunnel from Zurich to Winterthur that was removed from Bahn 2000. The same is true of other European countries that are at or near the frontier of passenger rail technology. Even the Deutschlandtakt plan, compromised as it is by fiscal austerity, by high construction costs, by a pro-car transport minister, and by NIMBYs, includes a fair amount of new high-speed rail, including for example a mostly fast path from Berlin to Frankfurt.

When you plan your rail network well, you encourage more people to use it. When you optimize the schedules, fare integration, transfer experience, and equipment, you end up producing a system that will, in nearly every case, attract considerable numbers of riders. Concrete is the next step: build those S-Bahn tunnels, those express bypasses, those grade separations, those high-speed lines. Work on organization first, and when that is good enough, build electronics, and once you have both, build concrete to make maximum use of what you have.

High-Speed Rail and Cities

When preparing various maps proposing high-speed rail in Germany, I was told that it looks nice but it overfocuses on the largest cities and not about connecting the entirety of the country. I’ve seen such criticism elsewhere, asserting that high-speed rail is a tradeoff in which the thickest connections get fast trains but the long tail suffers, whereas the medium-speed system of Germany or Switzerland or Austria serves everyone. So with that in mind, let’s look at the actual population served by a Germany-wide high-speed rail program.

I made a proposal last year, but then made some additional tweaks, posted as part of a Europe-wide map. The most important tweak: the main east-west trunk line was extended to Dortmund, which trades off some additional tunneling in the Ruhr for both higher frequency on Berlin-Dortmund and fast, frequent Dortmund-Cologne and Dortmund-Düsseldorf service. To my later map I’ll add one proposal: moving the Hanover-Dortmund tracks so that trains can stop in Bielefeld. Otherwise, take the maps as given.

The question is, what population is served by those maps? The answer of course depends on what this exactly means. The sum total of the populations of the cities served – Berlin, Hamburg, Hanover, Dortmund, Würzburg, Erfurt, Mannheim, etc. – is 18.2 million, or 21% of Germany’s population. But is that the full story? This just includes central cities, where people in many nearby suburbs and satellite cities would travel to the rest of the country via the primary city center anyway.

For example, let’s go down this list of German cities. The largest city without a stop on my proposed network is Bonn. But Bonn is very close to Cologne and there are Stadtbahn subways connecting the two cities, in addition to regional rail lines; Bonn also has a shorter-range Stadtbahn to a suburban station at which some high-speed trains on the Cologne-Frankfurt line call. Is it really correct to say Bonn is unserved? Not really. So its population should be added to the 18.3 million.

Going down the list, the same can be said of Wiesbaden (near Frankfurt), Mönchengladbach (Düsseldorf) and likewise many Rhine-Ruhr cities, Halle (near Leipzig and potentially on some slower Berlin-Erfurt trains like today), Potsdam (near Berlin), Ludwigshafen (near Mannheim), and many others. Some cities remain unserved – the largest is Münster, like a few other northwestern cities not really near anything bigger or on any line – but overall this adds another 5.3 million. So we get 23.6 million, around 30% of Germany’s population.

But that list is just cities of 100,000 people or more, and there are smaller suburbs than that. These form counties (“Kreise”), which should be added as well when feasible, e.g. when they lie on S-Bahn systems of large cities or when they are right across from cities with stations, such as Neu-Ulm to Ulm. For example, the Kreise served by the Munich S-Bahn, excluding the city proper, have a total of 1.3 million people, and people in those suburbs would be connecting to the rest of Germany by train at Munich Hauptbahnhof anyway – a lower-intensity, higher-coverage network would do nothing for them.

Overall, these suburbs add another 18.7 million people. In Berlin I used this list of suburbs; elsewhere, I went by S-Bahn reach, or in a few cases used an entire region where available (Hanover, Göttingen, Fulda). There are a few quibbles on the margin in the gaps between the Frankfurt and Rhine-Neckar and in places that probably should count but aren’t on any big city S-Bahn like Frankfurt an der Oder, but it doesn’t change the big picture: a dedicated high-speed rail network would serve around half of Germany’s population pretty directly.

Very little of the remaining half would be genuinely bypassed the way Magdeburg and Brunswick were when Germany built the Berlin-Hanover line. Regensburg, for example, is and will remain peripheral under any rail plan, with regional connections to Ingolstadt and Nuremberg; high-speed rail serving those cities is the best way to connect it to destinations beyond Bavaria. Kiel, at the other end of the country, is and will always remain connected to Hamburg by regional rail. Münster, genuinely unserved, is not really bypassed, not with how close it is to Dortmund. And so on.

Such a plan cannot serve the entire country, but it can definitely then serve a majority of it. It mostly serves the largest metropolitan areas, but that’s fine – Germany is an urban country, around 40% of the country lives in metro areas of at least 1 million people (defined again mostly by S-Bahn reach, which is a conservative definition by American MSA or French aire urbaine or Japanese MMA standards) and much of the rest is either in metro areas somewhat below the cutoff or in exurbs served by regional trains but not the S-Bahn.

We Ran a Conference About Rail Modernization

The Modernizing Rail (Un)Conference happened last Sunday. We’re still gathering all the materials, but here are video uploads, including the keynote by Michael Schabas.

We will also have slides as given by presenters who used them. But for now, here are the slides used by the keynote. You may notice that the recording does not begin on the first slide; we missed Schabas’s introduction and some remarks on his background, detailing his 40 years of experience designing public transit systems in a number of countries, mainly Britain and Canada but also elsewhere in the developed world.

My session on construction costs was slide-free (and was not recorded), since I mostly just showed people around our under-construction cost dataset and answered a lot of questions. Some of those questions were annoying, by which I mean they questioned my thinking or brought up a point I haven’t considered before. I am not talking too much about it partly because I was mostly (mostly) repeating things I’ve said here, and the full database should be out later this summer, with all the mistakes I’ve made in currency conversion rates and in not updating for cost overruns fixed.

After my breakout, I was uncertain between which of two sessions to attend – one on HSR-legacy rail compatibility by María Álvarez, and one on equity issues in rail planning, by Grecia White and Ben She. I ended up going to the latter, which featured interesting discussions of inclusion of low-income people and minorities, both as riders (that is, serving people who are not middle-class whites better on regional rail) and as workers (that is, diversifying planning and engineering departments).

It went well in that there was no monopolization of discussion by people who have more a comment than a question, or any open racism or sexism; but it was somewhat frustrating in that while there was a lot of productive discussion of racial equality in rail planning, there was very little of gender equality even though we did intend to talk about both; Grecia was specifically interested in discussing these, for example women’s perceptions of public safety. This is in line with conference demographics – the organizing team and the breakout presenters were each one-third people of color, in line with US demographics; but the organizing team had 2/18 active women and the presenters 3/15. TransitMatters is similar in that regard – racial diversity is comparable to that of the Boston region, and the proportion of regulars who are queer is enormous, but there are very few women.

Finally, I hosted a session on how to set up a transport association, a.k.a. Verkehrsverbund. Christof Spieler did the most talking, and German attendees explained a lot about the difference between a transport association and agency amalgamation. But for the most part that session felt like an ersatz conclusion to the entire conference; it technically lasted an hour, but once the hour had lapsed, people from other sessions came to the room and the conversation continued naturally, talking a bit about different transit planning issues in Germany and a bit about applicability to rail reform in the Northeastern US.

More on the Deutschlandtakt

The Deutschlandtakt plans are out now. They cover investment through 2040, but even beforehand, there’s a plan for something like a national integrated timetable by 2030, with trains connecting the major cities every 30 minutes rather than hourly. But there are still oddities that are worth discussing, especially in the context of what Germans think trains are capable of and what is achieved elsewhere.

The key is the new investment plans. The longer-term plans aren’t too different from what I’ve called for. But somehow the speeds are lower. Specifically, Hamburg-Hanover is planned to be a combination of legacy rail (“ABS”) and newly-built high-speed rail (“NBS”), dubbed the Alpha-E project, with trains connecting the two cities in 63 minutes.

The point of an integrated takt timetable is that trains should connect major nodes (“knots”) in just less than an integer number of half-hours for hourly service, or quarter-hours for half-hourly service. Trains connect Zurich and Basel in 53 minutes and each of these two cities with Bern in 56 minutes, so that passengers can change trains on the hour and have short connections to onward destinations like Biel, St. Gallen, and Lausanne. To that effect, Switzerland spent a lot of money on tunnels toward Bern, to cut the trip time from somewhat more than an hour to just less than an hour. So the benefits of cutting trip times from 63 minutes to just less than an hour are considerable.

What’s more, it is not hard to do Hamburg-Hanover in less than an hour. Right now the railway is 181 km long, but the planned Alpha-E route is shorter – an alignment via the A 7 Autobahn would be around 145 km long. The Tokaido Shinkansen’s Hikari and Nozomi trains run nonstop between Nagoya and Kyoto, a distance of 134 km, in 34 minutes. Kodama trains make two additional stops, with long dwell times as there are timed overtakes there, and take 51 minutes. Shinkansen trains have better performance characteristics than ICE trains, but the difference in the 270-300 km/h range is around 25 seconds per stop, and the Tokaido Shinkansen is limited to 270 km/h whereas an Alpha-E NBS would do 300. So doing Hamburg-Hanover in less than 40 minutes is eminently possible.

Of course, major cities have slow approaches sometime… but Hamburg is not a bigger city than Kyoto or Nagoya. It’s about comparable in size to Kyoto, both city proper and metro area, and much smaller than Nagoya. Hanover is a lot smaller, comparable to cities served by Hikari but not Nozomi, like Shizuoka and Hamamatsu. Hamburg-Hanover has 12 km between Hamburg and Harburg where trains would be restricted to 140 km/h, and around 6 in Hanover where trains would be restricted to 130 km/h; in between they’d go full speed, which at the performance characteristics of the next-generation Velaro would be a little more than 35 minutes without schedule padding and maybe 38 minutes with. This fits well into a 45-minute slot in the takt, permitting both Hanover and Hamburg to act as knots.

Moreover, if for some reason a full NBS is not desirable – for example, if NIMBY lawsuits keep delaying the project – then it’s possible to built a partial NBS to fit into an hourly time slot, trains taking around 53 minutes. The cost per minute saved in this context is fairly consistent, as this is a flat area and the legacy line is of similar quality throughout the route; if for some reason the cost per minute saved is too high, e.g. if nuisance lawsuits raise construction costs above what they should be on such a route, which is around 15-20 million euros per kilometer, then going down only to 53 minutes is fine as it makes the hourly takt work well.

And yet, it’s not done. The biggest cities are not planned to have regular half-hourly knots, because there’s too much traffic there. But Hanover is in fact a perfect place for a knot, with trains going east to Berlin, west to the Rhine-Ruhr, north to Hamburg, and south to Frankfurt and the cities of Bavaria. Hamburg is at the northern margin of the country, with trains going mostly south to Hanover, but having some timed connection with trains continuing north to Kiel and eventually Copenhagen is not a bad idea.

For some reason, German rail activists, including presumably the ones who pushed the Deutschlandtakt from the bottom up while the ministry of transport was run by pro-car conservatives, are just too conservative about the capabilities of trains. I’ve seen one of the D-Takt groups, I forget which one, criticize plans to build an NBS between Hanover and Bielefeld, a segment on which the existing line is fairly slow, on the grounds that it could never fit into a knot system. It is not possible to do the roughly 100 km between Hanover and Bielefeld (actually closer to 95 km) in less than half an hour to fit a knot, they say – average speeds higher than 200 km/h are only found on very long nonstop stretches of high-speed rail, as in France, they insist. Shinkansen trains achieve such speeds over such segments every day, and even with the slightly lower performance characteristics of the next-generation Velaro, Hanover-Bielefeld in 24 technical minutes and 26 minutes with 7% pad (and the Shinkansen only has 4% pad) is feasible.

I genuinely don’t know why there is such conservatism among German rail planners and advocates. It could be that Europeans don’t like learning from Asia, just as Americans don’t like learning from Europe. There are examples of faster trains than in Germany within Europe, but maybe German advocates discount French and Spanish examples because of genuine problems with French and Spanish rail operations, leading them to also make excuses like “the trains run nonstop for 500 km and that’s why they’re fast” to avoid adopting the things where France and Spain are genuinely superior to Germany.

Nothing about the integrated timed transfer schedule idea impedes high speeds. On the contrary, in some cases, like Hanover-Hamburg but also the planned Frankfurt-Stuttgart line (already in place south of Mannheim), high speeds are necessary to make the desired knots. Moreover, where distances between cities are long compared with desired frequency, as on Berlin-Hanover, it’s possible to build 300 km/h lines and cut entire half hours or even full hours from trip times. Germany could innovate in this and build such a network for an amount of money well within the limits of the corona recovery package, which includes €50 billion for climate mitigation.

But either way, Germany is about to make mistakes of underinvestment because it’s not quite willing to see where the frontier of rail transport technology is. This is not the American amateur hour, it’s not the sort of situation where I can spend a few hours with maps and come up with better timetables myself, but even so, the plans here are far too timid for Germany’s medium- and long-term transportation needs.

The D-Takt is a step forward, don’t get me wrong. None of the investments I’m seeing is bad. But it’s a small, hesitant step forward rather than a firm, bold walk toward direction of intercity rail modernization. A country that expects intercity rail ridership to double, putting Germany’s per capita intercity rail ridership in the vicinity of Japan’s, should have something similar to the Shinkansen network, with a connected network of NBS links between the major cities averaging 200-250 km/h and not 120-160 km/h.

Resist the Urge to Start Small

Remember the Ohio Hub? Back in 2009-10, Ohio was planning on running five low-speed trains per day between Cleveland and Cincinnati and branded this exercise as high-speed rail called the Ohio Hub. The Republican victory in the gubernatorial election put it out of its misery (as unfortunately happened to the far better Florida project), but the idea of little facts-on-the-ground kinds of rail investment persists among American advocates who don’t understand how rail operations work. Now that there’s serious talk of infrastructure funding in the United States as part of a stimulus package, I’d like to explain, to prevent the debacles of the late 2000s from happening again.

The central conceit is that public transportation is not cars. It’s a different, more complex system. The road network has fewer moving parts – one just builds roads based on traffic projections. Public transportation has schedules, transfers, and equipment, all of which must be planned in coordination. “This junction gets congested, let’s build a bypass” works for road advocacy, but fails for rail, because maybe speeding up the trains by a few minutes doesn’t really help get to any timed connections and is therefore of limited value to the system.

Rail works when everything is planned together. This makes little additions not too valuable: a small speedup may not be useful if connecting lines stay the same, infrastructure investment may have limited effect on trip times if the rolling stock doesn’t change, etc.

The upshot is that it’s very easy to find 80/20 problems: 80% of the money gets you 20% of the benefits. In addition to examples of lack of coordination between infrastructure, the timetable, and rolling stock, there are issues with insufficient frequency. When frequency is low relative to trip time, the long-term elasticity of ridership with respect to service is more than 1 – that is, running more service makes the trains and buses fuller, as better service encourages more ridership. Thus, service with insufficient frequency will fail, trains and buses getting too little ridership to justify additional investment, whereas if initial frequency were higher from the start then it would succeed.

The Ohio Hub was one such example: five roundtrips a day, starter service. It makes sense to someone who thinks like a manager or a general-purpose activist: start small and build from there. But to someone who thinks like a public transportation planner, it’s a disaster. Already 10 years ago, Max Wyss in comments was warning that such service would fail – the original Intercity brand in Germany succeeded by running trains every two hours, with hourly service on stronger city pairs, often with timed transfers at junctions.

Regional rail projects suffer from a similar urge to start small. Peak-only service will invariably fail – the operating costs will be too high for ridership even if almost all seats fill. This covers just about every American effort at starting up new commuter rail service.

More fundamentally, the issue is that nobody likes failure. Insufficient, poorly-optimized service creates facts on the ground, but these facts don’t lead to any effort toward better service if people perceive what has been built to be a failure. If a handful of trains per day that average 70 km/h are called high-speed rail, then it doesn’t lead passengers to want high-speed rail; it leads them to avoid the train and conclude that high-speed rail is slower than driving on the freeway.

The passengers on such service may not be a great constituency for better service, either. If the train is very slow, then the riders will be the sort of people who are okay with slow trains. Older American railfans are filled with nostalgia for traditional railroading and openly say that slower is better. Such people are not going to advocate for modern high-speed rail, nor for learning from successful Asian and European examples.

Another group of people who ride trains and often advocate against better service is peak commuters on trains serving high-income suburbs. They are used to an adversarial relationship with the state; to them, the state taxes them to give money to poorer people, and they instead prefer hyper-local forms of government providing segregated schools and policing. Representatives of such riders engage in agency turf warfare, such as when state senators from Long Island opposed Metro-North’s Penn Station Access because it would use train slots into Penn Station that the LIRR believes are its property. On social media, people sporadically yell at me when I propose fare integration, on grounds that boil down to viewing any urban riders who would be attracted to lower fares as interlopers.

There’s an ultimate proof-of-pudding issue here. Americans have to a good approximation never seen a working public transportation system. At best, they’ve seen a megacity where people use the trains even though they are dirty and expensive to run because there is no alternative and construction was done 100 years ago when costs were lower. There is no coordinated planning; Americans do not demand it because only a handful of people know what it is, who are often young and have often lived abroad for an extended period of time, both of which make one less likely to be listened to in politics.

The result is that the sort of bottom-up activism people are used to is not useful in this context. In Germany it’s different – enough people have seen what works in Austria, Switzerland, and the Netherlands and know what to call for. But in the United States, it won’t work – the knowledge base of how to build reliable, interconnected public transportation exists but is too thinly spread and is the domain of people who do not have much political prestige.

It’s critical to then get things right from the start. Do not assume future activism will fix things. Half-measures are much more likely to lead to disillusionment than to any serious efforts to improve things to turn them into full measures. If the choice is between a high chance of bad service and low chance of good service, don’t settle for bad service and make a gamble for good service; bad public transportation is a waste of money and the general public will correctly perceive it as such.

Some Notes About Northeast Corridor High-Speed Rail

I want to follow up on what I wrote about speed zones a week ago. The starting point is that I have a version 0 map on Google Earth, which is far from the best CAD system out there, one that realizes the following timetable:

Boston 0:00
Providence 0:23
New Haven 1:00
New York 1:40
Newark 1:51
Philadelphia 2:24
Wilmington 2:37
Baltimore 3:03
Washington 3:19

This is inclusive of schedule contingency, set at 7% on segments with heavy track sharing with regional rail, like New York-New Haven, and 4% on segment with little to no track haring, like New Haven-Providence. The purpose of this post is to go over some delicate future-proofing that this may entail, especially given that the cost of doing so is much lower than the agency officials and thinktank planners who make glossy proposals think it should.

What does this entail?

The infrastructure required for this line to be operational is obtrusive, but for the most part not particularly complex. I talked years ago about the I-95 route between New Haven and southern Rhode Island, the longest stretch of new track, 120 km long. It has some challenging river crossings, especially that of the Quinnipiac in New Haven, but a freeway bridge along the same alignment opened in 2015 at a cost of $500 million, and that’s a 10-lane bridge 55 meters wide, not a 2-track rail bridge 10 meters wide. Without any tunnels on the route, New Haven-Kingston should cost no more than about $3-3.5 billion in 2020 terms.

Elsewhere, there are small curve easements, even on generally straight portions like in New Jersey and South County, Rhode Island, both of which have curves that if you zoom in close enough and play with the Google Earth circle tool you’ll see are much tighter than 4 km in radius. For the most part this just means building the required structure, and then connecting the tracks to the new rather than old curve in a night’s heavy work; more complex movements of track have been done in Japan on commuter railroads, in a more constrained environment.

There’s a fair amount of taking required. The most difficult segment is New Rochelle-New Haven, with the most takings in Darien and the only tunneling in Bridgeport; the only other new tunnel required is in Baltimore, where it should follow the old Great Circle Tunnel proposal’s scope, not the four-track double-stack mechanically ventilated bundle the project turned into. The Baltimore tunnel was estimated at $750 million in 2008, maybe $1 billion today, and that’s high for a tunnel without stations – it’s almost as high per kilometer as Second Avenue Subway without stations. Bridgeport requires about 4 km of tunnel with a short water crossing, so figure $1-1.5 billion today even taking the underwater penalty and the insane unit costs of the New York region as a given.

A few other smaller deviations from the mainline are worth doing at-grade or elevated: a cutoff in Maryland near the Delaware border in the middle of what could be prime 360 km/h territory, a cutoff in Port Chester and Greenwich bypassing the worst curve on the Northeast Corridor outside major cities, the aforementioned takings-heavy segment through Darien continuing along I-95 in Norwalk and Westport, a short bypass of curves around Fairfield Station. These should cost a few hundred million dollars each, though the Darien-Westport bypass, about 15 km long, could go over $1 billion.

Finally, the variable-tension catenary south of New York needs to be replaced with constant-tension catenary. A small portion of the line, between New Brunswick and Trenton, is being so replaced at elevated cost. I don’t know why the cost is so high – constant-tension catenary is standard around the world and costs $1.5-2.5 million per km in countries other than the US, Canada, and the UK. The Northeast Corridor is four-track and my other examples are two-track, but then my other examples also include transformers and not just wires; in New Zealand, the cost of wires alone was around $800,000 per km. Even taking inflation and four tracks into account, this should be maybe $700 million between New York and Washington, working overnight to avoid disturbing daytime traffic.

The overall cost should be around $15 billion, with rolling stock and overheads. Higher costs reflect unnecessary scope, such as extra regional rail capacity in New York, four-tracking the entire Providence Line instead of building strategic overtakes and scheduling trains intelligently, the aforementioned four-track version of the Baltimore tunnel, etc.

The implications of cheap high-speed rail

I wrote about high-speed rail ridership in the context of Metcalfe’s law, making the point that once one line exists, extensions are very high-value as a short construction segment generates longer and more profitable trips. The cost estimate I gave for the Northeast Corridor is $13 billion, the difference with $15 billion being rolling stock, which in that post I bundled into operating costs. With that estimate, the line profits $1.7 billion a year, a 13% financial return. This incentivizes building more lines to take advantage of network effects: New Haven-Springfield, Philadelphia-Pittsburgh, Washington-Virginia-North Carolina-Atlanta, New York-Upstate.

The problem: building extensions does require the infrastructure on the Northeast Corridor that I don’t think should be in the initial scope. Boston-Washington is good for around a 16-car train every 15 minutes all day, which is very intense by global standards but can still fit in the existing infrastructure where it is two-track. Even 10-minute service can sometimes fit on two tracks, for example having some high-speed trains stop at Trenton to cannibalize commuter rail traffic – but not always. Boston-Providence every 10 minutes requires extensive four-tracking, at least from Attleboro to beyond Sharon in addition to an overtake from Route 128 to Readville, the latter needed also for 15-minute service.

More fundamentally, once high-speed rail traffic grows beyond about 6 trains per hour, the value of a dedicated path through New York grows. This is not a cheap path – it means another Hudson tunnel, and a connection east to bypass the curves of the Hell Gate Bridge, which means 8 km of tunnel east and northeast of Penn Station and another 2 km above-ground around Randall’s Island, in addition to 5 km from Penn Station west across the river. The upshot is that this connection saves trains 3 minutes, and by freeing trains completely from regional rail traffic with four-tracking in the Bronx, it also permits using the lower 4% schedule pad, saving another 1 minute in the process.

If the United States is willing to spend close to $100 billion high-speed rail on the Northeast Corridor – it isn’t, but something like $40-50 billion may actually pass some congressional stimulus – then it should spend $15 billion and then use the other $85 billion for other stuff. This include high-speed tie-ins as detailed above, as well as low-speed regional lines in the Northeast: new Hudson tunnels for regional traffic, the North-South Rail Link, RegionalBahn-grade links around Providence and other secondary cities, completion of electrification everywhere a Northeastern passenger train runs

Incremental investment

I hate the term “incremental” when it comes to infrastructure, not because it’s inherently bad, but because do-nothing politicians (e.g. just about every American elected official) use it as an excuse to implement quarter-measures, spending money without having to show anything for it.

So for the purpose of this post, “incremental” means “start with $15 billion to get Boston-Washington down to 3:20 and only later spend the rest.” It doesn’t mean “spend $2 billion on replacing a bridge that doesn’t really need replacement.”

With that in mind, the capacity increases required to get from bare Northeast Corridor high-speed rail to a more expansive system can all be done later. The overtakes on Baltimore-Washington would get filled in to form four continuous tracks all the way, the ones on Boston-Providence would be extended as outlined above, the bypasses on New York-New Haven would get linked to new tracks in the existing right-of-way where needed, the four-track narrows between Newark and Elizabeth would be expanded to six in an already existing right-of-way. Elizabeth Station has four tracks but the only building in the way of expanding it to six is a parking garage that needs to be removed anyway to ease the S-curve to the south of the platforms.

However, one capacity increase is difficult to retrofit: new tracks through New York. The most natural way to organize Penn Station is as a three-line system, with Line 1 carrying the existing Hudson tunnel and the southern East River tunnels, including high-speed traffic; Line 2 using new tunnels and a Grand Central link; and Line 3 using a realigned Empire Connection and the northern East River tunnels. The station is already centered on 32nd Street extending a block each way; existing tunnels going east go under 33rd and 32nd, and all plans for new tunnels continuing east to Grand Central or across the East River go under 31st.

But if it’s a 3-line system and high-speed trains need dedicated tracks, then regional trains don’t get to use the Hell Gate Line. (They don’t today, but the state is spending very large sums of money on changing this.) Given the expansion in regional service from the kind of spending that would justify so much extra intercity rail, a 4-line system may be needed. This is feasible, but not if Penn Station is remodeled for 3 lines; finding new space for a fourth tunnel is problematic to say the least.

Future-proofing

The point of integrated timetable planning is to figure out what timetable one want to run in the future and then building the requisite infrastructure. Thus, in the 1990s Switzerland built the tunnels and extra tracks for the connections planned in Bahn 2000, and right now it’s doing the same for the next generation. This can work incrementally, but only if one knows all the phases in advance. If timetable plans radically change, for example because the politicians make big changes overruling the civil service to remind the public that they exist, then this system does not work.

If the United States remains uninterested in high-speed rail, then it’s fine to go ahead with a bare-bones $15 billion system. It’s good, it would generate good profits for Amtrak, it would also help somewhat with regional-intercity rail connectivity. Much of the rest of the system can be grafted on top without big changes.

But then it comes to Penn Station. It’s frustrating, because anything that brings it into focus attracts architects and architecture critics who think function should follow form. But it’s really important to make decisions soon, get to work demolishing the above-ground structures starting when the Madison Square Garden lease runs out, and move the tracks in the now-exposed stations as needed based on the design timetable.

As with everything else, it’s possible not to do it – to do one design and then change to another – but it costs extra, to the tune of multiple billions in unnecessary station reconstruction. If the point is to build high-speed rail cost-effectively, spending the same budget on more infrastructure instead of on a few gold-plated items, then this is not acceptable. Prior planning of how much service is intended is critical if costs are to stay down.

Holidays by Train

What does leisure travel look like in a world where driving and flying are prohibitively expensive, and rail travel is more abundant and convenient?

It does not look exactly like today’s travel patterns except by train. Where people choose to travel is influenced by cultural expectations that are themselves influenced by available technology, prices, and marketing. Companies and outfits providing transportation also market the destinations for it, whether it’s a private railway selling real estate in the suburbs on its commuter lines, an airline advertising the resort cities it flies to, or a highway authority promoting leisure drives and auto-oriented development. The transition may annoy people who have gotten used to a set of destinations that are not reachable by sustainable transportation, but as the tourism economy reorients itself to be greener, new forms of leisure travel can replace old ones.

Historic and current examples

Railroads were the first mode of mechanized transportation, and heavily marketed the destinations one could reach by riding them. The involvement of some railroads in suburban development, such as Japanese private railroads or the original Metropolitan Railway, is fairly well-known to the rail advocacy community. Lesser-known but equally important is rail-based tourism. Banff and Jasper owe their existence to transcontinental railways, Lake Louise was founded as a montane resort on top of the Canadian Pacific Railway, Glacier National Park opened thanks to its location next to the (American) Great Northern. Even Niagara Falls, for all its unique natural beauty, benefited from heavy marketing by the New York Central, which offered the fastest route there from New York.

Other than Niagara Falls, the North American examples of rail-based tourism are all in remote areas, where people no longer travel by train. Some may drive, but most fly over them. The American system of national parks, supplemented by some state parks like the Adirondacks and Catskills, has thus reoriented itself around long-distance leisure travel by car. This includes popular spots like Yellowstone, Bryce, Grand Canyon, and Yosemite in the United States, Schwarzwald in Germany, or the tradition of summer homes in outlying areas in Sweden or the American East Coast.

The airline industry has changed travel patterns in its own way. Planes are fast, and require no linear infrastructure, so they are especially suited for getting to places that are not easy to reach by ground transportation. Mass air travel has created a tourism boom in Hawaii, the Maldives, southern Spain, the Caribbean, any number of Alpine ski resorts, Bali, all of Thailand. Much of this involves direct marketing by the airlines telling people in cold countries that they could enjoy the Mediterranean or Indian Ocean sun. Even the peak season of travel shifted – English vacation travel to the Riviera goes back to the early Industrial Revolution, but when it was by rail and ferry the peak season was winter, whereas it has more recently shifted to the summer.

The politics of vacation travel

In some cases, states and other political actors may promote particular vacation sites with an agenda in mind. Nationalists enjoy promoting national unity through getting people to visit all corners of the country, and if this helps create a homogeneous commercial national culture, then all the better. This was part of the intention of the Nazi program for Autobahn construction and Volkswagen sales, but it’s also very common in democratic states that aim to use highways for nation-building, like midcentury America.

If there’s disputed land, then nationalists may promote vacation travel there in order to instill patriotic feelings toward it among the population. Israel has turned some demolished Arab villages into national forests, and promoted tourism to marginal parts of the country; settler forces are likewise promoting vacation travel to the settlements, cognizant of the fact that the median Israeli doesn’t have strong feelings toward the land in the Territories and wouldn’t mind handing them over in exchange for a peace agreement.

Politics may also dictate promoting certain historic sites, if they are prominent in the national narrative. In the Jewish community, two such trips are prominent, in opposite directions: the first is the organized Israeli high school trips to Poland to see the extermination camps and the ghettos, perpetuating the memory of the Holocaust in the public; the second is Birthright trips for Jews from elsewhere to visit Israel and perhaps find it charming enough to develop Zionist feelings toward it.

So what does this mean?

I bring up the politics and economic history of leisure travel, because a conscious reorientation of vacation travel around a green political agenda is not so different from what’s happened in the last few generations. The big change is that the green agenda starts from how people should travel and works out potential destinations and travel patterns from there, whereas nationalist agendas start from where people should travel and are not as commonly integrated with economic changes in how people can travel.

The point, then, is to figure out what kinds of vacation travel are available by train. Let’s say the map that I put forth in this post is actually built, and in contrast, taxes on jet fuel as well as petrol rise by multiple euros per liter in order to effect a rapid green transition. Where can people go on vacation and where can’t they?

Intercity leisure travel

By far the easiest category of leisure travel to maintain in a decarbonized world is between cities within reasonable high-speed rail range. Tens of millions of people already visit Paris and London every year, for business as well as for tourism. This can continue and intensify, especially if the green transition also includes building more housing in big high-income cities, creating more room for hotels.

High-speed rail lives on thick markets, the opposite of air travel. Once the basic infrastructure is there, scaling it up to very high passenger volumes on a corridor is not difficult; the Shinkansen’s capacity is not much less than 20,000 passengers per hour in each direction. Many people wish to travel to Paris for various reasons, so the TGV makes such travel easier, and thus even more people travel to and from the capital. A bigger and more efficient high-speed rail network permits more such trips, even on corridors that are currently underfull, like the LGV Est network going toward much of Germany or the LGV Sud-Europe Atlantique network eventually connecting to much of Spain.

Germany does not have a Paris, but it does have several sizable cities with tourist attractions. A tightly integrated German high-speed rail network permits many people in Germany and surrounding countries to visit the museums of Berlin, go to Carnival in Cologne, attend Oktoberfest in Munich, see the architecture of Hamburg, or do whatever it is people do in Frankfurt. The international connections likewise stand to facilitate German travel to neighboring countries and their urban attractions: Paris, Amsterdam, Basel, Vienna, Prague.

Intercity travel and smaller cities

Big cities are the most obvious centers of modern rail-based tourism. What else is there? For one, small cities and towns that one encounters on the way on corridors designed to connect the biggest cities. Would Erfurt justify a high-speed line on its own? No. But it has an ICE line, built at great expense, so now it is a plausible place for travel within Germany. The same can be said about cities that are not on any plausible line but could easily connect to one via a regional rail transfer. When I fished for suggestions on Twitter I got a combination of cities on top of a fast rail link to Berlin, like Leipzig and Nuremberg, and ones that would require transferring, like Münster and Heidelberg.

Even auto-oriented vacation sites can have specific portions that are rail-accessible, if they happen to lie near or between large cities. In North America the best example is Niagara Falls, conveniently located on the most plausible high-speed rail route between New York and Toronto. In Germany, South Baden is normally auto-oriented, but Freiburg is big enough to have intercity rail, and as investment in the railroad increases, it will be easier for people from Frankfurt, Munich, and the Rhine-Ruhr to visit.

Farther south, some Swiss ski resorts have decent enough rail connections that people could get there without too much inconvenience. If the German high-speed rail network expands with fast connections to Basel (as is planned) and Zurich (which is nowhere on the horizon), and Switzerland keeps building more tunnels to feed the Gotthard Base Tunnel (which is in the Rail 2035 plan but with low average speed), then people from much of central and southern Germany could visit select Swiss ski resorts in a handful of hours.

Non-urban travel

The green transition as I think most people understand it in the 21st century is an intensely urban affair. Berlin offers a comfortable living without a car, and as the German electric grid replaces coal with renewables (slower than it should, but still) it slowly offers lower-carbon electricity, even if it is far from Scandinavia or France. Small towns in contrast have close to 100% car ownership, the exceptions being people too poor to own a car. But the world isn’t 100% urban, and even very developed countries aren’t. So what about travel outside cities large and small?

The answer to that question is that it depends on what cities and what railroads happen to be nearby. This is to a large extent also true of ordinary economic development even today – a farming town 20 km from a big city soon turns into a booming commuter town, by rail or by highway. Popular forests, trails, mountains, and rivers are often accessible by railroad, depending on local conditions. For example, some of the Schwarzwald valleys are equipped with regional railways connecting to Freiburg.

Here, it may be easier to give New York examples than Berlin ones. Metro-North runs along the banks of the Hudson, allowing riders to see the Palisades on the other side. The vast majority of travelers on the Hudson Line do not care about the views, but rather ride the train to commute from their suburbs to Manhattan. But the line is still useful for leisure trips, and some people do take it up on weekends, for example to Poughkeepsie. The Appalachian Trail intersects Metro-North as well, though not many people take the train there. Mountains are obstacles for rail construction, but rivers are the opposite, many attracting railroads near their banks, such as the Hudson and the Rhine.

Conversely, while New York supplies the example of the Hudson Line, Germany supplies an urban geography that facilitates leisure travel by rail out of the city, in that it has a clear delineation between city and country, with undeveloped gaps between cities and their suburbs. While this isn’t great for urban rail usage, this can work well for leisure rail usage, because these gaps can be developed as parkland.

Where’s the catch?

Trains are great, but they travel at 300-360 km/h at most. An aggressive program of investment could get European trains to average around 200-240 km/h including stops and slow zones. This allows fast travel at the scale of a big European country or even that of two big European countries, but does not allow as much diversity of climate zones and biomes as planes do.

This does not mean trains offer monotonous urban travel. Far from it – there’s real difference in culture, climate, topography, and architecture within the German-speaking world alone, Basel and Cologne looking completely different from each other even as both are very pretty. But it does limit people to a smaller tranche of the world, or even Europe, than planes do. A Berliner who travels by train alone can reach Italy, but even with a Europe-scale high-speed rail program, it’s somewhat less than 4:45 to Venice, 5:00 to Milan, 5:30 to Florence, 6:45 to Rome, 7:45 to Naples. It’s viable for a long vacation but not as conveniently as today by plane with airfare set at a level designed to redraw coastlines. Even in Italy, there’s great access to interesting historic cities, but less so to coastal resorts designed around universal car use, located in topographies where rail is too difficult.

The situation of Spanish resorts is especially dicey. There isn’t enough traffic from within Spain to sustain them, there are so many. Germany is too far and so is Britain if planes are not available at today’s scale. What’s more, people who are willing to travel 7 or 8 hours to a Spanish resort can equally travel 5 hours to a French or Italian one. The French Riviera has gotten expensive, so tourism there from Northern Europe feels higher-income to me than tourism to Alicante, but if people must travel by train, then Nice is 4:30 from Paris and Alicante is 7:30, and the same trip time difference persists for travelers from Britain and Germany.

Is it feasible?

Yes.

High carbon taxes are not just economically feasible and desirable, but also politically feasible in the context of Europe. The jet fuel tax the EU is discussing as part of the Green Deal program is noticeable but not enough to kill airlines – but what environmental policy is not doing, the corona virus crisis might. If low-cost air travel collapses, then much of the market for leisure travel specifically will have to reorient itself around other modes. If Europe decides to get more serious about fighting car pollution, perhaps noticing how much more breathable the air in Paris or Northern Italy is now than when people drive, then taxes and regulations reducing mass motorization become plausible too.

The transition may look weird – people whose dream vacation involved a long drive all over Italy or France or Germany may find that said vacation is out of their reach. That is fine. Other vacations become more plausible with better rail service, especially if they’re in big cities, but also if they involve any of a large number of natural or small-town destinations that happen to be on or near a big city-focused intercity rail network.

Speed Zones on Railroads

I refined my train performance calculator to automatically compute trip times from speed zones. Open it in Python 3 IDLE and play with the functions for speed zones – so far it can’t input stations, only speed zones on running track, with stations assumed at the beginning and end of the line.

I’ve applied this to a Northeast Corridor alignment between New York and Boston. The technical trip times based on the code and the alignment I drew are 0:36:21 New York-New Haven, 0:34:17 New Haven-Providence, 0:20:40 Providence-Boston; with 1-minute dwell times, this is 1:33 New York-Boston, rising to maybe 1:40 with schedule contingency. This is noticeably longer than I got in previous attempts to draw alignments, where I had around 1:28 without pad or 1:35 with; the difference is mainly in New York State, where I am less aggressive about rebuilding entire curves than I was before.

I’m not uploading this alignment yet because I want to fiddle with some 10 meter-scale questions. The most difficult part of this is between New Rochelle and New Haven. Demolitions of high-price residential properties are unavoidable, especially in Darien, where there is no alternative to carving a new right-of-way through Noroton Heights.

The importance of speeding up the slowest segments

The above trip times are computed based on the assumption that trains depart Penn Station at 60 km/h as they go through the interlocking, and then speed up to 160 km/h across the East River, using the aerodynamic noses designed for 360 km/h to achieve medium speed through tunnels with very little free air. This require redoing the switches at the interlocking; this is fine, switches in the United States are literally 19th-century technology, and upgrading them to Germany’s 1925 technology would create extra speed on the slowest segment.

Another important place to speed up is Shell Interlocking. The current version of the alignment shaves it completely, demolishing some low-rise commercial property in the process, to allow for 220 km/h speeds through the city. Grade separation is obligatory – the interlocking today is at-grade, which imposes unreasonable dependency between northbound and southbound schedules on a busy commuter railroad (about 20 Metro-North trains per hour in the peak direction).

In general, bypasses west of New Haven prioritize the slowest segments of the Northeast Corridor: the curves around the New York/Connecticut state line, Darien, Bridgeport. East of New Haven the entire line should be bypassed until Kingston, even the somewhat less curvy segment between East Haven and Old Saybrook, just because it’s a relatively easy segment where the railroad can mostly twin with I-95 and not have any complex viaducts.

The maximum speed is set at 360 km/h, but even though trains can cruise at such speed on two segments totaling 130 km, the difference in trip time with 300 km/h is only about 3 minutes. Similarly, in southwestern Connecticut, the maximum speed on parts of the line, mostly bypasses, is 250 km/h, and if trains could run at 280 km/h on those segments, which isn’t even always possible given curvature, it would save just 1 minute. The big savings come from turning a 10 miles per hour interlocking into a modern 60 km/h (or, ideally, 90+ km/h) one, eliminating the blanket 120 km/h speed limit between the NY/CT state line and New Haven, and speeding up throats around intermediate stations.

Curve easements

Bypasses are easier to draw than curve modifications. Curves on the Northeast Corridor don’t always have consistent radii – for example, the curves flanking Pawtucket look like they have radius 600 meters, but no, they have a few radii of which the tightest are about 400 meters, constraining speed further. Modifying such curves mostly within right-of-way should be a priority.

Going outside the right-of-way is also plausible, at a few locations. The area just west of Green’s Farms is a good candidate; so is Boston Switch, a tight curve somewhat northeast of Pawtucket whose inside is mostly water. A few more speculative places could get some noticeable trip time improvements, especially in the Bronx, but the benefit-cost ratio is unlikely to be good.

Bush consulting on takings

In some situations, there’s a choice of which route to take – for example, which side of I-95 to go on east of New Haven (my alignment mostly stays on the north side). Some right-of-way deviations from I-95 offer additional choice about what to demolish in the way.

In that case, it’s useful to look for less valuable commercial properties, and try to avoid extensive residential takings if it’s possible (and often it isn’t). This leads to some bush consulting estimates of how valuable a strip mall or hotel or bank branch is. It’s especially valuable when there are many options, because then it’s harder for one holdout to demand unreasonable compensation or make political threats – the railroad can go around them and pay slightly more for an easier takings process.

How fast should trains run?

Swiss planners run trains as fast as necessary, not as fast as possible. This plan does the opposite, first in order to establish a baseline for what can be done on a significant but not insane budget, and second because the expected frequency is high enough that hourly knots are not really feasible.

At most, some local high-speed trains could be designated as knot trains, reaching major stations on the hour or half-hour for regional train connections to inland cities. For example, such a local train could do New York-Boston in 2 hours rather than 1:40, with such additional stops as New Rochelle, Stamford, New London (at I-95, slightly north of the current stop), and Route 128 or Back Bay.

But for the most part, the regional rail connections are minor. New York and Boston are both huge cities, so a train that connects them in 1:40 is mostly an end-to-end train, beefed up by onward connections to Philadelphia, Baltimore, and Washington. Intermediate stops at New Haven and Providence supply some ridership too, much more so than any outlying regional connections like Danbury and Westerly, first because those outlying regional connections are much smaller towns and second much of the trip to those towns is at low speed so the trip time is not as convenient as on an all-high-speed route.

This does not mean Swiss planning maxims can be abandoned. Internal traffic in New England, or in Pennsylvania and South Jersey, or other such regions outside the immediate suburbs of big cities, must hew to these principles. Even big-city regional trains often have tails where half-hourly frequency is all that is justified. However, the high-speed line between Boston and New York (and Washington) specifically should run fast and rely on trips between the big cities to fill trains.

How much does it cost?

My estimate remains unchanged – maybe $7 billion in infrastructure costs, closer to $9-10 billion with rolling stock. Only one tunnel is included, under Bridgeport; everywhere else I’ve made an effort to use viaducts and commercial takings to avoid tunneling to limit costs. The 120 km of greenfield track between New Haven and Kingston include three major viaducts, crossing the Quinnipiac, Connecticut, and Thames; otherwise there are barely any environmentally or topographically sensitive areas and not many areas with delicate balance of eminent domain versus civil infrastructure.

I repeat, in case it is somehow unclear: for $7 billion in infrastructure investment, maybe $8 billion in year-of-expenditure dollars deflated to the early 2020s rather than early 2010s, trains could connect New York and Boston in 1:40. A similar project producing similar trip times between New York and Washington should cost less, my guess is around $3 billion, consisting mostly of resurrecting the old two-track B&P replacement in lieu of the current scope creep hell, building a few at-grade bypasses in Delaware and Maryland, and replacing the variable-tension catenary with constant-tension catenary.

None of this has to be expensive. Other parts of the world profitably build high-speed rail between cities of which the largest is about the size of Boston or Philadelphia rather than the smallest; Sweden is seriously thinking about high-speed trains between cities all of which combined still have fewer people than metropolitan Boston. Better things are possible, on a budget, and not just in theory – it’s demonstrated every few years when a new high-speed rail line opens in a medium-size European or Asian country.

Eurail?

Here’s one potential pan-European high-speed rail map, incorporating existing and likely future high-speed lines in France, Spain, Britain and Italy; the lines I’ve argued Germany should be building; and plausible and semi-plausible extensions into Eastern Europe.

Here’s a small version of the map:

For full-size 56 MB link, click here. Blue lines exist or are under construction, red ones are either under planning or proposed solely by me or by local activists.

The Polish network is fairly optimized, but the rest of Eastern Europe isn’t, relying on long-range international connections that may or may not flop due to a possible international trip penalty. I only took it up to a point, so yes, there’s that link via (North) Macedonia and Kosovo, but I drew the line at some point and did not add a line from Warsaw up the Baltics and under sea to Helsinki; the Baltic capitals just aren’t big enough, and the light at the tunnel, Helsinki, isn’t big enough either.

Note also that some cities gain through-tracks on this map that they don’t currently have, especially Paris. This is to be a four-track system connecting Gare du Nord to Gare de Lyon and Gare de l’Est to Gare Montparnasse; since there’s no chance of building the main station under Les Halles this side of the 1970s, the station would have to be at a somewhat skew location relative to city center, most probably around where Gare du Nord and Gare de l’Est are now. Additional cities with notable through-tracks: Milan, Rome, Munich, Florence; Madrid gets through-tracks but those are already under construction as part of the third Cercanías axis, at typically low Spanish costs, and Marseille gets through-tracks as is the plan for the mixed classical/LGV system for Provence.

The trip times are always net of station dwell times and short timed connections at major junctions, so they can be added across the map. In Germany I sat down and figured out frequencies, running consistent stopping patterns every half hour; this doesn’t work Europe-wide, as some places are too low-density and have to make do with hourly patterns, like Eastern Europe (and, if it keeps its baroque fare system, Spain).

What Europe Can Learn From Asia

Most of what I write about is what North America can learn from Europe, but the rich countries of Asia are extremely important as well. But what’s more interesting is knowledge sharing between Western Europe and the rich countries of East Asia. These two centers of passenger rail technology have some reciprocal exchange programs, but still learn less from each other than they should.

The ongoing coronavirus outbreak made the topic of Western learning from East Asia especially important. To be clear, none of the examples I’m going to talk about in this post is about the virus itself or at all about public health. But the sort of reaction in democratic East Asia that’s staved off the infection, compared with the failure of the West to do much in time, is instructive. When the virus was just in China, nobody in the West cared. I went to a comedy night in Berlin a month ago and it was the Asian comic who joked about how all they needed was to cough and the white people gave them space; it was still viewed as an exclusively Asian epidemic. By the same token, Korea’s success in reducing infections has made it to parts of Western media, but implementation still lags, leading to an explosion of deaths in Italy and perhaps soon France and the US. Hong Kong (from the bottom up) and Taiwan (with government assistance) have limited infection through social distancing and mask wearing, and the West refuses to adopt either.

If it’s Asian, Europeans as well as Americans view it as automatically either inferior or irredeemably foreign. Whatever the reasoning is, it’s an excuse not to learn. Unlike the United States, Europe has pretty good public transportation in the main cities, and a lot of domestic innovations that are genuinely better than what Japan, South Korea, and Taiwan do; thus, it can keep going on like this without visible signs of stagnation. Nonetheless, what Japan has, and to some extent the other rich Asian countries, remains a valuable lesson, which good public transport advocates and managers must learn to adopt to the European case.

Urban rail and regional rail: network design

Tokyo and Seoul both have stronger S-Bahn networks than any European city. This is not just an artifact of size. Paris and London are both pretty big, even if they’re still only about a third as big as Tokyo. In Tokyo, the infrastructure for urban and regional rail is just far better-integrated, and has been almost from the start. Among the 13 Tokyo subway lines, only three run as pure metro lines, separate from all other traffic: Ginza, Marunouchi, Oedo. The other 10 are essentially S-Bahn tunnels providing through-service between different preexisting commuter lines: the Asakusa Line connects the Keisei and Keikyu systems, the Hibiya Line connects the Tobu Skytree Line with Central Tokyo and used to through-run to the Tokyu Toyoko Line, etc.

This paradigm of cross-regional traffic is so strong that on lines that do not have convenient commuter lines to connect to, there are suburban tails built just to extend them farther out. The Tozai Line hooks into a reverse-branch of the Chuo Line to the west, but to the east has little opportunity for through-service, and therefore most trains continue onto an extension called the Toyo Rapid Railway.

On the JR East network, there are a few subway connections to, but for the most part the network has its own lines to Central Tokyo. This is an early invention of mainline rail through-running, alongside the Berlin S-Bahn; the Yamanote ring was completed in 1925. Further investment in through-service since then has given more lines dedicated tracks through Central Tokyo, for capacity more than anything else.

The issue is not just that there are many through-running lines. Tokyo has 15-16 through-running trunks, depending on how one counts, and Paris, a metro area about one third the size, will soon have 4.5. It’s not such a big difference. Rather, Tokyo’s through-running lines function well as a metro within the city in ways the Berlin S-Bahn, the Paris RER, the Madrid Cercanías, and any future London Crossrail lines simply don’t.

What’s more, future investment plans in Europe do not really attempt to turn the commuter rail network into a useful metro within the city. Berlin has a strong potential northwest-southeast S-Bahn route forming a Soviet triangle with the two existing radial trunks, but it’s not being built, despite proposals by online and offline advocates; instead, current S21 plans call for duplicating north-south infrastructure. In Paris, the RER C doesn’t really work well with the other lines, the RER E extension plans are a mess, and most of the region’s effort for suburban rail expansion is spent on greenfield driverless metro and not on anything with connections to legacy mainlines. In London, the subsurface Underground lines are historically a proto-S-Bahn, with some mainline through-service in the 19th century, but they are not really used this way today even though there is a good proposal by railfans.

While Europe generally does the longer-distance version of regional rail better than Japan, the vast majority of ridership is S-Bahn-type, and there, Japan absolutely crushes. What’s more, Korea has learned from Japan’s example, so that the Seoul Subway Line 1 is an S-Bahn and many other lines are very long-range; Seoul’s per capita rail ridership is much lower than Paris’s, but is increasing fast, as South Korea is a newly-industrialized country still building its infrastructure at low cost to converge to Western incomes.

Rolling stock

Tokyo outdoes the closest things to its peers in the West in S-Bahn network design. Japan is equally superior when it comes to the rolling stock technology itself. It has all of the following features:

  • Low cost. Finding information about rolling stock costs in Japan is surprisingly hard, but Wikipedia claims the 10000 Series cost 1.2 billion yen per 10-car, 200-meter train, which is around $60,000/meter, compared with a European range that clusters around $100,000.
  • Low weight – see table here. European trains are heavier, courtesy of different buff strength regulations that are not really needed for safety, as Japanese trains have lower death tolls per p-km than European ones thanks to accident avoidance.
  • All-MU configuration – Japan has a handful of locomotives for passenger service for the few remaining night trains, and runs all other trains with EMUs and sometimes DMUs. Parts of Europe, like Britain, have made this transition as well, but Zurich still runs locomotives on the S-Bahn.

The one gap is that Europe is superior in the long-range regional rail segment with a top speed of 160-200 km/h. But Japanese trains are better at the more urban end up to 100 km/h thanks to their low cost and weight and at the high-speed end of 300+ km/h thanks to low cost and weight (again) and better performance.

Shinkansen equipment is also more technically advanced than European high-speed trains in a number of ways, in addition to its lower mass and cost. The N700-I has a power-to-weight ratio of 26.74 kW/t, whereas European trains are mostly in the low 20s. Japanese train noses are more aerodynamic due to stringent noise regulations and city-center stations, and the trains are also better-pressurized to avoid ear popping in tunnels. As a result, the Shinkansen network builds single-bore double-track tunnels hardly bigger than each individual bore in a twin-bore European rail tunnel, helping reduce cost relative to Japan’s heavily mountainous geography. The EU should permit such trains on its own tracks to improve service quality.

The Shinkansen

The Shinkansen works better than European high-speed rail networks in a few ways, in addition to rolling stock. Some of it is pure geographic luck: Japanese cities mostly lie on a single line, making it easy to have a single trunk serve all of them. However, a few positive decisions improve service beyond what pure geography dictates, and should be studied carefully in Britain, Germany, and Italy.

  • Trains run through city centers with intermediate stops rather than around them. This slightly slows down the trains, because of the stop penalty at a city, and sometimes a slightly slowdown for an express train. This is especially important in Britain, which is proposing an excessively branched system for High Speed 2, severely reducing frequency on key connections like London-Birmingham and London-Manchester.
  • Trains run on dedicated tracks, apart from the Mini-Shinkansen. This was enforced by a different track gauge, but a sufficiently strong national network should run on dedicated tracks even with the same gauge. This is of especial importance in Germany, which should be building out its network to the point of having little to no track-sharing between high-speed and legacy trains, which would enable high-speed trains to run more punctually.
  • Train stations are through-stations (except Tokyo, which is almost set up to allow through-service and errs in not having any). If the legacy station is a terminal, like Aomori, or is too difficult to serve as a through-station, like Osaka, then the train will serve a near-downtown station a few km away, like Shin-Aomori 4 km from Aomori and Shin-Osaka 4 km from Osaka. Germany does this too at Kassel and has long-term plans to convert key intermediate terminals into through-stations, but France and Italy both neglect this option even when it is available, as in Tours and Turin.
  • Rolling stock is designed for high capacity, including fast egress. There is no cafe car – all cars have seats. There are two wide door pairs per car, rather than just one as on the TGV. There is full level boarding with high platforms. Express trains dwell even at major stations for only about a minute, compared with 5 minutes on the TGV and even slower egress at the Paris terminals. Trains turn at the terminals in 12 minutes, reducing operating expenses.
  • Pricing is simple and consistent, without the customer-hostile yield management practices of France, Spain, and much of the rest of Europe.

Reliability

Japan is renowned for its train punctuality. As far as I can tell, this comes from the same place as Switzerland: system design is centered around eliminating bottlenecks. Thus it’s normal in both Japan and Switzerland to leave some key commuter lines single-track if the frequency they run allows timed meets; both countries also employ timed overtakes between local and express trains on double track.

Where I think Japan does better than Switzerland is the use of track segregation to reduce delays. Captive trains are easier to control than highly-branched national rail networks. In Switzerland, there is no room for such captive trains – the entire country has fewer people than Tokyo, and the city of Zurich has fewer people than many individual Tokyo wards. But a big country could in effect turn long lines into mostly separated systems to improve punctuality. This goes against how the S-Bahn concept works in the German-speaking world, but the Tokyo and Seoul lines are in effect metros at a larger scale, even more so than the RER A and B or the Berlin S-Bahn. France, Germany, Spain, Italy, and Britain could all learn from this example.

The heavy emphasis on punctuality in Japanese railroad culture has been blamed for a fatal rail accident. But even with that accident, Japanese rail safety far surpasses Europe’s, approaching 80 billion passenger-km per on-board passenger fatality where Europe appears to be in the low teens.

Is this everything?

Not quite. I will write a companion piece about what Asia can learn from Europe eventually. For one, East Asia appears to optimize its rail operating culture to huge cities, much like France and Britain, and thus its smaller cities have less per capita rail usage than similar-size Central European ones; on this list, compare Fukuoka, Busan, and Sapporo with Stockholm, Prague, Vienna, Munich, Stuttgart, Rome, Frankfurt, Barcelona, and Hamburg. Europe is also better when it comes to 160-200 km/h regional rail.

However, the bulk of intercity rail traffic even in Europe is on high-speed trains, an area in which Europe has more to learn from Japan than vice versa. Similarly, the bulk of individual boardings on trains are on metro and short-range S-Bahn trains even in the German-speaking world; there there is a lot of learning to be done in both directions, but at the end of the day, Tokyo has higher rail usage than Paris and London.