Category: High-Speed Rail

Trains are not Planes

Trains and planes are both scheduled modes of intercity travel running large vehicles. Virgin runs both kinds of services, and this leads some systems to treat trains as if they are planes. France and Spain are at the forefront of trying to imitate low-cost airlines, with separately branded trains for different classes of passengers and yield management systems for pricing; France is even sending the low-cost OuiGo brand to peripheral train stations rather than the traditional Parisian terminals. This has not worked well, and unfortunately the growing belief throughout Europe is that airline-style competition on tracks is an example of private-sector innovation to be nourished. I’d like to explain why this has failed, in the context of trains not being planes.

How do trains and planes differ?

All of the following features of trains and planes are relevant to service planning:

TrainsPlanes
Stations are located in city center and are extremely inconvenient to moveAirports can be located in a wider variety of areas in the metro area, never in the center
Timetables can be accurate to the minuteTimetables are plus or minus an hour
Linear infrastructureAirport infrastructure
High upfront costs, low variable costsHigh upfront costs but also brutal variable costs in fuel
Door-to-door trip times in the 1.5-5 hour rangeDoor-to-door trip times starting around 3 hours counting security and other queues
In a pinch, passengers can standStanding is never safe
Interface with thousands of local train stationsAll interface with local transport is across a strict landside/airside divide
Travel along a line, so there’s seat turnover at intermediate stopsPoint-to-point travel – multi-city hops on one plane are rare because of takeoff and landing costs

Taken together, these features lead to differences in planning and pricing. Plane and train seats are perishable – once the vehicle leaves, an unsold seat is dead revenue and cannot be packaged for later. But trains have low enough variable costs that they do not need 100% seat occupancy to turn a profit – the increase in cost from running bigger trains is small enough that it is justified on other grounds. Conversely, trains can be precisely scheduled so as to provide timed connections, whereas planes cannot. This means the loci of innovation are different for these two technologies, and not always compatible.

What are the main innovations of LCCs?

European low-cost carriers reduce cost per seat-km to around 0.05€ (source: the Spinetta report). They do so using a variety of strategies:

  • Using peripheral, low-amenity airports located farther from the city, for lower landing fees (and often local subsidies).
  • Eliminating such on-board services as free meals.
  • Using crew for multiple purposes, as both boarding agents and air crew.
  • Flying for longer hours, including early in the morning and later at night, to increase equipment utilization, charging lower fares at undesirable times.
  • Running a single class of airplane (either all 737 or all 320) to simplify maintenance.

They additionally extract revenue from passengers through hidden fees only revealed at the last moment of purchase, aggressive marketing of on-board sales for ancillary revenue, and an opaque yield management system. But these are not cost cutting, just deceptive marketing – and the yield management system is in turn a legacy carrier response to the threat of competition from LCCs, which offer simpler one-way fares.

How are LCC innovations relevant to trains?

On many of the LCC vs. legacy carrier distinctions, daytime intercity trains have always been like LCCs. Trains sell meals at on-board cafes rather than providing complimentary food and drinks; high-speed rail carriers aim at fleet uniformity as much as practical, using scale to reduce unit maintenance costs; trains have high utilization rates using their low variable operating costs.

On others, it’s not even possible to implement the LCC feature on a railroad. SNCF is trying to make peripheral stations work on some OuiGo services, sending trains from Lyon and Marseille to Marne-la-Vallée and reserving Gare de Lyon for the premium-branded InOui trains. It doesn’t work: the introduction of OuiGo led to a fall in revenue but no increase in ridership, which on the eve of corona was barely higher than on the eve of the financial crisis despite the opening of three new lines. The extra access and egress times at Marne-la-Vallée and the inconvenience imposed by the extra transfer with long lines at the ticketing machines for passengers arriving in Paris are high enough compared with the base trip time so as to frustrate ridership. This is not the same as with air travel, whose origins are often fairly diffuse because people closer to city center can more easily take trains.

What innovations does intercity rail use?

Good intercity train operating paradigms, which exist in East Asia and Northern Europe but not France or Southern Europe, are based on treating trains as trains and not as planes (East Asia treats them more like subways, Northern Europe more like regional trains). This leads to the following innovations:

  • Integration of timetable and infrastructure planning, taking advantage of the fact that the infrastructure is built by the state and the operations are either by the state or by a company that is so tightly linked it might as well be the state (such as the Shinkansen operators). Northern European planning is based on repeating hourly or two-hourly clockface timetables.
  • Timed connections and overtakes, taking advantage of precise timetabling.
  • Very fast turnaround times, measured in minutes; Germany turns trains at terminal stations in 3-4 minutes when they go onward, such as from north of Frankfurt or Leipzig to south of them with a reversal of the train direction, and Japan turns trains at the end of the line in 12 minutes when it needs to.
  • Short dwell times at intermediate stops – Shinkansen trains have 1-minute dwell times when they’re not sitting still at a local station waiting to be overtaken by an express train.
  • A knot system in which trips are sped up so as to fit into neat slots with multiway timed connections at major stations – in Switzerland, trains arrive at Zurich, Basel, and Bern just before the hour every half hour and depart just after.
  • Fare systems that reinforce spontaneous trips, with relatively simple fares such that passengers don’t need to plan trips weeks in advance. East Asia does no yield management whatsoever; Germany does it but only mildly.

All of these innovations require public planning and integration of timetable, equipment, and infrastructure. These are also the exact opposite of the creeping privatization of railways in Europe, born of a failed British ideological experiment and a French railway that was overtaken by airline executives bringing their own biases into the system. On a plane, my door-to-door time is so long that trips are never spontaneous, so there’s no need for a memorable takt or interchangeable itineraries; on a train, it’s the exact opposite.

EU Reaches Deal for Eastern European Infrastructure Investment

EU Commission President Ursula von der Leyen announced this morning that the EU will proceed with a coordinated investment plan for Ukraine, whose EU membership is a foregone conclusion at this point, as well as for surrounding EU member states. This will include a cohesion fund for both war reconstruction and long-term investment, which will have a component marked for Belarus’s incorporation into the Union as well subject to the replacement of its current regime with a democratic government.

To handle the infrastructure component of the plan, an EU-wide rail agency, to be branded Eurail, will take over the TEN-T plan and extend it toward Ukraine. Sources close to all four major pro-European parties in the EU Parliament confirm that the current situation calls for a European solution, focusing on international connections both internally to the established member states and externally to newer members.

The office of French President Emmanuel Macron says that just as SNCF has built modern France around the TGV, so will Eurail build modern Europe around the TEN-T network, with Paris acting as the center of a continental-scale high-speed rail network. An anonymous source close to the president spoke more candidly, saying that Brussels will soon be the political capital of an ever closer economic and now infrastructural union, but Paris will be its economic capital, just as the largest city and financial center in the United States is not Washington but New York and that of Canada is not Ottawa but Toronto.

In Eastern Europe, the plan is to construct what German planners have affectionately called the Europatakt. High-speed rail lines, running at top speeds ranging between 200 and 320 km/h, are to connect the region as far east as Donetsk and as far northeast as Tallinn, providing international as well as domestic connections. Regional trains at smaller scale will be upgraded, and under the Europatakt they will be designed to connect to one another as well as to long-distance trains at regular intervals.

For example, the main east-west corridor is to connect Berlin with Kyiv via Poznań, Łódź, Warsaw, Lublin, Lutsk, and Zhytomyr. Berlin-Warsaw trips are expected to take 2.5 hours and Warsaw-Kyiv trips 3.5 hours, arranged so that trains on the main axis will serve Warsaw in both directions on the hour every hour, timing a connection with trains from Warsaw to Kaunas, Riga, Tallinn, and Helsinki and with domestic intercity and regional trains with Poland. In Ukraine, too, a connection will be set up in Poltava, 1.5 hours east of Kyiv, every hour on the hour as in Warsaw, permitting passengers to interchange between Kyiv, Kharkiv, Dnipro, and Donetsk.

Overall, the network through Poland, Ukraine, and the Baltic states, including onward connections to Berlin, Czechia, Bucharest, and Helsinki, is expected to be 6,000 km long, giving these countries comparable networks to those of France and Spain. The expected cost of the program is 150 billion euros plus another 50 billion euros for connections.

How High-Speed and Regional Rail are Intertwined

The Transit Costs Project will wrap up soon with the report on construction cost differences, and we’re already looking at a report on high-speed rail. This post should be read as some early scoping on how this can be designed for the Northeast Corridor. In particular, integration of planning with regional rail is obligatory due to the extensive track sharing at both ends of the corridor as well as in the middle. This means that the project has to include some vision of what regional rail should look like in Boston, New York, Philadelphia, and Washington. This vision is not a full crayon, but should have different options for different likely investment levels and how they fit into an intercity vision, within the existing budget, which is tens of billions thanks to the Bipartisan Infrastructure Framework.

Boston

In Boston, commuter rail and intercity rail interact via the Providence Line, which is double-track. The Providence Line shares the same trunk line into Boston with the Franklin Line and the Stoughton Line, and eventually with South Coast Rail services.

The good news is that the MBTA is seriously looking at electrifying the trains to a substantial if insufficient extent. The Providence Line is already wired, except for a few siding and yard tracks, and the MBTA is currently planning to complete electrification and purchase EMUs on the main line, and possibly also on the Stoughton Line; South Coast Rail is required to be electrified when it is connected to this system anyway, for environmental reasons. If there is no further electrification, then it signals severe incompetence in Massachusetts but is still workable to a large extent.

Options for scheduling depend on how much further the state invests. The timetables I’ve written in the past (for an aggressive example, see here) assume electrification of everything that needs to be electrified but no North-South Rail Link tunnel. An NSRL timetable requires planning high-speed rail in conjunction with the entirety of the regional rail system; this is true even though intercity trains should terminate on the surface and not use the NSRL tunnel.

Philadelphia

Philadelphia is the easiest case. Trenton-Philadelphia is four-track, and has sufficiently little commuter traffic that the commuter trains can be put on the local tracks permanently. In the presence of high-speed rail, there is no need for express commuter trains – passengers can buy standing tickets on Trenton-Philadelphia, and those are not going to create a capacity crunch because train volumes need to be sized for the larger peak market into New York anyway.

On the Wilmington side, the outer end of the line is only triple-track. But it’s a short segment, largely peripheral to the network – the line is four-track from Philadelphia almost all the way to Wilmington, and beyond Wilmington ridership is very low. Moreover, Wilmington itself is so slow that it may be valuable to bypass it roughly along I-95 anyway.

The railway junctions are a more serious interface. Zoo Interlocking controls everything heading into Philadelphia from points north, and needs some facelifts (mainly, more modern turnouts) speeding up trains of all classes. Thankfully, there is no regional-intercity rail conflict here.

Washington

In some ways, the Washington-Baltimore Penn Line is a lot like the Boston-Providence line. It connects two historic city centers, but one is much larger than the other and so commuter demand is asymmetric. It has a tail behind the secondary city with very low ridership. It runs diesel under catenary, thanks to MARC’s recent choice to deelectrify service (it used to run electric locomotives).

But the Penn Line has significant sections of triple- and quad-track, courtesy of a bad investment plan that adds tracks without any schedule coordination. The quad-track segment can be used to simplify the interface; the triple-track segment, consisting of most of the line’s length, is unfortunately not useful for a symmetric timetable and requires some strategic quad-track overtakes. The Penn Line must be reelectrified, with high-performance EMUs minimizing the speed difference between regional and intercity trains. There are only five stations on the double- and triple-track narrows – BWI, Odenton, Bowie State, Seabrook, New Carrollton – and even figuring differences in average speed, this looks like a trip time difference between 160 km/h regional rail and 360 km/h HSR of about 15 minutes, which is doable with a single overtake.

New York

New York is the real pain point. Unlike in Boston and Washington, it’s difficult to isolate different parts of the commuter rail network from one another. Boston can more or less treat the Worcester, Providence+Stoughton, Fairmount, and Old Colony Lines as four different, non-interacting systems, and then slot Franklin into either Providence or Fairmount, whichever it prefers. New York can, with current and under-construction infrastructure, plausibly separate out some LIRR lines, but this is the part of the system with the least interaction with intercity rail.

Gateway could make things easier, but it would require consciously treating it as total separation between the Northeast Corridor and Morris and Essex systems, which would be a big mismatch in demand. (NEC demand is around twice M&E demand, but intercity trains would be sharing tracks with the NEC commuter trains, not the M&E ones; improving urban commuter rail service reduces this mismatch by loading the trains more within Newark but does not eliminate it.)

It’s so intertwined that the schedules have to be done de novo on both systems – intercity and regional – combined. This isn’t as in Boston and Washington, where the entire timetable can be done to fit one or two overtakes. This isn’t impossible – there are big gains to be had from train speedups all over and there. But it requires cutting-edge systems for timetabling and a lot of infrastructure investment, often in places that were left for later on official plans.

Intercity Rail Routes into Boston

People I respect are asking me about alternative routes for intercity trains into Boston. So let me explain why everything going into the city from points south should run to South Station via Providence and not via alternative inland routes such as Worcester or a new carved-up route via Woonsocket.

As an explanation, here is a map of the region’s commuter rail network; additional stations we’re proposing for regional rail are in turquoise, and new line segments are dashed.

Geographic map of the TransitMatters Regional Rail proposal as it currently stands

Observe that the Providence Line, the route currently used by all intercity trains except the daily Lake Shore Limited, is pretty straight – most of it is good for 300+ km/h as far as track geometry goes. The Canton Viaduct near that Canton Junction station is a 1,746 meter radius curve, good for 237 km/h with active suspension or 216 km/h with the best non-tilting European practice. This straightness continues into Rhode Island, separated by a handful of curves that are to some extent fixable through Pawtucket. The fastest segment of the Acela train today is there, in Massachusetts and Rhode Island.

The Worcester Line is visibly a lot curvier. Only two segments allow 160 km/h running in our regional rail schedules, around Westborough and immediately west of Grafton. This is why, ignoring intercity rail, our timetables have Boston-Providence trains taking 47 minutes where Boston-Worcester express trains take 45 minutes with 4 fewer stops or 57 minutes with 5 more, over the same route length. And the higher the necessary top speed, the larger the trip time mismatch is due to curves.

Going around the curves of the Worcester Line is possible, if high-speed rail gets a bypass next to I-90. However, this introduces three problems:

  1. More construction is needed, on the order of 210 km between Auburndale and New Haven compared with only 120 between Kingston and New Haven.
  2. Bypass tracks can’t serve the built-up area of Worcester, since I-90 passes well to its south. A peripheral station is possible but requires an extension of the commuter rail network to work well. Springfield and Hartford are both easy to serve at city center, but if only those two centers are servable, this throws away the advantage of the inland route over Providence in connecting to more medium-size intermediate cities.
  3. The two-track section through Newton remains the stuff of nightmares. There is no room to widen the right-of-way, and yet it is a buys section of the line, where it is barely possible to fit express regional rail alongside local trains, let alone intercity trains. Fast intercity trains would require a long tunnel, or demolition of two freeway lanes.

There’s the occasional plan to run intercity rail via the Worcester Line anyway. This is usually justified on grounds of resiliency (i.e. building too much infrastructure and running it unreliably), or price discrimination (charging less for lower-speed, higher-cost trains), or sheer crayoning (a stop in Springfield, without any integration with the rest of the system). All of these justifications are excuses; regional trains connecting Boston with Springfield and Springfield with New Haven are great, but the intercity corridor should, at all levels of investment, remain the Northeast Corridor, via Providence.

The issue is that, even without high-speed rail, the capacity and high track quality are on Providence. Then, as investment levels increase, it’s always easier to upgrade that route. The 120 km of high-speed bypass between New Haven and Kingston cost around $3-3.5 billion at latter-day European costs, save around 25 minutes relative to best practice, and open the door to more frequent regional service between New Haven and Kingston on the legacy Shore Line alongside high-speed intercity rail on the bypass. This is organizationally easy spending – not much coordination is required with other railroads, unlike the situation between New Haven and Wilmington with continuous track sharing with commuter lines.

If more capacity is required, adding strategic bypasses to the Providence Line is organizationally on the easy side for intercity-commuter rail track sharing (the Boston network is a simple diagram without too much weird branching). There’s a bypass at Attleboro today; without further bypasses, intercity trains can do Boston-Attleboro in 11 fewer minutes than regional trains if both classes run every 15 minutes, which work out to 25 minutes per our schedule and around 32 between Boston and Providence. To run intercity trains faster, in around 22 minutes, a second bypass is needed, in the Route 128-Readville area, but that is constructible at limited cost. If trains are desired more than very 15 minutes, then a) further four-tracking is feasible, and b) an intercity railroad that fills a full-length train every 15 minutes prints money and can afford to invest more.

This system of investment doesn’t work via the inland route. It’s too curvy, and the bypasses required to make it work are longer and more complex to build due to the hilly terrain. Then there’s the world-of-pain segment through Newton; in contrast, the New Haven-Kingston bypass can be built zero-tunnel. But that’s fine! The Northeast Corridor’s plenty upgradable, the inland route is bad for long-distance traffic (again, regional traffic is fine) but thankfully unnecessary.

Mixing High- and Low-Speed Trains

I stream on Twitch (almost) every week on Saturdays – the topic starting now is fare systems. Two weeks ago, I streamed about the topic of how to mix high-speed rail and regional rail together, and unfortunately there were technical problems that wrecked the recording and therefore I did not upload the video to YouTube as I usually do. Instead, I’d like to write down how to do this. The most obvious use case for such a blending is the Northeast Corridor, but there are others.

The good news is that good high-speed rail and good legacy rail are complements, rather than competing priorities. They look like competing priorities because, as a matter of national tradition of intercity rail, Japan and France are bad at low-speed rail outside the largest cities (and China is bad even in the largest cities) and Germany is bad at high-speed rail, so it looks like one or the other. But in reality, a strong high-speed rail network means that distinguished nodes with high-speed rail stations become natural points of convergence of the rail network, and those can then be set up as low-speed rail connection nodes.

Where there is more conflict is on two-track lines with demand for both regional and intercity rail. Scheduling trains of different speeds on the same pair of tracks is dicey, but still possible given commitment to integration of schedule, rolling stock, and timetable. The compromises required are smaller than the cost of fully four-tracking a line that does not need so much capacity.

Complementarity

Whenever a high-speed line runs separately from a legacy line, they are complements. This occurs on four-track lines, on lines with separate high-speed tracks running parallel to the legacy route, and at junctions where the legacy lines serve different directions or destinations. In all cases, network effects provide complementarity.

As a toy model, let’s look at Providence Station – but not at the issue of shared track on the Northeast Corridor. Providence has a rail link not just along the Northeast Corridor but also to the northwest, to Woonsocket, with light track sharing with the mainline. Providence-Woonsocket is 25 km, which is well within S-Bahn range in a larger city, but Providence is small enough that this needs to be thought of as scheduled regional rail. A Providence-Woonsocket regional link is stronger in the presence of high-speed rail, because then Woonsocket residents can commute to Boston with a change in Providence, and travel to New York in around 2 hours also with a change in Providence.

More New England examples can be found with Northeast Corridor tie-ins – see this post, with map reproduced below:

The map hides the most important complement: New Haven-Hartford-Springfield is a low-speed intercity line, and the initial implementation of high-speed rail on the Northeast Corridor should leave it as such, with high-speed upgrades later. This is likely also the case for Boston-Springfield – the only reason it might be worthwhile going straight from nothing to high-speed rail is if negotiations with freight track owner CSX get too difficult or if for another reason Massachusetts can’t electrify the tracks at reasonable cost and run fast regional trains.

There’s also complementarity with lines that are parallel to the Northeast Corridor, like the current route east of New Haven, which the route depicted in the map bypasses. This route serves Southeast Connecticut communities like Old Saybrook and can efficiently ferry passengers to New Haven for onward connections.

In all of these cases, there is something special: Woonsocket-Boston is a semireasonable commute, New London connects to the Mohegan Sun casino complex, New Haven-Hartford and Boston-Springfield are strong intercity corridors by themselves, Cape Cod is a weekend getaway destination. That’s fine. Passenger rail is not a commodity – something special almost always comes up.

But in all cases, network effects mean that the intercity line makes the regional lines stronger and vice versa. The relative strength of these two effects varies; in the Northeast, the intercity line is dominant because New York is big and off-mainline destinations like Woonsocket and Mohegan are not. But the complementarity is always there. The upshot is that in an environment with a strong regional low-speed network and not much high-speed rail, like Germany, introducing high-speed rail makes the legacy network stronger; in one that is the opposite, like France, introducing a regional takt converging on a city center TGV station would likewise strengthen the network.

Competition for track space

Blending high- and low-speed rail gets more complicated if they need to use the same tracks. Sometimes, only two tracks are available for trains of mixed speeds.

In that case, there are three ways to reduce conflict:

  1. Shorten the mixed segment
  2. Speed up the slow trains
  3. Slow down the fast trains

Shortening the mixed segment means choosing a route that reduces conflict. Sometimes, the conflict comes pre-shortened: if many lines converge on the same city center approach, then there is a short shared segment, which introduces route planning headaches but not big ones. In other cases, there may be a choice:

  • In Boston, the Franklin Line can enter city center via the Northeast Corridor (locally called Southwest Corridor) or via the Fairmount Line; the choice between the two routes is close based on purely regional considerations, but the presence of high-speed rail tilts it toward Fairmount, to clear space for intercity trains.
  • In New York, there are two routes from New Rochelle to Manhattan. Most commuter trains should use the route intercity trains don’t, which is the Grand Central route; the only commuter trains running on Penn Station Access should be local ones providing service in the Bronx.
  • In the Bay Area, high-speed rail can center from the south via Pacheco Pass or from the east via Altamont Pass. The point made by Clem Tillier and Richard Mlynarik is that Pacheco Pass involves 80 km of track sharing compared with only 42 km for Altamont and therefore it requires more four-tracking at higher cost.

Speeding up the slow trains means investing in speed upgrades for them. This includes electrification where it’s absent: Boston-Providence currently takes 1:10 and could take 0:47 with electrification, high platforms, and 21st-century equipment, which compares with a present-day Amtrak schedule of 0:35 without padding and 0:45 with. Today, mixing 1:10 and 0:35 requires holding trains for an overtake at Attleboro, where four tracks are already present, even though the frequency is worse than hourly. In a high-speed rail future, 0:47 and 0:22 can mix with two overtakes every 15 minutes, since the speed difference is reduced even with the increase in intercity rail speed – and I will defend the 10-year-old timetable in the link.

If overtakes are present, then it’s desirable to decrease the speed difference on shared segments but then increase it during the overtake: ideally the speed difference on an overtake is such that the fast train goes from being just behind the slow train to just ahead of it. If the overtake is a single station, this means holding the slow train. But if the overtake is a short bypass of a slow segment, this means adding stops to the slow train to slow it down even further, to facilitate the overtake.

A good example of this principle is at the New York/Connecticut border, one of the slowest segments of the Northeast Corridor today. A bypass along I-95 is desirable, even at a speed of 200-230 km/h, because the legacy line is too curvy there. This bypass should also function as an overtake between intercity trains and express commuter trains, on a line that today has four tracks and three speed classes (those two and local commuter trains). To facilitate the overtake, the slow trains (that is, the express commuter trains – the locals run on separate track throughout) should be slowed further by being made to make more stops, and thus all Metro-North trains, even the express trains, should stop at Greenwich and perhaps also Port Chester. The choice of these stops is deliberate: Greenwich is one of the busiest stops on the line, especially for reverse-commuters; Port Chester does not have as many jobs nearby but has a historic town center that could see more traffic.

Slowing down the intercity trains is also a possibility. But it should not be seen as the default, only as one of three options. Speed deterioration coming from such blending in a serious problem, and is one reason why the compromises made for California High-Speed Rail are slowing down the trip time from the originally promised 2:40 for Los Angeles-San Francisco to 3:15 according to one of the planners working on the project who spoke to me about it privately.

We Ran a Conference About Rail Modernization (Again)

Modernizing Rail 2021 just happened. Here’s a recording of the Q&A portion (i.e. most) of the keynote, uploaded to YouTube.

As more people send in materials, I’ll upload more. For now, here are the slides I’ve gotten:

A bunch of us tweeted the talks using the hashtag #ModernRail2021, including some that were not recorded.

How to Build High-Speed Rail with Money the United States Has

The bipartisan infrastructure framework (BIF) just passed the Senate by a large margin, with money for both roads and public transportation. Unlike the 2009 Obama stimulus, the BIF has plenty of money for high-speed rail – not just $8 billion as in the 2009 bill, but a total of $66 billion to be spent on mainline rail. The Northeast Corridor program gets $24 billion out of this $66 billion in a dedicated program and another $6 billion out of another program within this bucket dedicated to Amtrak. This is $30 billion, which should be more than enough for high-speed rail on the Northeast Corridor. Together with other buckets for other parts of the US, it can even build some non-Northeastern lines, for example serving Chicago or Los Angeles.

I say should because the current plans are to waste the money. But better things are possible, so at the Transit Costs Project, we’re planning to embark on a project to write a report on how to do this better. The construction cost report will be done in early 2022, but we can overlap to some extent. A one-year program, to debut in early 2023, will include a Northeast Corridor proposal; a two-year one will also include tie-ins and starter lines elsewhere, such as Chicago-Cleveland/Detroit or Los Angeles-San Diego.

But for this, we need funding. We’re a good deal of the way there, I think around two-thirds for the two-year option – and this isn’t quite enough for the one-year option, some of the money needs to be matched. This is not the same as my Patreon in either scale (the difference is more than an order of magnitude) or scope (my Patreon funds the blog and vlog, which are way more general); if you know grants for such projects, please let us know, we can send a fuller proposal.

What’s the project’s scope?

Lots and lots of analysis, for one, like what we’re doing for subways. Intriguingly, high-cost countries for high-speed rail tend to also have high subway costs and vice versa, and this remains true even as it is easier to explain high-speed rail costs in terms of unnecessary scope and leakage. But this is not the dominant part of the project – rather, we are going to be synthetic and make a proposal. We’re not committing to an investment figure; my guess is that in 2021 dollars it should be around $15 billion to cut Northeast Corridor trip times to about 1:45 on each of New York-Boston and New York-Washington, but some variation is possible in either direction.

If there’s $30 billion for the Northeast Corridor, and high-speed rail is doable for half that, then the other half should be spent on tie-ins, for example improving regional rail in all four major metropolitan areas. Naturally, this should only include useful spending for rail operations and connections, but the Northeast doesn’t lack for those; New York can spend $17 billion on new tunnels and that’s at the per-km cost of Citybanan, one of the cheaper city center regional rail projects in our database.

Modernizing Rail 2021 Announcement

We are happy to announce that on Sunday the 29th of August we will hold this year’s Modernizing Rail conference, on the heels of the success last year.

Please register using this form. And please give details on what you’d like to see, and if you’re willing to lead sessions – the schedule of the breakout sessions is still up in the air depending on popular demand. Even the number of breakouts depends on how many registrants we get, compared with the about 200 we had last year. Perhaps the news of the infrastructure bill will tilt the demand toward more political sessions regarding how to ensure what is built is good and less toward technical best practices.

Our keynote is certainly political: Rep. Seth Moulton (D-MA), who represents the northern suburbs of Boston (6th district) and for years has been pushing the North-South Rail Link. He will give brief remarks at 16:00 Eastern time, or 22:00 Central Europe Summer Time, to be followed by a Q&A; if you have a question that you’d like to hear an answer to, you can mention it in the registration form, or email the organizing committee at modernizingrail@gmail.com. We will be taking questions throughout the conference, which will start 11:00 Eastern, so if your questions depend on what you hear at the breakouts, you’re in luck.

The Leakage Problem

I’ve spent more than ten years talking about the cost of construction of physical infrastructure, starting with subways and then branching on to other things, most.

And yet there’s a problem of comparable size when discussing infrastructure waste, which, lacking any better term for it, I am going to call leakage. The definition of leakage is any project that is bundled into an infrastructure package that is not useful to the project under discussion and is not costed together with it. A package, in turn, is any program that considers multiple projects together, such as a stimulus bill, a regular transport investment budget, or a referendum. The motivation for the term leakage is that money deeded to megaprojects leaks to unrelated or semi-related priorities. This often occurs for political reasons but apolitical examples exist as well.

Before going over some examples, I want to clarify that the distinction between leakage and high costs is not ironclad. Sometimes, high costs come from bundled projects that are costed together with the project at hand; in the US they’re called betterments, for example the $100 million 3 km bike lane called the Somerville Community Path for the first, aborted iteration of the Green Line Extension in Boston. This blur is endemic to general improvement projects, such as rail electrification, and also to Northeast Corridor high-speed rail plans, but elsewhere, the distinction is clearer.

Finally, while normally I focus on construction costs for public transport, leakage is a big problem in the United States for highway investment, for political reasons. As I will explain below, I believe that nearly all highway investment in the US is waste thanks to leakage, even ignoring the elevated costs of urban road tunnels.

State of good repair

A month ago, I uploaded a video about the state of good repair grift in the United States. The grift is that SOGR is maintenance spending funded out of other people’s money – namely, a multiyear capital budget – and therefore the agency can spend it with little public oversight. The construction of an expansion may be overly expensive, but at the end of the day, the line opens and the public can verify that it works, even for a legendarily delayed project like Second Avenue Subway, the Berlin-Brandenburg Airport, or the soon-to-open Tel Aviv Subway. It’s a crude mechanism, since the public can’t verify safety or efficiency, but it’s impossible to fake: if nothing opens, it embarrasses all involved publicly, as is the case for California High-Speed Rail. No such mechanism exists for maintenance, and therefore, incompetent agencies have free reins to spend money with nothing to show for it. I recently gave an example of unusually high track renewal costs in Connecticut.

The connection with leakage is that capital plans include renewal and long-term repairs and not just expansion. Thus, SOGR is leakage, and when its costs go out of control, they displace funding that could be used for expansion. The NEC Commission proposal for high-speed rail on the Northeast Corridor calls for a budget of $117 billion in 2020 dollars, but there is extensive leakage to SOGR in the New York area, especially the aforementioned Connecticut plan, and thus for such a high budget the target average speed is about 140 km/h, in line with the upgraded legacy trains that high-speed lines in Europe replace.

Regionally, too, the monetary bonfire that is SOGR sucks the oxygen out of the room. The vast majority of the funds for MTA capital plans in New York is either normal replacement or SOGR, a neverending program whose backlog never shrinks despite billions of dollars in annual funding. The MTA wants to spend $50 billion in the next 5 years on capital improvements; visible expansion, such as Second Avenue Subway phase 2, moving block signaling on more lines, and wheelchair accessibility upgrades at a few stations, consists of only a few billion dollars of this package.

This is not purely an American issue. Germany’s federal plan for transport investment calls for 269.6 billion euros in project capital funding from 2016 to 2030, including a small proportion for projects planned now to be completed after 2031; as detailed on page 14, about half of the funds for both road and rail are to go to maintenance and renewal and only 40% to expansion. But 40% for expansion is still substantially less leakage than seen in American plans like that for New York.

Betterments and other irrelevant projects

Betterments straddle the boundary between high costs and leakage. They can be bundled with the cost of a project, as is the case for the Somerville Community Path for original GLX (but not the current version, from which it was dropped). Or they can be costed separately. The ideal project breakdown will have an explicit itemization letting us tell how much money leaked to betterments; for example, for the first Nice tramway line, the answer is about 30%, going to streetscaping and other such improvements.

Betterments fall into several categories. Some are pure NIMBYism – a selfish community demands something as a precondition of not publicly opposing the project, and the state caves instead of fighting back. In Israel, Haifa demanded that the state pay for trenching portions of the railroad through the southern part of the city as part of the national rail electrification project, making specious claims about the at-grade railway separating the city from the beach and even saying that high-voltage electrification causes cancer. In Toronto, the electrification project for the RER ran into a similar problem: while rail electrification reduces noise emissions, some suburbs still demanded noise walls, and the province caved to the tune of $1 billion.

Such extortion is surplus extraction – Israel and Toronto are both late to electrification, and thus those projects have very high benefit ratios over base costs, encouraging squeaky wheel behavior, raising costs to match benefits. Keeping the surplus with the state is crucial for enabling further expansion, and requires a combination of the political courage to say no and mechanisms to defer commitment until design is more advanced, in order to disempower local communities and empower planners.

Other betterments have a logical reason to be there, such as the streetscape and drainage improvements for the Nice tramway, or to some extent the Somerville Community Path. The problem with them is that chaining them to a megaproject funded by other people’s money means that they have no sense of cost control. A municipality that has to build a bike path out of its own money will never spend $100 million on 3 km; and yet that was the projected cost in Somerville, where the budget was treated as acceptable because it was second-order by broader GLX standards.

Bad expansion projects

Sometimes, infrastructure packages include bad with good projects. The bad projects are then leakage. This is usually the politically hardest nut to crack, because usually this happens in an environment of explicit political negotiation between actors each wanting something for their own narrow interest.

For example, this can be a regional negotiation between urban and non-urban interests. The urban interests want a high-value urban rail line; the rest want a low-value investment, which could be some low-ridership regional rail or a road project. Germany’s underinvestment in high-speed rail essentially comes from this kind of leakage: people who have a non-urban identity or who feel that people with such identity are inherently more morally deserving of subsidy than Berlin or Munich oppose an intercity high-speed rail network, feeling that trains averaging 120-150 km/h are good enough on specious polycentricity grounds. Such negotiation can even turn violent – the Gilets Jaunes riots were mostly white supremacist, but they were white supremacists with a strong anti-urban identity who felt like the diesel taxes were too urban-focused.

In some cases, like that of a riot, there is an easy solution, but when it goes to referendum, it is harder. Southern California in particular has an extreme problem of leakage in referendums, with no short- or medium-term solution but to fund some bad with the good. California’s New Right passed Prop 13, which among other things requires a 2/3 supermajority for tax hikes. To get around it, the state has to promise somthing explicit to every interest group. This is especially acute in Southern California, where “we’re liberal Democrats, we’re doing this” messaging can get 50-60% but not 67% as in the more left-wing San Francisco area and therefore regional ballot measures for increasing sales taxes for transit have to make explicit promises.

The explicit promises for weak projects, which can be low-ridership suburban light rail extensions, bond money for bus operations, road expansion, or road maintenance, damage the system twice. First, they’re weak on a pure benefit-cost ratio. And second, they commit the county too early to specific projects. Early commitment leads to cost overruns, as the ability of nefarious actors (not just communities but also contractors, political power brokers, planners, etc.) to demand extra scope is high, and the prior political commitment makes it too embarrassing to walk away from an overly bloated project. For an example of early commitment (though not of leakage), witness California High-Speed Rail: even now the state pretends it is not canceling the project, and is trying to pitch it as Bakersfield-Merced high-speed rail instead, to avoid the embarrassment.

The issue of roads

I focus on what I am interested in, which is public transport, but the leakage problem is also extensive for roads. In the United States, road money is disbursed to the tune of several tens of billions of dollars per year in the regular process, even without any stimulus funding. It’s such an important part of the mythos of public works that it has to be spread evenly across the states, so that politicians from a bygone era of non-ideological pork money can say they’ve brought in spending to their local districts. I believe there’s even a rule requiring at least 92% of the fuel tax money generated in each state to be spent within the state.

The result is that road money is wasted on low-growth regions. From my perspective, all road money is bad. But let’s put ourselves for a moment in the mindset of a Texan or Bavarian booster: roads are good, climate change is exaggerated, deficits are immoral (German version) or taxes are (Texan version), the measure of a nation’s wealth is how big its SUVs are. In this mindset, road money should be spent prudently in high-growth regions, like the metropolitan areas of the American Sunbelt or the biggest German cities. It definitely should not be spent in declining regions like the Rust Belt, where due to continued road investment and population decline, there is no longer traffic congestion.

And yet, road money is spent in those no-congestion regions. Politicians get to brag about saving a few seconds’ worth of congestion with three-figure million dollar interchanges and bypasses in small Rust Belt towns, complete with political rhetoric about the moral superiority of regions whose best days lay a hundred years ago to regions whose best days lie ahead.

Leakage and consensus

It is easy to get trapped in a consensus in which every region and every interest group gets something. This makes leakage easier: an infrastructure package will then have something for everyone, regardless of any benefit-cost analysis. Once the budget rather than the outcome becomes the main selling point, black holes like SOGR are easy to include.

It’s critical to resist this trend and fight to oppose leakage. Expansion should go to expansion, where investment is needed, and not where it isn’t. Failure to do so leads to hundreds of billions in investment money most of which is wasted independently for the construction cost problem.