Category: High-Speed Rail

Celebrate Birthdays, not Holidays

To the transportation user, holidays are nothing but pain. Synchronized travel leads to traffic jams and very high rail and air fares, and synchronized shopping by car leads to parking pain. American commercial parking minimums are designed around the few busiest days of the year (source, endnote #8), timed for the Christmas rush. In France, synchronized travel at the beginning and end of school holidays is so bad that each region begins and ends its winter and spring breaks on different dates. There’s so much travel pain, and associated waste in designing transportation around it, that it’s worth asking why even bother.

The travel pain is even worse than mere congestion. When I visited London in early July, Eurostar broke in both directions. This was not a pair of random delays. French holiday travel is synchronized even though there are two months of summer break and only about one month of paid vacation net of the other holidays: traditionally people from all over the country and the world visit Paris in July, and then Parisians visit other places in August.

With slow boarding at the stations courtesy of security theater and manual ticket checks with just two access points per train, it takes longer than usual to board the trains when they are full. With full trains throughout the day, the delays cascaded, so by afternoon the trains were hours off schedule. Eurostar let passengers on trains on practically a first-come, first-served basis: people with tickets on a train got to ride the next available train. I had a ticket on an 11:39 train, and got to ride the train that was nominally the 11:13 (there were a few available seats) but departed at 12:58, and my nominally-11:39 train departed even later.

Eurostar’s inability to deal with crowds that occur annually, at a time when revenue is highest, is pure incompetence. But even if that particular problem is resolved, the more fundamental problem of unnecessary swings in travel volumes remains. On domestic TGVs it’s seen in wild price swings. Today is the 8th. In two weeks, a one-way TGV ticket from Paris to Marseille costs 72-74 on Thursday the 22nd or Friday the 23rd (Friday is the traditional peak weekend travel date and increasingly Thursday joins it) and about 62 on Saturday the 24th. But next month, on the 23rd, I see tickets for about 150, and even the low-comfort OuiGo option, which usually has 10 tickets (from the suburbs, not Paris proper), shoots up to 100; even with these prices, most trains are sold out already.

In some cultures, common holidays serve a religious or otherwise traditional purpose of bringing the extended family together. This is the case for Chinese New Year, which causes overcrowding on the mainline rail network at the beginning and end of the holiday as urban workers visit their families back home, often in faraway interior provinces. The same tradition of extended families occurs on Passover, but Israel has little travel pain, as it is so small that Seder travel is the same as any other afternoon rush hour.

However, there is no religious or social value to synchronized school holidays, nor is there such value to Western holidays. Western Christian civilization has centered nuclear families over extended families for around a millennium. In modern-day American culture, people seem to spend far more time complaining about the racist uncle than saying anything positive about catching up with relatives.

Christmas has religious significance, but much of the way it is celebrated in rich countries today is recent. The emphasis on shopping is not traditional, for one. The travel peak is probably unavoidable, since Christmas and New Year’s are at a perfect distance from each other for a week-long voyage, but everything else is avoidable. A source working for a bookstore in Florida, located strategically on the highway between Disneyland and the coast, told me of two prominent peaks. In the summer there would be a broad peak, consisting mostly of European tourists with their long paid vacations. But then there would be a much sharper peak for the holiday season between Thanksgiving and Christmas, in which the store would fill every cashier stall and pressure employees, many of whom temps working seasonally, to work overtime and get customers through as quickly as possible.

Some holidays have political significance, such as various national days, but those do not have to create travel peaks or shopping peaks. Bastille Day doesn’t.

Finally, while it’s accepted in Western countries today that summer is the nicest season to travel, this was not always the case, and even today there are some exceptions. The Riviera’s peak season used to be winter, as the English rich fled England’s dreary winters to the beaches; Promenade des Anglais in Nice is named after 19th century winter vacationers. When I lived in Stockholm, I was more excited to visit the Riviera in the winter, fleeing 3 pm sunsets, than in the summer. Today, Japan has a peak for the cherry blossom in the spring, while in New England (and again in Japan) there is a tradition of leaf peeping in the fall.

Instead of centering synchronized holidays, it’s better for states to spread travel as well as shopping behavior throughout the year as much as possible. Different people have different preferences for seasonality, and this is fine.

For bigger shopping seasons, the best thing to do is to emphasize birthdays. Instead of trying to fix major holidays, the way Lincoln did for Thanksgiving, it’s better to encourage people to make their biggest trips and biggest shopping around birthdays, anniversaries, saint days in Catholic countries, and idiosyncratic or subculturally significant days (such as conventions for various kinds of geeks). There are already well-placed traditions of birthday and anniversary gifts. In academia it’s also normal to extend conference trips into longer vacations, when they don’t conflict with teaching schedules.

The impact on labor is reduced seasonality, and far less peak stress. With less seasonal employment, the natural rate of unemployment may also end up slightly lower. The impact on transportation is a large reduction in travel peaks, which would make it easier to run consistent scheduled service year-round, and to maintain car travel and parking capacity at its average day level rather than building parking lots that go unused 364 days out of every year.

High-Speed Rail in India

India’s economic development lags China’s by about 15 years, so it shouldn’t be surprising that it’s beginning to construct a high-speed rail network. The first line, connecting Mumbai and Ahmedabad via Surat, began construction at the end of last year, with completion targeted within four years; the two states served, Maharashtra and Gujarat, are more or less India’s two richest large states, and are also both deeply right-wing, with nearly every constituency backing Modi. There are some severe problems with the system, stemming from its use of turnkey Japanese technology. But more broadly, India’s geography is just difficult for high-speed rail, especially by comparison with other high-population density countries at similar level of development, like Pakistan and Indonesia.

Japanese technology

The Mumbai-Ahmedabad corridor is to use imported Shinkansen technology, with Japanese financing. India has a vast railway network using broad gauge, with extensive regional rail (the Mumbai Suburban Railway has 2.6 billion riders per year) as well as legacy intercity rail.

However, to maintain Shinkansen compatibility, India has chosen to use standard gauge. This is based on a misunderstanding of why HSR uses standard gauge. Spain uses near-Indian gauge on its legacy network but standard gauge on HSR to maintain compatibility with the French TGV network, and Japan has narrow gauge on the legacy network and standard gauge on Shinkansen because narrow-gauge trains can’t run as fast. Neither of these justifications applies to India, and evidently, in another country where they don’t apply, Russia, HSR is to use broad gauge. With standard gauge, India will not be able to run HSR through to the legacy network, connecting to cities beyond the initial line, such as Delhi, nor will it be able to stage future construction to build lines in phases, the way France did, with through-service to lower-speed territory.

Even worse, alone in the world, India is using the Shinkansen’s loading gauge on HSR: trains are 3.35 meters wide, enough for 5-abreast seating. Indian Railways has a loading gauge allowing 3.66 meter trains, enough for 6-abreast seating with the same compromises on comfort familiar to every airline economy passenger. I don’t know what the standards for track centers are to be on India’s HSR: Indian Railways’ manual says 5.3 meters, which is wide enough for everything, but Shinkansen standards specify 4.3 meters, which is tight enough that a future widening of the track and loading gauges may pose difficulties for passing at high speed (at low speed it’s easy, India’s legacy track centers are 4.265 meters, and standard-gauge America’s are 3.7 meters on the slower parts of the Northeast Corridor).

During construction, the decision to use the wrong-size trains is fixable. Even after service opens, if the track centers are not too narrow, it’s possible to add a third rail to permit a transition to broad gauge. If the track centers are as narrow as the Shinkansen then might still be possible, if the third rails are on the outside (it would widen the track centers by the difference between the gauges, or 23.3 cm), but then the platforms would need to be shaved for wider trains. In the medium and long runs, such gauge widening is critical as India builds out its network.

But today, so complete is India’s reliance on Japanese technology that the training for drivers will be conducted in Japan, in Japanese; train drivers will be required to speak Japanese, as the Shinkansen trainers will not all speak English. It goes without saying that without a large body of Japanese speakers, India will be forced to pay first-world or near-first-world wages, forgoing its advantage in having low labor costs.

Construction costs

The projected construction cost of the 508-kilometer line is 1.1 trillion (“lakh crore”) rupees, which is $15 billion in exchange rate terms and about $55 billion in PPP terms. Per Wikipedia, the route includes only one tunnel, a 21-km approach to Mumbai with suburban and underwater tunneling (even if the gauges were compatible, using existing tracks like TGVs is impossible due to the use of every approach track by overcrowded Suburban Railway trains). The rest of the route is predominantly elevated, but the decision to runs the trains elevated rather than at-grade is only responsible for about 10% of its cost.

Despite the complexity of such a tunnel, there is no excuse for the high construction cost. In exchange rate terms it’s reasonable. Japan’s domestic Shin-Aomori extension of the Shinkansen cost about $55 million per kilometer, including a 26 km tunnel consisting of a third of the route and additional tunnels totaling a majority of the route. More recently, Japan’s new bout of Shinkansen construction costs about $30 billion for 389 km, but tunneling is extensive, with the Hokkaido route planned to be 76% in tunnel.

With India’s complete reliance on Japanese technology, paying the same as Japan in exchange rate terms is not surprising. It’s a disaster for India, which has to pay in depreciated rupees instead of leveraging its low-cost labor, but as far as Japan is concerned, it’s a perfect copy of the domestic Shinkansen system. Similar high costs can be observed for some Asian metro projects using Japanese financing, namely Dhaka (the world’s highest-cost elevated metro, even worse than in the US) and Jakarta.

In contrast, where India improves its rail network by tapping into Indian Railways’ own expertise, costs are low. Nearly half of India’s rail network is electrified, and to save money on expensive fuel, the country is rapidly electrifying the system, targeting 100% electrification. A plan to electrify 13,675 route-km in the next four years is to cost 12,134 crore rupees, about $123,000/km in exchange rate terms or $450,000/km in PPP terms. In the developed world, $1-1.5 million/km for electrification is reasonable, and the unreasonably expensive UK, US, and Canada go up to $5-10 million/km. Left to its own devices, Indian Railways can build things cheaply.

Network structure

India’s geography for high-speed rail is not easy. Mumbai, Surat, and Ahmedabad are the only three cities in the top 20 that lie on a straight line at easy HSR range. Delhi-Mumbai, Delhi-Kolkata, and Mumbai-Chennai are all just outside the best range for HSR (and Kolkata-Chennai is well outside it), having to rely on intermediate cities like Ahmedabad, Hyderabad, and Kanpur for ridership. Within Uttar Pradesh, Kanpur and Lucknow are both large cities, but the line connecting them is almost perpendicular to that connecting Delhi and Kolkata, so that only one can be served on the main line. In the South, there is a similar situation with Mumbai-Chennai, via either Bangalore or Hyderabad (and there, both routes should be built as Bangalore and Hyderabad are both near-megacities). Mumbai itself requires extensive tunneling in all directions: north toward Gujarat and Delhi, south toward Pune, and possibly also northeast toward the interior cities of Maharashtra.

I drew a possible map for a nationwide network. The total length is 17,700 double-track-km. It’s about the same length as most American proposals, and less than half as much as what China aims to build by 2025, but India has four times the population of the US and far higher population density, and its density is also several times that of China. For a better comparison, consider Pakistan: it is slightly less dense than India and has about 15% India’s population, and yet two spines totaling about 1,800 km, Karachi-Lahore and Lahore-Islamabad-Peshawar, would connect nearly every major city. Lying on the Indus, much of Pakistan has a linear population distribution, facilitating rail connections.

With a difficult urban geography for HSR, India has to take especial care to reduce construction costs. This means, in turn, that it needs to rely on indigenous expertise and standards whenever possible. When imported technology is unavoidable, it needs to provide its own financing (with an annual budget of 29 trillion rupees, it can afford to do so) and force Japanese, Korean, and European vendors to compete. A Chinese-style tech transfer (read: theft) is not possible – the vendors got burned once and won’t agree to the same again – but domestic driver training, with the foreign role restricted to the rolling stock (built to Indian standards) and engineering, is essential and unlikely to bother the global industry.

Cities and Cultural Cringe

Following up on my last post’s promise to tackle both cultural theory of risk and cultural cringe, here is my take on the latter issue.

It is normal for people to have some degree of national pride and fervor. Cultural cringe refers to the opposite trend: when, in some circumstances, people in certain countries feel national shame and develop an inferiority complex. The term cultural cringe itself was coined by A. A. Phillips in 1950, describing Australia’s inferiority complex toward Britain in literary fields: Australians thought their literature was too provincial and perhaps too incomprehensible to the British readers, and as a result many authors were uncomfortable making the local references celebrated in the literary canon of Britain, France, Russia, the US, etc. This notion has been generalized elsewhere. Amos Oz says he felt uncomfortable writing books in such a peripheral country as Israel until he read Sherwood Anderson’s Winesburg, Ohio, showing how literature of and by the provinces can thrive.

From its origin in Australian literature, the idea of the cultural cringe has expanded to other fields, including the law, social relations, technology, and business. It seems endemic in former colonies, especially ones that are not rich. One writer in Nigeria argues how best practices thinking is cultural cringe by giving an example of a recent legal importation that turns out to already exist in traditional Yoruba law. In Australia itself, political scientist L. J. Hume pushed back against the notion that there is cultural cringe, arguing it is true of literature but not economics of other fields. But in mass culture, the vast majority of countries, both developed and developing, consider American film and television superior to their own and have domestic industries that focus on arthouse films or low-budget flicks.

Cultural cringe in legal, political, or technological fields remains endemic in many other developed countries. In one recent example, Emmanuel Macron said France is inherently resistant to change and (by implication) ungovernable, comparing it negatively with Denmark. In business, 1980s-era America was replete with books telling managers how to think like a Japanese or German, which trend ended when the Japanese lost decade and the economic crisis of German unification made these countries less fashionable.

Lying in the intersection of business, politics, and technology, urbanism and transportation are amenable to analysis using this concept. As in the Nigerian example, the third world tends to have too much cultural cringe and too much faith in the merits of importing first-world methods. Conversely, the United States (and to a large extent Canada) today is resistant to outside ideas and does not know how to be a periphery.

Urban layout: there’s a world outside Europe

During the SB 827 debate in California, supporters reassured restive city residents that the density the bill promoted – up to 7 floors right next to transit lines and up to 5 a little farther away – was gentle. “Paris density,” they said. Everyone likes Paris as a tourist. Everyone recognizes Paris as good urbanism.

There is very little cultural cringe in the United States – on the contrary, Americans are solipsistic in every field. However, one of very few exceptions is that the American middle class vacations in Europe and is familiar with how walkable European cities are. (It’s even referenced on Mad Men when a minor character goes on walks in their car-oriented New York suburb.) Paris is the largest and richest city Americans of a certain wealth and education level can be expected to be familiar with and like, but by the same token the YIMBYs could mention Barcelona, Amsterdam, and Rome.

But it’s useful to think of what was not mentioned. Certainly not Hong Kong or Dubai, which seem to be mentioned almost exclusively negatively in Western discourse. Not Tokyo, which Westerners are much less likely to visit to the point that the Western blogs talking about Japanese urbanism (like Urban Kchoze) are notable for it. Nothing in the middle-income world, including some old cities (like Mexico City and Istanbul) that have building height, street width, and stylistic variation that first-world urbanists would approve of (and do if they’ve been there).

In this situation, the invocation of famous European cities feels less like a dialogue and more like an attempt to induce cringe defensively, to make people feel less attached to their cities’ American auto-oriented character. In effect, it’s an attack on “it will change the character of our neighborhood,” a line that’s much less common in countries that are used to thinking of themselves as inferior to whatever they consider the metropolitan core (such as the first world writ large in Israel, or the former colonial master in ex-colonies).

Transportation: a little cringe is good, but not too much

In the developing world, there is extensive cringe. Without using that term, I suggested it as a reason behind high construction costs in the third world, which are similar to the costs of the first world today and several times as high as those of the first world from back when its income levels were comparable to those of subway-building third-world countries, in the early 1900s. In Latin America and China, development is more inward-looking, and China in particular learned to build subways from the USSR in the 1950s, not a rich country. In former colonies, there seems to be a greater willingness to import methods from either the former colonizer or from countries that aggressively invest in third-world infrastructure, like Japan and China; the result is very high construction costs for projects for which I have data in India and other countries of that development level.

In some cases, like India’s high-speed rail program, the country imports technology wholesale, and Japan (or China) may insist on an exact copy of its methods. As it is, Japan refuses to call Taiwan High-Speed Rail a Shinkansen system even though it runs Shinkansen rolling stock: construction methods were European, so Japan only calls THSR a high-speed rail system using Shinkansen-based technology.

However, decisions like India’s standard-gauge metro lines happen even in indigenous systems. Delhi Metro uses standard gauge not for some turnkey technological import, but purely because it feels more modern whereas Indian mainline trains feel dinghy and dangerous. Evidently, Delhi Metro electrification is 25 kV, which is standard on mainline trains but unheard of on first-world metros; modifying subways for high-voltage electrification requires expensive concrete pouring, since high-voltage catenary requires more generous clearances to avoid arcing, whereas modifying rail gauge is routine since the European vendors are used to selling to broad-gauge Finland and Spain and the Japanese ones are used to their country’s multitude of gauges.

And if India errs on the side of too much shiny adoption of foreign technology, the US errs on the side of adopting too little. Americans do not think their country is inferior. American authors do not think they need to experience another country or speak another language before they write. There was a time when the American business community felt outcompeted, but today it feels like it’s at the top of the world, Silicon Valley having long left Japanese corporations in the dust; I stopped seeing complaints that American cars were inferior to German and Japanese ones not long after Obama’s auto industry bailout.

The American policy sphere seems especially constrained. There is some cultural cringe toward London, leading thinktanks like the Regional Plan Association and TransitCenter to overlearn from London’s peculiarities (like the Oyster fare cap and contactless credit card payment), but not much toward Continental Europe and practically none toward Japan. Instead, the attitude toward non-English-speaking countries is one of dismissal. When Richard Mlynarik pointed out to a Caltrain official that Japanese trains turned much faster at terminals than Caltrain thought possible, the official replied, “Asians don’t value life the way we do.”

If India fails to understand where its own methods could be superior despite being a peripheral country, the United States fails to understand that it’s a peripheral country in the first place. Transportation innovation rarely happens in North America. It happens in Western Europe and Japan, and to some extent in developing countries that have less cultural cringe than former colonies, such as Brazil and Colombia and their invention of BRT or Colombia, Bolivia, and Mexico’s use of aerial gondolas in mountainous suburban areas.

Urban development: you are not New York

I’ve been reading Aaron Renn’s blog, the Urbanophile, since maybe 2008. At the time he was still in Indianapolis, in (I believe) management consulting, writing about how his city was trying to become culturally and economically bigger than it was, and sometimes but not always succeeding. A recurrent theme in his writings has been that Midwestern American cities are desperate for development. They keep saying they need more creative people, more venture capital, or whatever else is in vogue. (In contrast, he says, Rhode Island, where he lived later, doesn’t even understand how peripheral it is.)

However, the way the Midwestern cities he focuses on try to attract this elusive development is through cheap copying. An old post of his I can no longer find contrasts world-class Indianapolis with world class in Indianapolis. The former involves investing in some city institution to make it world-class, or more realistically notable enough that boosters can call it world-class with a straight face. The latter involves inviting a starchitect or another person with international cachet (such as Richard Florida) to build something in Indianapolis that’s notable and is exactly as notable as what this person might build in any other city of that size, with no particular connection to the city itself.

In the transportation field, many American cities build mixed-traffic downtown streetcars and beam with pride if they get 4,000 riders per weekday. Often this mentality overrides any attempt to provide services to city residents: thus, the streetcar in Detroit is not integrated with the city’s bus network, and in fact a bus runs on the same street, on different lanes from the streetcar. This isn’t about some mythical preference for rail over bus: these cities build whatever they hear is in vogue and will get them noticed by New York media, whether it’s peak-only commuter rail, a downtown streetcar, a limited bus that calls itself BRT, or now a bus network redesign around untimed 15-minute frequencies.

Cringe vs. dialogue

It’s important to distinguish dialogue with a foreign culture and cultural cringe toward it. One difference is that cringe implies infatuation; however, infatuation can also develop among immigrants who are steeped in the metropole’s culture after having lived there even while maintaining ties to the old country. A bigger difference is the extent of two-way dialogue. Israelis use the expression “unbroken country” to refer to the mythical average first-world country in which you can get things done without having to tell government bureaucrats that you served in the military with their bosses; however, few have lived abroad long enough to know the details of what makes these countries tick better.

With limited knowledge of the core, the periphery can worship at the feet of the few people who do know, which leads to political bias. This is where moral panics of no-go zones come from: there is an Israeli television show purporting to portray how things are in Europe, but any connection between Belleville (or other racially diverse Paris neighborhoods) and what they depict is completely incidental. In that case, the bias is right-wing. In the opposite direction, left-wing bias can occur when American liberals and socialists are enamored by European health care and education systems and elide a thousand details that distinguish them from American renditions of single-payer health care or free college tuition.

But the biased reaction is only common in places that care little about how to govern. “Well, actually Tower Hamlets is a no-go zone” is not a blueprint for reducing nonwhite immigration to the United States or Israel. Instead, in the policy sphere a more common reaction is a shrug. Dialogue is threatening: the people capable of it are typically not the top pundits on this issue. Instead, it’s more common to aggressively dismiss knowledge that’s hard to access, even among people who at the same time invoke the cringe. In Israel it takes the form of self-denigrating lines like “this is Israel, not Finland.” Cultural cringe leads to lower expectations this way.

When Phillips criticized Australian authors who deracinated their writing to appeal to British taste, he was implicitly saying that Australians couldn’t root their literature in British experience. Oz, similarly, felt constrained about writing when he was young because living in Israel, he could not root his books in Paris, Milan, and other flashy cities whose books he devoured. The economic (or legal, or technological) analogue of this observation is that the reason there is cultural cringe is that people in peripheral areas (which in transportation include the United States) are too unfamiliar with the core and cannot dialogue with it the way people in different parts of the core can.

Urbanism is not literature. One doesn’t need extraordinary sensitivity and a lifetime (short as it may be) in a culture to produce very good insights about transportation, housing, or municipal governance. It’s possible to break out of the cringe by acquiring detailed knowledge of how the core operates. In the case of the third world and subway construction, it means learning enough about current and historical construction methods to be able to propose ways to build infrastructure at low costs commensurate with these cities’ low wages; in the case of the United States, it means learning enough about what makes European, Japanese, Latin American, etc. urbanism tick that it can be adopted domestically.

Urbanism is not literature in a far more important sense: there really are better and worse traditions there. It’s not enough to have pride in what you have when what you have is a third-world city where the poor don’t have running water, or for that matter an American city that would shut down instantly were gas prices to rise to levels necessary to stop global warming. Learning from the core is crucial. It’s just equally important to do so through dialogue and not through the ignorant self-denigration that is cultural cringe.

Overbuilding for Future Capacity

I ran a Patreon poll with three options for posts about design compromises: overbuilding for future capacity needs, building around compromises with unfixably bad operations, and where to build when it’s impossible to get transit-oriented development right. Overbuilding won with 16 votes to bad operations’ 10 and development’s 13.

It’s generally best to build infrastructure based exactly on expected use. Too little and it gets clogged, too much and the cost of construction is wasted. This means that when it comes to rail construction, especially mainline rail, infrastructure should be sized for the schedule the railroad intends to run in the coming years. The Swiss principle that the schedule comes first was just adopted in Germany; based on this principle, infrastructure construction is geared around making timed transfers and overtakes and shortening schedules to be an integer (or half-integer) multiple of the headway minus turnaround time for maximum equipment utilization.

And yet, things aren’t always this neat. This post’s topic is the issue of diachronic optimization. If I design the perfect rail network for services that come every 30 minutes, I will probably end up with a massive upgrade bill if ridership increases to the point of requiring a train every 20 minutes instead. (I chose these two illustrative numbers specifically because 30 is not a multiple of 20.) In some cases, it’s defensible to just build for higher capacity – full double-tracking even if current ridership only warrants a single track with passing sidings, train stations with more tracks in case more lines are built to connect to them, and so on. It’s a common enough situation that it’s worth discussing when what is technically overbuilding is desirable.

Expected growth rates

A fast-growing area can expect future rail traffic to rise, which implies that building for future capacity today is good. However, there are two important caveats. The first is that higher growth usually also means higher uncertainty: maybe our two-track commuter line designed around a peak of 8 trains per hour in each direction will need 32 trains per hour, or maybe it will stay at 8 for generations on end – we usually can’t guarantee it will rise steadily to 16.

The second caveat, applicable to fast-growing developing countries, is that high growth raises the cost of capital. Early British railroads were built to higher standard than American ones, and the explanation I’ve seen in the rail history literature is that the US had a much higher cost of capital (since growth rates were high and land was free). Thus mainlines in cities (like the Harlem) ran in the middle of the street in the US but on elevated structures in Britain.

But with that in mind, construction costs have a secular increase. Moreover, in constrained urban areas, the dominant cost of above-ground infrastructure cost is finding land for multiple tracks of railroad (or lanes of highway), and those are definitely trending up. The English working class spent 4-5% of its income on rent around 1800 (source, PDF-p. 12); today, spending one third of income on rent is more typical, implying housing costs have grown faster than incomes, let alone the general price index.

The upshot is that cities that can realistically expect large increases in population should overbuild more, and optimize the network around a specific level of traffic less. Switzerland and Germany, both of which are mature, low-population growth economies, can realistically predict traffic many decades hence. India, not so much.

Incremental costs

The expected growth rate helps determine the future benefits of overbuilding now, including reduced overall costs from fronting construction when costs are expected to grow. Against these benefits, we must evaluate the costs of building more than necessary. These are highly idiosyncratic, and depend on precise locations of needed meets and overtakes, potential connection points, and the range of likely train frequencies.

On the Providence Line, the infrastructure today is good for an intercity train at current Amtrak speed every 15 minutes and a regional train making every stop every 15 minutes. There is one overtake segment at Attleboro, around three quarters of the way from Boston to Providence, and the line is otherwise double-track with only one flat junction, with the Stoughton branch. If intercity trains are sped up to the maximum speed permitted by right-of-way geometry, an additional overtake segment is required about a quarter of the way through, around Readville and Route 128. If the trains come every 10 minutes, in theory a mid-line overtake in Sharon is required, but in practice three overtakes would be so fragile that instead most of the line would need to be four-tracked (probably the entire segment from Sharon to Attleboro at least). This raises the incremental costs of providing infrastructure for 10-minute service – and conversely, all of this is in lightly developed areas, so it can be deferred without excessive future increase in costs.

An even starker example of high incremental costs is in London. Crossrail 2 consists of three pieces: the central tunnel between Clapham Junction and Euston-St. Pancras, the northern tunnel meandering east to the Lea Valley Lines and then back west to connect to the East Coast Main Line, and the southern tunnel providing two extra tracks alongside the four-track South West Main Line. The SWML is held to be at capacity, but it’s not actually at the capacity of an RER or S-Bahn system (as I understand it, it runs 32 trains per hour at the peak); the two extra tracks come from an expectation of future growth. However, the extreme cost of an urban tunnel with multiple new stations, even in relatively suburban South London, is such that the tunnel has to be deferred in favor of above-ground treatments until it becomes absolutely necessary.

In contrast, an example of low incremental costs is putting four tracks in a cut-and-cover subway tunnel. In absolute terms it’s more expensive than adding passing tracks in suburban Massachusetts, but the effect on capacity is much bigger (it’s an entire track pair, supporting a train every 2 minutes), and moreover, rebuilding a two-track tunnel to have four tracks in the future is expensive. Philadelphia most likely made the right choice to build the Broad Street Line four-track even though its ridership is far below the capacity of two – in the 1920s it seemed like ridership would keep growing. In developing countries building elevated or cut-and-cover metros, the same logic applies.

Sundry specifics

The two main aspects of every infrastructure decision are costs and benefits. But we can discern some patterns in when overbuilding is useful:

  1. Closing a pinch point in a network, such as a single- or double-track pinch point or a flat junction, is usually worth it.
  2. Cut-and-cover or elevated metro lines in cities that are as large as prewar New York (which had 7 million people plus maybe 2 million in the suburbs) or can expect to grow to that size class should have four tracks.
  3. On a piece of infrastructure that is likely to be profitable, like high-speed rail, deferring capacity increases until after operations start can be prudent, since the need to start up the profitable system quickly increase the cost of capital.
  4. Realistic future projections are imperative. Your mature first-world city is not going to triple its travel demand in the foreseeable future.
  5. Higher uncertainty raises the effective cost of capital, but it also makes precise planning to a specific schedule more difficult, which means that overbuilding to allow for more service options becomes reasonable.
  6. The electronics before concrete principle extends to overbuilding: it’s better to complete a system (such as ETCS signaling or electrification) even if some branches don’t merit it yet just because of the benefits of having a single streamlined class of service, and because of the relatively low cost of electronics.

Usually cities and countries should not try to build infrastructure ahead of demand – there are other public and private priorities competing for the same pool of money. But there are some exceptions, and I believe these principles can help agencies decide. As a matter of practice, I don’t think there are a lot of places in the developed world where I’d prescribe overbuilding, but in the developing world it’s more common due to higher future growth rates.

The Value of Modern EMUs

I do not know how to code. The most complex actually working code that I have written is 48 lines of Python that implement a train performance calculator that, before coding it, I would just run using a couple of Wolfram Alpha formulas. Here is a zipped version of the program. You can download Python 2.7 and run it there; there may also be online applets, but the one I tried doesn’t work well.

You’ll get a command line interface into which you can type various commands – for example, if you put in 2 + 5 the machine will natively output 7. What my program does is define functions relevant to train performance: accpen(k,a,b,c,m,x1,x2,n) is the acceleration penalty from speed x1 m/s to speed x2 m/s where x1 < x2 (if you try the other way around you’ll get funny results) for a train with a power-to-weight ratio of k kilowatts per ton, an initial acceleration rate of m m/s^2, and constant, linear, and quadratic running resistance terms a, b, and c. To find the deceleration penalty, put in decpen, and to find the total, either put in the two functions and add, or put in slowpen to get the sum. The text of the program gives the values of a, b, and c for the X2000 in Sweden, taken from PDF-p. 64 of a tilting trains thesis I’ve cited many times. A few high-speed trainsets give their own values of these terms; I also give an experimentally measured lower air resistance factor (the quadratic term c) for Shinkansen. Power-to-weight ratios are generally available for trainsets, usually on Wikipedia. Initial acceleration rates are sometimes publicly available but not always. Finally, n is a numerical integration quantity that should be set high, in the high hundreds or thousands at least. You need to either define all the quantities when you run the program, or plug in explicit numbers, e.g. slowpen(20, 0.0059, 0.000118, 0.000022, 1.2, 0, 44.44, 2000).

I’ve used this program to find slow zone penalties for recent high-speed rail calculations, such as the one in this post. I thought it would not be useful for regional trains, since I don’t have any idea what their running resistance values are, but upon further inspection I realized that at speeds below 160 km/h resistance is far too low to be of any consequence. Doubling c from its X2000 value to 0.000044 only changes the acceleration penalty by a fraction of a second up to 160 km/h.

With this in mind, I ran the program with the parameters of the FLIRT, assuming the same running resistance as the X2000. The FLIRT’s power-to-weight ratio is 21.1 in Romandy, and I saw a factsheet in German-speaking Switzerland that’s no longer on Stadler’s website citing slightly lower mass, corresponding to a power-to-weight ratio of 21.7; however, these numbers do not include passengers, and adding a busy but not full complement of passengers adds mass to the train until its power-to-weight ratio shrinks to about 20 or a little less. With an initial acceleration of about 1.2 m/s^2, the program spits out an acceleration penalty of 23 seconds from 0 to 160 km/h (i.e. 44.44 m/s) and a deceleration penalty of 22 seconds. In videos the acceleration penalty appears to be 24 seconds, which difference comes from a slight ramping up of acceleration at 0 km/h rather than instant application of the full rate.

In other words: the program manages to predict regional train performance to a very good approximation. So what about some other trains?

I ran the same calculation on Metro-North’s M-8. Its power-to-weight ratio is 12.2 kW/t (each car is powered at 800 kW and weighs 65.5 t empty), shrinking to 11.3 when adding 75 passengers per car weighing a total of 5 tons. A student paper by Daniel Delgado cites the M-8’s initial acceleration as 2 mph/s, or 0.9 m/s^2. With these parameters, the acceleration penalty is 37.1 seconds and the deceleration penalty is 34.1 seconds; moreover, the paper show how long it takes to ramp up to full acceleration rate, and this adds a few seconds, for a total stop penalty (excluding dwell time) of about 75 seconds, compared with 45 for the FLIRT.

In other words: FRA-compliant EMUs add 30 seconds to each stop penalty compared with top-line European EMUs.

Now, what about other rolling stock? There, it gets more speculative, because I don’t know the initial acceleration rates. I can make some educated guesses based on adhesion factors and semi-reliable measured acceleration data (thanks to Ari Ofsevit). Amtrak’s new Northeast Regional locomotives, the Sprinters, seem to have k = 12.2 with 400 passengers and m = 0.44 or a little less, for a penalty of 52 seconds plus a long acceleration ramp up adding a brutal 18 seconds of acceleration time, or 70 in total (more likely it’s inaccuracies in data measurements – Ari’s source is based on imperfect GPS samples). Were these locomotives to lug heavier coaches than those used on the Regional, such as the bilevels used by the MBTA, the values of both k and m would fall and the penalty would be 61 seconds even before adding in the acceleration ramp. Deceleration is slow as well – in fact Wikipedia says that the Sprinters decelerate at 5 MW and not at their maximum acceleration rate of 6.4 MW, so in the decpen calculation we must reduce k accordingly. The total is somewhere in the 120-150 second range, depending on how one treats the measured acceleration ramp.

In other words: even powerful electric locomotives have very weak acceleration, thanks to poor adhesion. The stop penalty to 160 km/h is about 60 seconds higher than for the M-8 (which is FRA-compliant and much heavier than Amfleet coaches) and 90 seconds higher than for the FLIRT.

Locomotive-hauled trains’ initial acceleration is weak that reducing the power-to-weight ratio to that of an MBTA diesel locomotive (about 5 kW/t) doesn’t even matter all that much. According to my model, the MBTA diesels’ total stop penalty to 160 km/h is 185 seconds excluding any acceleration ramp and assuming initial acceleration is 0.3 m/s^2, so with the ramp it might be 190 seconds. Of note, this model fails to reproduce the lower acceleration rates cited by a study from last decade about DMUs on the Fairmount Line, which claims a 70-second penalty to 100 km/h; such a penalty is far too high, consistent with about 0.2 m/s^2 initial acceleration, which is far too weak based on local/express time differences on the schedule. The actual MBTA trains only run at 130 km/h, but are capable of 160, given long enough interstations – they just don’t do it because there’s little benefit, they accelerate so slowly.

Unsurprisingly, modern rail operations almost never buy locomotives for train services that are expected to stop frequently, and some, including the Japanese and British rail systems, no longer buy electric locomotives at all, using EMUs exclusively due to their superior performance. Clem Tillier made this point last year in the context of Caltrain: in February the Trump administration froze Caltrain’s federal electrification funding as a ploy to attack California HSR, and before it finally relented and released the money a few months later, some activists discussed Plan B, one of which was buying locomotives. Clem was adamant that no, based on his simulations electric locomotives would barely save any time due to their weak acceleration, and EMUs were obligatory. My program confirms his calculations: even starting with very weak and unreliable diesel locomotives, the savings from replacing diesel with electric locomotives are smaller than those from replacing electric locomotives with EMUs, and depending on assumptions on initial acceleration rates might be half as high as the benefits of transitioning from electric locomotives to EMUs (thus, a third as high as those of transitioning straight from diesels to EMUs).

Thus there is no excuse for any regional passenger railroad to procure locomotives of any kind. Service must run with multiple units, ideally electric ones, to maximize initial acceleration as well as the power-to-weight ratio. If the top speed is 160 km/h, then a good EMU has a stop penalty of about 45 seconds, a powerful electric locomotive about 135 seconds, and a diesel locomotive around 190 seconds. With short dwell times coming from level boarding and wide doors, EMUs completely change the equation for local service and infill stops, making more stops justifiable in places where the brutal stop penalty of a locomotive would make them problematic.

Construction Costs: Signaling

I launched a Patreon poll about construction cost posts, offering three options: signaling and electrification, rolling stock, and historical costs. Signaling and electrification won with 29 votes to historical costs’ 20 and rolling stock’s 6. This post covers signaling, and a subsequent post will cover electrification.

I was hoping to have a good database of the cost of installing train protection systems. Instead, I only have a few observations. Most metro lines in the world have searchable construction costs given a few minutes on Google, and a fair number of rolling stock orders are reported alongside their costs on Railway Gazette and other trade publications. In contrast, recent numbers for signaling are hard to get.

The gold standard for mainline rail signaling is European Train Control System, or ETCS; together with a specified GSM communications frequency it forms the European Rail Traffic Management System, or ERTMS. It’s a system designed to replace incompatible national standards that are often nearing the end of their lives (e.g. Germany expects that every person qualified to maintain its legacy LZB system will retire by 2026). It’s of especial interest to high-speed lines, since they are new and must be signaled from scratch based on the highest available standard, and to freight lines, since freight rail competes best over long distances, crossing national borders within Europe. Incompatible standards between countries are one reason why Europe’s freight rail mode share is weaker than that of the US, China, or Russia (which is Eurasian rather than European when it comes to freight rail).

As with every complex IT project, installation has fallen behind expectations. The case of Denmark is instructive. In 2008, Denmark announced that it would install ETCS Level 2 on its entire 2,667-km network by 2020, at the cost of €3.2 billion, or about $1.5 million per route-km. This was because, unlike both of its neighbors, Denmark has a weak legacy rail network outside of the Copenhagen S-tog, with little electrification and less advanced preexisting signaling than LZB. Unfortunately, the project has been plagued with delays, and the most recent timetable calls for completion by 2030. The state has had to additionally subsidize equipping locomotives with ETCS, but the cost is so far low, around $100,000 per locomotive or a little more.

That said, costs in Denmark seem steady, if anything slightly lower than budgeted, thanks to a cheap bid in 2011-2. The reason given for the delay is that Banedanmark changed its priorities and is now focusing on electrification. But contracts for equipping the tracks for ETCS are being let, and the cost per kilometer is about €400,000, or $500,000. The higher cost quoted above, $1.5 million per km, includes some fixed development costs and rolling stock costs.

Outside Denmark, ETCS Level 2 installation continues, but not at a nationwide scale, even in small countries. In 2010, SNCB rejected the idea of near-term nationwide installation, saying that the cost would be prohibitive: €4.68 billion for a network of 3,607 km, about $1.6 million per route-km. This cost would have covered not just signaling the tracks but also modifying interlockings; it’s not purely electronics but also concrete.

The Netherlands is planning extensive installation as well. As per Annex V of an EU audit from last year (PDF-pp. 58-59), the projected cost is around $2 million per route-km; the same document also endorses Denmark’s original budget, minus a small reduction as detailed above due to unexpectedly favorable bids. Locomotive costs are said to be not about $100,000 but €300,000 for new trainsets or €500,000 for retrofitting older trainsets.

A cheaper version, ETCS Level 1, is also available. I do not know its cost. Switzerland is about to complete the process of a nationwide installation. It permits a trainset equipped with just ETCS equipment and no other signaling to use the tracks, improving interoperability. However, it is an overlay on preexisting systems, so it is only a good fit in places with good preexisting signaling. This includes Switzerland, Germany, and France, but not Denmark or other countries with weak legacy rail networks, including the US. The Northeast Corridor’s ACSES system is similar to ETCS Level 1, but it’s an overlay on top of a cab signaling system installed by the Pennsylvania Railroad in the 1930s.

Comparing this with American costs is difficult. American positive train control, or PTC, uses lower-capacity overlay signaling, nothing like ETCS Level 2. One article claims that the cost per track-km (not route-km) on US commuter rail is about $260,000. On the MBTA, the projected cost is $517 million for 641 km, or $800,000 per route-km; on the LIRR it’s $1 billion for 513 route-km, or $1.9 million per route-km. Observe that the LIRR is spending about as much on a legacy tweak as Denmark and the Netherlands are on a high-capacity system built from scratch.

Why Northeast Corridor Privatization is Doomed to Failure

Alex Armlovich asked me whether it’s possible to design a public-private partnership on the Northeast Corridor (NEC) to build high-speed rail. I took it to a Patreon poll, in which it prevailed over three other options (why land value taxation is overrated, why community groups oppose upzoning, and what examples of transit success there are in autocracies). On social media I gave a brief explanation for why such a privatization scheme would fail: the NEC has many users sharing tracks, requiring coordination of schedules and infrastructure, and privatizing one component would create incentives for rent-seeking rather than good work. In this post I am going to explain this more carefully.

Conceptually, the impetus for privatization is that the public sector cannot provide certain things successfully because it is politically controlled. For example, political control of infrastructure tends to lead to spreading investment around across a number of regions rather than where it is most needed; when Japan National Railways was broken up and privatized, the new companies let go of many lightly-used rural lines and focused on the urban commuter rail networks and the Shinkansen. Political control may also make it harder to keep down headcounts or wages. A competent government that recognizes that it will always be subject to political decisionmaking about services that should not be political will aim to devolve control of these services to the private sector.

The problem with this story is that privatization itself is a public program. This means that the government needs to be in good enough shape to write a PPP that encourages good service and discourages rent-seeking. Such a government entity does not exist in the realm of American public transportation. This doesn’t mean that all privatization deals are bad, but it means that only the simplest deals have any chance of success, and those deals in turn have the least impact.

When it comes to HSR, private operations work provided there is no or almost no need to coordinate schedules and fares with anyone else. One example is Texas, which has no commuter rail between Dallas and Houston nor any good reason to ever run such service. In California, this is also more or less the case: Caltrain-HSR compatibility is needed, but that’s a small portion of the line and could be resolved relatively easily.

In the Northeast, where there is extensive commuter rail, such coordination is indispensable. Without it, any operator has an incentive to make life miserable for the commuter rail operators and then demand state subsidies to allow regional trains on the track. Amtrak is already screwing other NEC users by charging high rates for electricity (which is supposedly the reason Conrail deelectrified, having previously run freight service on the NEC with electric locomotives) and by coming up with infrastructure plans that make regional rail modernization harder and demanding state money for them. If anything, the political control makes things less bad, because congressional representatives can yell at Amtrak; they will have less leverage over a private operator. In the other direction, Metro-North is slowing down Amtrak between New Rochelle and New Haven for the convenience of its own dispatching, and is likely to keep doing so under any PPP deal.

I have written many posts about what it would take to institute HSR on the NEC at the lowest possible cost. All of these make the same point, from many angles: organization – that is, improving timetabling – is vastly cheaper than pouring concrete and building bypass tracks. In chronological order, I’ve written,

Privatization is supposed to solve the problems of an incompetent public sector. But Amtrak’s incompetence is not really about wages or staffing; NEC trains are overstaffed relative to Shinkansen trains, but not relative to TGVs. Nor is it about unprofitable branch lines, not when the proposal is to privatize the NEC alone, rather than the entirety of Amtrak so that the private operator could shut down the long-distance trains. Some of the incompetence involves politicized procurement, but this is not the dominant source of high NEC costs. No: the incompetence manifests itself first of all in poor coordination between the various users of the NEC. Given better coordination, Amtrak could shave a substantial portion of its New York-New Haven runtime, perhaps by 10-20 minutes without any bridge replacements, and reduce schedule padding elsewhere.

To fix this situation, some organization would need to determine the timetables up and down the line and handle dispatching and train priority. In the presence of such an organization (which could well be Amtrak itself given top-to-bottom changes in management), a PPP is of limited benefit, because the private operator would be running on a schedule set publicly. Absent such an organization, privatization would make the agency turf battles that plague the entire NEC even worse than they are today.

In 2009, SNCF proposed to develop HSR in four places in the US: California, Texas, Florida, and the Midwest. The NEC, with its existing public intercity and regional rail operations, was not on its map. More recently, Texas Central is a private Japanese initiative to build HSR between Dallas and Houston. On the NEC the only Japanese initiative involved maglev between Washington and Baltimore, a mode of transportation that doesn’t fit the NEC’s context but is guaranteed to not share tracks with any state-owned commuter rail operation.

The invention of HSR itself was not privatized, and the European privatization paradigm involves public control of track infrastructure. Competing operators (some public, some private) can access tracks by paying a track charge, set equally across all operators. But even then, the track infrastructure owner has some decisions to make about design speed – mixing slower and faster trains reduces capacity, so if there’s a mixture of both, does the infrastructure owner assume the design speed is high and charge slower trains extra for taking high-speed slots or does it assume the design speed is low and charge faster trains extra? So far the public rail infrastructure operators have swept this question under the rug, relying on the fact that on high-speed tracks all trains go fast and on low-speed ones few HSR services go faster than an express regional train.

Unfortunately, the NEC requires large speed differences on the same route to avoid excessive tunneling. This complicates the EU’s attempts at a relatively hands-off approach to rail competition in two ways. First, it’s no longer possible to ignore the design speed question, not when regional trains should be connecting Boston and Providence in 51 minutes and high-speed trains in 20 minutes, on shared tracks with strategic overtakes. And second, the overtakes must be timed more precisely, which means whoever controls the tracks needs to also take an active hand in planning the schedules.

Handwaving the problems of the public sector using privatization works in some circumstances, such as those of Japan National Railways, but could never work on the NEC. The problems a PPP could fix, including labor and rolling stock procurement, are peripheral; the problems it would exacerbate, i.e. integrating infrastructure and schedule planning, are the central issues facing the NEC. There is no alternative to a better-run, better-managed state-owned rail planning apparatus.

What the Spinetta Axe Reveals About Cost Control

The Macron administration commissioned a report about the future of SNCF by former Air France chief Jean-Cyril Spinetta. Spinetta released his report four days ago, making it clear that rail is growing in France but most of the network is unprofitable and should be shrunk. There is an overview of the report in English on Railway Gazette, and some more details in French media (La Tribune calls it “mind-blowing,” Les Echos “explosive”); the full proposal can be read here. Some of the recommendations in the Spinetta report concern governance, but the most radical one calls for pruning about 45% of SNCF’s network by length, which carries only 2% of passenger traffic. Given the extent of the proposed cut, it’s appropriate to refer to this report as the Spinetta Axe, in analogy with the Beeching Axe.

I wrote a mini-overview on Twitter, focusing on the content of the Axe. In this post I’m going to do more analysis of SNCF’s cost control problem and what we can learn from the report. The big takeaway is that cost control pressure is the highest on low-ridership lines, rather than on high-ridership lines. There is no attempt made to reduce SNCF’s operating costs in Ile-de-France or on the intercity main lines through better efficiency. To the British or American reader, it’s especially useful to read the report with a critical eye, since it is in some ways a better version of British and American discussions about efficiency that nonetheless accept high construction costs as a given.

SNCF is Losing Money

The major problem that the report begins with is that SNCF is losing money. It is not getting state subsidies, but instead it borrows to fund operating losses, to the tune of €2.8 billion in annual deficit (p. 28), of which €1.2-1.4 billion come from interest expenses on past debt and €1 billion come from taxes. Its situation is similar to that of Japan National Railways in the 1970s, which accumulated debt to fund operating losses, which the state ultimately wiped out in the restructuring and privatization of 1987. The report is aiming to find operating savings to put SNCF in the black without breaking up or privatizing the company; its proposed change to governance (turning SNCF into an SA) is entirely within the state-owned sector.

Unlike the Beeching report, the Spinetta report happens in a context of rising rail traffic. It opens up by making it clear that rail is not in decline in France, pointing out growth in both local and intercity ridership. However, SNCF is still losing money, because of the low financial performance of the legacy network and regional lines. The TGV network overall is profitable (though not every single train is profitable), but the TERs are big money pits. Annual regional contributions to the TER network total €3 billion, compared with just €1 billion in fare revenue (p. 30). The legacy intercity lines, which are rebranded every few years and are now called TETs, lose another €300 million. Some of the rising debt is just capital expenses that aren’t fully funded, including track renovation and new rolling stock; even in the Paris region, which has money, rolling stock purchase has only recently been devolved from SNCF to the regional transport association (p. 31).

In fact, the large monetary deficit is a recent phenomenon. In 2010, SNCF lost €600 million, but paid €1.2 billion in interest costs (p. 27); its operating margin was larger than its capital expenses. Capital expenses have risen due to increase in investment, while the operating margin has fallen due to an increase in operating costs. The report does not go into the history of fares (it says French rail fares are among Europe’s lowest, but its main comparisons are very high-fare networks like Switzerland’s, and in reality France is similar to Germany and Spain). But it says fares have not risen, for which SNCF’s attempt to provide deliberately uncomfortable lower-fare trains must share the blame.

The Spinetta Axe

The Spinetta report proposes multiple big changes; French media treats converting SNCF to an SA as a big deal. But in terms of the network, the biggest change is the cut to low-performing rail branches. The UIC categorizes rail lines based on traffic levels and required investment, from 1 (highest) to 9 (lowest). Categories 7-9 consist of 44% of route-km but only 9% of train-km (p. 48) and 2% of passengers (p. 51). Annual capital and operating spending on these lines is €1.7 billion (about €1 per passenger-km), and bringing them to a state of good repair would cost €5 billion. In contrast, closing these lines would save €1.2 billion a year.

But the report is not just cuts. Very little of SNCF’s operating expenditure is marginal: on p. 34 the report claims that marginal operating costs only add up to €1 billion a year, out of about €5.5 billion in total operating costs excluding any and all capital spending. As a result, alongside its recommendations to close low-ridership lines, it is suggesting increasing off-peak frequency on retained lines (p. 54, footnote 53).

There is no list of which lines should be closed; this is left for later. Page 50 has a map of category 7-9 lines, which are mostly rural branch lines, for example Nice-Breil-Tende. But a few are more intense regional lines, around Lyon, Toulouse, Rennes, Lille, and Strasbourg, and would presumably be kept and maintained to higher standards. Conversely, some category 5-6 lines could also be closed.

The report is equally harsh toward the TGV. While the TGV is overall profitable, not all parts of it are competitive. Per the report, the breakeven point with air travel, on both mode share and operating costs, is 3 hours one-way. At 3:30-4 hours one way, the report describes the situation for trains as “brutal,” with planes getting 80% mode share (p. 61). With TGV operating costs of €0.06/seat-km without capital (€0.07 with), it is uncompetitive on cost with low-cost airlines beyond 700 km, where EasyJet and Air France can keep costs down to €0.05/seat-km including capital and Ryanair to €0.04.

And this is where the report loses me. The TGV’s mode share versus air is consistently higher than that given in the report. One study imputes a breakeven point at nearly 4 hours. A study done for the LGV PACA, between Marseille and Nice, claims that as of 2009, the TGV had a 30% mode share on Paris-Nice, even including cars; its share of the air-rail market was 38%. This is a train that takes nearly 6 hours and was delayed three out of four times I took it, and the fourth time only made it on time because its timetable was unusually padded between Marseille and Paris. On Paris-Toulon, where the TGV takes about 4 hours, its mode share in 2009 was 54%, or 82% of the air-rail market.

SNCF has some serious operating cost issues. For example, the conventional TGVs (i.e. not the low-cost OuiGo) have four conductors per 200-meter train; the Shinkansen has three conductors per 400-meter train. The operating costs imputed from the European and East Asian average in American studies are somewhat lower, about $0.05-6/seat-km, or about €0.04-5/seat-km, making HSR competitive with low-cost airlines at longer range. However, there is no attempt to investigate how these costs can be reduced. One possibility, not running expensive TGVs on legacy lines but only on high-speed lines, is explicitly rejected (p. 64), and rightly so – Rennes, Toulouse, Mulhouse, Toulon, Nice, and Nantes are all on legacy lines.

This is something SNCF is aware of; it’s trying to improve fleet utilization to reduce operating costs by 20-30%. With higher fleet utilization, it could withdraw most of its single-level trains and have a nearly all-bilevel fleet, with just one single-level class, simplifying maintenance and interchangeability in similar manner to low-cost carriers’ use of a single aircraft class. However, this drive is not mentioned at all in the report, which takes today’s high costs as a given.

Efficiencies not Mentioned

The biggest bombshell I saw in the report is not in the recommendations at all. It is not in the Spinetta Axe, but in a table on p. 21 comparing SNCF with DB. The two networks are of similar size, with DB slightly larger, 35,000 route-km and 52,000 track-km vs. 26,000 and 49,000 on SNCF. But DB’s annual track maintenance budget is €1.4 billion whereas SNCF’s is €2.28 billion. Nearly the entire primary deficit of SNCF could be closed just by reducing track maintenance costs to German levels, without cutting low-usage lines.

Nonetheless, there is no investigation of whether it’s possible to conduct track maintenance more efficiently. Here as with the TGV’s operating expenses, the report treats unit costs as a fixed constant, rather than as variables that depend on labor productivity and good management.

Nor is there any discussion of rolling stock costs. Paris’s bespoke RER D and E trains, funded locally on lines to be operated by SNCF, cost €4.7 million per 25 meters of train length, with 30% of this cost going to design and overheads and only 70% to actual manufacturing. In Sweden, the more standard KISS cost €2.9 million per 25-meter car.

Low-ridership dilapidated rural branch lines are not the only place in the network where it’s possible to reduce costs. Rolling stock in Paris costs too much, maintenance on the entire network costs too much, TGV operating costs are higher than they should be, and fleet utilization in the off-peak is very low. The average TGV runs for 8 hours a day, and SNCF hopes to expand this to 10.

The Impetus for Cost Control

The Beeching Axe came in the context of falling rail traffic. The Spinetta Axe comes in the context of rapidly growing SNCF operating costs, recommending things that could and probably should have been done ten years ago. But ten years ago, SNCF had a primary surplus and there was no pressure to contain costs. By the same token, the report is recommending pruning the weakest lines, but ignores efficiencies on the strong lines, on the “why mess with what works?” idea.

The same effect is seen regionally. French rolling stock costs do not seem unusually high outside Paris. But Ile-de-France has money to waste, so it’s spending far too much on designing new rolling stock that nobody else has any use for. This is true outside France as well: the high operating costs of the subway in New York are not a US-wide phenomenon, but rather are restricted to New York, Boston, and Los Angeles, while the rest of the country, facing bigger cost pressure than New York and Boston, is forced to run trains for the same cost as the major European cities. It is also likely that New York (and more recently London) allowed its construction costs to explode to extreme levels because, with enough money to splurge on high-use lines like 63rd Street Tunnel and Second Avenue Subway, it never paid attention to cost control.

This approach to cost control is entirely reactive. Places with high operating or capital costs don’t mind these costs when times are good, and then face crisis when times are bad, such as when the financial crisis led to stagnation in TGV revenue amidst continued growth in operating costs, or when costs explode to the point of making plans no longer affordable. In crisis mode, a gentle reduction in costs may not be possible technically or politically, given pressure to save money fast. Without time to develop alternative plans, or learn and adopt best industry practices, agencies (or private companies) turn to cuts and cancel investment plans.

A stronger approach must be proactive. This means looking for cost savings regardless of the current financial situation, in profitable as well as unprofitable areas. If anything, rich regions and companies are better placed for improving efficiency: they have deep enough pockets to finance the one-time cost of some reforms and to take their time to implement reforms correctly. SNCF is getting caught with its pants down, and as a result Spinetta is proposing cuts but nothing about reducing unit operating and maintenance costs. Under a proactive approach, the key is not to get caught with your pants down in the first place.

High-Speed Rail from New Rochelle to Greens Farms: Impacts, Opportunities, and Analysis

I was asked by Greg Stroud of SECoast to look at HSR between New Rochelle and Greens Farms. On this segment (and, separately, between Greens Farms and Milford), 300+ km/h HSR is not possible, but speedups and bypasses in the 200-250 area are. The NEC Future plan left the entire segment from New York to New Haven as a question mark, and an inside source told me it was for fear of stoking NIMBYism. Nonetheless, SECoast found a preliminary alignment sketched by NEC Future and sent it to me, which I uploaded here in Google Earth format – the file is too big to display on Google Maps, but you can save and view it on your own computer. Here’s my analysis of it, first published on SECoast, changed only on the copy edit level and on English vs. metric units.

The tl;dr version is that speeding up intercity trains (and to some extent regional trains too) on the New Haven Line is possible, and requires significant but not unconscionable takings. The target trip time between New York and New Haven is at the lower end of the international HSR range, but it’s still not much more than a third of today’s trip time, which is weighed down by Amtrak/Metro-North agency turf battles, low-quality trains, and sharp curves.

The New Haven Line was built in the 1840s in hilly terrain. Like most early American railroads, it was built to low standards, with tight curves and compromised designs. Many of these lines were later replaced with costlier but faster alignments (for example, the Northeast Corridor in New Jersey and Pennsylvania), but in New England this was not done. With today’s technology, the terrain is no problem: high-speed trains can climb 3.5-4% grades, which were unthinkable in the steam era. But in the 170 years since the line opened, many urban and suburban communities have grown along the railroad right of way, and new construction and faster alignments will necessarily require significant adverse impacts to communities built along the Northeast Corridor.

This analysis will explain some of the impacts and opportunities expanding and modernizing high-speed rail infrastructure on or near the New Haven Line—and whether such an investment is worthwhile in the first place. There are competing needs: low cost, high speed, limited environmental impact, good local service on Metro-North. High-speed rail can satisfy each of them, but not everywhere and not at the same time.

The Northeast Corridor Future (NEC Future) preferred alternative, a new plan by the Federal Railroad Administration to modernize and expand rail infrastructure between Washington and Boston, proposes a long bypass segment parallel to the New Haven Line, between Rye and Greens Farms. The entire segment is called the New Rochelle-Greens Farms bypass; other segments are beyond the scope of this document.

Structure and Assumptions

The structure of this write-up is as follows: first, technical explanations of the issues with curves, with scheduling commuter trains and high-speed trains on the same track, and with high-speed commuting. Then, a segment-by-segment description of the options:

  • New Rochelle-Rye, the leadup to the bypass, where scheduling trains is the most difficult.
  • Rye-Cos Cob, the first bypass.
  • The Cos Cob Bridge, a decrepit bridge for which the replacement is worth discussing on its own.
  • Cos Cob-Stamford, where the preferred alternative is a bypass, but a lower-impact option on legacy track is as fast and should be studied.
  • Stamford-Darien, where another bypass is unavoidable, with significant residential takings, almost 100 houses in one possibility not studied in the preferred alternative.
  • Norwalk-Greens Farms, a continuation of the Darien bypass in an easier environment.

The impacts in question are predominantly noise, and the effect of takings. The main reference for noise emissions is a document used for California High-Speed Rail planning, using calibrated noise levels provided by federal regulators. At 260 km/h, higher than trains could attain in most of the segment in question, trains from the mid-1990s 45 meters away would be comparable to a noisy urban residential street; more recent trains, on tracks with noise barriers, would be comparable to a quiet urban street. Within a 50-meter (technically 150 feet) zone, adverse impact would require some mitigation fees.

At higher speed than 260 km/h, the federal regime for measuring train noise changes: the dominant factor in noise emissions is now air resistance around the train rather than rolling friction at the wheels. This means two things: first, at higher speed, noise emissions climb much faster than before, and second, noise barriers are less effective, since the noise is generated at the nose and pantograph rather than the wheels. At only one place within the segment are speeds higher than about 260 km/h geometrically feasible, in Norwalk and Westport, and there, noise would need to be mitigated with tall trees and more modern, aerodynamic trains, rather than with low concrete barriers.

This analysis excludes impact produced by some legacy trains, such as the loud horns at grade crossings; these may well go away in a future regulatory reform, as the loud horns serve little purpose, and the other onerous federal regulations on train operations are being reformed. But in any case, the mainline and any high-speed bypass would be built to high standards, without level crossings. Thus noise impact is entirely a matter of loud trains passing by at high speed.

Apart from noise and takings, there are some visual impacts coming from high bridges and viaducts. For the most part, these are in areas where the view the aerials block is the traffic on I-95. Perhaps the biggest exception is the Mianus River, where raising the Cos Cob Bridge has substantial positive impact on commuter train operations and not just intercity trains.


The formula for the maximum speed on a curve is as follows:

\mbox{Speed}^2 = (\mbox{Curve radius}) \times (\mbox{Lateral acceleration})

If all units are metric, and speed is in meters per second, this formula requires no unit conversion. But as is common in metric countries, I will cite speed in kilometers per hour rather than meters per second; 1 m/s equals 3.6 km/h.

Lateral acceleration is the most important quantity to focus on. It measures centrifugal force, and has a maximum value for safety and passenger comfort. But railroads decompose it into two separate numbers, to be added up: superelevation (or cant), and cant deficiency (or unbalanced superelevation, or underbalance).

Superelevation means banking the tracks on a curve. There is an exact speed at which trains can run where the centrifugal force exactly cancels out the banking, but in practice trains tend to run faster, producing additional centrifugal force; this additional force is called cant deficiency, and is measured as the additional hypothetical cant required to exactly balance.

If a train sits still on superelevated track, or goes too slowly, then passengers will feel a downward force, toward the inside of the curve; this is called cant excess. On tracks with heavy freight traffic, superelevation is low, because slow freight trains would otherwise be at dangerous cant excess. But the New Haven Line has little freight traffic, all of which can be accommodated on local tracks in the off-hours, and thus superelevation can be quite high. Today’s value is 5” (around 130 mm), and sometimes even less, but the maximum regulatory value in the United States is 7” (around 180 mm), and in Japan the high-speed lines can do 200 mm, allowing tighter curves in constrained areas.

Cant deficiency in the United States has traditionally been very low, at most 3” (75 mm). But modern trains can routinely do 150 mm, and Metro-North should plan on that as well, to increase speed. The Acela has a tilting mechanism, allowing 7”; the next-generation Acelas are capable of 9” cant deficiency (230 mm) at 320 km/h; this document will assume the sum total of cant and cant deficiency is 375 mm (the new Acela trainsets could do 200 mm cant deficiency with 175 mm cant, or Japanese trainsets could do 175 mm cant deficiency with 200 mm cant). This change alone, up from about 200 mm today, enough to raise the maximum speed on every curve by 37%. At these higher values of superelevation and cant deficiency, a curve of radius 800 meters can support 160 km/h.

Scheduling and Speed

The introduction of high-speed rail between New York and New Haven requires making some changes to timetabling on the New Haven Line. In fact, on large stretches of track on this line, especially in New York State, the speed limit comes not from curves or the physical state of the track, but from Metro-North’s deliberately slowing Amtrak down to the speed of an express Metro-North train, to simplify scheduling and dispatching. This includes both the top speed (90 mph/145 km/h in New York State, 75 mph/120 km/h in Connecticut) and the maximum speed on curves (Metro-North forbids the Acela to run at more than 3”/75 mm cant deficiency on its territory).

The heart of the problem is that the corridor needs to run trains of three different speed classes: local commuter trains, express commuter trains, and intercity trains. Ideally, this would involve six tracks, two per speed class, much like the four-track mainlines with two speed classes on the subway in New York (local and express trains). However, there are only four tracks. This means that there are four options:

  1. Run only two speed classes, slowing down intercity trains to the speed of express commuter trains.
  2. Run only two speed classes, making all commuter trains local.
  3. Expand the corridor to six tracks.
  4. Schedule trains of three different speed classes on just four tracks, with timed overtakes allowing faster trains to get ahead of slower trains at prescribed locations.

The current regime on the line is option #1. Option #2 would slow down commuters from Stamford and points east too much; the New Haven Line is too long and too busy for all-local commuter trains. Option #3 is the preferred alternative; the problem there is the cost of adding tracks in constrained locations, which includes widening viaducts and rebuilding platforms.

Option #4 has not been investigated very thoroughly in official documents. The reason is that timed overtakes require trains to be at a specific point at a specific time. Amtrak’s current reliability is too poor for this. However, future high-speed rail is likely to be far more punctual, with more reliable equipment and infrastructure. Investing in this option would require making some targeted investments toward reliability, such as more regular track and train maintenance, and high platforms at all stations in order to reduce the variability of passenger boarding time.

Moreover, at some locations, there are tight curves on the legacy New Haven Line that are hard or impossible to straighten in any alignment without long tunnels. South of Stamford, this includes Rye-Greenwich.

This means that, with new infrastructure for high-speed rail, the bypass segments could let high-speed trains overtake express commuter trains. The Rye-Greenwich segment is especially notable. High-speed rail is likely to include a bypass of Greenwich station. Thus, express commuter trains could stop at Greenwich, whereas today they run nonstop between Stamford and Manhattan, in order to give intercity trains more time to overtake them. A southbound high-speed trains would be just behind an express Metro-North train at Stamford, but using the much greater speed on the bypass, it would emerge just ahead of it at Rye. This segment could be built separately from the rest of the segment, from Stamford to Greens Farms and beyond, because of its positive impact on train scheduling.

It is critical to plan infrastructure and timetable together. With a decision to make express trains stop at Greenwich, infrastructure design could be simpler: there wouldn’t be a need to add capacity by adding tracks to segments that are not bypassed.

High-Speed Commuting

A junior consultant working on NEC Future who spoke to me on condition of anonymity said that there was pressure not to discuss fares, and at any rate the ridership model was insensitive to fare.

However, this merits additional study, because of the interaction with commuter rail. If the pricing on high-speed rail is premium, as on Amtrak today, then it is unlikely there will be substantial high-speed commuting to New York from Stamford and New Haven. But if there are tickets with low or no premium over commuter rail, with unreserved seating, then many people would choose to ride the trains from Stamford to New York, which would be a trip of about 20 minutes, even if they would have to stand.

High-speed trains are typically longer than commuter trains: 16 cars on the busier lines in Japan, China, and France, rather than 8-12. This is because they serve so few stops that it is easier to lengthen every platform. This means that the trains have more capacity, and replacing a scheduled commuter train with a high-speed train would not compromise commuter rail capacity.

The drawback is that commuters are unlikely to ride the trains outside rush hour, which only lasts about 2 or 3 hours a day in each direction. In contrast, intercity passengers are relatively dispersed throughout the day. Capital investment, including infrastructure and train procurement, is based on the peak; reducing the ratio of peak to base travel reduces costs. The unreserved seat rule, in which there is a small premium over commuter rail for unreserved seats (as in Germany and Japan) and a larger one for reserved seats, is one potential compromise between these two needs (flat peak, and high-speed commuter service).

New Rochelle-Rye

The track between New Rochelle and Rye is for the most part straight. Trains go 145 km/h, and this is because Metro-North slows down intercity trains for easier dispatching. The right-of-way geometry is good for 180 km/h with tilting trains and high superelevation; minor curve modifications are possible, but save little time. The big item in this segment concerns the southern end: New Rochelle.

At New Rochelle, the mainline branches in two: toward Grand Central on the New Haven Line, and toward Penn Station on the Hell Gate Line, used by Amtrak and future Penn Station Access trains. This branching is called Shell Interlocking, a complex of track switches, all at grade, with conflicts between trains in opposite directions. All trains must slow down to 30 mph (less than 50 km/h), making this the worst speed restriction on the Northeast Corridor outside the immediate areas around major stations such as Penn Station and Philadelphia 30th Street Station, where all trains stop.

The proposed (and only feasible) solution to this problem involves grade-separating the rails using flyovers, a project discussed by the FRA at least going back to 1978 (PDF-p. 95). This may involve some visual impact, or not—there is room for trenching the grade-separation rather than building viaducts. It is unclear how much that would cost, but a flyover at Harold Interlocking in Queens for East Side Access, which the FRA discussed in the same report, cost $300 million dollars earlier this decade. Harold is more complex than Shell, since it has branches on both sides and is in a more constrained location; it is likely that Shell would cost less than Harold’s $300 million. Here is a photo of the preferred alignment:

The color coding is, orange is viaducts (including grade separations), red is embankments, and teal is at-grade. This is the Northeast Corridor, continuing south on the Hell Gate Line to Penn Station, and not the Metro-North New Haven Line, continuing west (seen in natural color in the photo) to Grand Central.

A Shell fix could also straighten the approach from the south along the Hell Gate Line, which is curvy. The curve is a tight S, with individual curves not too tight, but the transition between them constraining speed. The preferred alignment proposes a fix with a kilometer of curve radius, good for 180 km/h, with impact to some industrial sites but almost no houses and no larger residential buildings. It is possible to have tighter curves, at slightly less cost and impact, or wider ones. Slicing a row of houses in New Rochelle, east of the southern side of the S, could permit cutting off the S-curve entirely, allowing 240 km/h; the cost and impact of this slice relative to the travel time benefit should be studied more carefully and compared with the cost per second saved from construction in Connecticut.

The main impact of high-speed rail here on ordinary commuters is the effect on scheduling. With four tracks, three train speed classes, and heavy commuter rail traffic, timetabling would need to be more precise, which in turn would require trains to be more punctual. In the context of a corridor-wide high-speed rail program, this is not so difficult, but it would still constrain the schedule.

Without additional tracks, except on the bypasses, there is capacity for 18 peak Metro-North trains per hour into New York (including Penn Station Access) and 6 high-speed trains. Today’s New Haven Line peak traffic is 20 trains per hour (8 south of Stamford, 12 north of which 10 run nonstop from Stamford to Manhattan), so this capacity pattern argues in favor of pricing trains to allow commuters to use the high-speed trains between Stamford and New York.


Rye is the first place, going from the south, where I-95 is straighter than the Northeast Corridor. This does not mean it is straight: it merely means that the curves on I-95 in that area are less sharp than those at Rye, Port Chester, and Greenwich. Each of these three stations sits at a sharp S-curve today; the speed zone today is 75 mph (120 km/h), with track geometry that could allow much more if Metro-North accepted a mix of trains of different speed, but Rye and Greenwich restrict trains to 60 mph/95 km/h, and Port Chester to 45 mph/70 km/h at the state line. The segment between the state line and Stamford in particular is one of the slowest in the corridor.

As a result, the NEC Future plan would bypass the legacy line there alongside the Interstate. Currently, the worst curve in the bypassed segment, at Port Chester, has radius about 650 meters, with maximum speed much less than today’s trains could do on such a curve because of the sharp S. At medium and high speed, it takes a few seconds of train travel time to reverse a curve, or else the train must go more slowly, to let the systems as well as passengers’ muscles adjust to the change in the direction of centrifugal force. At Rye, the new alignment has 1,200-meter curves, with gentle enough S to allow trains to fully reverse, without additional slowdowns; today’s tracks and trains could take it at 140 km/h, but a tilting train on tracks designed for higher-speed travel could go up to 195.

Within New York State, the bypass would require taking a large cosmetics store, and some houses adjacent to I-95 on the west; a few townhouses in Rye may require noise walls, as they would be right next to the right-of-way where trains would go about 200-210 km/h, but at this speed the noise levels with barriers are no higher than those of the freeway, so the houses would remain inhabitable.

In Connecticut, the situation is more delicate. When the tracks and I-95 are twinned, there is nothing in between, and thus the bypass is effectively just two extra tracks. To the south, just beyond the state line, the situation is similar to that of Rye: a few near-freeway houses would be acquired, but nothing else would, and overall noise levels would not be a problem.

But to the north, around Greenwich station, the proposed alignment follows the I-95 right-of-way, with no residential takings, and one possible commercial taking at Greenwich Plaza. This alignment comes at the cost of a sharp curve: 600 meters, comparable to the existing Greenwich curve. This would provide improvements in capacity, as intercity trains could overtake express commuter trains (which would also stop at Greenwich), but not much in speed.

Increasing speed requires a gentler curve than on I-95; eliminating the S-curve entirely would raise the radius to about 1,600 meters, permitting 225 km/h. This has some impact, as the inside of the curve would be too close to the houses just south of I-95, requiring taking about seven houses.

However, the biggest drawback of this gentler curve is cost: it would have to be on a viaduct crossing I-95 twice, raising the cost of the project. It is hard to say by exactly how much: either option, the preferred one or the 225 km/h option, would involve an aerial, costing about $100 million according to FRA cost items, so the difference is likely to be smaller than this. It is a political decision whether saving 30 seconds for express trains is worth what is likely to be in the low tens of millions of dollars.

Cos Cob Bridge

The Cos Cob Bridge restricts the trains, in multiple ways. As a movable bridge, it is unpowered: trains on it do not get electric power, but must instead coast; regular Metro-North riders are familiar with the sight of train lights, air conditioning, and electric sockets briefly going out when the train is on the bridge. It is also old enough that the structure itself requires trains to go more slowly, 80 km/h in an otherwise 110 km/h zone.

Because of the bridge’s age and condition, it is a high priority for replacement. One cost estimate says that replacing the bridge would cost $800 million. The Regional Plan Association estimates the cost of replacing both this bridge and the Devon Bridge, at the boundary between Fairfield and New Haven Counties, at $1.8 billion. The new span would be a higher bridge, fully powered, without any speed limit except associated with curves; Cos Cob station has to be rebuilt as well, as it is directly on the approaches, and it may be possible to save money there (Metro-North station construction costs are very high—West Haven was $105 million, whereas Boston has built infill stations for costs in the teens).

In any high-speed rail program, the curves could be eased as well. There are two short, sharp curves next to the bridge, one just west to the Cos Cob station and the other between the bridge and Riverside. The replaced bridge would need long approaches for the deck to clear the Mianus River with enough room for boats to navigate, and it should not cost any more in engineering and construction to replace the two short curves with one long, much wider curve. There is scant information about the proposed clearance below and the grades leading up to the bridge, but both high-speed trains and the high-powered electric commuter trains used by Metro-North can climb steep grades, up to 3.5-4%, limiting the length of the approaches to about 400 meters on each side. This is the alternative depicted as the potential alternative below; the Cos Cob Bridge is the legacy bridge, and the preferred alignment is a different bypass (see below for the Riverside-Stamford segment):

The color coding is the same as before, but yellow means major bridge. White is my own drawing of an alternative.

The radius of the curve would be 1,700 meters. A tilting train could go at 235 km/h. Commuter rail would benefit from increased speed as well: express trains could run at their maximum speed, currently 160 km/h, continuing almost all the way east to Stamford. The cost of this in terms of impact is the townhouses just north of the Cos Cob station: the viaduct would move slightly north, and encroach on some, possibly all, of the ten buildings. Otherwise, the area immediately to the north of the station is a parking lot.

The longer, wider curve alternative can be widened even further. In that case, there would be more impact on the approaches, but less near the bridge itself, which would be much closer in location to the current bridge and station. This option may prove useful if one alignment for the wider curve turns out to be infeasible due to either unacceptable impact to historic buildings or engineering difficulties. The curve radius of this alternative rises to about 3,000 meters, at which point the speed limit is imposed entirely by neighboring curves in Greenwich and Stamford; trains could go 310 km/h on a 3,000-meter curve, but they wouldn’t have room to accelerate to that speed from Greenwich’s 225 km/h.


Between the Mianus River and Stamford, there are two possible alignments. The first is the legacy alignment; the second is a bypass alongside I-95, which would involve a new crossing of the Mianus River as well. The NEC Future alignment appears to prefer the I-95 option:

The main benefit of the I-95 option is that it offers additional bypass tracks for the New Haven Line. Under this option, there is no need for intercity trains and express commuter trains to share tracks anywhere between Rye and Westport.

However, the legacy alignment has multiple other benefits. First, it has practically no additional impact. Faster trains would emit slightly more noise, but high-speed trains designed for 360 km/h are fairly quiet at 210. In contrast, the I-95 alignment requires a bridge over the Greenwich Water Club, some residential takings in Cos Cob, and possibly a few commercial takings in Riverside.

Second, it is cheaper. There would need to be some track reconstruction, but no new right-of-way formation, and, most importantly, no new crossing of the Mianus River. The Cos Cob Bridge is in such poor shape that a replacement is most likely necessary even if intercity trains bypass it. The extra cost of the additional aerials, berms, and grade separations in Riverside is perhaps $150-200 million, and that of the second Mianus River crossing would run into many hundreds of millions. This also means somewhat more visual impact, because there would be two bridges over the river rather than just one, and because in parts of Riverside the aerials would be at a higher level than the freeway, which is sunken under the three westernmost overpasses

In either case, one additional investment in Stamford is likely necessary, benefiting both intercity and commuter rail travelers: grade-separating the junction between the New Canaan Branch and the mainline. Without at-grade conflicts between opposing trains on the mainline and the New Canaan Branch, scheduling would be simpler, and trains to and from New Canaan would not need to use the slow interlocking at Stamford station.

The existing route into Stamford already has the potential to be fast. The curves between the Mianus and Stamford station are gentle, and even the S-curve on the approach to Stamford looks like a kilometer in radius, good enough for 180 km/h on a tilting train with proper superelevation.


Between New York and Stamford, the required infrastructure investments for high-speed rail are tame. Everything together except the Mianus crossing should be doable, based on FRA cost items, on a low 9-figure budget.

East of Stamford, the situation is completely different. There are sharp curves periodically, and several in Darien and Norwalk are too tight for high-speed trains. What’s more, I-95 is only available as a straight alternative right-of-way in Norwalk. In Darien, and in Stamford east of the station, there is no easy solution. Everything requires balancing cost, speed, and construction impact.

The one saving grace is that there is much less commuter rail traffic here than between New York and Stamford. With bypasses from Stamford until past Norwalk, only a small number of peak express Metro-North trains east of Greens Farms would ever need to share tracks with intercity trains. Thus the scheduling is at least no longer a problem.

The official plan from NEC Future is to hew to I-95, with all of its curves, and compromise on speed. The curve radius appears to be about 700-750 meters through Stamford and most of Darien, good for about 95 mph over a stretch of 5.5 miles. This is a compromise meant to limit the extent of takings, at the cost of imposing one of the lowest speed limits outside major cities. While the official plan is feasible to construct, the sharp curves suggest that if Amtrak builds high-speed rail in this region, it will attempt a speedup, even at relatively high cost.

There is a possible speedup, involving a minimum curve radius of about 1,700-2,000 meters, good for 235-255 km/h. This would save 70-90 seconds, at similar construction cost to the preferred alignment. The drawback is that it would massively impact Darien, especially Noroton. It would involve carving a new route through Noroton for about a mile. In Stamford, it would require taking an office building or two, depending on precise alignment; in Noroton, the takings would amount to between 55 and 80 houses. The faster option, with 2,000-meter curves, does not necessarily require taking more houses in Noroton: the most difficult curves are farther east. In the picture, this speedup is in white, the preferred alternative is in orange, and the legacy line in teal:

Fortunately, east of Norton Avenue, there is not much commercial and almost no residential development immediately to the north of I-95, making things easier:

The preferred alignment stays to the south of the Turnpike. This is the residential side; even with tight curves, some residential takings are unavoidable, about 20 houses. Going north of I-95 instead requires a few commercial takings, including some auto shops, and one or two small office buildings east of Old Kings Highway, depending on curve radius. Construction costs here are slightly higher, because easing one curve would require elevated construction above I-95, as in one of the Greenwich options above, but this is probably a matter of a few tens of millions of dollars.

The main impact, beyond land acquisition cost, is splitting Noroton in half, at least for pedestrians and cyclists (drivers could drive in underpasses just as they do under highways). Conversely, the area would be close enough to Stamford, with its fast trains to New York, that it may become more desirable. This is especially true for takings within Stamford. However, Darien might benefit as well, near Noroton Heights and Darien stations, where people could take a train to Stamford and change to a high-speed train to New York or other cities.

As in Greenwich, it is a political decision how much a minute of travel time is worth. Darien houses are expensive; at the median price in Noroton, 60-80 houses would be $70-90 million, plus some extra for the office buildings. Against this extra cost, plus possible negative impact on the rest of Noroton, are positive impacts coming from access, and a speedup of 70-90 seconds for all travelers from New York or Stamford to points north.

Norwalk-Greens Farms

In Norwalk, I-95 provides a straight right-of-way for trains. This is the high-speed rail racetrack: for about ten kilometers, until Greens Farms, it may be possible for trains to run at 270-290 km/h.

Here is a photo of Norwalk, with the Walk and Saga Bridges in yellow, a tunnel in the preferred alternative in purple, a possible different alignment in white, and impact zones highlighted:

Three question marks remain about the preferred alignment.

The first question is, which side of the Turnpike to use? The preferred alignment stays on the south side. This limits impact on the north side, which includes some retail where the Turnpike and U.S. 1 are closely parallel, near the Darien/Norwalk boundary; a north side option would have to take it. But the preferred alignment instead slices Oyster Shell Park. A third option is possible, transitioning from the north to the south side just east of the Norwalk River, preparing to rejoin the New Haven Line, which is to the south of I-95 here.

The second question is, why is the transition back to the New Haven Line so complex? The preferred alignment includes a tunnel in an area without any more impacted residences than nearby segments, including in Greenwich and Darien. It also includes a new Saga Bridge, bypassing Westport, with a new viaduct in Downtown Westport, taking some retail and about six houses. An alternative would be to leverage the upcoming Saga Bridge reconstruction, which the RPA plan mentions is relatively easy ($500 million for Saga plus Walk, on the Norwalk River, bypassed by any high-speed alignment), and transition to the legacy alignment somewhat to the west of Westport.

A complicating factor for transitioning west of Westport is that the optimal route, while empty eight years ago, has since gotten a new apartment complex with a few hundred units, marked on the map. Alternatives all involve impact to other places; the options are transitioning north of the complex, taking about twenty units in Westport south of the Turnpike and twenty in Norwalk just north of it.

The third question, related to the second, is, why is Greens Farms so complicated? See photo below:

The area has a prominent S-curve, and some compromises on curve radius are needed. But the preferred alternative doesn’t seem to straighten it. Instead, it builds an interlocking there, with the bypass from Darien and points west. While that particular area has little impact (the preferred alignment transitions in the no man’s land between the New Haven Line and the Turnpike), the area is constrained and the interlocking would be expensive.

No matter what happens, the racetrack ends at Greens Farms. The existing curve seems to have a radius of about a kilometer or slightly more, good for about 190 km/h, and the best that can be done if it is straightened is 1,300-1,400 meters, good for about 200 km/h.

These questions may well have good answers. Unlike in Darien, where all options are bad, in Norwalk and Westport all options are at least understandable. But it’s useful to ask why go south of the Turnpike rather than north, and unless there is a clear-cut answer, both options should be studied in parallel.

Faster-than-Conventional Rail: Where Could It Work?

Note: this post is secretly about Hyperloop and Elon Musk’s most likely fraudulent claim about the Northeast Corridor. But it’s an interesting discussion more in general. Not all such technology is vaporware the way Musk’s efforts are. See more on The Boring Company’s false claims in a piece I published at Urbanize.LA a few days ago.

The upper limit of conventional high-speed rail seems to be 360 km/h. In Japan, experiments at that speed have succeeded, but there already are problems with noise, stopping distance, and catenary wear, and currently trains top at 320; plans to go at 360 depend on a future Shinkansen extension to Sapporo. In China, the maximum speed is 350, with trains capable of reaching 380 but not doing so in practice. In Continental Europe the maximum speed for new lines is 320-330 km/h, whereas in Britain HS2 is designed for about 350 km/h (220 mph).

Faster technologies exist, in service, today. Shanghai’s Transrapid tops at 431 km/h in service, and JR Central’s under-construction maglev line is targeted at 500 km/h, with tests at 600. Vactrains can go even faster, but are still untested technology (and this includes Hyperloop variants). The question is, where is there room for such technology? So far, Siemens’ attempts to sell Transrapid failed beyond the Shanghai airport connector, an orphan 30 km line going from the airport to the edge of the built-up area of the city. JR Central is building the Chuo Shinkansen maglev between Tokyo and Osaka, but so far there are no plans to extend this technology elsewhere – even within Japan, the state is continuing with building Tokyo-Sapporo as conventional Shinkansen rather than maglev.

The Tokyo-Osaka line is somewhat sui generis. JR Central is currently running about 14 trains per hour at the peak on the Tokaido Shinkansen between Tokyo and Shin-Osaka, each with 1,323 seats, and they’re generally full. It is also old – as the first HSR line in the world, it has a curve radius of 2.5 km (newer lines start at 4 km and go up), and a top speed of 270 km/h. This is exactly the sort of situation that favors new technology. The Tokaido Main Line was a popular intercity line in the late 1950s, but Japan National Railways couldn’t add more express trains without bumping against the capacity limit imposed by slower trains using the line; this tilted it in favor of building the Shinkansen. The Paris-Lyon main line was similarly busy in the 1970s, encouraging the construction of the LGV Sud-Est as a bypass. Nowhere in the world except Tokyo-Osaka is there a full conventional HSR line, except Paris-Lyon – but see later why it is a poor candidate for faster technology.

Track sharing

The main tradeoff with maglev, or even faster technology, is cost. This comes from two places. First, higher top speed requires much more advanced civil engineering, with wider curves, which means more tunnels and viaducts. Conventional HSR can limit costs by climbing steeper grades than legacy trains (the LGV Sud-Est has no tunnels, the legacy Paris-Lyon line does). Maglev can climb even faster grades, but once the speed crosses into the vactrain range, the vertical curve radius required to achieve a steep grade is so wide that it is no longer possible to vertically hug terrain the way European HSR lines do.

The second place is the urban approaches. In theory, this should be a strength of faster-than-conventional rail technology, which has a lower minimum curve radius than HSR at equal speed. But in practice, conventional HSR can leverage existing railroad lines on the urban approaches. At lower speed the stopping distances are shorter, so capacity is higher; the upper limit at speed maybe 12-15 trains per hour, but on a low-speed approach it’s closer to 24-30, so it’s possible to share tracks with legacy commuter and intercity trains.

In Japan, Spain, and Taiwan the HSR track gauge is different from the legacy gauge, so track-sharing is not possible in the major cities, driving up the cost of urban approaches. In smaller cities, Japan and Spain have gauge-change technology, which takes too much time to be of use in capacity-constrained big cities but can allow track sharing on branches. But unconventional technology cannot share tracks anywhere, requiring tunnels on urban approaches. The cost of 20 km of urban tunnel can easily match that of 200 km of at-grade greenfield HSR outside urban areas. The Chuo Shinkansen’s cost, around $200 million per km, comes from the fact that 70-80% of the line is underground, in urban areas and under mountains.

This implies that unconventional technology is most useful when there is limited benefit to be gained from track sharing. This includes the following situations:

  1. The cities served do not have usable legacy rail approaches, or else have a surplus of space within which to build a new approach.
  2. There is no need to branch and use legacy track at lower speed.
  3. There is no preexisting high-quality track that HSR can use, either at high speed outside cities or at medium speed on approaches.

In North America, FRA regulations traditionally led to situation #1. But FRA regulations seem to be changing, which makes track-sharing on approaches more feasible; practically every city has approaches with a surplus of passenger rail capacity (yes, even New York – Amtrak runs 4 trains per hour into Penn Station from the west at the peak, it just uses these slots poorly). In Europe, cities with poor approaches are more likely to be served on a branch, since the rest of the network is so strong. Situation #2 never applies here – branching is always useful, letting the LGV Sud-Est carry not just Paris-Lyon trains but also Paris-Marseille, Lille-Lyon, London-Lyon, Paris-Geneva, etc.

Some of the stronger intercity travel markets are in situation #3, but most aren’t. In North America, the Northeast Corridor has long stretches of high-quality track, either already capable of high speed or capable with a small number of curve modifications. That characteristic alone makes it exceptionally bad for unconventional rail technology: such technology would need a new alignment through hundreds of kilometers of suburbia in Massachusetts, Rhode Island, New Jersey, Pennsylvania, and Maryland. Toronto is also a poor candidate for unconventional technology, since it has a long stretch of suburbia in both directions with high-quality four-track commuter rail, straight enough for 200 km/h or even more. Significant suburban tracks are also useful in California (Caltrain, parts of Metrolink) and Chicago. Only the Pacific Northwest, Portland-Seattle-Vancouver, has a real shortage of usable legacy track even on the approaches. So is it a good candidate for unconventional technology? No, for reasons of distance.

The optimal distance

Faster-than-conventional rail is silly at short distance. The difference in travel time is smaller and does not justify the expense. Access and egress times are fixed, and may even go up if the station locations are less central (the Chuo Shinkansen won’t serve Tokyo Station but rather Shinagawa, a few km south of the CBD). So focusing on in-vehicle time is less useful. The Chuo Shinkansen is really at the lowest end of what is acceptable. It works because, again, the Tokaido Shinkansen is at capacity. Tokaido is also relatively circuitous in order to avoid mountains – the distance from Tokyo to Shin-Osaka is 515 km on the Tokaido Shinkansen, 438 on the Chuo Shinkansen, and 405 on a straight line. On the Northeast Corridor, the New York-Washington distance is 362 km on the railroad and 330 on a straight line, a much smaller difference.

Conversely, faster-than-conventional rail is questionable at very long distance. At maglev speed, a New York-Los Angeles train would take perhaps 12 hours, not really competitive with planes for people who don’t mind flying. At vactrain speed, the train would be competitive. However, in either case, trains require linear infrastructure, and repackaging them as a new Hyperloop doesn’t change this basic fact. Ignoring the effects of terrain, a 4,000 km vactrain or maglev line costs ten times as much as a 400 km line. This is not the case for air travel, which requires no fixed infrastructure between the airports.

There should be a good zone in the middle, say the 1,000-1,500 km range. This includes city pairs like Beijing-Shanghai, New York-Chicago, Tokyo-Sapporo, Tokyo-Fukuoka, Delhi-Mumbai, Delhi-Kolkata, and some international European pairs like Paris-Madrid. Going up to 2,000 there are also New York-Miami, Chicago-Dallas-Houston, Beijing-Guangzhou, and Los Angeles-San Francisco-Seattle; in China, where conventional HSR is faster, even 1,000-1,300 km is well within conventional HSR capabilities (Beijing-Shanghai is 1,300).

However, the fact that there is this sweet spot for unconventional rail does not mean that the construction costs are affordable. This remains a question mark. Maglev costs are either in line with HSR costs at equal tunnel proportion, or somewhat higher. The Shanghai maglev cost 10 billion RMB in 2003, which in PPP terms is maybe $100 million per km for an elevated suburban/exurban line (bad, but not terrible), and in exchange rate terms (imported technology) is somewhat more than half that. The Chuo Shinkansen seems to be $200 million per km, 70-80% underground, which is in line with urban tunneling costs in Japan but high by the standards of exurban tunneling (the 60% tunneled extension of the Tohoku Shinkansen to Shin-Aomori was $55 million per km).

The upshot is that a New York-Chicago maglev is likely to cost like 1,200 km of HSR. The western half of this line is easy – maybe a short tunnel in suburban Chicago is required, but there’s so much right-of-way space that an above-ground urban approach should be fine. The eastern half of this line consists of 600 km of pain in the Appalachians, suburban New Jersey, and a new tunnel under the Hudson. Costs approaching $100 billion are likely, and I don’t know that the benefits are commensurate.

Can you start big?

A short maglev or vactrain is of little use. Given the expense of approaches, the best use of expensive infrastructure may well be to build multiple lines using the same approach. For example, not just New York-Chicago or New York-Atlanta-Miami, but both at once, to take advantage of the same maglev tunnel under the Hudson. By itself New York-Chicago might be good enough, but it’s unclear – it’s nowhere the huge benefit/cost ratio coming from a program for conventional HSR on the Northeast Corridor at normal first-world rates.

I think this is the biggest risk with unconventional rail technology. Its basic characteristics suggest that there should be a distance range at which it works well – not too short so as to offer too little benefit versus conventional HSR, not too long so as for construction costs to grind it down. But it’s equally possible that the two bad zones, too short and too long, really overlap, so that 1,200-km lines are still too expensive to compete with planes while not offering enough speed benefit over conventional HSR to justify all this new construction.

The problem, then, is that it’s difficult to start big with a risky technology. The shortest useful maglev segment, Tokyo-Nagoya, is still well over $50 billion, and Tokyo-Osaka approaches $100 billion. This is on a route with proven demand; what about routes that don’t parallel overcrowded conventional HSR? Some government will need to take a $100 billion gamble on a long route hoping that the 1,200-km niche really exists.