Category: Incompetence

Cost- and Project-Centric Plans

I did a poll on Patreon about cost issues to write about. This is a close second, with 11 votes; other people’s money won with 12, whereas neighborhood empowerment got 8 and will not be on my docket.

There are infrastructure investment programs defined around the specific projects funded: Crossrail, Second Avenue Subway, Grand Paris Express, Nya Tunnelbanan, the Toronto RER, Marmaray. Then there are programs defined around costs, where one constantly hears the project defined by its budget rather than what it produces; these are all in the United States, and include the entire slates of Los Angeles and Seattle rail extensions, and to some extent also California High-Speed Rail and Gateway. The latter appears like bad practice for cost minimization.

What’s the problem?

In isolation, I’d have expected cost-centric plans to be more prudent with the budget – there’s less room for overruns. This is related to Swiss practice, which is project-centric but also requires projects to go to referendum on the precise amount, which has disciplined cost overruns in most cases and also kept absolute costs low. However, the fact of the matter is that the only places that use cost-centric plans have high costs, having recently risen from levels that were not so bad 20 years ago. So why?

My suspicion is leakage. This is getting to be less general and more specific to the situation of California and its sales tax measures, but the way it works is, there is an amount that proponents think they can go to ballot on, and then they work the slate of projects backward. In theory, this is supposed to discipline the planners into better behavior: the amount of money is truly fixed, and if costs go up, it delays the entire program. In practice, there is no prior discipline about what infrastructure should be included, and thus the slate is decided politically on a place-based plan.

Further leakage occurs when buying off additional interest groups. Soon enough, one useful if very expensive subway line, like the Purple Line Extension in Los Angeles or the Ballard-West Seattle LRT, is bundled into a huge program alongside bus operating subsidies, road money, and low-usage lines to lower-density areas.

I can’t prove that this is the result of budget-centric planning. The comparison examples I have – all high-cost, politicized North American projects – exhibit leakage as well, but less of it. The Green Line Extension in Boston had extensive local leakage in the first iteration of the project, like the Somerville Community Path, but it wasn’t paired with less useful infrastructure elsewhere. Second Avenue Subway Phase 1 was paired with East Side Access and the Broadway subway in Vancouver is paired with a SkyTrain extension deeper into Surrey toward Langley; in both cases, the less useful projects are nonetheless more useful on a likely cost per rider basis than any of the American West Coast leakage and compete with the more useful projects. ESA is probably going to end up $60,000/rider, not much worse than GLX and probably about the same as the Purple Line Extension depending on how much transit-oriented development Los Angeles permits.

Place-based extraction

Place-based politics is a scourge and should be eradicated whenever possible. What it does wherever it is not suppressed is create political identification among local and regional power brokers not with the piece of infrastructure but its cost. The reason is that evaluating transportation needs is too technocratic for the attention span of a local politician, whereas the budget is a straightforward measure of one’s importance.

Once local actors are empowered, they make further demands for irrelevant extras (“betterments”), or construction techniques that spend too much money to avoid real or imagined negative local impact. People with a local identity don’t care about public transit much – public transit takes riders to other localities, especially city center, whereas the locally-empowered minority of people who work locally has little use for it and drives everywhere.

Local empowerment is not unique to budget-based infrastructure. It was a major drag on GLX and at least a moderate one on SAS Phase 1, neither of which is budget-based. The Central Subway and BART to San Jose projects are both place-based vanity, for Chinatown and San Jose respectively, but even these projects are smaller in scope than the Los Angeles or Seattle ST3 leakage. There’s just more surface area for it when advocates lead with a budget, because then every local hack sees an opportunity to make a claim.

The place-based politics in the Northeast is much broader and more regional: SAS, a city project championed by then-Assembly speaker Sheldon Silver (D-Lower East Side), was balanced with ESA, a suburban project serving the base of Governor George Pataki (R-Peekskill, but the state Republicans were based on Long Island). Metro Vancouver’s place-based extraction follows the same schema: if Vancouver gets a useful SkyTrain extension, Surrey must get an extension too regardless of usefulness. Massachusetts is likely to be in a similar situation with the TransitMatters Regional Rail program: RR serves the entire east of the state, and must be balanced with a Western Massachusetts project, for which we propose the still-useful East-West Rail program connecting Boston and Springfield.

In contrast, the situation in California and metropolitan Seattle is much worse – useful lines in Los Angeles are paired with many layers of leakage, as different groups make claims on the pot of money. This way, Los Angeles doesn’t build as much useful transit as New York and Boston even though its construction costs are comparable to Boston’s and much lower than those of New York, and even though it makes large amounts of money available for transportation by referendum.

Are jobs a cost or benefit?

Like place-based extraction, the use of infrastructure as a jobs program is terrible everywhere in a modern developed country where construction is not a labor-intensive zero-skill job, and should be eradicated. And like place-based extraction, I think – and am less certain than on the other points – there is more surface area for this when the program is about a budget and not a piece of infrastructure.

The mechanism is the same as before: once money becomes available, local labor groups descend on it to make claims. Promises of job creation are thus always local, including beggar-thy-neighboring-state demands for local rolling stock construction. These occur for both budget-based plans (like the Los Angeles light rail fleet) and project-based ones (like the new Red and Orange Line cars for Boston, built in Springfield due to place-based extraction). However, it’s easier to make a claim when the political discussion is about how to spend $X and not how to optimally produce a desired piece of infrastructure.

The way forward

The American West Coast’s problem of budget-based planning is, thankfully, easy to solve, because it’s been solved in other parts of the same country. The Bay Area has less of it than Southern California and the Pacific Northwest (but it’s not free of it – many of the specifics of California High-Speed Rail’s failure come from Bay Area power brokers hoping to use it as a slush fund). The Northeast doesn’t have it at all. Los Angeles is likely to be forced in that direction anyway, because it’s running out of sales tax capacity – the already-approved measures are spoken for through the 2050s.

The impact is likely not a matter of straight construction costs in dollars per kilometer. Rather, it’s about leakage. Los Angeles and Seattle do not have unusually higher per-km costs by American standards; in the 2000s Los Angeles looked like the good part of America and in the 2010s Seattle did, but since both have converged to much higher figures. The problem is that a smaller share of the Los Angeles Measures R and M spending goes to useful expansion than the capital budget in places that have project-based planning. This is what needs to be fixed through transitioning to project-based planning, costs aside.

Paris, World Capital of Expensive Regional Trains

I have found something a European city does worse than the United States in public transit. Paris has just announced its new bilevel design for the RER B, currently the only line running single-deck trains due to restricted clearances. The new double-deckers, dubbed MI 20, are expected to cost 2.56b€ for 146 trainsets, each 104 meters long, for a total of 168,600€ per meter of train length.

I’ve criticized Paris’s use of double-deckers in the past. The cost premium for a double-decker, usually around 25-50%, at best matches the gain in seated capacity, and leads to other capacity problems with access and egress, which are of especial importance on urban rail like the RER. Not for nothing, bilevel trains are not used in Tokyo except for the occasional first-class car (“green car”), which is less crowded by design than the legendarily crowded subway and regional rail cars.

However, this is a lot worse than the usual premium. The only comparably expensive bilevel I can find is the Stadler KISS order for Caltrain, which at $230,000/m for the base order (and only $160,000/m for an equal-size option) comes at a large premium over usual KISSes (both around 130,000€/m) due to client interference and micromanagement coming from low competence by American railroaders.

But the KISS is a high-performance train, at the expensive end in Europe, too. Moreover, it is fully bilevel, whereas the MI 20 has a mix of single- and double-deck cars, with high-platform boarding. Comparable split-level trains go well below 130,000€/m. Canalblog has a compendium of recent Coradias: the single-level example for Milan is 6.25m€ per 84-meter train, or 74,400€/m, and the mixed single- and double-deck examples are 96,700€/m in Luxembourg and 117,600€/m in Germany. The mixed-deck Siemens Desiro HC has a range of costs: its RRX order is 1.7b€ for 82 150-meter trainsets, which is 138,200€/m, but a smaller order for the Berlin RegionalBahn is 300m€ for 21 six-car and 2 four-car trainsets, or 89,600€/m, which is a high but not unheard of cost for a single-decker, let alone a double-decker. The Desiro HC is being delivered to Israel as well, at a cost of 900m€ for 60 trainsets totaling 330 cars, or 109,100€/m.

There’s nothing special about Paris that justifies such a cost – the highest in the world so far, even beating the Americans. Rather, the problem is most likely that Paris thinks it’s special and won’t buy a standard platform. Canalblog points out that the Coradia Duplex formed the basis of the X’Trapolis, currently delivered for the RER D and E – and the X’Trapolis’s first tranche spent 29% of its budget on design and engineering, driving the cost up to a stratospheric 21.83m€ per train of length 112 or 130 meters. Even averaged over the entire order of 255 trainsets, at which point economies of scale kick in and the bespoke design is less harmful, the cost is 121,400€/m, which is 25% more than the more standard Luxembourg design.

Update: Clem Tillier asked me about Madrid’s recent Cercanías order. This is a mix of Stadler trains and Coradias, both mixed single- and double-deck; the Coradias, using the same platform as the Paris X’Trapolis trains and built in Spain rather than in France, cost 1.447b€/152 trainsets, or 95,200€/m, and the Stadlers, mixing KISS and FLIRT technology, cost 998m€ for 24 100-meter trains and 35 200-meter trains, or 106,200€/m.

In a megacity like Paris, it’s tempting to think one is special and must have special equipment. But the resulting high costs are particularly damaging in such a city. The RER B runs every 3 minutes at rush hour, which means that high rolling stock costs are proportionally a bigger problem than on a less frequent system. The cost premium of the order over standard single-deck trains is a factor of around 2; half the cost is 1.3b€, which would be enough to build some necessary tunnel extensions, like quad-tracking the combined two-track tunnel for the RER B and D between Châtelet-Les Halles and Gare du Nord, or if RER investment is not desired then around 6 km of tunnel for Grand Paris Express after the latest cost overruns.

France needs to let go of its pride and recognize that Paris is merely the largest city in the Union, with the same standards and regulations as the other 440 million of us who do not live in Ile-de-France. Vanilla Coradias and Desiros that work elsewhere should also work for the RER, with minor tweaks to take into account high platforms and the loading gauge, both of which the vendors are experienced in dealing with due to common intra-European variation. The people who sign extravagant contracts may feel special about the train design, but the passengers who end up not getting the investment the cost premium would have gone to are going to keep feeling packed on rush hour RERs. The region ought to do better and hire managers who are better than this.

The Other People’s Money Problem

I did a poll on Patreon about cost issues to write about. This is the winning option, with 12 votes; project- vs. budget-driven plans came second with 11 and I will blog about it soon, whereas neighborhood empowerment got 8.

OPM, or other people’s money, is a big impediment to cost reform. In this context, OPM refers to any external infusion of money, typically from a higher-level government from that controlling an agency. Any municipal or otherwise local agency, not able or willing to raise local taxes to fund itself, will look for external grants, for example in a federal budget. The situation then is that the federal grantor gives money but isn’t involved in the design of where the money goes to, leading to high costs.

OPM at ground level

Local and regional advocates love OPM. Whenever they want something, OPM lets them have it without thinking in terms of tradeoffs. Want a new piece of infrastructure, including everything the local community groups want, with labor-intensive methods that also pay the wages the unions hop for? OPM is for you.

This was a big problem for the Green Line Extension’s first iteration. Somerville made ridiculous demands for signature stations and even a bike path (“Somerville Community Path”) thrown in – and all of these weren’t jut extra scope but also especially expensive, since the funding came from elsewhere. The Community Path, a 3 km bike path, was budgeted at $100 million. The common refrain on this is “we don’t care, it’s federally funded.” Once there’s an outside infusion of money, there is no incentive to spend it prudently.

OPM modifying projects

In capital construction, OPM can furthermore lead to worse projects, designed to maximize OPM rather than benefits. Thus, not only are costs high, but also the results are deficient. In my experience talking to New Englanders, this takes the form of trying to vaguely connect to a politician’s set of petty priorities. If a politician wants something, the groups will try pitching a plan that is related to that something as a sales pitch. The system thus encourages advocates and local agencies to invest in buying politicians rather than in providing good service.

This kind of behavior can persist past the petty politician’s shelf life. To argue their cases, advocates sometimes claim that their pet project is a necessary component of the petty politician’s own priority. Then the petty politician leaves and is replaced by another, but by now, the two projects have been wedded in the public discourse, and woe betide any advocate or civil servant who suggests separating them. With a succession of petty politicians, each expressing interest in something else, an entire ecosystem of extras can develop, compromising design at every step while also raising costs.

The issue of efficiency

In the 1960s, the Toronto Transit Commission backed keeping a law requiring it to fund its operations out of fares. The reason was fear of surplus extraction: if it could receive subsidies, workers could use this as an excuse to demand higher wages and employment levels, and thus the subsidy would not go to more service. As it is, by 1971 this was untenable and the TTC started getting subsidies anyway, as rising market wages required it to keep up.

In New York, the outcome of the cycle of more subsidies and less efficiency is clearer. Kyle Kirschling’s thesis points out on PDF-p. 106 that New York City Transit’s predecessors, the IRT and BMT, had higher productivity measured in revenue car-km per employee in the 1930s than the subway has today. The system’s productivity fell from the late 1930s to 1980, and has risen since 1980 but (as of 2010) not yet to the 1930s peak. The city is one of a handful where subway trains have conductors; maintenance productivity is very low as well.

Instead of demanding efficiency, American transit advocates tend to demand even more OPM. Federal funding only goes to capital construction, not operations – but the people who run advocacy organizations today keep calling for federal funding to operations, indifferent to the impact OPM would have on any effort to increase efficiency and make organizations leaner. A well-meaning but harmful bill to break this dam has been proposed in the Senate; it should be withdrawn as soon as possible.

The difference between nudging and planning

I am soon going to go over this in more details, but, in brief, the disconnect between funding and oversight is not a universal feature of state funding of local priorities. In all unitary states we’ve investigated, there is state funding, and in Sweden it’s normal to mix state, county, and municipal funding. In that way, the US is not unique, despite its federal system (which at any case has far more federal involvement in transportation than Canada has).

Where the US is unique is that the Washington political establishment doesn’t really view itself as doing concrete planning. It instead opts for government by nudge. A federal agency makes some metrics, knowing that local and state bodies will game them, creating a competition for who can game the other side better. Active planning is shunned – the idea that the FTA should have engineers who can help design subways for New York is unthinkable. Federal plans for high-speed rail are created by hiring an external consultant to cobble together local demands rather than the publicly-driven top-down planning necessary for rail.

The same political advocates who want more money and care little for technical details also care little for oversight. They say “regulations are needed” or “we’ll come up with standards,” but never point to anything concrete: “money for bus shelter,” “money for subway accessibility,” “money for subway automation,” etc. Instead, in this mentality the role of federal funding is to be an open tab, in which every leakage and every abnormal cost is justified because it employed inherently-moral $80,000/year tradesmen or build something that organized groups of third-generation homeowners in an expensive city want. The politics is the project.

Quick Note: Do Costs Ever Go Down?

Bad agencies have a ratchet process in costs: they can go up, but not down. If there’s a cost saving, it does not reduce the budget, but only cancels out with unspecified cost increases. Agency heads and politicians trumpet their value engineering while costs never go down, leading to premium-cost, substandard quality projects.

Case in point: the Baltimore and Potomac Tunnel replacement project. The project used to be $750 million, in the 2000s, as a two-track passenger rail tunnel. Over the next decade, this turned into a four-track system with mechanical ventilation for diesel freight trains and enough clearance for double-stacked freight; costs ran over to $4 billion. Well, two months ago Amtrak announced a scope reduction back to two tracks, which it claims would save a billion dollars, cutting cost to… $4 billion.

This is not the first time this happens. Value engineering in California has had the same effect: every attempt to reduce scope – the blended plan for Northern California, plus various design compromises in both the Bay Area and the Central Valley – has failed to reduce costs. At most, they’ve prevented further cost overruns.

And in New York, the removal of the cavern underneath Penn Station in the planning process between the canceled ARC tunnel and the Gateway tunnel did not reduce costs at all. The cost estimate was $10 billion, much of which was the cavern; the cost estimate now is $10 billion for the bare tunnel with less scope than before. ARC was canceled on the grounds of potential cost overruns, and yet as soon as it took over the project, even while descoping the cavern, Amtrak presided over further increases in costs due to extras (Penn South, etc.).

It’s as if once there’s a number circulating out there, it will be spent, no matter what. If there’s a surplus, it will be blown on unspecified extras or on sheer inefficiency. Why spend $3 billion when the political system has already indicated that $4 billion is okay? Thus, 4-1 = 4, and, no doubt, if further value engineering is identified, the cost will stay $4 billion.

At no point does anyone say, okay, if there’s a cost saving, here’s the next slate of projects that the money can be spent on. Nor is there any proactive value engineering. Costs are only a problem insofar as they prevent the political system from saying yes, but even then, if there’s a number out there, even an outlandish one that nobody will say yes to (such as $117 billion for medium-speed rail on the Northeast Corridor), then it is the number. Any cuts from that are against inherently moral workers, communities, etc., in the service of inherently immoral outsiders and experts.

How to Build High-Speed Rail with Money the United States Has

The bipartisan infrastructure framework (BIF) just passed the Senate by a large margin, with money for both roads and public transportation. Unlike the 2009 Obama stimulus, the BIF has plenty of money for high-speed rail – not just $8 billion as in the 2009 bill, but a total of $66 billion to be spent on mainline rail. The Northeast Corridor program gets $24 billion out of this $66 billion in a dedicated program and another $6 billion out of another program within this bucket dedicated to Amtrak. This is $30 billion, which should be more than enough for high-speed rail on the Northeast Corridor. Together with other buckets for other parts of the US, it can even build some non-Northeastern lines, for example serving Chicago or Los Angeles.

I say should because the current plans are to waste the money. But better things are possible, so at the Transit Costs Project, we’re planning to embark on a project to write a report on how to do this better. The construction cost report will be done in early 2022, but we can overlap to some extent. A one-year program, to debut in early 2023, will include a Northeast Corridor proposal; a two-year one will also include tie-ins and starter lines elsewhere, such as Chicago-Cleveland/Detroit or Los Angeles-San Diego.

But for this, we need funding. We’re a good deal of the way there, I think around two-thirds for the two-year option – and this isn’t quite enough for the one-year option, some of the money needs to be matched. This is not the same as my Patreon in either scale (the difference is more than an order of magnitude) or scope (my Patreon funds the blog and vlog, which are way more general); if you know grants for such projects, please let us know, we can send a fuller proposal.

What’s the project’s scope?

Lots and lots of analysis, for one, like what we’re doing for subways. Intriguingly, high-cost countries for high-speed rail tend to also have high subway costs and vice versa, and this remains true even as it is easier to explain high-speed rail costs in terms of unnecessary scope and leakage. But this is not the dominant part of the project – rather, we are going to be synthetic and make a proposal. We’re not committing to an investment figure; my guess is that in 2021 dollars it should be around $15 billion to cut Northeast Corridor trip times to about 1:45 on each of New York-Boston and New York-Washington, but some variation is possible in either direction.

If there’s $30 billion for the Northeast Corridor, and high-speed rail is doable for half that, then the other half should be spent on tie-ins, for example improving regional rail in all four major metropolitan areas. Naturally, this should only include useful spending for rail operations and connections, but the Northeast doesn’t lack for those; New York can spend $17 billion on new tunnels and that’s at the per-km cost of Citybanan, one of the cheaper city center regional rail projects in our database.

The Leakage Problem

I’ve spent more than ten years talking about the cost of construction of physical infrastructure, starting with subways and then branching on to other things, most.

And yet there’s a problem of comparable size when discussing infrastructure waste, which, lacking any better term for it, I am going to call leakage. The definition of leakage is any project that is bundled into an infrastructure package that is not useful to the project under discussion and is not costed together with it. A package, in turn, is any program that considers multiple projects together, such as a stimulus bill, a regular transport investment budget, or a referendum. The motivation for the term leakage is that money deeded to megaprojects leaks to unrelated or semi-related priorities. This often occurs for political reasons but apolitical examples exist as well.

Before going over some examples, I want to clarify that the distinction between leakage and high costs is not ironclad. Sometimes, high costs come from bundled projects that are costed together with the project at hand; in the US they’re called betterments, for example the $100 million 3 km bike lane called the Somerville Community Path for the first, aborted iteration of the Green Line Extension in Boston. This blur is endemic to general improvement projects, such as rail electrification, and also to Northeast Corridor high-speed rail plans, but elsewhere, the distinction is clearer.

Finally, while normally I focus on construction costs for public transport, leakage is a big problem in the United States for highway investment, for political reasons. As I will explain below, I believe that nearly all highway investment in the US is waste thanks to leakage, even ignoring the elevated costs of urban road tunnels.

State of good repair

A month ago, I uploaded a video about the state of good repair grift in the United States. The grift is that SOGR is maintenance spending funded out of other people’s money – namely, a multiyear capital budget – and therefore the agency can spend it with little public oversight. The construction of an expansion may be overly expensive, but at the end of the day, the line opens and the public can verify that it works, even for a legendarily delayed project like Second Avenue Subway, the Berlin-Brandenburg Airport, or the soon-to-open Tel Aviv Subway. It’s a crude mechanism, since the public can’t verify safety or efficiency, but it’s impossible to fake: if nothing opens, it embarrasses all involved publicly, as is the case for California High-Speed Rail. No such mechanism exists for maintenance, and therefore, incompetent agencies have free reins to spend money with nothing to show for it. I recently gave an example of unusually high track renewal costs in Connecticut.

The connection with leakage is that capital plans include renewal and long-term repairs and not just expansion. Thus, SOGR is leakage, and when its costs go out of control, they displace funding that could be used for expansion. The NEC Commission proposal for high-speed rail on the Northeast Corridor calls for a budget of $117 billion in 2020 dollars, but there is extensive leakage to SOGR in the New York area, especially the aforementioned Connecticut plan, and thus for such a high budget the target average speed is about 140 km/h, in line with the upgraded legacy trains that high-speed lines in Europe replace.

Regionally, too, the monetary bonfire that is SOGR sucks the oxygen out of the room. The vast majority of the funds for MTA capital plans in New York is either normal replacement or SOGR, a neverending program whose backlog never shrinks despite billions of dollars in annual funding. The MTA wants to spend $50 billion in the next 5 years on capital improvements; visible expansion, such as Second Avenue Subway phase 2, moving block signaling on more lines, and wheelchair accessibility upgrades at a few stations, consists of only a few billion dollars of this package.

This is not purely an American issue. Germany’s federal plan for transport investment calls for 269.6 billion euros in project capital funding from 2016 to 2030, including a small proportion for projects planned now to be completed after 2031; as detailed on page 14, about half of the funds for both road and rail are to go to maintenance and renewal and only 40% to expansion. But 40% for expansion is still substantially less leakage than seen in American plans like that for New York.

Betterments and other irrelevant projects

Betterments straddle the boundary between high costs and leakage. They can be bundled with the cost of a project, as is the case for the Somerville Community Path for original GLX (but not the current version, from which it was dropped). Or they can be costed separately. The ideal project breakdown will have an explicit itemization letting us tell how much money leaked to betterments; for example, for the first Nice tramway line, the answer is about 30%, going to streetscaping and other such improvements.

Betterments fall into several categories. Some are pure NIMBYism – a selfish community demands something as a precondition of not publicly opposing the project, and the state caves instead of fighting back. In Israel, Haifa demanded that the state pay for trenching portions of the railroad through the southern part of the city as part of the national rail electrification project, making specious claims about the at-grade railway separating the city from the beach and even saying that high-voltage electrification causes cancer. In Toronto, the electrification project for the RER ran into a similar problem: while rail electrification reduces noise emissions, some suburbs still demanded noise walls, and the province caved to the tune of $1 billion.

Such extortion is surplus extraction – Israel and Toronto are both late to electrification, and thus those projects have very high benefit ratios over base costs, encouraging squeaky wheel behavior, raising costs to match benefits. Keeping the surplus with the state is crucial for enabling further expansion, and requires a combination of the political courage to say no and mechanisms to defer commitment until design is more advanced, in order to disempower local communities and empower planners.

Other betterments have a logical reason to be there, such as the streetscape and drainage improvements for the Nice tramway, or to some extent the Somerville Community Path. The problem with them is that chaining them to a megaproject funded by other people’s money means that they have no sense of cost control. A municipality that has to build a bike path out of its own money will never spend $100 million on 3 km; and yet that was the projected cost in Somerville, where the budget was treated as acceptable because it was second-order by broader GLX standards.

Bad expansion projects

Sometimes, infrastructure packages include bad with good projects. The bad projects are then leakage. This is usually the politically hardest nut to crack, because usually this happens in an environment of explicit political negotiation between actors each wanting something for their own narrow interest.

For example, this can be a regional negotiation between urban and non-urban interests. The urban interests want a high-value urban rail line; the rest want a low-value investment, which could be some low-ridership regional rail or a road project. Germany’s underinvestment in high-speed rail essentially comes from this kind of leakage: people who have a non-urban identity or who feel that people with such identity are inherently more morally deserving of subsidy than Berlin or Munich oppose an intercity high-speed rail network, feeling that trains averaging 120-150 km/h are good enough on specious polycentricity grounds. Such negotiation can even turn violent – the Gilets Jaunes riots were mostly white supremacist, but they were white supremacists with a strong anti-urban identity who felt like the diesel taxes were too urban-focused.

In some cases, like that of a riot, there is an easy solution, but when it goes to referendum, it is harder. Southern California in particular has an extreme problem of leakage in referendums, with no short- or medium-term solution but to fund some bad with the good. California’s New Right passed Prop 13, which among other things requires a 2/3 supermajority for tax hikes. To get around it, the state has to promise somthing explicit to every interest group. This is especially acute in Southern California, where “we’re liberal Democrats, we’re doing this” messaging can get 50-60% but not 67% as in the more left-wing San Francisco area and therefore regional ballot measures for increasing sales taxes for transit have to make explicit promises.

The explicit promises for weak projects, which can be low-ridership suburban light rail extensions, bond money for bus operations, road expansion, or road maintenance, damage the system twice. First, they’re weak on a pure benefit-cost ratio. And second, they commit the county too early to specific projects. Early commitment leads to cost overruns, as the ability of nefarious actors (not just communities but also contractors, political power brokers, planners, etc.) to demand extra scope is high, and the prior political commitment makes it too embarrassing to walk away from an overly bloated project. For an example of early commitment (though not of leakage), witness California High-Speed Rail: even now the state pretends it is not canceling the project, and is trying to pitch it as Bakersfield-Merced high-speed rail instead, to avoid the embarrassment.

The issue of roads

I focus on what I am interested in, which is public transport, but the leakage problem is also extensive for roads. In the United States, road money is disbursed to the tune of several tens of billions of dollars per year in the regular process, even without any stimulus funding. It’s such an important part of the mythos of public works that it has to be spread evenly across the states, so that politicians from a bygone era of non-ideological pork money can say they’ve brought in spending to their local districts. I believe there’s even a rule requiring at least 92% of the fuel tax money generated in each state to be spent within the state.

The result is that road money is wasted on low-growth regions. From my perspective, all road money is bad. But let’s put ourselves for a moment in the mindset of a Texan or Bavarian booster: roads are good, climate change is exaggerated, deficits are immoral (German version) or taxes are (Texan version), the measure of a nation’s wealth is how big its SUVs are. In this mindset, road money should be spent prudently in high-growth regions, like the metropolitan areas of the American Sunbelt or the biggest German cities. It definitely should not be spent in declining regions like the Rust Belt, where due to continued road investment and population decline, there is no longer traffic congestion.

And yet, road money is spent in those no-congestion regions. Politicians get to brag about saving a few seconds’ worth of congestion with three-figure million dollar interchanges and bypasses in small Rust Belt towns, complete with political rhetoric about the moral superiority of regions whose best days lay a hundred years ago to regions whose best days lie ahead.

Leakage and consensus

It is easy to get trapped in a consensus in which every region and every interest group gets something. This makes leakage easier: an infrastructure package will then have something for everyone, regardless of any benefit-cost analysis. Once the budget rather than the outcome becomes the main selling point, black holes like SOGR are easy to include.

It’s critical to resist this trend and fight to oppose leakage. Expansion should go to expansion, where investment is needed, and not where it isn’t. Failure to do so leads to hundreds of billions in investment money most of which is wasted independently for the construction cost problem.

The Invention of Bad Railroad Timetables

The rail advocate Shaul Picker has uploaded a fascinating potpourri of studies regarding commuter rail operations. Among them, two deserve highlight, because they cover the invention of bad timetable practices in New York, and, unfortunately, not only think those practices are good, but also view their goodness as self-evident. They are both by Donald Eisele, who was working for the New York Central and implemented this system on the lines that are now Metro-North, first introducing the concept to the literature in 1968, and then in 1978 asserting, on flimsy evidence, that it worked. Having implemented it in 1964 based on a similar implementation a few years earlier in the Bay Area, Eisele must be viewed as one of the people most responsible for the poor quality of American mainline service, and his idea of zone theory or zonal operations must be discarded in favor of the S-Bahn takt.

Zone theory

Eisele’s starting point is that commuter rail service should be exclusively about connecting the suburbs with city center. He contrasts his approach with urban transit, which is about service from everywhere to everywhere; trips short of Manhattan were 20% of single-trip ticket revenue for New York Central suburban operations and 5% of multi-ride pass revenue, and the railroad wanted to eliminate this traffic and focus on suburb-to-city commuters. From this inauspicious starting point, he implemented a timetable in which suburban stations are grouped into zones of a few contiguous stations each, typically 2-4 stations. At rush hour, a train only stops within one zone, and then expresses to city center, which in the original case means Grand Central.

The idea behind zone theory is that, since all that matters is a rapid connection to city center, trains should make as few stops as possible. Instead of trying to run frequently, it’s sufficient to run every 20 or 30 minutes, and then once a train fills with seats it should run express. This is accompanied by a view that longer-haul commuters are more important because they pay higher fares, and therefore their trips should not be slowed by the addition of stops closer in.

It’s important to note that what zone theory replaced was not an S-Bahn-style schedule in which all trains make all stops, and if there’s more demand in the inner area than the outer area then some trains should short-turn at a major station in the middle. American railroads had accumulated a cruft of timetables; Eisele goes over how haphazard the traditional schedules were, with short but irregular rush-hour intervals as some trains skipped some stations, never in any systematic way.

The first paper goes over various implementation details. For example, ideally a major station should be the innermost station within its zone, to guarantee passengers there a nonstop trip to city center. Moreover, considerable attention goes to fare collection: fares are realigned away from a purely distance-based system to one in which all stations in a zone have the same fare to city center, simplifying the conductors’ job. The followup paper speaks of the success of this realignment in reducing fare collection mistakes.

The failure of zone theory

We can see today that zone theory is a complete failure. Trains do not meaningfully serve anyone except 9-to-5 suburban commuters to the city, a class that is steadily shrinking due to job sprawl and a change in middle-class working hours. Ridership is horrendous: all three New York commuter railroads combined have less ridership than the Munich S-Bahn, a single-trunk, seven-branch system in a metropolitan area of 3 million. Metro-North would brag about having an 80% market share among rush hour commuters from its suburban shed to Manhattan, but that only amounts to about 90 million annual riders. In contrast, the modal split of rail at major suburban job centers, even ones that are adjacent to the train station like White Plains and Stamford, is single-digit percent – and Metro-North is the least bad of New York’s three railroads in this category.

Even on the original idea of providing fast service from the suburbs to city center, zone theory is a failure. The timetables are not robust to small disturbances, and once the line gets busy enough, the schedules have to be padded considerably. I do not have precise present-day speed zones for Metro-North, but I do have them for the LIRR courtesy of Patrick O’Hara, and LIRR Main Line service is padded 30% over the technical travel time of present-day equipment on present-day tracks. A textbook I have recently read about scheduling best practices cites a range of different padding factors, all single-digit percent; Switzerland uses 7%, on a complex, interlined network where reliability matters above all other concerns. With 30% padding, the LIRR’s nonstop trains between Ronkonkoma and Penn Station, a distance of 80 km, take about as long as local trains would with 7% padding.

Eisele is right in the papers when he complains about the institutional inertia leading to haphazard schedules. But his solution was destructive, especially in contrast with contemporary advances in scheduling in Europe, which implemented the all-day clockface schedule, starting with Spoorslag ’70 and then the Munich S-Bahn takt in 1972.

Zone theory and reliability

The first paper claims as self-evident that zonal timetables are reliable. The argument offered is that if there is a short delay, it only affects trains within that zone, and thus only affects the stations within the zone and does not propagate further. There is no attempt at modeling this, just claims based on common sense – and transport is a field where intuition often fails and scientific analysis is required.

The problem is that zone theory does not actually make trains in different zones independent of one another. The second paper has a sample timetable on PDF-p. 4 for the evening rush hour, and this can also be reversed for the morning. In the morning, trains from outer zones arrive in city center just after trains from inner zones; in the afternoon, trains serving outer zone stations depart city center first, always with a gap of just a few minutes between successive trains. In the morning, a delay in a suburban zone means that the trains in the zones behind it are delayed as well, because otherwise they would clash and arrive city center at literally the same minute, which is impossible.

This isn’t purely an artifact of short headways between running trains. Subway systems routinely have to deal with this issue. The key is that on a subway system, trains do not have much of their own identity; if a train is delayed, the next train can perfectly substitute for it, and cascading delays just mean that trains run slightly slower and (because the equipment pool is fixed) are slightly more crowded. The principle that individual suburban stations should only be served every 20-30 minutes means no such substitution is possible. S-Bahn trains are not as interchangeable as subway trains, which is why they cannot run as frequently, but they still manage to run every 2-3 minutes with 7% padding, even if they can’t reach the limit values of a train very roughly 1.5 minutes achieved by some big city subways.

Eisele did not think this through and therefore made an assertion based on intuition that failed: reliability did not improve, and with long-term deterioration of speed and lack of reduction in operating expenses, the express timetables at this point are slower than an all-stops S-Bahn would be.

Are the FRA and European Operators Sabotaging Texas Central?

Texas Central is a planned high-speed rail system connecting Dallas with Houston, using turnkey Shinkansen technology and private funding. The trains to be used are lightweight Japanese-made N700s, with extremely good performance, and the operating paradigm is to be based on the Shinkansen, without any interface with legacy rail, even in city centers. However, there may still be some conflict with regulators over this, since American rail regulations, since 2018, have been based on European/UIC standards and not on Japanese ones, which are distinct and incompatible. This is supposed to be okay because there is no track sharing at all, the same model proposed by California High-Speed Rail before US regulations under the supervision of the FRA were realigned with UIC ones. And yet, there may be trouble.

None of this is news – these are documents from 2020. See for example here:

Some commenters asserted that FRA is exempting TCRR from any crashworthiness requirements so that the N700 series trainset technology could be imported. This assertion, however, is not supported by the requirements proposed in the NPRM, as FRA makes clear that its approach is to ensure that the trainset is safe for the environment in which it will operate. To this end, FRA is including additional requirements that are not inherent in the JRC approach to trainset structure design. These requirements include a dynamic collision scenario analysis that is designed to address the residual risks that could potentially exist within the TCRR operating environment.32Of particular note, in this instance, is the inclusion of the steel coil collision scenario outlined in § 299.403(c). Despite the safety record of JRC’s Tokaido Shinkansen system, FRA believes that the North American environment poses unique risks with respect to potential objects that might somehow enter the protected ROW, either by accident or on purpose. In this case, FRA believes that requiring dynamic collision scenario analysis using the 14,000-lbs steel coil scenario derived from existing requirements to protect against risks presented by grade crossings can serve as a conservative surrogate for potential hazards that might be present on the TCRR ROW (e.g., feral hogs, stray livestock, unauthorized disposal of refuse). With the inclusion of this dynamic collision scenario, and adaptations of existing U.S. requirements on emergency systems and fire safety, FRA believes it has reasonably addressed risks unique to the TCRR operating environment in a manner that appropriately considers crashworthiness and occupant protection standards for the operating environment intended, while at the same time keeping intact the service-proven nature of the equipment.

PDF-pp. 34-35

Of note, the FRA speaks of grade crossings on a line that has none, and demands trains to withstand the impact of a 6.35 ton steel ball that may be dropped from overpasses that do not exist.

This is likely malicious more than incompetent; advocates I know out of California suspect a specific unnamed staffer placed by Ed Rendell who is trying to sabotage the project. This may also involve some lobbying by European vendors, which constantly snipe at competitors within the American market, and even by individual consultants. California had a little bit of this, when competitors started spreading rumors that SNCF was a pro-Nazi organization, and even got some state legislators to make a testimonial bill designed to embarrass SNCF.

It’s a real danger of assuming that foreign public companies that behave responsibly at home will behave responsibly in your periphery. SNCF is subject to public pressure within France, which limits its ability to extract surplus out of riders; this pressure vanishes even right next to France, with majority-SNCF-owned services to Britain (Eurostar) and Belgium (Thalys), which charge considerably higher fares, let alone in the US. The same is true of the other vendors, really, and thus in Britain, franchises owned by EU state-owned railroads like SNCF, DB, and NS are unpopular. Outsourcing the state even to vendors with a track record of responsibility at home will not lead to responsible results, because such outsourcing is an admission that the American state is not capable of adequately overseeing such a project itself and therefore will not notice extravaganza.

Consultants and Railroaders Turn New Haven Line Investment Into Shelf Art

The state of Connecticut announced that a new report concerning investment in the New Haven Line is out. The report is damning to most involved, chief of all the Connecticut Department of Transportation for having such poor maintenance practices and high construction costs, and secondarily consultant AECOM for not finding more efficient construction methods and operating patterns, even though many readily exist in Europe.

What started out as an ambitious 30-30-30 proposal to reduce the New York-New Haven trip time to an hour, which is feasible without construction outside the right-of-way, turned into an $8-10 billion proposal to reduce trip times from today’s 2 hours by 25 minutes by 2035. This is shelf art: the costs are high enough and the benefits low enough that it’s unlikely the report will lead to any actionable improvement, and will thus adorn the shelves of CTDOT, AECOM, and the governor’s office. It goes without saying that people should be losing their jobs over this, especially CTDOT managers, who have a track record of ignorance and incuriosity. Instead of a consultant-driven process with few in-house planners, who aren’t even good at their jobs, CTDOT should staff up in-house, hiring people with a track record of success, which does not exist in the United States and thus requires reaching out to European, Japanese, and Korean agencies.

Maintenance costs and the state of good repair racket

I have a video I uploaded just before the report came out, explaining why the state of good repair (SOGR) concept has, since the late 1990s, been a racket permitting agencies to spend vast sums of money with nothing to show for it. The report inadvertently confirms this. The New Haven Line is four-track, but since the late 1990s it has never had all four tracks in service at the same time, as maintenance is done during the daytime with flagging rules slowing down the trains. Despite decades of work, the backlog does not shrink, and the slow zones are never removed, only replaced (see PDF-p. 7 of the report). The report in fact states (PDF-p. 8),

To accommodate regular maintenance as well as state-of-good-repair and normal replacement improvements, much of the four-track NHL typically operates with only three tracks.

Moreover, on PDF-p. 26, the overall renewal costs are stated as $700-900 million a year in the 2017-21 period. This includes rolling stock replacement, but the share of that is small, as it only includes 66 new M8 cars, a less than second-order item. It also includes track upgrades for CTRail, a program to run trains up to Hartford and Springfield, but those tracks preexist and renewal costs there are not too high. In effect, CTDOT is spending around $700 million annually on a system that, within the state, includes 385 single-track-km for Metro-North service and another 288 single-track-km on lines owned by Amtrak.

This is an insane renewal cost. In Germany, the Hanover-Würzburg NBS cost 640 million euros to do 30-year track renewal on, over a segment of 532 single-track-km – and the line is overall about 30% in tunnel. This includes new rails, concrete ties, and switches. The entire work is a 4-year project done in a few tranches of a few months each to limit the slowdowns, which are around 40 minutes, punctuated by periods of full service. In other words, CTDOT is likely spending more annually per track-km on a never-ending renewal program than DB is on a one-time program to be done once per generation.

A competent CTDOT would self-abnegate and become German (or Japanese, Spanish, French, Italian, etc.). It could for a few hundred million dollars renew the entirety of the New Haven Line and its branches, with track geometry machines setting the tracks to be fully superelevated and setting the ballast grade so as to improve drainage. With turnout replacement, all speed limits not coming from right-of-way geometry could be lifted, with the possible exception of some light limits on the movable bridges. With a rebuild of the Grand Central ladder tracks and turnouts for perhaps $250,000 per switch (see e.g. Neustadt switches), trains could do New York-New Haven in about 1:03 making Amtrak stops and 1:27 making all present-day local stops from Stamford east.

Infrastructure-schedule integration

The incompetence of CTDOT and its consultants is not limited to capital planning. Operations are lacking as well. The best industry practice, coming from Switzerland, is to integrate the timetable with infrastructure and rolling stock planning. This is not done in this case.

On the contrary: the report recommends buying expensive dual-mode diesel locomotives for through-service from the unelectrified branches instead of electrifying them, which could be done for maybe $150 million (the Danbury Branch was once electrified and still has masts, but no wires). The lifecycle costs of electric trains are half those of diesel trains, and this is especially important when there is a long electrified trunk line with branches coming out of it. Dual-mode locomotives are a pantomime of low electrification operating costs, since they have high acquisition costs and poor performance even in electric mode as they are not multiple-units. Without electrification, the best long-term recommendation is to shut down service on these two branches, in light of high maintenance and operating costs.

The choice of coaches is equally bad. The report looks at bilevels, which are a bad idea in general, but then adds to the badness by proposing expensive catenary modifications (PDF-p. 35). In fact, bilevel European trains exist that clear the lowest bridge, such as the KISS, and those are legal on American tracks now, even if Metro-North is unaware.

The schedule pattern is erratic as well. Penn Station Access will soon permit service to both Grand Central and Penn Station. And yet, there is no attempt to have a clean schedule to both. There is no thought given to timed transfers at New Rochelle, connecting local and express trains going east with trains to Grand Central and Penn Station going west, in whichever cross-platform pattern is preferred.

The express patterns proposed are especially bad. The proposal for through-running to Philadelphia and Harrisburg (“NYX”) is neat, but it’s so poorly integrated with everything else it might as well not exist. Schedules are quoted in trains per day, for the NYX option and the GCX one to Grand Central, and in neither case do they run as frequently as hourly (PDF-p. 26). There is no specific schedule to the minute that the interested passenger may look at, nor any attempt at an off-peak clockface pattern.

Throw it in the trash

The desired rail investment plan for Connecticut, setting aside high-speed rail, is full electrification, plus track renewal to permit the elimination of non-geometric speed limits. It should cost around $1 billion one-time; the movable bridge replacements should be postponed as they are nice to have but not necessary, their proposed budgets are excessive, and some of their engineering depends on whether high-speed rail is built. The works on the New Haven Line are doable in a year or not much more – the four-year timeline on Hanover-Würzburg is intended to space out the flagging delays, but the existing New Haven Line is already on a permanent flagging delay. The trains should be entirely EMUs, initially the existing and under-order M8 fleet, and eventually new lightweight single-level trains. The schedule should have very few patterns, similar to today’s off-peak local and express trains with some of one (or both) pattern diverting to Penn Station; the express commuter trains should take around 1:30 and intercity trains perhaps 1:05. This is a straightforward project.

Instead, AECOM produced a proposal that costs 10 times as much, takes 10 times as long, and produces half the time savings. Throw it in the trash. It is bad, and the retired and working agency executives who are responsible for all of the underlying operating and capital assumptions should be dismissed for incompetence. The people who worked on the report and their sources who misinformed them should be ashamed for producing such a shoddy plan. Even mid-level planners in much of Europe could design a far better project, leaving the most experienced and senior engineers for truly difficult projects such as high-speed rail.

Quick Note: Deterioration of Speed

A regrettable feature of rail transport is that often, the speed of a line deteriorates over time after it opens or finishes a major upgrade. This can come from deferred maintenance or from proper maintenance that includes stricter speed limits or more timetable padding; in either case, it’s because maintaining the original schedule is not seen as a priority, and thus over time service degrades. In some cases, this can also include a deterioration of frequency over time, usually due to inattention.

This is not excusable behavior. The networks where this feature exists, including the US, France, and Germany, are not better-run than the Shinkansen, where I have not seen any such deterioration of Shinkansen speed in many years of poking around timetables on Hyperdia, or the system in Switzerland. Switzerland’s timed transfers make it impossible for gradual deterioration of speed to accumulate – trains are scheduled to just make connections to other trains at major nodes, and so if they slow down too much then they can’t make the transfers and the entire network degrades.

I wish I could say degradation is a purely American phenomenon. It’s very common in the United States, certainly – on the subway in New York the deterioration made citywide news in 2017 (including one piece by me), on the trains between New York and New Haven the schedule is visibly slower now than it was in the late 2000s, on Amtrak the Northeast Corridor has degraded since the 2000s. Speed is not viewed as a priority in the US, and so there are always little excuses that add up, whether they’re flagging, the never ending State of Good Repair program on the New Haven Line under which at no point in the last 20-25 years have all four tracks been in service at the same time, or just inattention to reliability.

But no. France and Germany have had this as well. The TGV used to run between Paris and Marseille in 3:03 every two hours and in 3:06 every other hour; today I see a 3:04 itinerary every four hours and the rest start at 3:11. And here, the Berlin-Hamburg trains were timetabled at 1:30 in the mid-2000s, giving an average speed of 189 km/h, the highest in Germany even though the top speed is only 230 and not 300; the fastest itinerary I can find right now is 1:43, averaging only 165 km/h.

I stress that such deterioration does not have any benefits. It’s an illusory tradeoff. When New York chose to slow down the L trains’ braking rate as part of CBTC installation, this was not seen in reduced systemwide maintenance costs; speed just wasn’t a priority, so the brakes were derated. The 7 train, as I understand it, will instead speed up when CBTC comes online, a decision made under Andy Byford’s program to speed up service.

Nor has France saved anything out of the incremental slowdowns in TGV service. Operating costs are up, not down. The savings from slowdowns are on the illusory to microscopic spectrum, always trumped by increases in cost from other sources, for example the large increases in wages in the 2010s due to the cheminot strikes.

By far the greatest cost of speed is during construction. During operations, faster service means lower crew costs per km. This is where the Swiss maxim of running trains as fast as necessary comes from. This isn’t about derating trains’ acceleration – on the contrary, Switzerland procures high-performance trains. It’s about building the least amount of physical infrastructure required to maintain a desired timetable, and once the infrastructure is built, running that timetable.