Category: Incompetence

MAGA Trains

American railfans are full of nostalgia for a past era when American trains were great. So much of the discussion among industry insiders, railfans, and advocates is about how to make American railroads great again, how to return to the mid-20th century era of American domination. This is not correct history: while American railroads were in fact in a pretty good position from the 1920s to the 50s, they were not competitive with mass motorization and air travel, and trying to imitate what they were like then has no chance of competing with cars or planes. The story of American railroads has to be understood not as decline but as stagnation: operations, technology, and management stagnated, and this is what led to ridership decline. Instead of indulging in a MAGA fantasy about past greatness, it is important for the United States to implement all the innovations of the last half century that it has missed out on, innovations coming from East Asia and Western Europe.

Organization

American railroads were private until Amtrak took over intercity operations and states took over commuter rail operations, which happened well after the terminal decline in ridership. There was intense competition between rival companies, at times leading to physical violence. There was no coordination of operations between different railroads, no coordination with municipal public transportation systems, no attempt at seamless passenger experience. What was the point? This system evolved in the early 20th century, when there was no competition from other modes, only from other railroads.

Over time, most of the rest of the developed world has learned to coordinate different modes of public transportation better, to compete with cars. This usually occurred under nationalized mainline rail companies, but even when companies remained separate, as with the division between municipal subways (e.g. the Berlin U-Bahn) and national railways (e.g. the S-Bahn), or with the separate BLS system around and south of Bern, there has been integration. There is fare and schedule coordination in German cities across rail and bus operators, and even better coordination in the Netherlands and Switzerland.

The US remains fixated on competition, and thus there is no fare integration, but rather relationships between different operators are adversarial. In Chicago, the mayor opposes integration between the municipal L and the regionally-owned Metra commuter rail system, since the city does not own Metra. Every time Amtrak has to share territory with a commuter railroad, one side is screwing the other out of something, whether it’s Amtrak overcharging on electricity or Metro-North arbitrarily slowing Amtrak down. In Boston, there is no integration between city-focused MBTA service, which includes commuter rail, and buses in outlying cities, called RTAs (regional transit authorities); the MBTA is simply uninterested in matching fares or schedules, and is not even integrating its own buses with its commuter trains.

Planning coordination

Switzerland has higher rail usage than every place I know of once one controls for city size. Zurich’s modal split may not be as favorable to public transportation as Paris or London’s, but is a world better than that of any French or British city of similar size. Switzerland got to this point through a stingy political process in which planners had to stretch every franc, substituting organizational capacity for money. Thus, construction in the 1990s used the following principles of value engineering:

  • Infrastructure, rolling stock, and the timetable should be planned together (the magic triangle), since decisions on each affect the other two.
  • Trains should run as fast as necessary for transfer windows, overtakes, meets on single track, etc. Infrastructure should likewise be only as expansive as necessary – if the timetable does not have trains on a given single track meeting, this segment does not need to be doubled.
  • Trains should have timed transfers at major cities, to enable everywhere-to-everywhere travel. Connecting buses should be timed with the regional trains at major suburban nodes.
  • Electronics before concrete: it’s cheaper to resignal a line to have short headways and high speeds than to add tracks and tunnels.

These principles do not exist in the United States. Worse, too many American activists, even ones who are pretty good on related issues, do not believe it’s even possible to implement them. “This isn’t Switzerland or Japan” is a common refrain. There’s growing understanding among American cycling advocates that 50 years ago the Netherlands wasn’t as bike-friendly as it is today; there sadly isn’t such understanding regarding the state of rail coordination in Switzerland until about the 1990s.

While Switzerland manages to build its Knot System at low cost, leading to sharp increases in rail usage in the 2000s and 2010s, Americans are unable to do the same. Activists propose massive spending, which the political system is unwilling to fund. Nor is the political system interested in adapting low-cost solutions for infrastructure coordination, since the sort of apparatchiks who governors like appointing to head state agencies can’t implement them; we all know what happened last time a foreigner got appointed to a major position and succeeded too much. The way forward is right there, and the entire American political system, from every governor down to most activists, either is ignorant of it or explicitly rejects it.

Technology

Amtrak runs slower than it used to on most lines. Trip times on the Northeast Corridor south of New York are if anything slightly slower than they were in the 1970s in the early days of the Metroliner. The corridor and long-distance service outside the Northeast are considerably slower. For example, the Super Chief took 39:45 between Chicago and Los Angeles, whereas its current Amtrak version, the Southwest Chief, takes 43:10. At shorter range, the Chicago-St. Louis trains take 5:20 today, compared with 4:55 in the 1930s. This has led too many Americans to assume that there has been technological regression and that the main focus should be on restoring midcentury service levels rather than on moving forward.

In reality, high speeds in the middle of the 20th century came from the facts that express passenger trains were highly profitable and used by important people and so had priority over all other traffic, and that superelevation was set high for these trains; both of these aspects collapsed as riders and high-value shippers decided driving and flying were better than taking 5-hour train rides, so the profit center shifted to low-value freight. Today, getting high passenger ridership is plausible at high-speed rail speeds, but that requires getting Chicago-St. Louis down to 2 hours, not 5 hours, and having excellent connections to local and regional public transportation at both ends.

Nor was midcentury rolling stock good by current standards. Electric locomotives in Europe weigh around 90 tons. American ones weigh a little more, still in compliance with superseded FRA regulations enacted just after WW2. But the locomotives from just before these regulations weighed far more: the Pennsylvania Railroad’s GG1 weighed 215 metric tons. Europe has achieved weight reductions over generations of innovation since, and Japan has achieved even more impressive reductions; 215 tons would get you 2/3 of the way to a 10-car EMU set in Tokyo.

Worse, even in the middle of the 20th century, the US was no longer at the technological forefront of rail service. The civil service formation following the German Revolution brought forth a new railway law and new technology, such as the tangential switch, since adopted throughout Continental Europe; the US mostly sticks with secant switches built to late-19th century specs. In the 1950s the differences between German and American rail technology weren’t huge, but they were there. Since then they’ve gradually widened – in the 1960s Germany came up with LZB signaling, while the US was at best stuck on 1930s signaling, federal regulations on the matter leading to lower top speeds than to the adoption of automatic train protection.

There seems to be general ignorance of the advances that the US has not been part of. Rail managers ask questions like “does Europe have positive train control?” (yes, ETCS is already a second-generation system, we just call this automatic train protection instead of positive train control) or say “Europe doesn’t have the ADA” (accessibility laws here are comparable to American ones and overall the public transportation networks here are on average more accessible). In technology as in organization, the MAGA mentality for trains refuses to admit that there are innovations abroad to learn from.

The way forward: imitate, don’t innovate

The United States can innovate in public transportation, but only if it imitates better countries first. It needs to learn what works in Japan, France, Germany, Switzerland, Sweden, the Netherlands, Denmark, South Korea, Spain, Italy, Singapore, Belgium, Norway, Taiwan, Finland, Austria. It needs to learn how to plan around cooperation between different agencies and operators, how to integrate infrastructure and technology, how to use 21st-century engineering.

There are great places where such imitation could work. I work a lot on Boston-related issues at TransitMatters; New England has high population density, a wealthy and growing urban core in Boston, ample legacy rail infrastructure, and town centers that work more like Central European suburban sprawl (albeit at lower density) than like structureless Californian or Texan sprawl. But it can’t move forward without rejecting MAGA fantasies and replacing them with a program of learning from what works here and in Japan. There are so many projects under discussion of limited or no value, and some even with negative value, like anything that interacts with the hobby freight railroad Pan Am.

Instead, the tendency in the United States is to do anything to avoid learning from outside North America. Plans for intercity rail improvement outside the Northeast and California are steeped with MAGA language about restoring midcentury rail. Plans in New York spend far too much time on midcentury expansion plans and far too little on understanding cost explosion factors dating to the 1920s. Regional rail plans vaguely nod to European S-Bahns, but are generally filtered through several layers, mainly Philadelphia’s implementation. Anything that touches freight invites kludges that European planners no longer use for cost or maintenance reasons.

This tendency has to end. Meiji Japan didn’t join the first world by closing itself to foreign inventions – quite the opposite. The US needs to understand that the path to a future with better American transportation lies not in America’s past, but in Europe and East Asia’s present. The history isn’t one of American decline and renaissance through rediscovery of ancient learning, but one of American insularity and stagnation, to which the solution is to adapt technologies that work elsewhere.

China Won’t Save You

The construction costs of Britain’s just-approved domestic high-speed rail network, High Speed 2, are extreme. The headline costs are, in 2019 figures, £80.7-88.7 billion per the Oakervee review, with one estimate going up to £106.6 billion, all for a system only 530 km in length in mostly flat terrain. This includes rolling stock, but that is less than 10% of the projected cost. At the end of the day, Britain has decided to spend around $200 million per kilometer, a cost comparable to that of base tunnels and mostly-tunneled high-speed lines.

And now the People’s Republic of China has offered to build the entire thing for cheaper with a 5-year timeline, and everyone acts as if it’s a serious offer. So let me dust off my construction costs database and tell you: the PRC won’t save you. There is no alternative to developing good internal cost control. This requires learning from lower-cost countries, but Chinese high-speed rail construction costs are not really low.

Vietnam

Ho Chi Minh City and Hanoi are both building metros. Hanoi uses Chinese financing, HCMC uses Japanese financing. Both have very high construction costs – my database has HCMC’s 13% underground Line 1 at $320 million/km, 82% underground Line 2 phase 1 at $535 million/km, and 84% underground Line 5 phase 1 at $590 million/km, whereas Hanoi’s 74% underground Line 2A is $215 million/km and 32% underground Line 3 is $365 million/km.

The system in Hanoi has been plagued with delays. Line 2A was supposed to be operational by 2016. Construction was only completed in 2018, but the line is yet to open. Testing is ongoing, but Chinese experts couldn’t return to Vietnam after the Chinese New Year holiday because of the coronavirus quarantine. The South China Morning Post has compared the Hanoi project negatively with that of HCMC, which is for the most part on time, if expensive.

Like many developing-world cities, HCMC is paying more for a subway tunnel than Japan pays at home; to get to the cost range of HCMC in Japan, one needs to go to complex regional rail tunnels in Tokyo dipping under multiple older tunnels in city center. In that it is no different from Dhaka or Jakarta. The primary explanation must be that importing Japanese technology means using techniques optimized for a high-skill, high-wage labor force and cheap domestic capital, rather than ones optimized for a low-skill, low-wage labor force and expensive imported capital.

But that does not explain why the Hanoi Metro is so expensive. Chinese metros cost less (though not universally – Shanghai’s construction costs are rising fast): I want to say about $250 million/km on average, about the same as the non-Chinese global median, but the actually big set of data is unpublished so you guys can’t nitpick my sources yet. So what’s going on here? Vietnam is poorer than China, but the difference is not so big. It’s about half as rich as the PRC. It’s comparable to Europe, where Romania and Bulgaria are about half as rich as Western Europe, and they have low construction costs, lower than parts of Eastern Europe closer to Western incomes.

Chinese high-speed rail

The construction costs of high-speed rail in the PRC are fairly high, especially in its richer parts. The costs remain lower than those of tunnel-heavy lines like those of Italy, Japan, and South Korea, but by low-tunnel standards, they are high.

There is a perception that Chinese costs are low, but it comes from using the wrong currency conversion. Here, for example, is a World Bank report on the subject:

[P. 39] Figure 4.1 shows the construction cost of 60 projects. The average cost of a double-track HSR line (including signaling, electrification, and facilities) is about Y 139 million/km (US$20.6 million/km) for a 350 kph HSR line, about Y 114 million (US$16.9 million) for a 250 kph HSR line, and about Y 104 million (US$15.4 million) for a 200 kph HSR line. These costs are at least 40 percent cheaper than construction costs in Europe (European Court of Auditors 2018, 35).

The problem is, the exchange rate of $1 = ¥6.75 is incorrect. The OECD’s PPP conversion factor today is much higher, $1 = ¥3.5; for high-speed lines built a decade ago, it would be even higher, about $1 = ¥3.3, with ten years of American inflation since. Using the correct modern rate, the cost is about $40 million per kilometer, which is not lower than in Europe but rather higher. Beijing-Shanghai, as far as I can tell a ¥220 billion project for 1,318 km of which just 16 km are in tunnel, rises to $50 million per km, and more like $60 million per km in today’s money. It’s still cheaper than High Speed 2, but more expensive than every Continental Europe high-speed line that isn’t predominantly in tunnel, like Bologna-Florence.

There are all these longwinded explanations for why the PRC does things cheaper and faster than the first world, and they are completely false. China is not cheap to build in, especially not high-speed rail. The only reason Chinese costs aren’t even higher is that Eastern China is pretty flat. Even then, China has not taken advantage of this flatness to build tracks at-grade to minimize costs. Instead, it has built long viaducts at high cost, in contrast with the at-grade approach that has kept French LGV costs reasonable.

The PRC doesn’t even build things particularly quickly. Total actual construction time from start to finish per line segment is 4-6 years per Wikipedia’s list, which is comparable to recent LGVs. What is true is that China has been building many lines at once, and each line is long, but this is a matter of throughput, not latency. The limit to throughput is money; the PRC made a political decision to spend a lot of it at once as stimulus in the late 2000s and early 2010s, and by the same token, the UK has just made a political decision to spend just less than £100 billion on High Speed 2, in a trickle so that the system will take 15+ years to complete.

Why are they like this?

The myth of hyper-efficient Chinese construction seems never to die; I’ve seen it from the first days of this blog, e.g. then-US Secretary of Transportation Ray LaHood in 2012. It relates to a mythology that I think is mostly part of Anglo-American culture, of the tension between freedom and efficiency. The English-speaking world in this mythology is the epitome of freedom, with a gradation of less free, more efficient paces: Germany, then Japan, then finally China. It’s a world in which people’s ideas of what totalitarianism looks like come from reading George Orwell and not from hearing about the real-life Soviet Union’s comic incompetence – the gerontocracy, the court politics, the drunk officials, the technologically reactionary party apparatchiks – all of which was happening in real time in Nazi Germany too, which was fighting less efficiently than the UK and US did.

It’s equally a world in which people think rights Germans and Japanese take for granted, like various privacy protections, do not even register as important civil liberties. I dare any reader to try explaining to a British or American transit manager that really, no, you do not need our data, Central Europe manages to plan better than you without smartcards tracking users’ every move and storing the data in servers with infosec that screams “steal me.” Nor do Americans make much of an effort to import policing regimes from democracies with one twentieth their rate of police shootings per capita.

China’s incompetence is now visible to the entire world, in the form of a virus outbreak that local officials flailed about for a month, too afraid to acknowledge mistakes lest they take the fall for them. And yet it’s easier for American and British business leaders and politicians to point to China as an example to emulate than to Pareto-better France or Germany.

If anything, High Speed 2 is low-key overlearning some French lessons, leading to inferior infrastructure planning – but it’s messing up key details leading to cost explosion, such as “don’t build new signature urban train stations.” But my suspicion is that French and German rail experts will point out all those details. To us, if Britain changes some detail in a way that isn’t truly justified by local conditions, we will point it out – and push back when British blowhards try to explain to use that they do things differently because they’re morally superior to us. British people know this – they know they can’t pull rank. Americans are the same, except even less capable of dealing with other nations as equals than the British are.

The way forward

High Speed 2 is a mess, largely because of the cost. To move forward, talking to China about how it’s built high-speed rail may be useful, but it can’t be the primary comparison, not when Continental Europe is right here and does things better and cheaper. For Asian help, Japan has some important lessons about good operations and squeezing maximum use out of limited urban space. A lot of scope can be removed. A lot more can be modified slightly to connect to regional lines better.

More conceptually, Britain has a problem with costs and benefits chasing each other. If benefits are too high, the political system responds with sloppy cost control, for example by lading the project with ancillary side projects that someone wants or by giving in to NIMBY opposition. If the costs are too high, the political system responds with scrounging extra benefits, for example counting the consumer surplus of high-speed rail travelers as a benefit, by which standard every government subsidy to anyone has a benefit-cost ratio of at least 1.

Bringing in the PRC won’t help. It’s value-engineering theater, rather than the hard work required to coordinate infrastructure and timetable planning or to tell Home Counties NIMBYs that the state is not in the business of guaranteeing their views; there is so much tunneling on the proposed line that isn’t really necessary. None of the countries that builds trains cheaply did so by selling its civil service for spare parts; why would Britain be any different?

Turnover and the TGV

The TGV network put France at the forefront of European intercity rail technology for decades. Early investments, starting in 1981 with high-speed tracks between Paris and Lyon, led to explosive growth in ridership throughout the 1980s, 90s, and 2000s. But since then, usage has stagnated. Domestic ridership in 2009 and 2010 was 100 million; so was domestic ridership in 2016, on a larger network. There was a 10% increase in 2017 when the line to Bordeaux opened, but in 2018 ridership stagnated again. In the late 2000s, there was more ridership on the TGV than on the intercity trains in Germany; now, German intercity trains approach 150 million annual riders, and are not far behind the TGV in passenger-kilometers, Germany running slower trains and thus averaging shorter trips.

I’ve heard a number of different explanations for why TGV ridership has not increased in the last ten years, many of which involve management; I, too, complain about managers who are recruited from the airline industry. But I submit that there’s a deeper, conceptual reason: the TGV is only workable for thick markets, mostly connecting Paris with a major provincial city. Trains run mostly nonstop, and there is no seat turnover. From the 1980s to the late 2000s, ridership rose as more cities were connected to Paris, but then those markets were mostly saturated, and new markets cannot be served adequately.

The TGV hit a wall about ten years ago. This is important, because as the busiest high-speed rail network outside of China and Japan, it has a lot of cachet. Politicians and rail planners propose programs that look much like the TGV network. This is of especial importance in the United Kingdom, which is replicating the TGV’s operating paradigm with the under-construction High-Speed 2 project; in the United States, the geography of the Northeast Corridor has meant that plans look more like the Japanese paradigm, which works better both in general and in the Northeast’s specific context.

Turnover

In Japan, Germany, and the United States (by which I mean the Northeast Corridor), trains stop at many major cities on one route.

The fastest Shinkansen trains between Tokyo and Shin-Osaka have always stopped at Nagoya and Kyoto. Tokyo-Osaka passengers ride end to end, but many riders go between Tokyo or Osaka and Nagoya, so the seat turns over. Some of these trains continue west to Hakata, with such intermediate stops as Okayama and Hiroshima. The upshot is that the trains don’t just connect these cities to Tokyo, but also to one another. The size of Tokyo means there is demand for very high frequency to Shin-Osaka and decent frequency to Hakata; passengers on intermediate city pairs like Nagoya-Okayama or Kyoto-Hiroshima benefit from infrastructure that those city pairs could never justify on their own.

In Germany, intercity trains generally serve more than two major cities too. Like in France and unlike in Japan and the US, some major cities have stub-end stations, most notably Frankfurt; trains do not skip these cities, but rather serve them, reverse direction in about 5 minutes, and continue. Passengers may reserve seats but do not have to do so, so each seat has an electronic display showing for which portion of the trip it is free for the use of any passenger with an unreserved ticket.

France works by a different principle. Paris, Lyon, and Marseille are collinear, but trains do not serve all three cities. Trains from Paris to Lyon do not continue to Marseille; trains from Paris to Marseille rarely stop at the Lyon airport and never stop at Lyon Part-Dieu, which is on a branch from the Paris-Marseille mainline. There are separate trains between Lyon and Marseille, running generally hourly. Hourly frequency is workable on a line that takes about 1:40 end to end, but is not great.

At least Lyon and Marseille are on the same line coming out of Paris. Trains between Lyon and Lille, 3-3.5 hours apart on opposite sides of Paris, have service gaps of 2-2.5 hours most of the day. Lyon-Strasbourg trains on the LGV Rhin-Rhône lose money – the two cities alone do not have the ridership to fill trains, and there are no transfers with other cities nor larger intermediate cities than Mulhouse.

It’s too late for Paris 21

Berlin Hauptbahnhof is a through-station with service to cities all over Germany; every intercity train to Berlin serves Hauptbahnhof, regardless of which direction it comes from. This is common elsewhere in Germany, too. The second most important stub-end station, Stuttgart, is currently being replaced with an underground through-station at great cost, in a controversial project called Stuttgart 21. The most important, Frankfurt, long had plans for a similar through-station dubbed Frankfurt 21, and recently the federal government announced new plans for such a project.

Paris could have built a Paris 21, or Paris Hauptbahnhof, in the 1970s or 80s. When the city designed the RER, it ripped up Les Halles to build the Chatelet-Les Halles transfer point. The station is palatial: 25 meters underground, with 7 tracks and 4 platforms, 2 of which are 17 meters wide. This was so expensive that the Auber-Nation segment of the RER A, consisting of 6 km of tunnel and the Chatelet-Les Halles and Gare de Lyon RER stations, cost in today’s money around $750 million per km, a record that is yet to be surpassed in a non-English-speaking country.

Planning for the TGV only began in earnest in the late 1970s; the RER was constructed in the late 1960s and 70s, Les Halles opening in 1977. Perhaps the initial omission of intercity tracks was understandable. But the RER D opened in the early 1990s, and by then SNCF should have known it would have a national TGV network. It could have at the very least spent some money on having 2 platforms and 4 tracks at Les Halles dedicated to intercity trains, running through from Gare du Nord to Gare de Lyon. But it didn’t, and now there’s so much regional traffic that repurposing any part of Les Halles for intercity trains is impossible. Moreover, given the cost of the station in the 1970s, a future Paris 21 project would be unaffordable.

Transfers

The TGV has to live with infrastructure decisions made 30 years ago. Given this reality, some of the kludges of the system today are understandable. And yet, even in outlying areas, there are no scheduled connections with either other TGVs or regional trains. Paris-Nice TGVs are timed to just miss TERs to Monaco and Ventimiglia. The Mâcon TGV station is located at just the wrong place for a transfer to a future extension of the LGV Rhin-Rhône south to Lyon. Other than Part-Dieu and Lille-Europe, major secondary cities do not have urban stations designed for through-service.

The contrast here is partly with German or Japanese practice: Japan built Shin-Osaka to enable through-service from east to west of Osaka without spending too much money tunneling into city center, and Germany serves Kassel at Wilhelmshöhe instead of at Hauptbahnhof since Hauptbahnhof is a stub-end station.

But the contrast is even more with the practice of smaller European countries. Switzerland and the Netherlands do not have anything as voluminous as Paris-Lyon, so they had to design their intercity rail networks around everywhere-to-everywhere travel from the start. Switzerland, too, had much less growth in the 2010s than in the 2000s, but ridership and p-km both grew, and are continuing to grow. What’s more, Switzerland has not tapped out its strongest markets: Lausanne, Luzern, and Geneva are still poorly integrated into the national timed transfer plan.

Getting it right from the start

France boxed itself into a corner. Its high-speed rail infrastructure is designed to connect provincial cities to Paris but not to one another. In some places, it’s possible to retrofit something more usable with the construction of new transfer points and the planning of better timetables. But elsewhere, as in Paris, it is too hard. This suggests that other countries that look to France as a model learn not only from the success of the TGV but also its more recent failures, and get it right from the start.

Any of the following lessons are useful to Britain and to other countries that are building large high-speed rail networks:

  • Try to limit branching, to make sure city pairs have adequate frequency. This is especially important on shorter city pairs, such as London-Birmingham, planned to take 38 minutes, and Birmingham-Manchester, planned to take 40 minutes. Adding a few minutes to the trip time of through-trains is fine if it makes the difference between hourly and half-hourly frequencies, or even half-hourly and quarter-hourly frequencies.
  • Place stations at good points for transfers to other trains. This includes trains on the same network, for which the best locations are branch points, and legacy trains, for which the best locations are major legacy stations and junctions. For example, the largest cities of the East Midlands – Nottingham, Derby, and Leicester – lie on a Y-shaped system, so it would be valuable to place a hub station at the node of the Y; the currently planned East Midlands Hub is 3.5 km north of the node, not on the leg of any of the three main cities.
  • If there is a major city with service going in multiple directions, make sure it has a single through-station, even if constructing one requires a new tunnel. This is less relevant to Britain, since London is at the south end of the network, but is relevant to Italy, which needs to convert multiple urban terminals into through-stations, and Spain, which is doing so at Madrid and Barcelona already, at a fraction of the cost of Stuttgart 21.
  • At short range, run trains as fast as necessary – that is, spend a lot of resources on getting trip times between major nodes to be just less than an hour, half an hour, or an hour and a half, but don’t worry too much about 55 vs. 40 minutes in most circumstances. This way, passengers can interchange at major nodes in a short time.

For a generation, the TGV was the envy of the rest of Europe. But it tapped out the strong markets that it was designed around, and now SNCF has its work cut out for it adapting to the needs of other city-to-city travel markets. Other big countries had better take heed and do it right from the start to avoid boxing themselves the way France did.

Transfers from Infrequent to Frequent Vehicles

Imagine yourself taking a train somewhere, and imagine the train is big and infrequent. Let’s say it’s the commuter train from New York down the Northeast Corridor to Newark Airport, or perhaps a low-cost OuiGo TGV from Lyon to Paris. Now imagine that you change trains to a small, frequent train, like the AirTrain to Newark Airport, or the RER from the OuiGo stop in the suburbs to Paris itself. What do you think happens?

If your guess is “the train I’m connecting to will be overcrowded,” you are correct. Only a minority of a 200 meter long New Jersey Transit train’s ridership unloads at the Newark Airport station, but this minority is substantial enough to overwhelm the connection to the short AirTrain to the terminals. Normally, the AirTrain operates well below capacity. It uses driverless technology to run small vehicles every 3 minutes, which is more than enough for how many people connect between terminals or go to New York by train. But when a big train that runs every 20-30 minutes arrives, a quantity of passengers who would be easily accommodated if they arrived over 20 minutes all make their way to the monorail at once.

In Paris, the situation is similar, but the details differ. Until recently, OuiGo did not serve Paris at the usual terminal of Gare de Lyon but rather at an outlying station near Eurodisney, Marne-la-Vallée-Chessy, ostensibly to save money by avoiding the Gare de Lyon throat, in reality to immiserate passengers who don’t pay full TGV fare. There, passengers would connect from a 400-meter bilevel TGV on which the entire train ridership would get off to a 220-meter bilevel RER train running every 10 minutes. The worst congestion wasn’t even on the RER itself, but at the ticket machines: enough of the thousand passengers did not have Navigo monthly cards for the RER that long lines formed at the ticket machines, adding 20 minutes to the trip. With the RER connection and the line, the trips would be nearly 3.5 hours, 2 spent on the high-speed train and 1.5 at the Paris end.

I even saw something similar in Shanghai in 2009. I visited Jiaxing, an hour away at the time by train, and when I came back, a mass of people without the Shanghai Public Transportation Card overwhelmed the one working Shanghai Metro ticketing machine. There were three machines at the entrance, but two were out of service. With the 20 minutes of standing in line, I would have gotten back to my hotel faster if I’d walked.

This is a serious problem – the ticketing machine lines alone can add 20 minutes to an otherwise 2.5-hour door-to-door trip. To avoid this problem, railroads and transit agencies need a kit with a number of distinct tools, appropriate for different circumstances.

Run trains more frequently

Commuter trains have to run frequently enough to be useful for short-distance trips. If the RER A consistently fills a train every 10 minutes off-peak between Paris and Marne-la-Vallée, New Jersey Transit can consistently fill a local train every 10 minutes off-peak between Manhattan and New Brunswick. Extra frequency induces extra ridership, but fewer people are going to get off at the Newark Airport stop per train if trains run more often. There are some places where adding frequency induces extra ridership proportionately to the extra service, or even more, but they tend to be shorter-range traffic, for example between Newark and Elizabeth or between Newark and New York.

This tool is useful for urban, suburban, and regional service. A train over a 20 kilometer distance can run frequently enough that transfers to more frequent shuttles are not a problem. Even today, this is mostly a problem with airport connectors, because it’s otherwise uncommon for outlying services to run very frequently. The one non-airport example I am familiar with is in Boston on the Mattapan High-Speed Line, a light rail line that runs every 5 minutes, connecting Mattapan with Ashmont, the terminus of the Red Line subway, on a branch that runs every 8-9 minutes at rush hour and every 12-15 off-peak.

In contrast, this tool is less useful for intercity trains. France should be running TGVs more frequently off-peak, but this means every half hour, not every 10 minutes. The only long-distance European corridors that have any business running an intercity train every 10 minutes are Berlin-Hanover(-Dortmund) and Frankfurt-Cologne, and in both cases it comes from interlining many different branches connecting huge metropolitan areas onto a single trunk.

Eliminate unnecessary transfers

The problem only occurs if there is a transfer to begin with. In some cases, it is feasible to eliminate the transfer and offer a direct trip. SNCF has gradually shifted OuiGo traffic from suburban stations like Marne-la-Vallée and Massy to the regular urban terminals; nowadays, five daily OuiGo trains go from Lyon to Gare de Lyon and only two go to Marne-la-Vallée.

Gare de Lyon is few people’s final destination, but at a major urban station with multiple Métro and RER connections, the infrastructure can handle large crowds better. In that case, the transfer isn’t really from an infrequent vehicle, because a TGV, TER, or Transilien train unloads at Gare de Lyon every few minutes at rush hour. The Métro is still more frequent, but at the resolution of a mainline train every 5 minutes versus a Métro Line 1 or 14 train every 1.5 minutes, this is a non-issue: for one, passengers can easily take 5 minutes just to walk from the far end of the train to the concourse, so effectively they arrive at the Métro at a uniform rate rather than in a short burst.

Of note, Shanghai did this before the high-speed trains opened: the trains served Shanghai Railway Station. The capacity problems occurred mostly because two out of three ticketing machines were broken, a problem that plagued the Shanghai Metro in 2009. Perhaps things are better now, a decade of fast economic growth later; they certainly are better in all first-world cities I’ve taken trains in.

Eliminating unnecessary transfers is also relevant to two urban cases mentioned above: airport people movers, and the Mattapan High-Speed Line. Airport connectors are better when people do not need to take a landside people mover but rather can walk directly from the train station to the terminal. Direct service is more convenient in general, but this is especially true of airport connectors. Tourists are less familiar with the city and may be less willing to transfer; all passengers, tourists and locals, are likely to be traveling with luggage. The upshot is that if an airport connector can be done as an extension of a subway, light rail, or regional rail line, it should; positive examples include the Piccadilly line and soon to be Crossrail in London, the RER B in Paris, and the S-Bahn in Zurich.

The Mattapan High-Speed Line’s peculiar situation as an isolated tramway has likewise led to calls for eliminating the forced transfer. Forces at the MBTA that don’t like providing train service have proposed downgrading it to a bus; forces within the region that do have instead proposed making the necessary investments to turn it into an extension of the Red Line.

Simplify transfer interfaces

The capacity problem at the transfer from an infrequent service to a frequent one is not just inside the frequent but small vehicle, but also at the transfer interface. Permitting a gentler interface can go a long way toward solving the problem.

First, tear down the faregates. There should not be fare barriers between different public transport services, especially not ones where congestion at the transfer point can be expected. Even when everything else is done right, people can overwhelm the gates, as at the Newark Airport train station. The lines aren’t long, but they are stressful. Every mistake (say, if my ticket is invalid, or if someone else tries to ask the stressed station agent a question) slows down a large crowd of people.

And second, sell combined tickets. Intercity train tickets in Germany offer the option of bundling a single-ride city ticket at the destination for the usual price; for the benefit of visitors, this should be expanded to include a bundled multi-ride ticket or short-term pass. New Jersey Transit sells through-tickets to the airport that include the AirTrain transfer, and so there is no congestion at the ticketing machines, only at the faregates and on the train itself.

Both of these options require better integration between different service providers. That said, such integration is clearly possible – New Jersey Transit and Port Authority manage it despite having poor fare and schedule integration elsewhere. In France in particular, there exist sociétés de transport functioning like German Verkehrsverbünde in coordinating regional fares; SNCF and RATP have a long history of managing somehow to work together in and around Paris, so combined TGV + RER tickets, ideally with some kind of mechanism to avoid forcing visitors to deal with the cumbersome process of getting a Navigo pass, should not be a problem.

Cops on Public Transportation

I wrote a post about American moral panics about fare evasion two months ago, which was mirrored on Streetsblog. I made a mistake in that post that I’d like to correct – and yet the correction itself showcases something interesting about why there are armed police on trains. In talking about BART’s unique belts-and-suspenders system combining faregates with proof-of-payment fare inspections, I complained that BART uses armed police to conduct inspections, where the German-speaking world happily uses unarmed civilians. BART wrote me back to correct me – the inspections are done by unarmed civilians, called ambassadors. The armed cops on the trains are unrelated.

I’d have talked about my error earlier, but I got the correction at the end of November. The American Christmas season begins around Thanksgiving and ends after Sylvester, and in this period both labor productivity and news readership plummet; leave it to Americans to have five weeks a year of low productivity without giving workers those five weeks in vacation time. With that error out of the way – again, BART conducts inspections with unarmed ambassadors, not armed cops – it’s worth talking about why, then, there are armed cops on trains at all, and what it means for fare enforcement.

The answer to the “why armed cops on the train?” question is that among the broad American public, the police is popular. There are hefty differences by party identification, and in the Bay Area, the opinions of Republicans are mostly irrelevant, but even among Democrats; there are also hefty differences by race, but blacks are at their most anti-police divided on the issue. A Pew poll about trust in institutions asks a variety of questions about the police, none of which is “would you like to see more cops patrol the subway?”, but the crosstabs really don’t scream “no.” Vox cites a poll by Civis Analytics that directly asks about hiring more police officers, and even among black people the results are 60-18 in favor. In New York, NYPD Commissioner James O’Neill had positive net approval among all racial groups shortly before leaving office, the lowest rate being 43-28 among Hispanics.

The crosstabs only go so far, and it’s likely that among certain subgroups the police is much less popular, for example black millennials. It’s normal for a popular institution to still generate intense opposition from specific demographic, class-based, or ideological groups, and it’s even normal for a popular institution to be bad; I should know, Massachusetts’ Charlie Baker is one of America’s most popular governors and yet his do-nothing approach to infrastructure planning makes him unpopular at TransitMatters. But this doesn’t change the fact that, as a positive rather than normative statement, the police enjoys consensus support from the urban American public.

What this means is that there are cops on the subway in New York and on BART not because of an inherent necessity of the fare collection system, but because in the eyes of the people who run these systems, crime is a serious concern and having more cops around is the solution. Evidently, BART layers cops on top of two distinct fare enforcement mechanisms – fare barriers and the ambassadors. In New York, too, NYPD’s justification for arresting people for jumping the turnstiles is that a significant fraction of them have outstanding warrants (many of which are about low-level offenses like being behind on court payments).

I bring this up because there’s a growing argument on the American left that public transportation should be free because that way people won’t be arrested for fare-dodging. This argument slides in an assumption, all too common to socialists who are to the left of the mainline liberal or social democratic party, that there is a leftist majority among the public that is just waiting to be activated by a charismatic leader rejecting neoliberal or otherwise moderate political assumptions.

But in the real world, there is no such leftist majority. The median voter even in a very left-wing area like New York or San Francisco may not support the more violent aspects of tough-on-crime politics, but is mostly okay with more police presence. The average self-identified leftist may be more worried that having police patrols will lead to more brutality than that not having them will lead to more crime, but the average self-identified leftist is not the average voter even in the Bay Area.

In this reality, there are cops on the subway because a lot of people worry about crime on the subway and want to see more police presence. The cops themselves, who are well to the right of the average voter pretty much anywhere, may justify this in terms of fare beating, but what matters is what voters near the median think, and they worry about ordinary property and violent crime. Those worries may well be unfounded – for one, New York is very safe nowadays and has been getting steadily safer, so the recent binge of hiring more cops to patrol the subway is a waste of money – but so long as voters have them, there will be police patrols.

The upshot is twofold. First, fare enforcement and the politics of criminal justice have very little to do with each other. Cops patrol crowded public spaces that require payment to enter, like the subway, as they do crowded public spaces that do not, like city squares. If public transportation fares are abolished, cops will likely keep patrolling subway stations, just as they patrol pieces of transportation infrastructure that are fare-free, like the concourses of major train stations.

If the left succeeds in persuading more people that the police is hostile to their interests and the city is better off with less public police presence, then cops will not patrol either the subway or most city squares. In the future, this is not outside the realm of possibility – in fifteen years the popularity of same-sex marriage in the US went from about 2-to-1 against to 2-to-1 in favor, and the trend in other democracies is broadly similar. But in New York and San Francisco in 2020, this is not the situation.

And second, fare enforcement can be conducted with unarmed inspectors regardless of the political environment. Multiple Americans who express fear of crime have told me that inspections have to be done with armed police, because fare beaters are so dangerous they would never submit to an unarmed inspector. And yet, even in San Francisco, where a large fraction of the middle class is worried about being robbed, inspections are done without weapons.

I’ve recurrently told American cities to tear down the faregates. BART’s belts-and-suspenders fare enforcement is unnecessary, borne of a panic rather than of any calculation of costs and benefits to the system. But what BART should get rid of is not the ambassadors, but the faregates. The most successful transit city the rough size of San Francisco – Berlin – has no faregates and leaves most stations unstaffed to reduce costs. Berlin encourages compliance by making it easier to follow the law, for example by offering cheap monthly passes, rather than by hitting passengers in the face with head-level fare barriers.

If cops patrol the subway because most voters and most riders would prefer it this way, then there is no need to connect the politics of policing with the technical question of what the most efficient way to collect fares is. There is a clear best practice for the latter, and it does not involve faregates in a rapid transit system with fewer than multiple billions of annual riders. What the police does is a separate question, one that there is no reason to connect with how to raise money for good public transportation.

Off-Peak Public Transport Usage

Earlier this year, I slowly stumbled across something that I don’t think is well-known in comparative public transportation: European cities have much higher public transport ridership than someone experienced with American patterns would guess from their modal splits. From another direction, Europe has much lower mode share than one would guess from ridership. The key here is that the mode share I’m comparing is for work trips, and overall ridership includes all trip purposes. This strongly suggests that non-work public transportation usage is much higher in European than in American cities even when the usage level for work trips is comparable. Moreover, the reason ought to be better off-peak service in Europe, rather than other factors like land use or culture, since the comparison holds for New York and not only for truly auto-oriented American cities.

Modal shares and ridership levels

My previous post brings up statistics for work trip mode share in England and France. For the purposes of this post, I am going to ignore England and focus on France and wherever I can find data out of Germany and Austria; the reason is that in the secondary cities of England, public transport is dominated by buses, which are hard to find any ridership data for, let alone data that doesn’t have severe double-counting artifacts for transfer passengers. For the same reason, I am not going to look at Canada – too many transfer artifacts.

In contrast, French and German-speaking metro areas with rail-dominated public transport make it relatively convenient to count rail trips per capita, as do the more rail-oriented American metro areas, namely Boston, New York, and Washington. A secondary check involving both bus and rail can be obtained from The Transport Politic, comparing the US with France.

City Population Definition Trips/year Trips/person Mode share
Boston 4,900,000 Subway, commuter rail 204,000,000 42 12%
New York 20,000,000 Subway, PATH, LIRR, MN, NJT Rail 2,050,000,000 103 31%
Washington 6,200,000 Metro, MARC (daily*280), VRE (daily*250) 245,000,000 40 12%
Vienna 3,700,000 U-Bahn, trams, S-Bahn (PDF-p. 44) 822,000,000 222 40%
Berlin 5,000,000 U-Bahn, trams, S-Bahn 1,238,000,000 248 35%
Hamburg 3,100,000 U-Bahn, S-Bahn 531,000,000 171 26%
Stuttgart 2,400,000 Stadtbahn, S-Bahn, Regionalbahn 223,000,000 93 26%
Lyon 2,300,000 Métro, trams, funiculars, 0.5*TER 325,000,000 141 20%
Marseille 1,800,000 Métro, trams (daily*280), 0.5*TER 139,000,000 77 16%
Toulouse 1,300,000 Métro, trams 125,700,000 97 13%
Bordeaux 1,200,000 Light rail 105,500,000 88 13%
Lille 1,200,000 Métro, trams 108,500,000 90 17%

 

Note that New York, with a 31% mode share, has not much more rail ridership per capita than French metro areas with mode shares in the teens, and is a quarter below Lyon, whose mode share is only 20%. This is not an artifact of transfers: just as the subway dominates ridership in New York, so does the metro dominate Lyon, Toulouse, and Lille, and so does the tram dominate Bordeaux. If anything, it’s Stuttgart, the only European city on this list with comparable ridership per unit of mode share to the US, that should have the most overcounting due to transfers.

Also note that French rail ridership nosedives in the summer, when people go on their 5-week vacations, and I presume that this equally happens in Germany and Austria. The ratio of annual to weekday ridership in France where it is available is fairly low, not because weekend ridership is weak, but because the weekday chosen to represent daily ridership is never in the summer vacation season.

Why?

Off-peak public transportation in the United States is quite bad. In New York, 10-minute frequency on most lettered routes is the norm. In Washington, the off-peak frequency is 12 minutes. In Boston, it varies by line; on the Red Line each branch is supposed to come every 12-13 minutes off-peak, but in practice trains don’t run reliably and often leave the terminal bunched, alternating between 3- and 10-minute gaps.

Moreover, commuter trains are so useless except for peak-hour commutes to city center that they might as well not exist. Hourly gaps and even worse are routine, and even the busiest New York commuter lines have at best half-hourly off-peak frequency. These lines are only about 15% of rail ridership in New York and Boston and 6% of rail ridership in Washington, but they contribute a decent volume of commuters who drive for all non-work purposes.

In Berlin, the off-peak frequency on the U-Bahn is a train every 5 minutes most of the day on weekdays. On Sundays it drops to a train every 8 minutes, and in the evening it drops to a train every 10 minutes far too early, leading to overcrowding on the first train after the cut in frequency around 9 pm. The S-Bahn trunks run frequently all day, but the branches in the suburbs only get 10-minute frequency, and the Ring has a 2-hour midday period with 10-minute gaps. The suburban areas with only S-Bahn service get comparable service to neighborhoods on New York subway branches, while closer-in areas get better service. No wonder people use it for more than just work – the train is useful for shopping and socializing at all hours of the day.

Why?

The people who manage public transportation in the United States do not have the same profile as most riders. They work traditional hours, that is 9 to 5 on weekdays only, at an office located in city center. Many senior managers do not use their own system. That NYCT President Andy Byford does not own a car or know how to drive and takes the subway and buses to events is unusual for such a senior person, and early media reports noted that some managers looked askance at his not driving.

Growing segments of the American middle class commute by public transportation. In Boston and Washington, transit commuters slightly outearn solo drivers, and in New York they do not but it is close. But those segments have different travel behavior from public-sector planners. For example, lawyers work long hours and depend on the subway at 8 or 9 pm, and programmers work shifted hours and both show up to and leave work hours after the traditional times. But public transportation agencies still work 9 to 5, and thus the middle-class transit-using behavior they are most familiar with is that of the denizen of the segregated suburb, who drives to all destinations but city center.

In such an environment, off-peak service is treated as a luxury. When there is a deficit, agencies cut there first, leading to frequency-ridership spirals in which lower frequency deters riders, justifying further cuts in service until little is left. In New York, there are guidelines for frequency that explicitly state it is to be adjusted based on ridership at the most crowded point of the route, without regard for whether cuts depress ridership further. There is a minimum acceptable frequency in New York, but it is set at 10 minutes on weekdays and 12 on weekends. For a similar reason, the planners tend to split buses between local and limited routes if each can support 10-12 minute headways, at which point the buses are not useful for short trips.

In contrast, in Germany and France, there is a mixture of drivers and public transportation users among managers. German planning stresses consistent schedules throughout the day, so the midday off-peak often gets the same frequency as the peak. French planning does vary frequency, but maintains a higher base frequency even late into the night. The Paris Métro runs every 5 to 7 minutes at 11 pm. The idea of running a big city metro line every 12 minutes is unthinkable.

On Envying Canada

In England and Wales, 15.9% of workers get to work on public transport, and in France, 14.9% do. In Canada, the figure is close: 12.4%, and this is without a London or Paris to run up the score in. Vancouver is a metro region of 2.5 million people and 1.2 million workers, comparable in size to the metropolitan counties in England and to the metro area of Lyon; at 20.4%, it has a higher public transport modal share than all of them, though it is barely higher than Lyon with its 19.9% share. Calgary, Ottawa, Edmonton, and Winnipeg are likewise collectively respectable by the standards of similar-size French regions, such as the departments of Bouches-du-Rhône (Marseille), Alpes-Maritimes (Nice), Gironde (Bordeaux), Haute-Garonne (Toulouse), and Bas-Rhin (Strasbourg).

As a result, Jarrett Walker likes telling American cities and transit agencies to stop envying Europe and start envying Canada instead. Canada is nearby, speaks the same language, and has similar street layout, all of which contribute to its familiarity to Americans. If Europe has the exotic mystique of the foreign, let alone East Asia, Canada is familiar enough to Americans that the noticeable differences are a cultural uncanny valley.

And yet, I am of two minds on this. The most consistent transit revival in Canada has been in Vancouver, whose modal share went from 14.3% in 1996 to 20.4% in 2016 – and the 2016 census was taken before the Evergreen extension of the Millennium Line opened. TransLink has certainly been doing a lot of good things to get to this point. And yet, there’s a serious risk to Canadian public transport in the future: construction costs have exploded, going from Continental European 15 years ago to American today.

The five legs of good transit

I was asked earlier today what a good political agenda for public transportation would be. I gave four answers, like the four legs of a chair, and later realized that I missed a fifth point.

  1. Fuel taxes and other traffic suppression measures (such as Singapore and Israel’s car taxes). Petrol costs about €1.40/liter in Germany and France; diesel is cheaper but being phased out because of its outsize impact on pollution.
  2. Investment in new urban and intercity lines, such as the Madrid Metro expansion program since the 1990s or Grand Paris Express. This is measured in kilometers and not euros, so lower construction costs generally translate to more investment, hence Madrid’s huge metro network.
  3. Interagency cooperation within metropolitan regions and on intercity rail lines where appropriate. This includes fare integration, schedule integration, and timetable-infrastructure integration.
  4. Urban upzoning, including both residential densification in urban neighborhoods and commercialization in and around city center.
  5. Street space reallocation from cars toward pedestrians, bikes, and buses.

We can rate how Canada (by which I really mean Vancouver) does on this rubric:

  1. The fuel tax in Canada is much lower than in Europe, contributing to high driving rates. In Toronto, gasoline currently costs $1.19/liter, which is about €0.85/l. But Vancouver fuel taxes are higher, raising the price to about $1.53/l, around €1.06/l.
  2. Canadian construction costs are so high that investment in new lines is limited. Vancouver has been procrastinating building the Broadway subway to UBC until costs rose to the point that the budget is only enough to build the line halfway there.
  3. Vancouver and Toronto both have good bus-rapid transit integration, but there is no integration with commuter rail; Montreal even severed a key commuter line to build a private driverless rapid transit line. In Vancouver, bus and SkyTrain fares have decoupled due to political fallout from the botched smartcard implementation.
  4. Vancouver is arguably the YIMBYest Western city, building around 10 housing units per 1,000 people every year in the last few years. Toronto’s housing construction rate is lower but still respectable by European standards, let alone American ones.
  5. There are bike lanes but not on the major streets. If there are bus lanes, I didn’t see any of them when I lived in Vancouver, and I traveled a lot in the city as well as the suburbs.

Vancouver’s transit past and future

Looking at the above legs of what makes for good public transport, there is only one thing about Canada that truly shines: urban redevelopment. Toronto, a metro area of 6 million people, has two subway mainlines, and Montreal, with 4 million people, has 2.5. Vancouver has 1.5 lines – its three SkyTrain mainlines are one-tailed. By the same calculation, Berlin has 6.5 U- and 3 S-Bahn mainlines, and Madrid has 2 Cercanías lines and 7 metro lines. Moreover, high construction costs and political resistance from various GO Transit interests make it difficult for Canadian cities to add more rapid transit.

To the extent Vancouver has a sizable SkyTrain network, it’s that it was able to build elevated and cut-and-cover lines in the past. This is no longer possible for future expansion, except possibly toward Langley. The merchant lawsuits over the Canada Line’s construction impacts have ensured that the Broadway subway will be bored. Furthermore, the region’s politics make it impossible to just build Broadway all the way to the end: Surrey has insisted on some construction within its municipal area, so the region has had to pair half the Broadway subway with a SkyTrain extension to the Langley sprawl.

Put in other words, the growth in Vancouver transit ridership is not so much about building more of a network, but about adding housing and jobs around the network that has been around since the 1980s. The ridership on the Millennium and Canada Lines is growing but remains far below that on the Expo Line. There is potential for further increase in ridership as the neighborhoods along the Canada Line have finally been rezoned, but even that will hit a limit pretty quickly – the Canada Line was built with low capacity, and the Millennium Line doesn’t enter Downtown and will only serve near-Downtown job centers.

Potemkin bus networks

When Jarrett tells American cities to envy Canada, he generally talks about the urban bus networks. Toronto and Vancouver have strong bus grids, with buses coming at worst every 8 minutes during the daytime off-peak. Both cities have grids of major streets, as is normal for so many North American cities, and copying the apparent features of these grids is attractive to American transit managers.

And yet, trying to just set up a bus grid in your average American city yields Potemkin buses. Vancouver and Toronto have bus grids that rely on connections to rapid transit lines. In both cities, transit usage is disproportionately about commutes either to or from a city core defined by a 5 kilometer radius from city hall. Moreover, the growth in public transport commuting in both cities since 1996 has been almost exclusively about such commutes, and not about everywhere-to-everywhere commutes from outside this radius. Within this radius, public transportation is dominated by rail, not buses.

The buses in Toronto and Vancouver have several key roles to play. First, as noted above, they connect to rapid transit nodes or to SeaBus in North Vancouver. Second, they connect to job centers that exist because of rapid transit, for example Metrotown at the eastern end of Vancouver’s 49. And third, there is the sui generis case of UBC. All of these roles create strong ridership, supporting high enough frequency that people make untimed transfers.

But even then, there are problems common to all North American buses. The stop spacing is too tight – 200 meters rather than 400-500, with frequency-splitting rapid buses on a handful of very strong routes like 4th Avenue and Broadway. There is no all-door boarding except on a handful of specially-branded B-line buses. There are no bus lanes.

One American city has similar characteristics to Toronto and Vancouver when it comes to buses: Chicago. Elsewhere, just copying the bus grid of Vancouver will yield nothing, because ultimately nobody is going to connect between two mixed-traffic buses that run every 15 minutes, untimed, if they can afford any better. In Chicago, the situation is different, but what the city most needs is integration between Metra and CTA services, which requires looking at European rather than Canadian models.

Is Canada hopeless?

I don’t know. The meteoric rise in Canadian subway construction costs in the last 15 years has ensured expansion will soon grind to a halt. Much of this rise comes from reforms that the Anglosphere has convinced itself improve outcomes, like design-build and reliance on outside consultants; in that sense, the US hasn’t been copying Canada, but instead Canada has been copying the US and getting American results.

That said, two positive aspects are notable. The first is very high housing and commercial growth in the most desirable cities, if not in their most exclusive neighborhoods. Vancouver probably has another 10-20 years before its developable housing reserves near existing SkyTrain run out and it is forced to figure out how to affordably expand the network. Nowhere in Europe is housing growth as fast as in Metro Vancouver; among the cities for which I have data, only Stockholm comes close, growing at 7-8 net units per 1,000 people annually.

Moreover, with Downtown Vancouver increasingly built out, Vancouver seems to be successfully expanding the CBD outward: Central Broadway already has many jobs and will most likely have further commercial growth as the Millennium Line is extended there. Thus, employers that don’t fit into the Downtown Vancouver peninsula should find a home close enough for SkyTrain, rather than hopping to suburban office parks as in the US. Right now, the central blob of 100 km^2 – a metric I use purely because of limitations on French and Canadian data granularity – has a little more than 30% of area jobs in Vancouver, comparable to Paris, Lyon, New York, Boston, and San Francisco, and ahead of other American cities.

The second aspect is that Canadians are collectively a somewhat more internationally curious nation than Americans. They are more American than European, but the experience of living in a different country from the United States makes it easier for them to absorb foreign knowledge. The reaction to my and Jonathan English’s August article about Canadian costs has been sympathetic, with serious people with some power in Toronto contacting Jonathan to figure out how Canada can improve. The reaction I have received within the United States runs the gamut – some agencies are genuinely helpful and realize that they’ll be better off if we can come up with a recipe for reducing costs, others prefer to obstruct and stonewall.

My perception of Canadian politics is that even right-populists like Doug Ford are more serious about this than most American electeds. In that sense, Ford is much like Boris Johnson, who could move to Massachusetts to be viceroy and far improve governance in both Britain and Massachusetts. My suspicion is that this is linked to Canada’s relatively transit-oriented past and present: broad swaths of the Ontarian middle class ride trains, as is the case in Outer London and the suburbs of Paris. A large bloc of present-day swing voters who use public transport is a good political guarantee of positive attention to public transport in the future. American cities don’t have that – there are no competitive partisan elections anywhere with some semblance of public transportation.

These two points of hope are solid but still run against powerful currents. Toronto really is botching the RER project because of insider obstruction and timidity, and without a strong RER project there is no way to extend public transportation to the suburbs. Vancouver is incapable of concentrating resources where they do the most good. And all Canadian cities have seen an explosion in costs. Canadians increasingly understand the cost problem, but it remains to be seen whether they can fix it.

What I Mean When I Say Cities Have no Transit

On social media and various forums, I have an expression for a variety of cities: “it has no public transportation.” This concerns just about the entire United States excluding a handful of cities like New York, San Francisco, and Chicago; Los Angeles notably is not among these handful, but has no public transportation, and neither do any cities in the South or the Midwest except Chicago. I want to talk a bit more about what I mean by this. I obviously don’t mean that literally there is no scheduled public transportation in these cities; I’ve taken these non-existent transit systems, in Los Angeles on a visit and in Providence when I lived there. But I mean that there’s something about such places distinguishing them from the bad-but-existing transit category of Boston, Chicago, Nice, etc.

Whatever you’re doing isn’t working

Let’s use an 8% cutoff for trips to work. This number is fully motivated reasoning: the metro area (MSA, not CSA) of Philadelphia is just above this cutoff, and I would not say it has no public transportation, at least not in the current state of the system. Bad, yes, but it exists. I may be missing some areas, but I don’t think I am: the list of American metro areas that meet that cutoff is New York, San Francisco, Boston, Washington, Chicago, Fairfield County, Seattle, Kitsap County, Philadelphia, Honolulu. 70% of American transit commuters live in one of these MSAs. Go down to 6% and you also get Portland and Baltimore, adding about 2.5% of US transit commuters.

Nor are things improving. Some parts of the US are seeing rising mode shares. The most notable is Seattle, which is serious about permitting urban housing, and has tunneling construction costs that would only get Europeans fired rather than simply not existing in democratic Continental Europe. But other cities that occasionally win accolades from American urbanists for investing in public transportation just aren’t cutting it. In the 2006-17 period, chosen because that’s what the ACS makes available, Denver went from 4.6% to 4.4%, Los Angeles from 6.1% to 4.8%, and Portland from 6.4% to 6.3%; in the praised-by-urbanists set, only Minneapolis went up, from 4% to 4.8%.

Let’s unpack what this means: whatever Los Angeles has been doing in the last 10+ years has gotten its mode share down – and that’s without counting the fact that the Inland Empire, officially a separate metro area, is growing much faster and has an even lower mode share, as people drive further and further from jobs to qualify for a mortgage. Portland and Denver have done a lot of supposedly good things with their light rail networks, but are standing still. Portland’s stagnation goes back at least to 1980, while Vancouver has built SkyTrain, a high-rise downtown, and Metrotown, and at 20% has a higher (and rising) mode share than any American metro area save New York.

Tabula rasa

When a metro area has 2-3% mode share, it’s best to treat it as tabula rasa. Yes, there are people who ride the buses and trains today, but so few that the advantages of from-scratch design are usually greater than the disadvantage coming from the risk to current ridership. The 2-3% figure really depends on the situation – I don’t want to give it as an ironclad figure.

Suburbs of very large cities (read: New York) approaching 10% may still be best treated the same way: commuter rail systems like the LIRR are really shuttles that extend auto-oriented suburbia into the city rather than the reverse. Sadly, where I say such suburbs have no transit as a positive statement, an MBTA general manager said “commuter rail is not public transit” as a normative statement.

The situations of extremely low-mode share metro areas and low-mode share suburbs are not exactly the same. For one, existing ridership is higher on Long Island than in Cleveland or St. Louis so there’s more risk if (for example) supernumerary workers go on strike to fight efficiency improvements, but the reward is much greater. We know how to squeeze high ridership out of regional rail in the suburbs, even low-density ones, since the city has so many jobs in the center. Moreover, we know which ready sources of ridership are suppressed by current operating patterns: working-class reverse-commuters, people who work non-traditional hours regardless of class, and peak-direction commuters getting off short of city center.

The tabula rasa concept notably does not mean the infrastructure doesn’t exist. Los Angeles has the physical infrastructure of a rail network. Long Island and Westchester have many rail lines pointing toward Manhattan. However, the operating patterns and development are deficient and little to no accommodation should be made for them. In the suburbs of New York and a handful of other American cities this concerns premium fares, low off-peak frequency, and lack of integration with local buses. In American metro areas with low overall ridership this concerns weak city centers, lack of TOD even when it could succeed (for example in Los Angeles and San Diego), local political systems that view transit as an excuse to get federal funds for other things such as road repaving, and, as in suburbia, low off-peak frequency. The problems vary, but the fact that there are severe problems remains.

The other element of tabula rasa is social. There is almost never any knowledge base in those areas about how good transit works, because people who’ve only lived there have by definition not regularly used even bad-but-existing public transport. Whatever local activists of all stripes have been doing in Los Angeles is not working. Understanding why from them can be valuable, for the same reason I talk to planners at poorly-run agencies like the MTA and the MBTA to understand what’s wrong, but all local practices should be considered suspect unless corroborated in an area with at least decent public transportation.

On giving offense

The people who complain about my use of “no transit” to refer to the vast majority of the United States are not making a semantic nitpick or asking for clarification. They specifically complain I give offense by erasing 2-3% of the population of Cleveland and St. Louis, or 1% of the population of Kansas City. (I name these cities and not 6% Portland because that’s what people have complained about to me.)

So let’s unpack what this means. I point out that in the vast majority of the United States, excepting a handful of regions all of which are politically stereotyped as Not Real America partly because they have public transit, has buses and trains that are so useless they might as well not exist. I point out that this remains the case despite extensive construction in many cities – Dallas has 150 km of light rail, which is respectable for a city of its size, Denver keeps expanding its network and has something resembling frequent regional rail, and so on. The problem is that I do not conveniently blame this on a political faction of others, be it Republicans, unions, moderates, drivers, or whoever. I genuinely think it’s the fault of everyone who’s had any amount of power, and this includes community organizations that keep identifying as always losing even when they repeatedly succeed in blocking changes they dislike.

This is American culture. Even the denigration of New York and other cities where there is public transportation is part of that culture; there are certain aspects of San Francisco, Boston, and Philadelphia that are useful for other parts of the US to emulate. But accepting that requires understanding that there is to a good approximation no contribution coming from no-transit cities (and this again includes Portland and Los Angeles, it’s not just Cleveland or Dallas).

Part of the problem is that the US defines itself so much around cars and car culture that the presence of public transportation is enough to make something feel not really American. The result is that any exhortation to learn from places with trains with decent ridership is bound to offend; I might as well tell Americans to move to Tokyo and learn Japanese and never come back to the West. But sadly for Americans, reality can be offensive. The culture of Real America has to change, at least when it comes to how to treat transportation and cities.

Little Things That Matter: Jerk

When you ride a subway train, and the train decelerates to its station, you feel your body pulled forward, and your muscles tense to adjust, but then when the train reaches a sudden stop, you are suddenly flung backward, since you are no longer decelerating, but your muscles take time to relax and stop fighting a braking that no longer exist. This effect is called jerk, and is defined to be change in acceleration, just as acceleration is change in speed and speed is change in position. Controlling jerk is crucial for a smooth railway ride. Unfortunately, American mainline rail is not good at this, leading to noticeable jolts by passengers even though speed limits on curves and acceleration rates are very conservative.

This is particularly important for speeding up mainline trains around New York and other legacy cities in the US, like Boston. Speeding up the slowest segments is more important than speeding up the fastest ones; my schedules for New York-New Haven trains, cutting trip times from 2:09 to 1:24, save 4 minutes between Grand Central and 59th Street just through avoiding slowdowns in the interlocking. The interlocking is slow because the switches have very conservative speed limits relative to curve radius (that is, lateral acceleration), which in turn is because they are not designed with good lateral jerk control. The good news is that replacing the necessary infrastructure is not so onerous, provided the railroads know what they need to do and avoid running heavy diesel locomotives on delicate infrastructure.

Spirals and jerk

In practice, the worst jerk is usually not forward or backward, except in the last fraction of a second at the end of acceleration. This is because it takes about a second for train motors to rev up, which controls jerk during acceleration. Rather, the worst is sideways, because it is possible to design curves that transition abruptly from straight track, on which there is no lateral acceleration, to curved track, on which there is, in the form of centrifugal force centripetal force.

To reduce jerk, the transition from straight track to a circular arc is done gradually. There are a number of usable transition curve (see Romain Bosquet’s thesis, PDF-p. 36), but the most common by far is called the clothoid, which has the property of having constant change in curvature per unit of arc length – that is, constant jerk. Different countries have different standards for how long the clothoid should be, that is what the maximum lateral jerk is. Per Martin Lindahl’s thesis, the limit in Sweden is 55 mm/s (PDF-p. 30) and that in Germany is 69.44 mm/s (PDF-p. 38), both measured in units of cant deficiency; in SI units, this is 0.367 m/s^3 and 0.463 m/s^3 respectively. In France, the regular limit is 50 mm/s (Bosquet’s thesis, PDF-p. 35), that is 0.333 m/s^2, but it is specifically waived in turnouts.

Track switches are somehow accepted as sites of very high jerk. A presentation about various technical limits in France notes on p. 106 that in switches (“appareils de voie” or “aiguilles” or “aiguillages,” depending on source, just like “switch” vs. “turnout” in English), the jerk can be increased to 100 and even 125 mm/s. On p. 107 it even asserts that in exceptional circumstances, abrupt change in cant deficiency of up to 50 mm on main track and 100 on the diverging direction on a switch is allowed; see also PDF-pp. 13-15 of a pan-European presentation. Abrupt changes are not good for passengers, but will not derail a train.

Turnout design in the advanced world

Second derivative control, that is acceleration and cant deficiency, can be done using calculus and trigonometry tools. Third derivative control, that is clothoids and jerk, requires numerical calculations, but fortunately they are approximated well by pretending the clothoid is half straight line, half circular arc, with the length determined by the maximum jerk. Working from first principles, it’s possible to figure out that at typical turnout needs – e.g. move a train from one track to a parallel track 4 meters away – the clothoid is far longer than the curve itself, and at 50 mm/s jerk and 150 mm cant deficiency it’s not even possible to hit a curve radius of 250 meters.

Turnouts are inherently compromises. The question is just where to compromise. Here, for example, is a French turnout design, in two forms: 0.11 and 0.085. The numbers denoting the tangent of the angle at the frog, and the radius is proportional to the inverse square of the number, thus the speed is proportional to the inverse of the number. The sharper turnout, the 0.11, has a radius of 281 meters, a maximum speed of 50 km/h, and a total length of 26 meters from point to frog (“lead” in US usage), of which the clothoid curve (“point”) takes up 11, to limit jerk to 125 mm/s at a cant deficiency of 100 mm. The 0.085 turnout has a radius of 485 meters, a maximum speed of 65 km/h, a lead of about 38 meters, and a point of about 14.5 meters.

In Germany, turnouts have somewhat independent numbers and radii – some have shorter leads than others. The numbers are the inverse of those of France, so what France calls 0.11, Germany calls 1:9, but at the end of the day, the curve radius is the important part, with a cant deficiency of 100 mm. A higher cant deficiency may be desirable, but lengthening the point requires almost as much space as just increasing the curve radius, so might as well stick with the more comfortable limits.

Turnout design in the United States

American turnouts look similar to French or German ones, at first glance. I’ve seen a number of different designs; here’s one by CSX, on PDF-pp. 22 (#8) and 24 (#10), the numbers being very roughly comparable to German ones and inverses of French ones. CSX’s #10 has a curve radius of 779.39′, or 238 meters, and a lead of 24 meters, both numbers slightly tighter than the French 0.11. The radius is proportional to the square of the number, and so speed is proportional to the number.

However, the cant deficiency is just 50 mm. The point is not always curved; Amtrak’s low-number switches are not, so the change in cant deficiency is abrupt. Judging by what I experience every time I take a train between New York and New Haven, Metro-North’s switches have abrupt change in cant deficiency even on the mainline. The recommended standards by AREMA involve a curved point, but the point is still much shorter than in France (19.5′, or just under 6 meters, on a #12), so a 125 mm/s jerk only gets one up to about 62 mm cant deficiency.

The reason for this is that European turnouts are curved through the frog, whereas American ones are always straight at the frog. Extremely heavy American freight trains do not interact well with curved frogs and long points.

One might ask, why bother with such turnout design on rail segments that never see a heavy freight locomotive or 130-ton freight car? And on segments that do see the odd freight locomotive, like the approaches to Grand Central and Penn Station with the rare dual-mode locomotive, why not kick out anything that doesn’t interact well with advanced track design? Making a handful of passengers transfer would save around 4 minutes of trip time on the last mile into Grand Central alone for everyone else, not to mention time savings farther up the line.

I Gave a Talk About Transportation in Connecticut

I gave a second talk this week about transportation, this time at Hartford Station, concerning the plans for Connecticut transportation. The starting point is Governor Lamont’s $21 billion plan for investment, including both expansion and repairs (read: the State of Good Repair black hole), of which $14 billion is highways, $6.2 billion is rail, and $450 million is buses. But most of the talk concerns what Connecticut should be doing, rather than the specifics of Lamont’s plan.

Here are my slides. The talk itself took around 40-45 minutes out of a nearly 2-hour meeting, so it was designed around taking many questions, and around further explanations. Something I didn’t put in the slides but explained verbally is how easy the modern track renewal process is. Nowadays, there are machines that use no infrastructure except the tracks themselves, running on the tracks at very low speed (slower than walking) and systematically replacing the rails, ties, and ballast. They can also regrade the tracks’ superelevation angle independently of the drainage angle, changing the tracks’ cant as they go. The upshot is that increasing the cant on tracks is almost cost-free, and would enable large increases in train speed on both regional and intercity trains.

Other technology that has negative cost in the future is getting higher-performance EMUs than the current equipment. The current trains are obsolete technology, built around superseded federal regulations. There’s no point in getting more of the same. They’re okay to run until end of life, but new purchases should involve electrification and modern European EMUs. Whereas infrastructure costs are rising (see here and here), technology costs are falling in real terms. The fall in train costs is not so quick as that of computer costs, but still the rolling stock factories are designed around making products for the 2020s, not the 1990s, and retooling them for older technology costs extra.

Hence my slogan from the talk: better things are possible, on a budget.

One question I was asked at the talk that I didn’t have an answer to was, why is construction in Connecticut so expensive? Plans for infill stations are budgeted extravagantly, ranging between $50 million and $100 million without any special construction difficulties. Boston builds infill stations (counting high-platform upgrades as infill since the preexisting stations have no facilities) for $20-30 million counting various hidden costs (e.g. regular MBTA employees, like project managers, count as operating and not capital costs even if they only work on capital costs); Berlin does for €10-20 million.

After the talk, Roger Senserrich explained to me (and a planner at the MBTA confirmed to me) that in Connecticut there’s no in-house design at all. Massachusetts has a mix of in-house design review, with the team stymied by uncompetitive wages making hiring and retention difficult, and outsourcing work to consultants. CDOT exclusively outsources to consultants, and has no in-house expertise to evaluate whether the contracts are fair or whether it’s being overcharged.