Category: Incompetence

Suburban Transit-Oriented Development

Here’s a Google Maps image of Southport, a section of Fairfield, Connecticut with its own Metro-North commuter rail station:

Here’s an image at the same scale of Bourg-la-Reine, an inner suburb of Paris on the RER B, at the junction between the line’s two southern branches:

At Bourg-la-Reine, the buildings just east of the station are high-rise. There are local community amenities, including walkable schools, supermarkets, and pharmacies, and people can comfortably live in this suburb without a car. This generates significant RER traffic at all hours of day: outbound trains are often standing-room only until they reach this station even in midday, outside rush hour.

At Southport, there are a few townhouses near the station. But the roads are wide and hostile to pedestrians, and the nearest supermarket closes at 6 pm, too late for commuters returning from the city. Car ownership approaches 100%, and nobody rides the trains except to get to office jobs at the traditional peak hour in Manhattan (or perhaps Stamford).

The difference between the two places is so stark that they can barely be compared. Southport has 317 inbound boardings per weekday. Of those, 263, or 83%, are in the morning rush hour; the Metro-North-wide average is 63%, and the average on the SNCF-operated parts of the RER and Transilien is about 46%. Bourg-la-Reine has 4.5 million annual riders, about 16,000 on an ordinary working day.

A huge part of the difference is about service provision – Bourg-la-Reine has a train every five minutes midday, Southport a train every hour. But it’s not just about service. The RER has stations farther out, with somewhat less intense service, such as a train every 15 minutes, with comparable ridership. And the LIRR and Metro-North have little off-peak ridership even at stations with more frequent service, such as Mineola and Hicksville. Transit-oriented development (TOD) is as important as good service in such cases.

I bring up Southport because the RPA just dropped a study about suburban TOD that grades every New York commuter rail station between 0 and 3, and gives Southport the highest mark, 3. The RPA study looks at zoning within 800 meters of each station and considers whether there’s a parcel of land that permits multifamily housing with a floor are ratio higher than 1.25. Southport has such lots, supporting some townhouses, so according to the RPA it gets full marks, even though, by RER standards, it is like every other American car-oriented suburb.

Based on this methodology, the RPA identifies a number of good suburbs, and even comes to policy conclusions. It proposes more TOD in the mold of existing exurban New York examples, such as Patchogue. The model for the program is the real reason the RPA study is so weak: rather than calling into attention the big differences between land use at suburban stations in New York versus in Paris (or any number of big European cities with suburban rapid transit), it overfocuses on small differences within auto-oriented suburbia.

Some of the ultimate conclusions are not terrible. For example, the RPA is proposing linking federal infrastructure development to permitting more multifamily housing. This would improve things. However, the problem with this is twofold. First, it is unrealistic – the federal government gave up decades ago on enforcing fair housing laws, and has no interest in attempting to make exclusionary suburbs behave. Were I to propose this, hordes of American commenters would yell at me for not understanding American politics. And second, it misunderstands the nature of the problem, and ends up proposing something that, while unrealistic, is still low-impact.

The best way to understand the problem with the study is what author Moses Gates told me on Twitter when I started attacking it. He said that the RPA was looking at zoning rather than actual development. Since there is zoning permitting multifamily development within the prescribed radius at Southport, it gets full marks. With my understanding of what good TOD looks like, I would be able to say that this is clearly so bad the methodology must be changed; on Twitter I suggested looking at zoning within 300 meters of the station rather than 800, since the highest-intensity development should be right next to the station. I also suggested looking at supportive nonresidential uses, especially supermarkets. A development that isn’t walkable to retail at reasonable hours is not TOD.

The RPA does not think in this language. It thinks in terms of internal differences within the US. Occasionally it deigns to learn from London, but London’s suburban development is auto-oriented by European standards (transit mode share in the London commuter belt is at best in the teens, often in the single digits). Learning from anywhere else in the world, especially places that don’t speak English, is too difficult. This means that the RPA could not reach the correct conclusion, namely, that there is no such thing as an American suburb with TOD. The only exception I can come up with in the United States involves Arlington, on the Washington Metro, and Arlington is no longer considered a suburb, but really a full-fledged city in a different state, like Jersey City.

The other thing the RPA missed is that it drew too large a radius. TOD at a train station should include townhouses 800 meters out – but it’s more important to include high-rise residential construction next to the train station and mid-rise apartment buildings 500 meters out. Giving American suburbs latitude to place TOD so far from the station means they will act like Southport and allow small amounts of multifamily housing out of the way, while surrounding the station itself with parking, a tennis court, and large single-family houses with private swimming pools. This is not hypothetical: suburbs in New Jersey have reacted to court rulings mandating affordable housing by permitting apartments at the edge of town, far from supporting retail and jobs, and keeping the town core single-family.

Because the RPA missed the vast differences in outcomes between the US and France, it missed some useful lessons:

  • States should centralize land use decisionmaking rather than give every small suburb full autonomy.
  • TOD doesn’t need to be fully mixed-use, but there should be some local retail right next to housing.
  • Housing should be high-density right next to the station. A floor area ratio of 1.25 is not enough.
  • Publicly-funded social housing should be next to train stations, in the city as well as in the suburbs, and this is especially important in expensive suburbs, which aren’t building enough affordable housing.

Without suburban TOD, any regional rail system is incomplete. I wish I could have covered it at my talk, but I didn’t have time. Good service needs to run to dense suburbs, or at least suburbs with dense development within walking distance of the station. It needs to extend the transit city deep into suburbia, rather than using peak-only commuter rail to extend the auto-oriented suburbs into the city.

There’s More Redundancy Than You Think

I was visiting Boston last week, and am in New York this week; you can see me at NYU on Thursday tomorrow. Last week, I met with TransitMatters activists talking about bus and rail improvements in Boston, and on the way saw something that made me understand two things. First, the MBTA is run by incompetent people. And second, even two subway lines that are perpendicular and serve completely different areas can be redundant with each other.

Two and a half years ago, I said redundancy is overrated. In this post, I’d like to argue from the opposite direction: transit networks have more redundancy than they appear to. One implication is identical to that of my older post: transit agencies should build subway lines without regard for redundant service, since not only is redundancy overrated, but also a new subway line is redundant with old lines even if they serve completely different areas. But the other implication concerns service interruptions and shutdowns.

The issue in Boston is that, although there are nighttime shutdowns, there are also occasional weekend shutdowns, as in New York, for major capital projects. The Red Line is being closed on weekends for two months on the segment between Boston proper and Cambridge. But the Orange Line is also being closed on weekends on segments, after deferred maintenance led to a meltdown in the last two months, with frequent delays and slow zones. Last weekend, I found myself having to go between Davis Square (on the Red Line, just off the edge of the map) and Jamaica Plain (near the bottom of the Orange Line) to visit Sandy Johnston, with the highlit segments shut down:

Shuttle buses replaced the subway on both segments. On the Red Line, the MBTA contracted it out to a private company that used wheelchair-inaccessible high-floor buses; there were not enough MBTA bus drivers to run the shuttles on both segments, and by union rules the MBTA could not use contract drivers on its own buses even though it did have the equipment, forcing it to use inferior private-sector buses. I am able-bodied enough to climb high-floor buses, but I would not use the shuttle buses replacing the Red Line for another reason: as can be seen in the map, there is no continuous street grid between Charles/MGH and Park Street. If there were a crossover right east of Charles/MGH then only the Kendall-MGH segment would be bustituted, and there, the buses would go on Longfellow Bridge, with a serious but not fatal slowdown. But between Kendall and Park Street the buses have to swerve through side streets that were not designed for fast traffic; in 2012, I was on such a shuttle and as I recall the trip took 15 or 20 minutes, where the subway does it in about 5.

Instead of relying on shuttles, I took a bus north of the river to get to Lechmere and use the Green Line to reach Chinatown on a chain trip. From Chinatown the options were all bad, and I rode the 39 bus, which parallels the Green Line E Branch (the southernmost one) and continues south to Forest Hills, where the Green Line once ran as well. The way back was not a chain trip, and with a bus-bus-Red Line trip and no 39 bus in sight (the online bus tracker was down), I gave up and took a taxi.

The Red Line and Orange Line look like they go in different directions, so shutting down one does not affect the other. But in reality, in a city with buses, taking the bus to a different line is a common strategy to deal with shutdowns – hence, using the Green Line to get between Davis and Chinatown, taking a bus in a place where the buses are less slow than between Charles/MGH and Park Street.

If any city in North America did not use buses at all, it would be Boston. It has legendarily narrow and twisted streets, and crawling buses. It has higher rail-to-bus ridership ratio than any other American city except possibly New York, and far higher ratio than the major English Canadian cities with their bus grids. Its transit network, inherited from midcentury, uses the buses to feed the subway, and has no bus service through downtown, where even before mass motorization there were traffic jams of streetcars.

But even in Boston, using the bus outside the core to get to a better subway line is possible, and normal when there are service interruptions. This means that any pair of subway lines could potentially be redundant with each other. This means that it is bad practice to shut down more than one line at once for repairs. The reason the Orange Line needs emergency repairs in the first place is that the MBTA maintained it poorly and wouldn’t act when it was less urgent, such as six months ago (Sandy reports noticing a consistent deterioration in service since January). Today, the shutdowns are probably unavoidable. But the Red Line shutdowns, for a capital construction project involving the Longfellow Bridge, can be delayed. The MBTA should do that in the future in order to both avoid having to use inaccessible buses and allow passengers to take a circumferential bus to a functioning subway line.

Fix DeKalb Avenue

In New York, there are two dedicated subway tracks on the Manhattan Bridge offering a bypass of Lower Manhattan. Between DeKalb Avenue in Brooklyn and Canal Street in Chinatown in Manhattan, Q trains run nonstop for 3.5 km, while the R train goes the long way, taking 5.5 km and making 2 intermediate stops in Downtown Brooklyn and 4 in Lower Manhattan. The N skips DeKalb Avenue, with a 4.5 km nonstop segment between Canal Street and the Atlantic/Pacific/Barclays station complex.

The Q and N should be immense time savers. Instead, the Q does the trip in 8 minutes and the N in 10, both of which average 26-27 km/h. The subway’s overall average speed, weighed down by local trains stopping every 700 meters, is 29 km/h. The Q and N are still time savers, though, because the R does the 5.5 km in 18 minutes, an average speed of 16 km/h – far less than the systemwide average, and even less than the slowest Paris Metro line, Line 4 with its 500-meter interstations and 20 km/h average speed. Between DeKalb and Pacific, about 800 meters, the R takes 3 minutes. Unfortunately, New York City Transit is not taking any measures that would fix this, and when I asked about one possibility, I got excuses.

There are two reasons why this part of the subway is so slow. The first is something called signal timers. Timers are devices installed at frequent intervals on long interstations, such as the bridges and tunnels connecting Manhattan with Brooklyn and Queens, limiting train speed. These timers have always been around, but after fatal accidents in the 1990s, New York City Transit tightened them, reducing speed further; for some more background, see my Vox piece from last summer. The timers are more safety theater than safety. The biggest conclusion I reached from looking at the accident postmortem on the NTSB and some NYCT information was “make sure your trains’ brakes work as intended”; NYCT derated the trains’ service and emergency braking rates later in the 90s, which marginally reduces maintenance costs but is bad for safety and brutal for train speed.

The second reason is the switches at DeKalb Avenue. DeKalb is a six-track station, with four tracks feeding the Manhattan Bridge and two feeding the tunnel through Lower Manhattan. The two tunnel tracks then continue to the south as local tracks on the Fourth Avenue Line, carrying the R; this is the least used of all subway trunk lines into Manhattan, because the detour and low speed make it useless for most Midtown-bound passengers. The four bridge tracks include two express tracks at DeKalb going to the Brighton Line, and two super-express tracks skipping DeKalb continuing to the south as express Fourth Avenue tracks. Today, there is a splitting and recombining of branches. The B and D run together from Sixth Avenue to the Manhattan Bridge, and the N and Q run together from Broadway, but just north of DeKalb they recombine as B and Q running to Brighton, and D and N running super-express down Fourth Avenue.

This recombination at DeKalb slows down trains considerably, in two ways. First, the interlocking is complex. You can see it on this map on NYCSubway.org; in addition to splitting and recombining the B, D, N, and Q, it also has a non-revenue connection allowing R trains to serve the Brighton Line. Trains on diverging turnouts go at glacial speeds. And second, trains from four lines influence one another’s schedules, and delays propagate. Supervising train movements is thus difficult, and control center has to have a camera watching the trains enter the interlocking to ensure they adhere to schedule; timetables have to take the resulting delays into account.

When I first complained about reverse-branching in New York, I talked about capacity limits imposed by having more trunk lines than branches, a situation that is still to some extent true going north and east of Midtown. At DeKalb, there are six tracks going in and six going out, but the recombination makes things slower, and should be removed. NYCT should make a decision between having B and D trains run on the Brighton Line and the N and Q on Fourth Avenue, or the reverse. The interlocking permits either option, with entirely grade-separated junctions, allowing the trains on the two lines to no longer interfere with each other’s operations.

I in fact asked NYCT about it by proxy. NYCT dismissed the idea, on the grounds that transfer volumes between the B/D and N/Q would be too big. At Atlantic/Pacific, the Pacific side has a cross-platform transfer between the local R and express D/N, but going between the Pacific side and the Atlantic side (the B/Q, and separately the 2/3/4/5) involves a lot of walking. NYCT believes that passengers would flood the corridors looking for a train to their preferred destination, and the transfer volumes would require trains to have long dwell times. NYCT said nothing about whether the overall speed would actually fall, but I believe that based on the large transfer volumes NYCT predicts, passenger trip times (including transfer times) would rise. The only problem: I don’t believe NYCT’s prediction is true at all.

The B and D trains go express up Sixth Avenue, making stops at Grand Street in Chinatown, Broadway-Lafayette on Houston Street, West Fourth Street in the Village, and Herald Square. The N and Q trains go express up Broadway, serving Canal Street in Chinatown, Union Square, and Herald Square. North of Herald Square the two lines are never more than one long block apart until they leave Midtown. Passengers going toward Midtown are unlikely to have strong opinions about which of the two lines they would prefer.

Passengers going to destinations between Manhattan Bridge and Midtown might register stronger preferences. Union Square is the fourth busiest subway station in New York, and is quite far from the B and D. The closest alternative using the B and D is to change cross-platform to the M or F at West Fourth, and get off at 14th Street and Sixth Avenue, two long blocks from Union Square. Three more stations are potential concerns: Canal Street ranks 18th, West Fourth ranks 21st, and Broadway-Lafayette ranks 25th. Getting to Broadway-Lafayette from the N or Q is easy: the station and Canal Street are both on the 6, and passengers can transfer to the 6 at Canal.

West Fourth and Canal remain concerns, but they are not huge ones; they are secondary destinations. Canal is only a major destination for Chinese-New Yorkers, and in Brooklyn they cluster in Sunset Park along Fourth Avenue, suggesting that the Fourth Avenue express tracks should carry the N and Q and the Brighton tracks should carry the B and D. The urban geography of Chinese-New Yorkers is changing due to the combination of fast immigration and fast integration and migration to the suburbs, but this is a service decision, not an infrastructure investment; it can be reversed if demographics change.

Moreover, as a destination, West Fourth is predominantly used for NYU. The Village is a dense residential neighborhood, and West Fourth allows its residents to easily reach Lower Manhattan, Downtown Brooklyn, and two different four-track trunk lines through Midtown. But it has few jobs, outside NYU, which lies mostly between Sixth Avenue and Broadway. Union Square can adequately serve people going toward NYU, and stations on the R and 6 to the south can serve people going to NYU even better. The one problem is that the transfer between the R and the N/Q at Canal Street is not cross-platform; the cross-platform transfers start at Union Square. But with coverage of multiple stations walkable to NYU, the loss of the one-seat ride to West Fourth is not fatal. Even the transfer to the A, C, and E trains at West Fourth has alternative options: passengers from the N or Q going to the E can transfer to the F or M at Herald Square and reach the same stations, and passengers going to the A or C can transfer to the 1 at Times Square and to the A or C at Columbus Circle, both of which transfers are not much harder than climbing two flights of stairs at West Fourth.

With so many options, not many riders would be connecting at Atlantic/Pacific, and trains could keep dwell times short. If anything, dwell times might be shorter, because missing a train would be less fatal: the next train on the same track would serve the same destinations in Midtown, so riders would only need to wait about 3 minutes at rush hour, and 5 minutes off-peak. The gain in speed would be substantial, with the interlocking imposing fewer operational constraints.

NYCT might need to slightly rework the switches, to make sure the chosen matching of the lines in Manhattan and Brooklyn takes the straight and not the diverging direction at the turnouts; typically, the straight direction imposes no speed limit (up to full line speed on high-speed rail lines), but the diverging direction is slow. A matching in which the B and D go on Brighton and the N and Q on Fourth Avenue express to my understanding already involves only one diverging move, if I am reading the track map linked on NYCSubway.org correctly. At the same time, NYCT could fix the switches leading to the R: there was through-service from the Brighton Line to the tunnel tracks the R uses today, but there no longer is, so this out-of-service connection should get diverging and not straight moves. But even with the R, the capital investment involved is minimal.

I do not know the potential travel time gains between DeKalb and Canal Street (or Grand Street) with no timers or reverse-branching. With straight tracks across Manhattan Bridge, and wide curves toward Grand Street, 3.5-minute trips are aspirational, 4-minute trips are still possible, and 5-minute trips should be easy. From Pacific Street, add one more minute, corresponding to cruising at 50 km/h, a speed limit the subway routinely attains even on local tracks. This saves passengers from DeKalb about 4 minutes, and passengers from Pacific about 5. The average trip across the system is about 21 minutes, and the average delay (“excess journey time“) is 3 minutes. The saving would be immense, and contribute to both more casual ridership between Brooklyn and Manhattan, and lower operating costs coming from faster trips.

NYCT should not make excuses for this. The timers may have been originally justified as a safety improvement, but reducing train braking rates had the opposite effect. And, uniquely among the various reverse-branch points in New York, DeKalb feeds two Manhattan trunks that are very close to each other, especially in Midtown, to the point that one-seat rides to every stop have limited value. It should make a decision about whether to run the B/D together on Fourth Avenue and the N/Q on Brighton (switching the Q and D) or the reverse (switching the B and N), based on origin-and-destination data. Some passengers might bemoan the loss of one-seat rides, but most would cheer seeing their trips sped up by 4-5 minutes.

Meme Weeding: Land Value Capture

Last month’s Patreon poll was about meme weeding – that is, which popular meme in public transit I should take apart. The options were fare caps on the model of London, popular among some US reformers; wait assessment, a schedule adherence metric for trains I briefly complained about on Vox as used in New York; and land value capture/tax increment financing/the Hong Kong model. The last option won.

Good public transit creates substantial value to its users, who get better commutes. It’s an amenity, much like good schools, access to good health care, and clean air. As such, it creates value in the surrounding community, even for non-users: store owners who get better sales when there’s better transportation access to their business, workers who can take local jobs created by commuters to city center, and landowners who can sell real estate at a higher price. All of these positive externalities give reason to subsidize public transit. But in the last case, the positive impact on property values, it’s tempting to directly use the higher land values to fund transit operations; in some cases, this is bundled into a deal creating transit-oriented development to boost ridership. In either case, this is a bad way of funding transit, offering easy opportunities for corruption.

Value capture comes in several flavors:

  • In Japan, most urban private railroads develop the areas they serve, with department stores at the city end and housing at the suburban end.
  • In Hong Kong, the government sells undeveloped land to the now-privatized subway operator, the MTR, for high-density redevelopment.
  • In the US and increasingly Canada, local governments use tax increment funding (TIF), in which they build value-enhancing public infrastructure either by levying impact fees on development that benefits from it or by programming bonds against expected growth in property taxes.

In both Hong Kong and the major cities of Japan, urban rail operations are profitable. It is not the case that value capture subsidizes otherwise-money losing transit in either country, nor anywhere I know of; this did not prevent Jay Walder, then the head of New York’s MTA, from plugging the MTR model as a way of funding transit in New York. What’s true is that the real estate schemes have higher margins than rail operations, which is why JR East, the most urban of the remnants of Japan National Railways, aims to get into the game as well and develop shopping centers near its main stations. However, rail operations alone in these countries are profitable, due to a combination of high crowding levels and low operating costs.

The Japanese use case is entirely private, and does not to my knowledge involve corruption. But the Hong Kong use case is public, and does. For all the crowing about it in Anglo-American media (the Atlantic called it a “unique genius” and the Guardian said it supported subsidy-free operations), it’s a hidden subsidy. The state sells the land to the MTR, and the MTR alone, at the rate of undeveloped outlying land. Then the MTR develops it, raising its value. Other developers would be willing to pay much better, since they can expect to build high-density housing and have the MTR connect it to Central. This way, the government would pocket the profits coming from higher value on its land. Instead, it surreptitiously hands over these profits to the MTR.

While Western media crows about Hong Kong as an example of success, local media excoriates the corruption involves. Here’s the South China Morning Post on the MTR model:

The rail and property model was never anything but a delusion to which only Hong Kong bureaucrats could be subject. It traded on the odd notion that you cannot assign a value to property until you actually dispose of it.

Thus if you give the MTR the land above its stations, these sites suddenly and magically acquire value and the proceeds cover the cost of building the railway lines. Ain’t magic wonderful? We got the MTR for free.

Stephen Smith dealt with this issue in 2013, when he was still writing for NextCity. He explained the local corruption angle, the fact that MTR rail operations are profitable on their own, and the lack of undeveloped land for the state to sell in most first-world cities. (Conversely, one of his arguments, about construction costs, doesn’t seem too relevant: Hong Kong’s construction costs are probably similar to London’s and certainly higher than Paris’s, and doing value capture in Paris would be an urban renewal disaster.)

Stephen also tackles American examples of value capture. With no state-owned land to sell to the public transit agency at below-market prices, American cities instead rely on expected property taxes, or sometimes levy special fees on developers for letting them build TOD. Stephen talks about scale issues with the TIF-funded 7 extension in New York, but there are multiple other problems. For one, the 7 extension’s Hudson Yards terminus turned out to be less desirable than initially thought, requiring the city to give tax breaks. See for examples stories here, here, and here.

But there are more fundamental problems with the approach. The biggest one is the quality of governance. TIF is an attractive-looking option in American jurisdictions that recoil at raising direct taxes to pay for service. This means that as happened in New York, it is tempting for cities to promise property tax windfall, issue bonds, and then let successor governments raise taxes or cut services to pay interest. This opaqueness makes it easier to build bad projects. When the government promises especially high benefit-cost ratios, it can also keep issuing new bonds if there are budget overruns, which means there is no incentive for cost control.

TIF also requires the city to use zoning to create a shortage of land in order to entice developers to pay extra to build where it wants them to. Stephen complains that New York reamed problems on upzoning in Midtown East, one of the few locations in Manhattan where developers are willing to build supertall office towers without any tax breaks; the new zoning plan, in the works since he was writing for NextCity in 2013, only just passed. Another such location is probably the Meatpacking District, near the Google building at 14th and 8th, now the city’s tech hub – there is no tall office construction there due to the power of high-income residential NIMBYs. Were the city to loosen zoning in these areas and permit companies that need a prime location to set up offices in these areas, it would find it even harder to entice developers to build in a lower-demand area like Hudson Yards. Midtown East and the Meatpacking District are replete with subway lines, but there are no new plans for construction there, so the city wouldn’t do a TIF there.

The same problem, of TOD-reliant funding requiring the city to restrict development away from targeted investment areas, also works in reverse: it encourages development-oriented transit. In 2007, Dan Doctoroff, then a deputy mayor and now head of Google’s Sidewalk Labs, opposed Second Avenue Subway, on the grounds that the area is already developed. Second Avenue Subway was eventually built, but the 7 extension omitted a stop in an already-developed area amidst cost overruns, as Bloomberg prioritized Hudson Yards. This is not restricted to New York: San Francisco is more interested in a subway to Parkmerced than in a subway under Geary, the busiest bus route, busier than the subway-surface light rail branch serving Parkmerced today. Smaller American cities propose core connectors, aiming promoting redevelopment in and around city center. This in turn means ignoring low-income neighborhoods, where there is no developer interest in new buildings except as part of a gentrification process.

These problems are for targeted investments. But when there is more widespread TOD, TIF ends up being a tax on transit users. Cities build roads without levying special taxes on sprawling development, whether it sprawls by virtue of being near the highway or by virtue of being far from public transit. When they build transit, they sometimes tax TOD, which means they are giving developers and residents tax incentives to locate away from public transit.

Hong Kong is not the right model for any TOD scheme; its corruption problems are immense. It’s a shiny object for Americans (and other Anglophone Westerners), who are attracted to the allure of the exotic foreigner, like a premodern illiterate attributing magic to the written word. Instead of replicating its most questionable aspect, it’s better to look at models that are attractive even to local corruption watchdogs.

This means funding public transit and other services out of transparent, broad-based taxes. Paris uses a payroll tax, varying the rate so as to be higher in the city (2.95%) than in the outer suburbs (1.6%). Everyone will hate them, especially people who don’t use transit and don’t view it as directly necessary for their lives. This is why they work. They compel the transit agency to run efficient service, to stave off opposition from aggrieved center-right middle-class voters, and to run it well, to stave off opposition from populists (“why am I being taxed for trains that break down?”). They leave no room for waste, for cronyism, or for slush funds for favored causes, precisely because they’re hard to pass.

It’s easy to see why politicians avoid such funding sources. The democratic deficit of local governance in the US is immense, and that of Canada is only somewhat better. Nobody wants to lose an election over raising taxes, even in cities where the political spectrum runs from the center leftward. Value capture sounds like a good, innovative idea to fund government without hated taxation, and its abuses are hidden from sight. Even as it forces city residents to endure opaque fees (never call them taxes!), it wins accolades to politicians who propose it. No wonder it continues despite its failures.

Anti-Infill on Surface Transit

I wrote about infill stops on commuter rail two weeks ago, and said I cannot think of any example of anti-infill on that mode. But looking at Muni Metro reminded me that there is need for anti-infill on surface transit. This is called stop consolidation normally, and I only use the term anti-infill to contrast with the strategy of adding more stops on commuter trains.

The root of the problem is that in North America, transit agencies have standardized on 200-250 meters as the typical spacing between bus stops. In Europe, Australasia, and East Asia, the standard is instead 400-500 meters. Even without off-board fare collection, the difference in speed is noticeable. In Vancouver, the difference between the local 4 and the express 84 is substantial: on the shared segment between Burrard and Tolmie, a distance of 4.8 km, the 84 makes 5 stops and takes 10 minutes, the 4 makes 18 stops and takes 16 minutes. A bus with the normal first-world stop spacing would make 10-12 stops and take, linearly, 12-13 minutes. 23 km/h versus 18 km/h.

With off-board fare collection, the impact of stop spacing on speed grows. The reason is that a bus’s stop penalty consists of the time taken to stop and open its doors, plus the time it takes each passenger to board. The former time is independent of the fare collection method but depends on stop spacing. The latter time is the exact opposite: if the stop spacing widens, then there are more passengers per bus stop, and unless the change in stop spacing triggers changes in ridership, overall passenger boarding and alighting time remains the same. Another way to think about it is that judging by Vancouver data, there appears to be a 30-second stop penalty, independent of ridership. Off-board fare collection increases bus speed, so the 30-second stop penalty becomes more important relative to overall travel time; the same is true of other treatments that increase bus speed, such as dedicated lanes and signal priority.

In New York, there aren’t a lot of places with local and limited-stop buses side by side in which the limited-stop bus has on-board fare collection. One such example is the M4, meandering from Washington Heights down the 5th/Madison one-way-pair, over 15.3 km. At rush hour, the local takes 1:45, the limited-stop takes 1:30: 9 vs. 10 km/h. But the limited-stop bus runs local for 6 km, and over the other 9.3 km it skips 26 local stops if I’ve counted right. The B41 has a limited-stop version over 8.3 km (the rest is local), skipping about 17 stops; the time difference is 10 minutes.

One possible explanation for why the stop penalty in New York seems a little higher than in Vancouver is that the M4 and B41 routes are busier than the 4/84 in Vancouver, so every stop has at least one passenger, whereas the 4 in Vancouver often skips a few stops if there are no passengers waiting. Conversely, the higher passenger traffic on buses in New York comes from higher density and more traffic in general, which slows down the buses independently of stopping distance.

On subways, there’s reason to have more densely-spaced stops in denser areas, chief of which is the CBD. On surface transit, it’s less relevant. The reason is that absolute density doesn’t matter for stop spacing, except when expected ridership at once station is so high it would stress the egress points. What really matters is relative density. Putting more stops in an area means slowing down everyone riding through it in order to offer shorter station access times to people within it. On surface transit, relative density gradients aren’t likely to lead to variations in stop spacing, for the following reasons:

  1. Historically, surface transit stop spacing was always shorter than rapid transit stop spacing because of its lower top speed and the faster braking capabilities of horses vs. steam trains; often people could get off at any street corner they chose. So it induced linear development, of roughly constant density along the corridor, rather than clusters of high density near stations.
  2. If there is considerable variation in density along a surface transit line, then either density is medium with a few pockets of high density, which would probably make the line a good candidate for a subway, or density is low with a few pockets of higher density, and the bus would probably skip a lot of the low-density stops anyway.

Most importantly, the 400-meter standard is almost Pareto-faster than the 200-meter standard. In the worst case, it adds about 4 minutes of combined walking time at both the start and the end of the trip, for an able-bodied, healthy person not carrying obscene amounts of luggage. The breakeven time on 4 minutes is 8 skipped stops, so 3.2 km compared with the 200-meter standard. Bus trips tend to be longer than this, except in a few edge cases. In New York the average unlinked bus trip is 3.4 km (compare boardings and passenger-km on the NTD), but many trips involve a transfer to another bus or the subway, probably half judging by fare revenue, and transfer stations would never be deleted. If the destination is a subway station, guaranteed to have a stop, then the breakeven distance is 1.6 km.

This also suggests that different routes may have different stop spacing. Very short routes should have shorter stop spacing, for example the 5 and 6 buses in Vancouver. Those routes compete with walking anyway. This may create a spurious relationship with density: the 5 and 6 buses serve the very dense West End, but the real reason to keep stop spacing on them short is that they are short routes, about 2 km each. Of course, West End density over a longer stretch would justify a subway, so in a way there’s a reason short optimal stop spacing correlates with high bus stop density.

The situation on subways is murkier. The stop penalty is slightly higher, maybe 45 seconds away from CBD stations with long dwell times. But the range of stop distances is such that more people lose out from having fewer stops. Paris has a Metro stop every 600 meters, give or take. Some of the busiest systems in countries that were never communist, such as Tokyo, Mexico City, and London, average 1.2 km; in former communist bloc countries, including Russia and China, the average is higher, 1.7 km in Moscow. The difference between 600 meters and 1.2 km is, in the worst case, another 1.2 km of walking, about 12 minutes; breakeven is 16 deleted stops, or 20 km, on the long side for subway commutes.

One mitigating factor is that subway-oriented development clusters more, so the worst case is less likely to be realized, especially since stops are usually closer together in the CBD. But on the other hand, at 1.2 km between stations it’s easy for transfers to be awkward or for lines to cross without a transfer. London and Tokyo both have many locations where this happens, if not so many as New York; Mexico City doesn’t (it’s the biggest subway network in which every pair of intersecting lines has a transfer), but it has a less dense network in its center. Paris only has three such intersections, two of them involving the express Metro Line 14. Even when transfers do exist, they may be awkward in ways they wouldn’t have been if stop spacing had been closer (then again, Paris is notorious for long transfers at Chatelet and Montparnasse).

In all discussions of subway stop spacing, New York is sui generis since the lines have four tracks. On paper its subway lines stop every 600-700 meters when not crossing water, but many trains run express and stop every 2 km or even more. Average speed is almost the same as in Tokyo and London, which have very little express service, and it used to be on a par until recent subway slowdowns. This distinction, between longer stop spacing and shorter stop spacing with express runs, also ports to buses. Buses outside the US and Canada stop every 400-500 meters and have no need for limited-stop runs – they really split the difference between local and limited buses in North America.

On a subway, the main advantage of the international system over the New York system is obvious: only two tracks are required rather than four, reducing construction costs. On a bus line, the advantages are really the same, provided the city gives the buses enough space. A physically separated bus lane cannot easily accommodate buses of different speeds. In New York, this is the excuse I’ve heard in comments for why the bus lanes are only painted, not physically separated as in Paris. Mixing buses of different speeds also makes it hard to give buses signal priority: it is easy for buses to conflict, since the same intersection might see two buses spaced a minute apart.

Buses also benefit from having a single speed class because of the importance of frequency. In Vancouver, the off-peak weekday frequency on 4th Avenue is an 84 rapid bus every 12 minutes, a 44 rapid bus every 20 minutes, and a local 4 every 15 minutes. The 84 keeps going on 4th Avenue whereas the 4 and 44 divert to Downtown, but the 4 and 44 could still be consolidated into a bus coming every 10 minutes. If there were enough savings to boost the 84 to 10 minutes the three routes could vaguely be scheduled to come every 5 minutes on the common section, but without dedicated lanes it’s probably impossible to run a scheduled service at that frequency (pure headway management and branching don’t mix).

The example of 4th Avenue gets back to my original impetus for this post, Muni Metro. Only diesel buses can really run in regular surface mode mixing different speed classes. Trolleys can’t. Vancouver runs trolleys on the local routes and diesels on the limited routes. At UBC, it has different bus loops for diesels and trolleys, so people leaving campus have to choose which type of bus to take – they can’t stand at one stop and take whatever comes first.

On rail, this is of course completely impossible. As a result, American subway-surface trolleys – the Boston Green Line, SEPTA’s Subway-Surface Lines, and Muni Metro – all run at glacial speed on the surface, even when they have dedicated lanes as in Boston. In Boston there has been some effort toward stop consolidation on the Green Line’s busiest branch, the B, serving Boston University. This is bundled with accessibility – it costs money to make a trolley stop wheelchair-accessible and it’s cheaper to have fewer stops. Muni Metro instead makes one stop every 3-5 accessible (on paper), but keeps stopping at all the other stops. It would be better to just prune the surface stops down to one every 400-500 meters, which should be accessible.

If you view rail as inherently better than bus, which I do, then it fits into the general framework: anti-infill on surface transit has the highest impact on the routes with the best service quality. Higher speed makes the speed gain of stop consolidation more important relative to travel time; trolleywire makes it impossible to compensate for the low speed of routes with 200-meter interstations by running limited-stop service. Even on local buses, there is never a reason for such short stop spacing, and it’s important for North American cities to adopt best industry practice on this issue. But it’s the most important on the highest-end routes, where the gains are especially large.

Branching and Transfer Breaking

This is the winning option in a poll I conducted among my Patreon backers. Thanks to everyone who participated. Another option, about commuter rail infill stops, came a close second, and I will likely tackle it later this month.

The New York City Subway is unusually branched. I’ve written about the general concept here, and specifically criticized reverse-branching on the subway here. In this post, I want to talk about a more specific feature of complex branching arrangements: they have station locations that make it hard to disentangle the branches without breaking transfers.

 

The left image is a common way junctions are set up. In this image, it’s possible to travel from any leg to any leg; an example of this is BART, with its three-way junction in Oakland between the East Oakland Line carrying trains to Fremont and Pleasanton, the line to the north carrying trains to Berkeley, and the line to the west carrying trains to San Francisco. In many other cases, the branching is simpler, with a clear trunk and two branches, and it’s often not possible for trains to travel between the two branches without backing up; this is like the depicted image with one of the connections missing.

New York has one current example like the left image: the A/C/F/G junction in Downtown Brooklyn has a northern leg (A/C/F), an eastern leg (A/C/G), and a southern leg (F/G). All legs have four tracks and not every track pair connects to every other track pair, but each leg connects to both other legs. It has one former example: the junction between Sixth Avenue Line and 53rd Street Line, with the B/D going south-to-west (then north), the E going east-to-west (then south), and the F going south-to-east. The E/F shared tracks to the east, but neither service shared tracks with the B/D to the south or west.

The problem with this arrangement is that it makes the schedules more fragile. A delay on one branch can cascade. Toronto at one point ran its subway line this, with an eastern and western leg under Bloor Street (continuing to Danforth to the east), and a southern leg under University (looping back north under Yonge); it subsequently ended branching by extending the University leg to the north along the Spadina Expressway right-of-way and operating two independent lines.

The rub is that such an extension usually breaks transfers. Look at the right image: running the lines without branching means no transfers, since there is no station located at the crossing. Toronto dodged this problem because of how the original branching was laid out – in fact, there are two adjacent transfer stations. But usually, it is not hard to convert a branching like the left image into two lines with a simple transfer in the middle.

The 53rd/Sixth situation in New York is a good example of the problem. New York realized it needed more capacity going east, toward Queens, since there were only three track pairs – 53rd Street, plus two more disconnected from the system depicted. For this, it built a tunnel under 63rd Street, and connected it to Sixth Avenue, routing the F through it and creating a new service for Sixth-East 53rd trains, then called the V and now called the M. The junction now looks like an incomplete version of the right image, missing the two upper arcs. The F continues north under Sixth, and only diverts east under 63rd, and has no transfer with the E, which runs east-west under 53rd. The next transfer between the two services to the south is at West 4th Street; the next transfer to the east is at Roosevelt Avenue/74th Street, well into Queens, since the alignment of 63rd Street Tunnel into Queens prevents it from intersecting the E closer in, at Queens Plaza in Long Island City.

The highly-branched nature of the subway in New York makes sure that it is possible to travel between legs even when there’s no transfer, provided one is okay transferring between lines with not-great frequency. The first station south of the junction on Sixth, 47th-50th Streets-Rockefeller Center, lets passengers transfer wrong-way, between southbound and northbound trains. I have used this before to transfer from the B/D to the F on my way between Columbia and Queens, which are not well-connected to each other. Going from east to south is already easy on the M; going from east to north is possible via the M and F, but is unusual, since ultimately both legs lead into the same line in Queens.

However, it is hard to disentangle this to reduce branching. If one believes that reducing branching is useful for reliability and capacity, then one must believe it is necessary for New York to figure out how to split branching in the least painful ways. Partial data from the London Underground is suggestive (see international benchmarking, PDF-p. 15) – the non-branching Victoria and Piccadilly lines are more reliable than the complexly-branching Northern line. Moreover, the intensive service in Moscow, topping at 39 trains per hour without any automation, only works since none of the lines branches. This compels New York and other cities with highly branched systems to disentangle lines.

In the Bay Area, the situation is relatively easy, in the sense of requiring relatively little capital construction. There is no real need for a one-seat ride between East Oakland and Berkeley. The reason there are any trains running on that leg is that Downtown Oakland is on the leg to Berkeley and not on the leg to San Francisco. This was bad planning, and was noted as bad planning even in the 1960s.

What is required is a short bypass tunnel. There are two options. First, a tunnel from the east, replacing the Lake Merritt station with a station a few blocks to the north, effectively moving the junction one station north, so that 12th Street-Oakland City Center can be on the western leg toward San Francisco. Second, a tunnel from the west, between West Oakland and Downtown Oakland. This would not move any station, and put 12th Street on the eastern leg toward East Oakland; Downtown Oakland has a second station, at 19th Street, which would stay on the northern leg, for Berkeley-Downtown Oakland service. Either option would break East Oakland-Berkeley transfers, but make the remaining system more robust.

In New York, disentangling reverse-branches is considerably more difficult. On the numbered lines, it isn’t too difficult to shuffle the 2, 3, 4, and 5 so that the only track sharing is between the 2 and 3, and between the 4 and 5. On the lettered lines, first of all one key connection has to be severed: 11th Street Connection, letting the R go between 60th Street Tunnel toward Manhattan and the Queens Boulevard Line. All trains via 60th Street would go to Astoria; in comments, Alexander Rapp suggests flipping the connection at Queensboro Plaza, letting trains from 60th Street (such as the R) go to Flushing and the 7 go to Astoria, matching the busier line in Queens (Flushing) with the more popular route into Manhattan (60th Street). Queensboro Plaza and Queens Plaza have no transfer, and one would need to be constructed, but even with moving walkways, transferring would involve several minutes of walking between platforms.

Then, the Queens Boulevard Line would be left with local and express services, feeding 53rd and 63rd Street Tunnels. Trains on 63rd have to go to Sixth Avenue. This requires all 53rd Street trains to serve 8th Avenue – the east-west line shown in the images. No more M, just a more frequent E train, with implications for how the A/C run (probably both express between 145th Street and Chambers, where the E terminates). This breaks the transfer, and there is no possible way to create a new one. Transfers between the E and trains on 63rd would only be at Roosevelt and West 4th, and trips from East 53rd to Sixth would require a wrong-way transfer on the western leg using the B/D.

It’s possible to keep the limited reverse-branching and have Queens Boulevard trains of either type, local and express feed either 53rd or 63rd Street Tunnel. Local-local transfers would then be available immediately east of Queens Plaza. The problem is that this still introduces schedule dependence, on what is most likely the most crowded line in the city now that Second Avenue Subway has taken pressure off of 4/5/6 on Lexington. Conversely, without reverse-branching, both choices of how to match lines have drawbacks: sending locals to 63rd and expresses to 53rd means there is no connection between local stops in Queens and Long Island City, whereas doing the opposite makes the connections better but matches the busier Queens trunk (the express tracks) with the less desirable Manhattan connection (63rd).

That said, despite the drawbacks, something like this disentanglement is requires. New York needs more capacity, and shuffling trains like this effectively creates another half a tunnel’s worth of capacity between Queens and Manhattan and allows higher frequency on Second Avenue Subway, useful given the high population density in the part of the Upper East Side that it serves.

For other cities, let this be your lesson: do not build infrastructure that looks like the left image, unless you know how you can convert it to two intersecting lines with a transfer, the way Toronto did. Branching may look like a nifty way to provide one-seat rides between more pairs of origins and destinations, but it will reduce your capacity, and in the distant future force you into difficult choices in which anything you do, including the no action alternative, will screw someone over. What looked like good planning when the IND built subways under Sixth and 53rd in the 1930s turns out to be bad planning today with what we know of how subways operate around the world.

Quick Note: What a Few Pictures Tell Us About BRT

The Boston BRT initiative is pushing hard for what it calls gold standard BRT in Boston, with the support of ITDP. Backed by a Barr Foundation grant, it launched a competition for pilot routes. Two years ago to the day, Ari Ofsevit already wrote a takedown of the idea of gold standard BRT in Boston, comparing the street width in Boston to the street widths in Bogota and Mexico City. In brief, most of Bogota’s BRT network runs on streets wider than 40 meters, and the rest is still 30-something; in Boston nothing is that wide except streets that have light rail in their medians like Commonwealth Avenue and Beacon Street, and the key corridors have segments going below 20.

In response to this problem, here is the photo Boston BRT is using to illustrate the technology:

BRT in not-Boston

I am not sure where this photo was taken. Judging by the 60 speed limit sign, it can’t be in the US. What we see in the photo is 4 travel lanes in each direction (2 car, 2 bus), a generous median for the station, generous medians on both sides of the main road, and service lanes. Paris’s 80-meter-wide Cours de Vincennes has in each direction a service lane, two parking lanes, one bus lane, and three car lanes, but no median between the two main carriageways. The depicted street has to be wider, which means it’s wider in meters than most Boston arterials are in feet. It’s very wide by the standards of Mexico City, Curitiba, and Bogota.

BRT station in not-Boston

The BRT Report for Boston depicts another picture in that flavor on PDF-p. 14. It is also painfully misleading about existing BRT lines: its blurb about Mexico City omits the fact that the city has a large, expanding subway network with almost as much ridership as New York’s, and alongside Mexico; its blurb about Cleveland’s HealthLine BRT omits all the internal problems of the line, which make Cleveland urbanists denigrate it as a poor transportation solution.

BRT is a useful tool in cities’ kit for solving transportation problems. But proponents have to be honest about the tradeoffs involves: it is cheaper than a subway but also slower, less comfortable, and more expensive to operate; and it requires difficult choices about how to allocate street space. There are many examples of BRT on streets going down to about 30 meters, and Boston BRT could have also chosen to depict even narrower streets, to be relevant to Boston. Instead, it’s engaging in subterfuge: the report is claiming that BRT is faster than light rail and implying it’s the primary transit mode in Mexico City, and by the same token, the pictures all show wide enough streets for anything.

Core Connectors and In-Between Neighborhoods, Redux

Five years ago, I wrote about how American cities’ transit priorities cause them to underrate the neighborhoods with the best potential, which typically are also the poorer ones. Those are the in-between neighborhoods: beyond the gentrified core of the city, which is often within walking distance of the CBD in a small region, but not so far that they’re really suburbs. Instead of serving these neighborhoods, cities that want to look like they’re redeveloping build core connectors, i.e. short-range transit services within the gentrified (or gentrifying) center. I was specifically complaining about two plans, one in Providence and one in New Haven. The Providence plan involved a mixed-traffic streetcar, which has since been downgraded to a frequent bus. It’s this project that I wish to talk about in this post.

First, some background: in the 2000s and early 2010s, Rhode Island realigned I-195. This project, called Iway, rebuilt a segment of the freeway to higher standards, but also moved it so as to no longer cut off the Jewelry District from the CBD (called Downcity). Iway turned the Jewelry District from a post-industrial neighborhood to the next (possibly the only) frontier of gentrification in the city, and state elites needed to decide what to do with all this land. This led to plans to build what was in vogue in the late 2000s and early 2010s: a mixed-traffic streetcar, which would connect the Rhode Island Hospital and Jewelry District with Downcity and continue either north to the train station, or east to College Hill via the East Side Tunnel, a short bus-only tunnel cutting off a steep hill between Downcity and the Brown campus. This was from the start bad transit, and we in the Greater City community were skeptical. The plan was eventually scuttled, and the website’s registration lapsed without any redirect to the new plan, which is BRT.

The new BRT route is going between the train station and the Jewelry District. It’s planned to be very frequent, with a bus every 4-5 minutes, appropriate for the short length of the route, about 2 km between the hospital and the train station. The plan is to build open rather than closed BRT, with several branches interlining on the route. Overall, it looks like RIPTA is doing BRT right. And yet, it’s a terrible project.

The top bus corridor in Rhode Island is the R route (for Rapid), formed from the former 99 and 11 buses, which were by far the top two in ridership. It runs every 10 minutes, between Pawtucket and South Providence, serving some of the poorest parts of an already poor urban area. It has some BRT treatments, including hard-fought signal priority (Governor Carcieri vetoed it six times, and it took until the more progressive Lincoln Chafee replaced him for signal priority to go ahead). But buses run in mixed traffic, and fare collection is on-board. If any route deserves better frequency, it’s this one.

Moreover, the attempt to shoehorn multiple routes through the BRT path is compromising those routes. The R route is already detouring through the train station, which the old 99 route did not serve, and which forces a few minutes’ detour. Another bus, route 1, does not currently serve the train station, but will be rerouted once the BRT path opens; route 1 goes through the East Side tunnel, and making it detour to the train station would give it an especially circuitous path between the East Side and Downcity (the 1 already detours to enter the hospital, which is set back from the street). This, in turn, compromises the usefulness of the tunnel, which is that it interlines several routes between Downcity and Brown, which then go in different direction east of Brown.

There are potentially strong east-west corridors that could receive the R treatment. In the east, off-board fare collection on the buses using the tunnel would considerably speed up service. In the west, there are a few potentially strong routes: Broadway (carrying the 27 and 28 to Olneyville), Atwells in Federal Hill (carrying the 92 fake trolley, which runs through to the East Side and used to use the tunnel), and Westminster/Cranston (carrying the 17, 19, and 31). The highly-branched nature of the routes east of the tunnel makes through-service dicey, and this in turn is a matter of a broken bus network in East Providence. But overall, demand roughly matches that of the strongest corridor on the west, which is either Broadway or Westminster/Cranston, depending on how much branching one tolerates. This would create a second rapid bus trunk between College Hill and Olneyville. So why is the city investing in another route?

It’s not the train station. The train station itself is not a compelling transit destination. It’s too close to Downcity; even with a 5-minute bus frequency, it’s faster to walk from the central bus transfer point at Kennedy Plaza (or to the nearest point on the old 99 route on North Main or Canal) than to transfer to the right bus. It should be served by the routes for which it’s on the way, for example the northwest-bound 50, 56, and 57 routes. It’s unlikely anyone will transfer to a bus to the train station. Nor is it likely anyone will take the 1 from College Hill to the train station: walking downhill takes 15 minutes, and people going to a train station need more reliability than a mixed-traffic bus can provide. Walking uphill is more difficult, and there is less need for reliability, but even then, it seems that most people walk. This means the only real use of the train station connection is for people from the Jewelry District.

This brings me to the Jewelry District itself. The city wants to redevelop it, but it is not yet much of a destination. Nor is Providence itching for new development sites: residential rents are affordable on the East Side, and Downcity commercial property values are so low that the city’s tallest building is empty and was said at appraisal to have no value. So why the rush to give the Jewelry District better public transit than existing neighborhoods that direly need it, like South Providence, Olneyville, and Pawtucket?

The answer is contained in the title of this post. South Providence and Olneyville are in-between neighborhoods. Pawtucket is far enough away that it is getting a $40 million infill station on the Providence Line, but the state is not going to fund frequent service or integrated fares between the line and RIPTA buses. As far as Pawtucket’s predominantly poor and working-class residents are concerned, the train might as well not be there; nor will any gentrifiers move to Pawtucket for service to Boston (they get about the same travel time out of Providence and far better amenities). The focus for the city and the state is on redevelopment, and one can almost see the dollar signs in the eyes of the power brokers who passed this deal.

This neglect of the working class and of Providence’s nonwhite neighborhoods (South Providence is black, Olneyville is Hispanic) is not deliberate. But there is clear disparate impact: the Jewelry District gets BRT, South Providence and Olneyville can drop dead. Like everywhere else in the US, the power structure in Providence discourages investment in the in-between neighborhoods, even comfortable ones like the East Side. The in-between neighborhoods are intact enough that building something there is about providing transportation services, rather than about development and renaissance and the creative capital and other buzzwords. And providing services is too boring, too political, too underappreciated. Better to build something shiny and say “I did that,” even if it’s useless. What the elites consider shiny changes every few years – it was streetcars last decade and is frequent buses today – but the principle is the same: instead of investing for the benefit of residents of Providence and its inner suburbs, the state invests for the benefit of ribbon-cutters.

New York’s MTA Genius Challenge

I don’t like the word “genius.” When people use it unironically, what I hear is “we haven’t met many smart people, so the first one we meet looks like a genius to us.” Math academia is very good about excising the word from anyone’s vocabulary. It drills you on the idea that you’re not Manjul Bhargava or anyone of that caliber, and if you are, you’re judged by what you’ve proved, not how theoretically smart you are. The tech industry uses the term more often, alongside related terms: rock star, 10x engineer, ninja. Most of it serves to convince coders that they’re masters of the universe, that all of them are above average and half of them are in the top 10% of coders.

New York State just issued a call for proposals for a $1 million grant, dubbed the MTA Genius Transit Challenge. I sent in a request for more information, and haven’t gotten a response yet; when I do, I will probably apply, if the specs and timeframe are within what I can give, but I doubt I will get it. My suspicion is that the state is looking for a tech company to privatize something to. Governor Andrew Cuomo wants someone to tackle one of the following three problems:

  1. Rail signaling, in context of how to maximize the subway’s capacity in trains per hour.
  2. Rolling stock maintenance schedules: the state isn’t saying what the ultimate issue is, but presumably it is reliability.
  3. Cell service and wi-fi underground.

I doubt that the tech industry is capable of doing much on the first two issues, while the third one is a solved problem (as in cities like Singapore and Boston) that just requires installing wires. The first two issues have a lot of potential improvements, but they come from the transportation field, including service planning.

Unfortunately, the panel judging the grant is tilted toward people in the tech industry. Only one has background in rail transportation: Sarah Feinberg, former administrator of the FRA, whose background prior to working at the US Department of Transportation is in politics and tech. Two more are academic administrators, neither with background in transportation: SUNY Chancellor-elect Kristina Johnson, an engineer with background in energy and 3D graphics, and Daniel Huttenlocher, dean and vice provost of Cornell Tech, whose background is in IT. The other five are in the tech industry; one is a professor who studies networks, with some applications to car transportation (congestion pricing) but not to rail. Missing from the panel are people who worked on ETCS, people who have developed driverless train technology, and professionals within the major rolling stock vendors.

The biggest tech fixes in New York area outside the three areas identified by Cuomo. One, train arrival boards, is already in development, with planned opening next year.

But an even bigger fix is speed: the subways in New York have permanent slow orders at some places, not because of deferred maintenance but because of past accidents. There is a railroading tradition, in the US but sometimes also elsewhere, of using slow orders to mask underlying safety issues, even when the accident in question had very little to do with speed. The subways in New York today are getting even slower, for a combination of legitimate reasons (temporary signal upgrades) and illegitimate ones (inexperienced crews assigned at the busiest times).

However, the solutions to these problems often combine many different viewpoints. Speeding up the subway involves ending the slow orders (which involves signaling, but isn’t exactly tech), improving scheduling to reduce delays at merges (which involves service planning), reallocating crews (which involves labor relations), and coming up with ways to reinstall signals with less impact to operations (which is itself a combination of signaling tech and service planning).

American tech industry titans like to think of themselves as omnicompetent; Elon Musk’s bad ideas about transportation, from Hyperloop to elevator-accessed tunnels for cars, stem from his apparent belief that he can understand everything better than anyone else. This is not how good interdisciplinary work happens; the best examples in science involve people who are specialized to the two fields they’re combining, or people in one field collaborating with people in another field. A governor that understood this would empanel people with a wider variety of fields of expertise within the transportation industry: service planning, civil engineering, signal engineering, local labor relations and regulations, rolling stock maintenance. There would be one tech person on the panel (among the existing panelists, the professor studying networks, Balaji Prabhakhar, seems the most relevant in background), rather than one non-tech person.

This sort of self-importance especially appeals to Cuomo. Cuomo is not managing the state of New York; he is running for president of the United States, which requires him to be able to say “I did that” about something. Solving big problems requires big money; reducing costs requires local tradeoffs, such as reducing construction costs by using more disruptive cut-and-cover techniques. That’s how you run a good government, but that’s not how you run a cautious political campaign for higher office, in which the other side will pounce on every negative consequence. As a result, Cuomo is hoping to solve problems using tech innovation without spending much money; but the parameters of his plan seem to guarantee that the panel can only solve small problems, without touching on the most fundamental concerns for people riding the subway.

Amtrak Defrauds the Public on Gateway Benefits

A stenographer at Bloomberg is reporting an Amtrak study that says the social benefit-cost ratio of the Gateway program is about 4. Gateway, the project to quadruple the double-track line from New York to Newark, including most important the tunnel across the Hudson, is now estimated to cost $25 billion. Cost overruns have been constant and severe: it was $3 billion in the ARC era in 2003, $9 billion when Governor Chris Christie canceled it in 2010, and $13.5 billion when Amtrak took over in 2011 and renamed it Gateway. And now Amtrak is claiming that the net present value of Gateway approaches $100 billion; in a presentation from late 2016, it claims that at a 3% discount rate the benefit-cost ratio is 3.87, and compares it positively with Crossrail and California HSR. This is incorrect, and almost certainly deliberate fraud. Let me explain why.

First, the comparison with Crossrail should give everyone pause. Crossrail costs around the same as the current projection for Gateway: about $21 billion in purchasing power parity terms, but future inflation means that the $25 billion for Gateway is very close to $21 billion for Crossrail, built between 2009 and 2018. Per Amtrak, the benefit-cost ratio of Crossrail as 3.64 at the upper end – in other words, the benefits of Crossrail and Gateway should be similar. They are clearly not.

The projection for Crossrail is that it will fill as soon as it opens, with 200 million annual passengers. There is no chance Gateway as currently planned can reach that ridership level. New Jersey Transit has about 90 million annual rail riders, and NJT considers itself at capacity. This number could be raised significantly if NJT were run in such a way as to encourage off-peak ridership (see my writeup on Metro-North and the LIRR, for which I have time-of-day data), but Gateway includes none of the required operational modernization. Even doubling NJT’s ridership out of Gateway is unlikely, since a lot of ridership is Hoboken-bound today because of capacity limits on the way to New York, and Gateway would cannibalize it; only about 60 million NJT riders are taking a train to or from New York, so a more realistic projection is 60 million and not 90 million. Some additional ridership coming out of Amtrak is likely, but is unlikely to be high given Amtrak’s short trains, hauled by a locomotive so that only 5-7 cars have seats. Amtrak has an asterisk in its comparison saying the benefit-cost ratios for Crossrail and Gateway were computed by different methodologies, and apparently the methodologies differ by a factor of 3 on the value of a single rider.

That, by itself, does not suggest fraud. What does suggest fraud is the history of cost overruns. The benefits of Gateway have not materially increased in the last decade and a half. If Gateway is worth $100 billion today, it was worth $100 billion in 2011, and in 2003.

One change since 2011 is Hurricane Sandy, which filled the existing North River Tunnels with corrosive saltwater. A study on repairs recommended long-term closure, one tube at a time. But the difference is still small compared to how much Amtrak thinks Gateway is worth. The study does not claim long-term closure is necessary. Right now, crews repair the tunnels over weekends, with weekend closures, since weekend frequency is so poor it can fit on single track. The study does not say how much money could be saved with long-term closures, but the cost it cites for repairs with long-term closures is $350 million, and the cost under the current regime of weekend closures cannot be several billion dollars more expensive. The extra benefit of Gateway coming from Sandy is perhaps $1 billion, a far cry from the almost $100 billion projected by Amtrak for Gateway’s worth.

What this means is that, if Gateway really has a benefit-cost ratio approaching 4 today, then it had a benefit-cost ratio of about 7 in 2011. Amtrak did not cite any such figure at the time. In 2003 it would have have had a benefit-cost ratio approaching 25, even taking into account inflation artifacts. None of the studies claimed such a high figure. Nor did any of the elected or appointed officials in charge of the project act like it was so valuable. Construction was not rushed as it would have if the benefit-cost ratio was so high that a few years’ acceleration would have noticeable long-term consequences.

The scope of the project did not suggest an extreme benefit-cost ratio, either. ARC, then Gateway, was always just two tracks. If a two-track tunnel has a benefit-cost ratio higher than 20, then it’s very likely the next two-track tunnel has a high benefit-cost ratio as well. Even a benefit-cost ratio of 4 would lead to further plans: evidently, Transport for London is planning Crossrail 2, a northeast-southwest tunnel complementing the east-west Crossrail and north-south Thameslink. Perhaps in 2003 Port Authority thought it could not get money for two tunnels, but it still could have planned some as future phases, just as Second Avenue Subway was planned as a full line even when there was only enough money for Phase 1.

The plans for ARC included the awkward Secaucus loop bringing in trains from the Erie lines into Penn Station, with dual-mode diesel/electric locomotives. This is a kludge that makes sense for a marginal project that needs to save every penny, not for one where benefits exceed costs by more than an order of magnitude. For such a strong project, it’s better to spend more money to get it right, for example by electrifying everything. It would also have been better to avoid the loop kludge and send Erie trains to Lower Manhattan and Brooklyn, as I have proposed in various iterations of my regional rail plan.

All of this together suggests that in 2003, nobody in charge of ARC thought it was worth $70 billion in 2003 dollars, or around $100 billion in 2017 dollars. Even in 2011, Amtrak did not think the project was worth $85 billion in 2011 dollars. It’s theoretically possible that some new analysis proves that old estimates of the project’s benefits were too low, but it’s unlikely. If such revisions were common, we would see upward and downward revisions independent of cost overruns. Some rail projects with stable costs would see their benefit-cost ratios shoot up to well more than 10. Others might be revised down below 1.

What we actually see is different. Megaprojects have official estimates on their benefit-cost ratios in a narrow band: never less than 1 or else they wouldn’t be built, never more than 4 or 5 or else people might disbelieve the numbers. In an environment of stable costs, this would make a lot of sense: all the 10+ projects have been built a long time ago, so the rail extensions on the table today are more marginal. But in an environment of rapid cost escalation, the fact that benefits seem to grow with the costs is not consistent with any honest explanation. The best explanation for this is that, desperate for money for its scheme to build Gateway, Amtrak is defrauding the public about the project’s benefits.