Category: Incompetence

Meme Weeding: Land Value Capture

Last month’s Patreon poll was about meme weeding – that is, which popular meme in public transit I should take apart. The options were fare caps on the model of London, popular among some US reformers; wait assessment, a schedule adherence metric for trains I briefly complained about on Vox as used in New York; and land value capture/tax increment financing/the Hong Kong model. The last option won.

Good public transit creates substantial value to its users, who get better commutes. It’s an amenity, much like good schools, access to good health care, and clean air. As such, it creates value in the surrounding community, even for non-users: store owners who get better sales when there’s better transportation access to their business, workers who can take local jobs created by commuters to city center, and landowners who can sell real estate at a higher price. All of these positive externalities give reason to subsidize public transit. But in the last case, the positive impact on property values, it’s tempting to directly use the higher land values to fund transit operations; in some cases, this is bundled into a deal creating transit-oriented development to boost ridership. In either case, this is a bad way of funding transit, offering easy opportunities for corruption.

Value capture comes in several flavors:

  • In Japan, most urban private railroads develop the areas they serve, with department stores at the city end and housing at the suburban end.
  • In Hong Kong, the government sells undeveloped land to the now-privatized subway operator, the MTR, for high-density redevelopment.
  • In the US and increasingly Canada, local governments use tax increment funding (TIF), in which they build value-enhancing public infrastructure either by levying impact fees on development that benefits from it or by programming bonds against expected growth in property taxes.

In both Hong Kong and the major cities of Japan, urban rail operations are profitable. It is not the case that value capture subsidizes otherwise-money losing transit in either country, nor anywhere I know of; this did not prevent Jay Walder, then the head of New York’s MTA, from plugging the MTR model as a way of funding transit in New York. What’s true is that the real estate schemes have higher margins than rail operations, which is why JR East, the most urban of the remnants of Japan National Railways, aims to get into the game as well and develop shopping centers near its main stations. However, rail operations alone in these countries are profitable, due to a combination of high crowding levels and low operating costs.

The Japanese use case is entirely private, and does not to my knowledge involve corruption. But the Hong Kong use case is public, and does. For all the crowing about it in Anglo-American media (the Atlantic called it a “unique genius” and the Guardian said it supported subsidy-free operations), it’s a hidden subsidy. The state sells the land to the MTR, and the MTR alone, at the rate of undeveloped outlying land. Then the MTR develops it, raising its value. Other developers would be willing to pay much better, since they can expect to build high-density housing and have the MTR connect it to Central. This way, the government would pocket the profits coming from higher value on its land. Instead, it surreptitiously hands over these profits to the MTR.

While Western media crows about Hong Kong as an example of success, local media excoriates the corruption involves. Here’s the South China Morning Post on the MTR model:

The rail and property model was never anything but a delusion to which only Hong Kong bureaucrats could be subject. It traded on the odd notion that you cannot assign a value to property until you actually dispose of it.

Thus if you give the MTR the land above its stations, these sites suddenly and magically acquire value and the proceeds cover the cost of building the railway lines. Ain’t magic wonderful? We got the MTR for free.

Stephen Smith dealt with this issue in 2013, when he was still writing for NextCity. He explained the local corruption angle, the fact that MTR rail operations are profitable on their own, and the lack of undeveloped land for the state to sell in most first-world cities. (Conversely, one of his arguments, about construction costs, doesn’t seem too relevant: Hong Kong’s construction costs are probably similar to London’s and certainly higher than Paris’s, and doing value capture in Paris would be an urban renewal disaster.)

Stephen also tackles American examples of value capture. With no state-owned land to sell to the public transit agency at below-market prices, American cities instead rely on expected property taxes, or sometimes levy special fees on developers for letting them build TOD. Stephen talks about scale issues with the TIF-funded 7 extension in New York, but there are multiple other problems. For one, the 7 extension’s Hudson Yards terminus turned out to be less desirable than initially thought, requiring the city to give tax breaks. See for examples stories here, here, and here.

But there are more fundamental problems with the approach. The biggest one is the quality of governance. TIF is an attractive-looking option in American jurisdictions that recoil at raising direct taxes to pay for service. This means that as happened in New York, it is tempting for cities to promise property tax windfall, issue bonds, and then let successor governments raise taxes or cut services to pay interest. This opaqueness makes it easier to build bad projects. When the government promises especially high benefit-cost ratios, it can also keep issuing new bonds if there are budget overruns, which means there is no incentive for cost control.

TIF also requires the city to use zoning to create a shortage of land in order to entice developers to pay extra to build where it wants them to. Stephen complains that New York reamed problems on upzoning in Midtown East, one of the few locations in Manhattan where developers are willing to build supertall office towers without any tax breaks; the new zoning plan, in the works since he was writing for NextCity in 2013, only just passed. Another such location is probably the Meatpacking District, near the Google building at 14th and 8th, now the city’s tech hub – there is no tall office construction there due to the power of high-income residential NIMBYs. Were the city to loosen zoning in these areas and permit companies that need a prime location to set up offices in these areas, it would find it even harder to entice developers to build in a lower-demand area like Hudson Yards. Midtown East and the Meatpacking District are replete with subway lines, but there are no new plans for construction there, so the city wouldn’t do a TIF there.

The same problem, of TOD-reliant funding requiring the city to restrict development away from targeted investment areas, also works in reverse: it encourages development-oriented transit. In 2007, Dan Doctoroff, then a deputy mayor and now head of Google’s Sidewalk Labs, opposed Second Avenue Subway, on the grounds that the area is already developed. Second Avenue Subway was eventually built, but the 7 extension omitted a stop in an already-developed area amidst cost overruns, as Bloomberg prioritized Hudson Yards. This is not restricted to New York: San Francisco is more interested in a subway to Parkmerced than in a subway under Geary, the busiest bus route, busier than the subway-surface light rail branch serving Parkmerced today. Smaller American cities propose core connectors, aiming promoting redevelopment in and around city center. This in turn means ignoring low-income neighborhoods, where there is no developer interest in new buildings except as part of a gentrification process.

These problems are for targeted investments. But when there is more widespread TOD, TIF ends up being a tax on transit users. Cities build roads without levying special taxes on sprawling development, whether it sprawls by virtue of being near the highway or by virtue of being far from public transit. When they build transit, they sometimes tax TOD, which means they are giving developers and residents tax incentives to locate away from public transit.

Hong Kong is not the right model for any TOD scheme; its corruption problems are immense. It’s a shiny object for Americans (and other Anglophone Westerners), who are attracted to the allure of the exotic foreigner, like a premodern illiterate attributing magic to the written word. Instead of replicating its most questionable aspect, it’s better to look at models that are attractive even to local corruption watchdogs.

This means funding public transit and other services out of transparent, broad-based taxes. Paris uses a payroll tax, varying the rate so as to be higher in the city (2.95%) than in the outer suburbs (1.6%). Everyone will hate them, especially people who don’t use transit and don’t view it as directly necessary for their lives. This is why they work. They compel the transit agency to run efficient service, to stave off opposition from aggrieved center-right middle-class voters, and to run it well, to stave off opposition from populists (“why am I being taxed for trains that break down?”). They leave no room for waste, for cronyism, or for slush funds for favored causes, precisely because they’re hard to pass.

It’s easy to see why politicians avoid such funding sources. The democratic deficit of local governance in the US is immense, and that of Canada is only somewhat better. Nobody wants to lose an election over raising taxes, even in cities where the political spectrum runs from the center leftward. Value capture sounds like a good, innovative idea to fund government without hated taxation, and its abuses are hidden from sight. Even as it forces city residents to endure opaque fees (never call them taxes!), it wins accolades to politicians who propose it. No wonder it continues despite its failures.

Anti-Infill on Surface Transit

I wrote about infill stops on commuter rail two weeks ago, and said I cannot think of any example of anti-infill on that mode. But looking at Muni Metro reminded me that there is need for anti-infill on surface transit. This is called stop consolidation normally, and I only use the term anti-infill to contrast with the strategy of adding more stops on commuter trains.

The root of the problem is that in North America, transit agencies have standardized on 200-250 meters as the typical spacing between bus stops. In Europe, Australasia, and East Asia, the standard is instead 400-500 meters. Even without off-board fare collection, the difference in speed is noticeable. In Vancouver, the difference between the local 4 and the express 84 is substantial: on the shared segment between Burrard and Tolmie, a distance of 4.8 km, the 84 makes 5 stops and takes 10 minutes, the 4 makes 18 stops and takes 16 minutes. A bus with the normal first-world stop spacing would make 10-12 stops and take, linearly, 12-13 minutes. 23 km/h versus 18 km/h.

With off-board fare collection, the impact of stop spacing on speed grows. The reason is that a bus’s stop penalty consists of the time taken to stop and open its doors, plus the time it takes each passenger to board. The former time is independent of the fare collection method but depends on stop spacing. The latter time is the exact opposite: if the stop spacing widens, then there are more passengers per bus stop, and unless the change in stop spacing triggers changes in ridership, overall passenger boarding and alighting time remains the same. Another way to think about it is that judging by Vancouver data, there appears to be a 30-second stop penalty, independent of ridership. Off-board fare collection increases bus speed, so the 30-second stop penalty becomes more important relative to overall travel time; the same is true of other treatments that increase bus speed, such as dedicated lanes and signal priority.

In New York, there aren’t a lot of places with local and limited-stop buses side by side in which the limited-stop bus has on-board fare collection. One such example is the M4, meandering from Washington Heights down the 5th/Madison one-way-pair, over 15.3 km. At rush hour, the local takes 1:45, the limited-stop takes 1:30: 9 vs. 10 km/h. But the limited-stop bus runs local for 6 km, and over the other 9.3 km it skips 26 local stops if I’ve counted right. The B41 has a limited-stop version over 8.3 km (the rest is local), skipping about 17 stops; the time difference is 10 minutes.

One possible explanation for why the stop penalty in New York seems a little higher than in Vancouver is that the M4 and B41 routes are busier than the 4/84 in Vancouver, so every stop has at least one passenger, whereas the 4 in Vancouver often skips a few stops if there are no passengers waiting. Conversely, the higher passenger traffic on buses in New York comes from higher density and more traffic in general, which slows down the buses independently of stopping distance.

On subways, there’s reason to have more densely-spaced stops in denser areas, chief of which is the CBD. On surface transit, it’s less relevant. The reason is that absolute density doesn’t matter for stop spacing, except when expected ridership at once station is so high it would stress the egress points. What really matters is relative density. Putting more stops in an area means slowing down everyone riding through it in order to offer shorter station access times to people within it. On surface transit, relative density gradients aren’t likely to lead to variations in stop spacing, for the following reasons:

  1. Historically, surface transit stop spacing was always shorter than rapid transit stop spacing because of its lower top speed and the faster braking capabilities of horses vs. steam trains; often people could get off at any street corner they chose. So it induced linear development, of roughly constant density along the corridor, rather than clusters of high density near stations.
  2. If there is considerable variation in density along a surface transit line, then either density is medium with a few pockets of high density, which would probably make the line a good candidate for a subway, or density is low with a few pockets of higher density, and the bus would probably skip a lot of the low-density stops anyway.

Most importantly, the 400-meter standard is almost Pareto-faster than the 200-meter standard. In the worst case, it adds about 4 minutes of combined walking time at both the start and the end of the trip, for an able-bodied, healthy person not carrying obscene amounts of luggage. The breakeven time on 4 minutes is 8 skipped stops, so 3.2 km compared with the 200-meter standard. Bus trips tend to be longer than this, except in a few edge cases. In New York the average unlinked bus trip is 3.4 km (compare boardings and passenger-km on the NTD), but many trips involve a transfer to another bus or the subway, probably half judging by fare revenue, and transfer stations would never be deleted. If the destination is a subway station, guaranteed to have a stop, then the breakeven distance is 1.6 km.

This also suggests that different routes may have different stop spacing. Very short routes should have shorter stop spacing, for example the 5 and 6 buses in Vancouver. Those routes compete with walking anyway. This may create a spurious relationship with density: the 5 and 6 buses serve the very dense West End, but the real reason to keep stop spacing on them short is that they are short routes, about 2 km each. Of course, West End density over a longer stretch would justify a subway, so in a way there’s a reason short optimal stop spacing correlates with high bus stop density.

The situation on subways is murkier. The stop penalty is slightly higher, maybe 45 seconds away from CBD stations with long dwell times. But the range of stop distances is such that more people lose out from having fewer stops. Paris has a Metro stop every 600 meters, give or take. Some of the busiest systems in countries that were never communist, such as Tokyo, Mexico City, and London, average 1.2 km; in former communist bloc countries, including Russia and China, the average is higher, 1.7 km in Moscow. The difference between 600 meters and 1.2 km is, in the worst case, another 1.2 km of walking, about 12 minutes; breakeven is 16 deleted stops, or 20 km, on the long side for subway commutes.

One mitigating factor is that subway-oriented development clusters more, so the worst case is less likely to be realized, especially since stops are usually closer together in the CBD. But on the other hand, at 1.2 km between stations it’s easy for transfers to be awkward or for lines to cross without a transfer. London and Tokyo both have many locations where this happens, if not so many as New York; Mexico City doesn’t (it’s the biggest subway network in which every pair of intersecting lines has a transfer), but it has a less dense network in its center. Paris only has three such intersections, two of them involving the express Metro Line 14. Even when transfers do exist, they may be awkward in ways they wouldn’t have been if stop spacing had been closer (then again, Paris is notorious for long transfers at Chatelet and Montparnasse).

In all discussions of subway stop spacing, New York is sui generis since the lines have four tracks. On paper its subway lines stop every 600-700 meters when not crossing water, but many trains run express and stop every 2 km or even more. Average speed is almost the same as in Tokyo and London, which have very little express service, and it used to be on a par until recent subway slowdowns. This distinction, between longer stop spacing and shorter stop spacing with express runs, also ports to buses. Buses outside the US and Canada stop every 400-500 meters and have no need for limited-stop runs – they really split the difference between local and limited buses in North America.

On a subway, the main advantage of the international system over the New York system is obvious: only two tracks are required rather than four, reducing construction costs. On a bus line, the advantages are really the same, provided the city gives the buses enough space. A physically separated bus lane cannot easily accommodate buses of different speeds. In New York, this is the excuse I’ve heard in comments for why the bus lanes are only painted, not physically separated as in Paris. Mixing buses of different speeds also makes it hard to give buses signal priority: it is easy for buses to conflict, since the same intersection might see two buses spaced a minute apart.

Buses also benefit from having a single speed class because of the importance of frequency. In Vancouver, the off-peak weekday frequency on 4th Avenue is an 84 rapid bus every 12 minutes, a 44 rapid bus every 20 minutes, and a local 4 every 15 minutes. The 84 keeps going on 4th Avenue whereas the 4 and 44 divert to Downtown, but the 4 and 44 could still be consolidated into a bus coming every 10 minutes. If there were enough savings to boost the 84 to 10 minutes the three routes could vaguely be scheduled to come every 5 minutes on the common section, but without dedicated lanes it’s probably impossible to run a scheduled service at that frequency (pure headway management and branching don’t mix).

The example of 4th Avenue gets back to my original impetus for this post, Muni Metro. Only diesel buses can really run in regular surface mode mixing different speed classes. Trolleys can’t. Vancouver runs trolleys on the local routes and diesels on the limited routes. At UBC, it has different bus loops for diesels and trolleys, so people leaving campus have to choose which type of bus to take – they can’t stand at one stop and take whatever comes first.

On rail, this is of course completely impossible. As a result, American subway-surface trolleys – the Boston Green Line, SEPTA’s Subway-Surface Lines, and Muni Metro – all run at glacial speed on the surface, even when they have dedicated lanes as in Boston. In Boston there has been some effort toward stop consolidation on the Green Line’s busiest branch, the B, serving Boston University. This is bundled with accessibility – it costs money to make a trolley stop wheelchair-accessible and it’s cheaper to have fewer stops. Muni Metro instead makes one stop every 3-5 accessible (on paper), but keeps stopping at all the other stops. It would be better to just prune the surface stops down to one every 400-500 meters, which should be accessible.

If you view rail as inherently better than bus, which I do, then it fits into the general framework: anti-infill on surface transit has the highest impact on the routes with the best service quality. Higher speed makes the speed gain of stop consolidation more important relative to travel time; trolleywire makes it impossible to compensate for the low speed of routes with 200-meter interstations by running limited-stop service. Even on local buses, there is never a reason for such short stop spacing, and it’s important for North American cities to adopt best industry practice on this issue. But it’s the most important on the highest-end routes, where the gains are especially large.

Branching and Transfer Breaking

This is the winning option in a poll I conducted among my Patreon backers. Thanks to everyone who participated. Another option, about commuter rail infill stops, came a close second, and I will likely tackle it later this month.

The New York City Subway is unusually branched. I’ve written about the general concept here, and specifically criticized reverse-branching on the subway here. In this post, I want to talk about a more specific feature of complex branching arrangements: they have station locations that make it hard to disentangle the branches without breaking transfers.

 

The left image is a common way junctions are set up. In this image, it’s possible to travel from any leg to any leg; an example of this is BART, with its three-way junction in Oakland between the East Oakland Line carrying trains to Fremont and Pleasanton, the line to the north carrying trains to Berkeley, and the line to the west carrying trains to San Francisco. In many other cases, the branching is simpler, with a clear trunk and two branches, and it’s often not possible for trains to travel between the two branches without backing up; this is like the depicted image with one of the connections missing.

New York has one current example like the left image: the A/C/F/G junction in Downtown Brooklyn has a northern leg (A/C/F), an eastern leg (A/C/G), and a southern leg (F/G). All legs have four tracks and not every track pair connects to every other track pair, but each leg connects to both other legs. It has one former example: the junction between Sixth Avenue Line and 53rd Street Line, with the B/D going south-to-west (then north), the E going east-to-west (then south), and the F going south-to-east. The E/F shared tracks to the east, but neither service shared tracks with the B/D to the south or west.

The problem with this arrangement is that it makes the schedules more fragile. A delay on one branch can cascade. Toronto at one point ran its subway line this, with an eastern and western leg under Bloor Street (continuing to Danforth to the east), and a southern leg under University (looping back north under Yonge); it subsequently ended branching by extending the University leg to the north along the Spadina Expressway right-of-way and operating two independent lines.

The rub is that such an extension usually breaks transfers. Look at the right image: running the lines without branching means no transfers, since there is no station located at the crossing. Toronto dodged this problem because of how the original branching was laid out – in fact, there are two adjacent transfer stations. But usually, it is not hard to convert a branching like the left image into two lines with a simple transfer in the middle.

The 53rd/Sixth situation in New York is a good example of the problem. New York realized it needed more capacity going east, toward Queens, since there were only three track pairs – 53rd Street, plus two more disconnected from the system depicted. For this, it built a tunnel under 63rd Street, and connected it to Sixth Avenue, routing the F through it and creating a new service for Sixth-East 53rd trains, then called the V and now called the M. The junction now looks like an incomplete version of the right image, missing the two upper arcs. The F continues north under Sixth, and only diverts east under 63rd, and has no transfer with the E, which runs east-west under 53rd. The next transfer between the two services to the south is at West 4th Street; the next transfer to the east is at Roosevelt Avenue/74th Street, well into Queens, since the alignment of 63rd Street Tunnel into Queens prevents it from intersecting the E closer in, at Queens Plaza in Long Island City.

The highly-branched nature of the subway in New York makes sure that it is possible to travel between legs even when there’s no transfer, provided one is okay transferring between lines with not-great frequency. The first station south of the junction on Sixth, 47th-50th Streets-Rockefeller Center, lets passengers transfer wrong-way, between southbound and northbound trains. I have used this before to transfer from the B/D to the F on my way between Columbia and Queens, which are not well-connected to each other. Going from east to south is already easy on the M; going from east to north is possible via the M and F, but is unusual, since ultimately both legs lead into the same line in Queens.

However, it is hard to disentangle this to reduce branching. If one believes that reducing branching is useful for reliability and capacity, then one must believe it is necessary for New York to figure out how to split branching in the least painful ways. Partial data from the London Underground is suggestive (see international benchmarking, PDF-p. 15) – the non-branching Victoria and Piccadilly lines are more reliable than the complexly-branching Northern line. Moreover, the intensive service in Moscow, topping at 39 trains per hour without any automation, only works since none of the lines branches. This compels New York and other cities with highly branched systems to disentangle lines.

In the Bay Area, the situation is relatively easy, in the sense of requiring relatively little capital construction. There is no real need for a one-seat ride between East Oakland and Berkeley. The reason there are any trains running on that leg is that Downtown Oakland is on the leg to Berkeley and not on the leg to San Francisco. This was bad planning, and was noted as bad planning even in the 1960s.

What is required is a short bypass tunnel. There are two options. First, a tunnel from the east, replacing the Lake Merritt station with a station a few blocks to the north, effectively moving the junction one station north, so that 12th Street-Oakland City Center can be on the western leg toward San Francisco. Second, a tunnel from the west, between West Oakland and Downtown Oakland. This would not move any station, and put 12th Street on the eastern leg toward East Oakland; Downtown Oakland has a second station, at 19th Street, which would stay on the northern leg, for Berkeley-Downtown Oakland service. Either option would break East Oakland-Berkeley transfers, but make the remaining system more robust.

In New York, disentangling reverse-branches is considerably more difficult. On the numbered lines, it isn’t too difficult to shuffle the 2, 3, 4, and 5 so that the only track sharing is between the 2 and 3, and between the 4 and 5. On the lettered lines, first of all one key connection has to be severed: 11th Street Connection, letting the R go between 60th Street Tunnel toward Manhattan and the Queens Boulevard Line. All trains via 60th Street would go to Astoria; in comments, Alexander Rapp suggests flipping the connection at Queensboro Plaza, letting trains from 60th Street (such as the R) go to Flushing and the 7 go to Astoria, matching the busier line in Queens (Flushing) with the more popular route into Manhattan (60th Street). Queensboro Plaza and Queens Plaza have no transfer, and one would need to be constructed, but even with moving walkways, transferring would involve several minutes of walking between platforms.

Then, the Queens Boulevard Line would be left with local and express services, feeding 53rd and 63rd Street Tunnels. Trains on 63rd have to go to Sixth Avenue. This requires all 53rd Street trains to serve 8th Avenue – the east-west line shown in the images. No more M, just a more frequent E train, with implications for how the A/C run (probably both express between 145th Street and Chambers, where the E terminates). This breaks the transfer, and there is no possible way to create a new one. Transfers between the E and trains on 63rd would only be at Roosevelt and West 4th, and trips from East 53rd to Sixth would require a wrong-way transfer on the western leg using the B/D.

It’s possible to keep the limited reverse-branching and have Queens Boulevard trains of either type, local and express feed either 53rd or 63rd Street Tunnel. Local-local transfers would then be available immediately east of Queens Plaza. The problem is that this still introduces schedule dependence, on what is most likely the most crowded line in the city now that Second Avenue Subway has taken pressure off of 4/5/6 on Lexington. Conversely, without reverse-branching, both choices of how to match lines have drawbacks: sending locals to 63rd and expresses to 53rd means there is no connection between local stops in Queens and Long Island City, whereas doing the opposite makes the connections better but matches the busier Queens trunk (the express tracks) with the less desirable Manhattan connection (63rd).

That said, despite the drawbacks, something like this disentanglement is requires. New York needs more capacity, and shuffling trains like this effectively creates another half a tunnel’s worth of capacity between Queens and Manhattan and allows higher frequency on Second Avenue Subway, useful given the high population density in the part of the Upper East Side that it serves.

For other cities, let this be your lesson: do not build infrastructure that looks like the left image, unless you know how you can convert it to two intersecting lines with a transfer, the way Toronto did. Branching may look like a nifty way to provide one-seat rides between more pairs of origins and destinations, but it will reduce your capacity, and in the distant future force you into difficult choices in which anything you do, including the no action alternative, will screw someone over. What looked like good planning when the IND built subways under Sixth and 53rd in the 1930s turns out to be bad planning today with what we know of how subways operate around the world.

Quick Note: What a Few Pictures Tell Us About BRT

The Boston BRT initiative is pushing hard for what it calls gold standard BRT in Boston, with the support of ITDP. Backed by a Barr Foundation grant, it launched a competition for pilot routes. Two years ago to the day, Ari Ofsevit already wrote a takedown of the idea of gold standard BRT in Boston, comparing the street width in Boston to the street widths in Bogota and Mexico City. In brief, most of Bogota’s BRT network runs on streets wider than 40 meters, and the rest is still 30-something; in Boston nothing is that wide except streets that have light rail in their medians like Commonwealth Avenue and Beacon Street, and the key corridors have segments going below 20.

In response to this problem, here is the photo Boston BRT is using to illustrate the technology:

BRT in not-Boston

I am not sure where this photo was taken. Judging by the 60 speed limit sign, it can’t be in the US. What we see in the photo is 4 travel lanes in each direction (2 car, 2 bus), a generous median for the station, generous medians on both sides of the main road, and service lanes. Paris’s 80-meter-wide Cours de Vincennes has in each direction a service lane, two parking lanes, one bus lane, and three car lanes, but no median between the two main carriageways. The depicted street has to be wider, which means it’s wider in meters than most Boston arterials are in feet. It’s very wide by the standards of Mexico City, Curitiba, and Bogota.

BRT station in not-Boston

The BRT Report for Boston depicts another picture in that flavor on PDF-p. 14. It is also painfully misleading about existing BRT lines: its blurb about Mexico City omits the fact that the city has a large, expanding subway network with almost as much ridership as New York’s, and alongside Mexico; its blurb about Cleveland’s HealthLine BRT omits all the internal problems of the line, which make Cleveland urbanists denigrate it as a poor transportation solution.

BRT is a useful tool in cities’ kit for solving transportation problems. But proponents have to be honest about the tradeoffs involves: it is cheaper than a subway but also slower, less comfortable, and more expensive to operate; and it requires difficult choices about how to allocate street space. There are many examples of BRT on streets going down to about 30 meters, and Boston BRT could have also chosen to depict even narrower streets, to be relevant to Boston. Instead, it’s engaging in subterfuge: the report is claiming that BRT is faster than light rail and implying it’s the primary transit mode in Mexico City, and by the same token, the pictures all show wide enough streets for anything.

Core Connectors and In-Between Neighborhoods, Redux

Five years ago, I wrote about how American cities’ transit priorities cause them to underrate the neighborhoods with the best potential, which typically are also the poorer ones. Those are the in-between neighborhoods: beyond the gentrified core of the city, which is often within walking distance of the CBD in a small region, but not so far that they’re really suburbs. Instead of serving these neighborhoods, cities that want to look like they’re redeveloping build core connectors, i.e. short-range transit services within the gentrified (or gentrifying) center. I was specifically complaining about two plans, one in Providence and one in New Haven. The Providence plan involved a mixed-traffic streetcar, which has since been downgraded to a frequent bus. It’s this project that I wish to talk about in this post.

First, some background: in the 2000s and early 2010s, Rhode Island realigned I-195. This project, called Iway, rebuilt a segment of the freeway to higher standards, but also moved it so as to no longer cut off the Jewelry District from the CBD (called Downcity). Iway turned the Jewelry District from a post-industrial neighborhood to the next (possibly the only) frontier of gentrification in the city, and state elites needed to decide what to do with all this land. This led to plans to build what was in vogue in the late 2000s and early 2010s: a mixed-traffic streetcar, which would connect the Rhode Island Hospital and Jewelry District with Downcity and continue either north to the train station, or east to College Hill via the East Side Tunnel, a short bus-only tunnel cutting off a steep hill between Downcity and the Brown campus. This was from the start bad transit, and we in the Greater City community were skeptical. The plan was eventually scuttled, and the website’s registration lapsed without any redirect to the new plan, which is BRT.

The new BRT route is going between the train station and the Jewelry District. It’s planned to be very frequent, with a bus every 4-5 minutes, appropriate for the short length of the route, about 2 km between the hospital and the train station. The plan is to build open rather than closed BRT, with several branches interlining on the route. Overall, it looks like RIPTA is doing BRT right. And yet, it’s a terrible project.

The top bus corridor in Rhode Island is the R route (for Rapid), formed from the former 99 and 11 buses, which were by far the top two in ridership. It runs every 10 minutes, between Pawtucket and South Providence, serving some of the poorest parts of an already poor urban area. It has some BRT treatments, including hard-fought signal priority (Governor Carcieri vetoed it six times, and it took until the more progressive Lincoln Chafee replaced him for signal priority to go ahead). But buses run in mixed traffic, and fare collection is on-board. If any route deserves better frequency, it’s this one.

Moreover, the attempt to shoehorn multiple routes through the BRT path is compromising those routes. The R route is already detouring through the train station, which the old 99 route did not serve, and which forces a few minutes’ detour. Another bus, route 1, does not currently serve the train station, but will be rerouted once the BRT path opens; route 1 goes through the East Side tunnel, and making it detour to the train station would give it an especially circuitous path between the East Side and Downcity (the 1 already detours to enter the hospital, which is set back from the street). This, in turn, compromises the usefulness of the tunnel, which is that it interlines several routes between Downcity and Brown, which then go in different direction east of Brown.

There are potentially strong east-west corridors that could receive the R treatment. In the east, off-board fare collection on the buses using the tunnel would considerably speed up service. In the west, there are a few potentially strong routes: Broadway (carrying the 27 and 28 to Olneyville), Atwells in Federal Hill (carrying the 92 fake trolley, which runs through to the East Side and used to use the tunnel), and Westminster/Cranston (carrying the 17, 19, and 31). The highly-branched nature of the routes east of the tunnel makes through-service dicey, and this in turn is a matter of a broken bus network in East Providence. But overall, demand roughly matches that of the strongest corridor on the west, which is either Broadway or Westminster/Cranston, depending on how much branching one tolerates. This would create a second rapid bus trunk between College Hill and Olneyville. So why is the city investing in another route?

It’s not the train station. The train station itself is not a compelling transit destination. It’s too close to Downcity; even with a 5-minute bus frequency, it’s faster to walk from the central bus transfer point at Kennedy Plaza (or to the nearest point on the old 99 route on North Main or Canal) than to transfer to the right bus. It should be served by the routes for which it’s on the way, for example the northwest-bound 50, 56, and 57 routes. It’s unlikely anyone will transfer to a bus to the train station. Nor is it likely anyone will take the 1 from College Hill to the train station: walking downhill takes 15 minutes, and people going to a train station need more reliability than a mixed-traffic bus can provide. Walking uphill is more difficult, and there is less need for reliability, but even then, it seems that most people walk. This means the only real use of the train station connection is for people from the Jewelry District.

This brings me to the Jewelry District itself. The city wants to redevelop it, but it is not yet much of a destination. Nor is Providence itching for new development sites: residential rents are affordable on the East Side, and Downcity commercial property values are so low that the city’s tallest building is empty and was said at appraisal to have no value. So why the rush to give the Jewelry District better public transit than existing neighborhoods that direly need it, like South Providence, Olneyville, and Pawtucket?

The answer is contained in the title of this post. South Providence and Olneyville are in-between neighborhoods. Pawtucket is far enough away that it is getting a $40 million infill station on the Providence Line, but the state is not going to fund frequent service or integrated fares between the line and RIPTA buses. As far as Pawtucket’s predominantly poor and working-class residents are concerned, the train might as well not be there; nor will any gentrifiers move to Pawtucket for service to Boston (they get about the same travel time out of Providence and far better amenities). The focus for the city and the state is on redevelopment, and one can almost see the dollar signs in the eyes of the power brokers who passed this deal.

This neglect of the working class and of Providence’s nonwhite neighborhoods (South Providence is black, Olneyville is Hispanic) is not deliberate. But there is clear disparate impact: the Jewelry District gets BRT, South Providence and Olneyville can drop dead. Like everywhere else in the US, the power structure in Providence discourages investment in the in-between neighborhoods, even comfortable ones like the East Side. The in-between neighborhoods are intact enough that building something there is about providing transportation services, rather than about development and renaissance and the creative capital and other buzzwords. And providing services is too boring, too political, too underappreciated. Better to build something shiny and say “I did that,” even if it’s useless. What the elites consider shiny changes every few years – it was streetcars last decade and is frequent buses today – but the principle is the same: instead of investing for the benefit of residents of Providence and its inner suburbs, the state invests for the benefit of ribbon-cutters.

New York’s MTA Genius Challenge

I don’t like the word “genius.” When people use it unironically, what I hear is “we haven’t met many smart people, so the first one we meet looks like a genius to us.” Math academia is very good about excising the word from anyone’s vocabulary. It drills you on the idea that you’re not Manjul Bhargava or anyone of that caliber, and if you are, you’re judged by what you’ve proved, not how theoretically smart you are. The tech industry uses the term more often, alongside related terms: rock star, 10x engineer, ninja. Most of it serves to convince coders that they’re masters of the universe, that all of them are above average and half of them are in the top 10% of coders.

New York State just issued a call for proposals for a $1 million grant, dubbed the MTA Genius Transit Challenge. I sent in a request for more information, and haven’t gotten a response yet; when I do, I will probably apply, if the specs and timeframe are within what I can give, but I doubt I will get it. My suspicion is that the state is looking for a tech company to privatize something to. Governor Andrew Cuomo wants someone to tackle one of the following three problems:

  1. Rail signaling, in context of how to maximize the subway’s capacity in trains per hour.
  2. Rolling stock maintenance schedules: the state isn’t saying what the ultimate issue is, but presumably it is reliability.
  3. Cell service and wi-fi underground.

I doubt that the tech industry is capable of doing much on the first two issues, while the third one is a solved problem (as in cities like Singapore and Boston) that just requires installing wires. The first two issues have a lot of potential improvements, but they come from the transportation field, including service planning.

Unfortunately, the panel judging the grant is tilted toward people in the tech industry. Only one has background in rail transportation: Sarah Feinberg, former administrator of the FRA, whose background prior to working at the US Department of Transportation is in politics and tech. Two more are academic administrators, neither with background in transportation: SUNY Chancellor-elect Kristina Johnson, an engineer with background in energy and 3D graphics, and Daniel Huttenlocher, dean and vice provost of Cornell Tech, whose background is in IT. The other five are in the tech industry; one is a professor who studies networks, with some applications to car transportation (congestion pricing) but not to rail. Missing from the panel are people who worked on ETCS, people who have developed driverless train technology, and professionals within the major rolling stock vendors.

The biggest tech fixes in New York area outside the three areas identified by Cuomo. One, train arrival boards, is already in development, with planned opening next year.

But an even bigger fix is speed: the subways in New York have permanent slow orders at some places, not because of deferred maintenance but because of past accidents. There is a railroading tradition, in the US but sometimes also elsewhere, of using slow orders to mask underlying safety issues, even when the accident in question had very little to do with speed. The subways in New York today are getting even slower, for a combination of legitimate reasons (temporary signal upgrades) and illegitimate ones (inexperienced crews assigned at the busiest times).

However, the solutions to these problems often combine many different viewpoints. Speeding up the subway involves ending the slow orders (which involves signaling, but isn’t exactly tech), improving scheduling to reduce delays at merges (which involves service planning), reallocating crews (which involves labor relations), and coming up with ways to reinstall signals with less impact to operations (which is itself a combination of signaling tech and service planning).

American tech industry titans like to think of themselves as omnicompetent; Elon Musk’s bad ideas about transportation, from Hyperloop to elevator-accessed tunnels for cars, stem from his apparent belief that he can understand everything better than anyone else. This is not how good interdisciplinary work happens; the best examples in science involve people who are specialized to the two fields they’re combining, or people in one field collaborating with people in another field. A governor that understood this would empanel people with a wider variety of fields of expertise within the transportation industry: service planning, civil engineering, signal engineering, local labor relations and regulations, rolling stock maintenance. There would be one tech person on the panel (among the existing panelists, the professor studying networks, Balaji Prabhakhar, seems the most relevant in background), rather than one non-tech person.

This sort of self-importance especially appeals to Cuomo. Cuomo is not managing the state of New York; he is running for president of the United States, which requires him to be able to say “I did that” about something. Solving big problems requires big money; reducing costs requires local tradeoffs, such as reducing construction costs by using more disruptive cut-and-cover techniques. That’s how you run a good government, but that’s not how you run a cautious political campaign for higher office, in which the other side will pounce on every negative consequence. As a result, Cuomo is hoping to solve problems using tech innovation without spending much money; but the parameters of his plan seem to guarantee that the panel can only solve small problems, without touching on the most fundamental concerns for people riding the subway.

Amtrak Defrauds the Public on Gateway Benefits

A stenographer at Bloomberg is reporting an Amtrak study that says the social benefit-cost ratio of the Gateway program is about 4. Gateway, the project to quadruple the double-track line from New York to Newark, including most important the tunnel across the Hudson, is now estimated to cost $25 billion. Cost overruns have been constant and severe: it was $3 billion in the ARC era in 2003, $9 billion when Governor Chris Christie canceled it in 2010, and $13.5 billion when Amtrak took over in 2011 and renamed it Gateway. And now Amtrak is claiming that the net present value of Gateway approaches $100 billion; in a presentation from late 2016, it claims that at a 3% discount rate the benefit-cost ratio is 3.87, and compares it positively with Crossrail and California HSR. This is incorrect, and almost certainly deliberate fraud. Let me explain why.

First, the comparison with Crossrail should give everyone pause. Crossrail costs around the same as the current projection for Gateway: about $21 billion in purchasing power parity terms, but future inflation means that the $25 billion for Gateway is very close to $21 billion for Crossrail, built between 2009 and 2018. Per Amtrak, the benefit-cost ratio of Crossrail as 3.64 at the upper end – in other words, the benefits of Crossrail and Gateway should be similar. They are clearly not.

The projection for Crossrail is that it will fill as soon as it opens, with 200 million annual passengers. There is no chance Gateway as currently planned can reach that ridership level. New Jersey Transit has about 90 million annual rail riders, and NJT considers itself at capacity. This number could be raised significantly if NJT were run in such a way as to encourage off-peak ridership (see my writeup on Metro-North and the LIRR, for which I have time-of-day data), but Gateway includes none of the required operational modernization. Even doubling NJT’s ridership out of Gateway is unlikely, since a lot of ridership is Hoboken-bound today because of capacity limits on the way to New York, and Gateway would cannibalize it; only about 60 million NJT riders are taking a train to or from New York, so a more realistic projection is 60 million and not 90 million. Some additional ridership coming out of Amtrak is likely, but is unlikely to be high given Amtrak’s short trains, hauled by a locomotive so that only 5-7 cars have seats. Amtrak has an asterisk in its comparison saying the benefit-cost ratios for Crossrail and Gateway were computed by different methodologies, and apparently the methodologies differ by a factor of 3 on the value of a single rider.

That, by itself, does not suggest fraud. What does suggest fraud is the history of cost overruns. The benefits of Gateway have not materially increased in the last decade and a half. If Gateway is worth $100 billion today, it was worth $100 billion in 2011, and in 2003.

One change since 2011 is Hurricane Sandy, which filled the existing North River Tunnels with corrosive saltwater. A study on repairs recommended long-term closure, one tube at a time. But the difference is still small compared to how much Amtrak thinks Gateway is worth. The study does not claim long-term closure is necessary. Right now, crews repair the tunnels over weekends, with weekend closures, since weekend frequency is so poor it can fit on single track. The study does not say how much money could be saved with long-term closures, but the cost it cites for repairs with long-term closures is $350 million, and the cost under the current regime of weekend closures cannot be several billion dollars more expensive. The extra benefit of Gateway coming from Sandy is perhaps $1 billion, a far cry from the almost $100 billion projected by Amtrak for Gateway’s worth.

What this means is that, if Gateway really has a benefit-cost ratio approaching 4 today, then it had a benefit-cost ratio of about 7 in 2011. Amtrak did not cite any such figure at the time. In 2003 it would have have had a benefit-cost ratio approaching 25, even taking into account inflation artifacts. None of the studies claimed such a high figure. Nor did any of the elected or appointed officials in charge of the project act like it was so valuable. Construction was not rushed as it would have if the benefit-cost ratio was so high that a few years’ acceleration would have noticeable long-term consequences.

The scope of the project did not suggest an extreme benefit-cost ratio, either. ARC, then Gateway, was always just two tracks. If a two-track tunnel has a benefit-cost ratio higher than 20, then it’s very likely the next two-track tunnel has a high benefit-cost ratio as well. Even a benefit-cost ratio of 4 would lead to further plans: evidently, Transport for London is planning Crossrail 2, a northeast-southwest tunnel complementing the east-west Crossrail and north-south Thameslink. Perhaps in 2003 Port Authority thought it could not get money for two tunnels, but it still could have planned some as future phases, just as Second Avenue Subway was planned as a full line even when there was only enough money for Phase 1.

The plans for ARC included the awkward Secaucus loop bringing in trains from the Erie lines into Penn Station, with dual-mode diesel/electric locomotives. This is a kludge that makes sense for a marginal project that needs to save every penny, not for one where benefits exceed costs by more than an order of magnitude. For such a strong project, it’s better to spend more money to get it right, for example by electrifying everything. It would also have been better to avoid the loop kludge and send Erie trains to Lower Manhattan and Brooklyn, as I have proposed in various iterations of my regional rail plan.

All of this together suggests that in 2003, nobody in charge of ARC thought it was worth $70 billion in 2003 dollars, or around $100 billion in 2017 dollars. Even in 2011, Amtrak did not think the project was worth $85 billion in 2011 dollars. It’s theoretically possible that some new analysis proves that old estimates of the project’s benefits were too low, but it’s unlikely. If such revisions were common, we would see upward and downward revisions independent of cost overruns. Some rail projects with stable costs would see their benefit-cost ratios shoot up to well more than 10. Others might be revised down below 1.

What we actually see is different. Megaprojects have official estimates on their benefit-cost ratios in a narrow band: never less than 1 or else they wouldn’t be built, never more than 4 or 5 or else people might disbelieve the numbers. In an environment of stable costs, this would make a lot of sense: all the 10+ projects have been built a long time ago, so the rail extensions on the table today are more marginal. But in an environment of rapid cost escalation, the fact that benefits seem to grow with the costs is not consistent with any honest explanation. The best explanation for this is that, desperate for money for its scheme to build Gateway, Amtrak is defrauding the public about the project’s benefits.

Express Airport Connectors are a Scourge of Public Transit

Earlier this month, Andrew Cuomo unveiled a proposal to spend $10 billion on improvements to JFK Airport, including new terminals, highway expansion, and public transit access. I encourage readers to look at the plan: the section on highways proposes $1.5-2 billion in investment including adding lanes to the Van Wyck Expressway and to on-ramps, and has the cheek to say that this will reduce fuel consumption and greenhouse gas emissions. This while the section on mass transit gives it short shrift, only proposing superficial improvements to the AirTrain; in the unlikely the case that this is built, highway mode share will grow and transit mode share will fall. Put in plainer terms, the environmental case for the plan includes fraud.

However, this is not really the topic of this post. That Andrew Cuomo lies to the voters and doesn’t care about good transportation is by now a dog-bites-man story. Instead, I want to focus a little on a throwaway line in the plan, and more on the Regional Plan Association’s reaction. The throwaway line is that almost every major world airport has a one-seat train ride to city center, and by implication, so should JFK.

As an organization dedicated to environment-friendly public transit, the RPA should have made it very clear it opposes the plan due to its low overall transportation value and its favoring of highways over transit. Instead, the RPA immediately launched a brief detailing possible new airport connectors between JFK and Manhattan. The RPA has a lot of good technical people, and its list of the pros and cons of each option is solid. It correctly notes that using the LIRR and Rockaway Beach Branch would compete for traffic with LIRR trains serving Long Island, although it doesn’t mention associated problems like low frequency. The brief is based on prior RPA proposals, but the timing, just after Cuomo came out with his announcement, suggests an endorsement. There are several intertwined problems here:

There is no no-build option

A good study for public transit should not only consider different alignments and service patterns, but also question whether the project is necessary. The US requires environmental impact statements to include a no build option; European countries require a cost-benefit analysis, and will not fund projects with a benefit/cost ratio under 1.2, because of cost escalation risk.

The RPA study does not question whether a one-seat ride from JFK to Manhattan is necessary or useful. It assumes that it is. Everything else about the study follows from that parameter. Thus, it considers entirely express plans, such as the LIRR option, alongside local options. Everything is subsumed into the question of connecting JFK to Manhattan.

One of the alignments proposed is via the LIRR Atlantic Branch and Second Avenue Subway, which the RPA has long believed should be connected. The brief says that it would be slow because it would have to make many local stops; I’ll add that it would serve Midtown, where nearly all the hotels are, via a circuitous alignment. But with all these stops on the way, shouldn’t this be considered as primarily a new trunk line connecting Eastern Brooklyn with Second Avenue? The question of whether the eastern terminus should be Jamaica or JFK must be subsumed to a study of this specific line, which at any rate is unlikely to offer faster service to JFK than the existing AirTrain-to-E option. After all, the most optimistic ridership projection for a JFK connector is maybe 40,000 users per day, whereas the projection for the full Second Avenue Subway is 500,000. I don’t think a Second Avenue-Atlantic Branch connection is warranted, but if it is, the question of whether to serve JFK at the end is secondary.

Express airport connectors are a fetish

I lived in Stockholm for two years, where I went to the airport exclusively using the Arlanda Express, a premium express link running nonstop between the airport and city center. I imagine many visitors to Stockholm use it, are satisfied, and want to replicate it in their own cities.

Unfortunately, such replications miss something important: any air-rail link must go to the areas that people are likely to want to connect to. For locals who wish to travel to the airport, this means good connections to the local transit network, since they are likely to come from many neighborhoods. Not even a small city like Stockholm worries about providing rich areas like Vasastan and Roslag with a one-seat ride. For visitors, this means a one-seat ride to where the hotels are.

Stockholm is a largely monocentric city, with one city center where everything is. (It has an edge city in Kista, with more skyscrapers than Central Stockholm, but Kista can’t be reasonably connected to the airport). The situation in other cities is more complicated. And yet, express air links prioritize serving a big train station even if it’s poorly connected to the transit network and far from the hotels. Let us consider London and Paris.

In London, the five-star hotels cluster around the West End. Only two are at Paddington Station, and only a few more are an easy walking distance from it. This is where the Heathrow Express and the slower Heathrow mainline trains go. No wonder the Heathrow Express’s mode share, as of 2004, is 9%, whereas other Heathrow connections, mainly the Piccadilly line, total 27% (source, PDF-p. 28). The Piccadilly line beautifully passes through the parts of the West End with the largest concentration of hotels, and last time I was in London, I chose it as my Heathrow connection. Nonetheless, the government chose to build the Heathrow Express.

In Paris, the five-star hotels cluster in the west of the city as well, in the 8th arrondissement. The current airport connection is via the RER B, which offers express service in the off-peak when there’s capacity, but not in the peak, when there isn’t. Even so, it is a local commuter rail service, with good connections to the city transit system, and a two-seat ride to the 8th. Because of slow perceived speeds, the state is planning to build an express connector, originally planned to open in 2015 but since delayed to 2023. The express connector will dump passengers at Gare de l’Est, with no hotels within walking distance, no access to Metro lines serving the hotel clusters (Metro 7 does so peripherally, M4 and M5 not at all), and a long walk to the RER for passengers wishing to connect to longer-range destinations such as parts of the Left Bank.

I bring this up to show that the idea of the express air-rail link is a fetish rather than a transportation project, and by analogy, so is the one-seat ride. There is value in faster service and in minimizing the number of transfers, but express airport connectors attempt both even at the cost of building a line that doesn’t go where people want to go.

Ultimately, Cuomo doesn’t care about good transit

Cuomo has many concerns. The chief one is most likely winning the 2020 presidential primary. He has been running for president since the moment he was elected, and many of his policies – gay marriage, the feuds with Bill de Blasio, the desperate attempt to build shiny infrastructure with his name on it – are best viewed through that lens. To the extent that he is not running for president, he has attempted to cement absolute power within the state. He backed a palace coup in the State Senate that secured a Republican(-ish) majority even though the Democrats won most seats; a Democratic majority would be led by a different faction of the party, one more beholden to Democratic interest groups, and might send Cuomo bills that he would lose political capital if he either signed or vetoed them.

This is why I keep giving him as an example of an autocrat in various posts; here is the major takedown, but see also here. Autocrats are always bad for the areas that they govern, which as two separate implications. The first is that their choice of spending priorities is compromised by the need to expand their own power and glory: even if you believe that New York needs $1.5-2 billion in new highway spending, is the Van Wyck really the best place for it?

The second and worse implication is that it is hard for outside groups to convince autocrats to do better. Autocrats don’t have to listen; if they did, they would be democratic leaders. Cuomo happens to be an anti-transit autocrat, and this means that pro-transit groups in New York need to view him as an obstacle and work to weaken him, rather than to ask him to please consider their plans for an air-rail link.

The difficulty is that, precisely because local- and state-level democracy in the US is so weak, it is difficult for issue-oriented groups to go out and oppose the governor. Planners in Democratic cities are hesitant to attack budget-cutting Republican governors like Charlie Baker and Larry Hogan; attacking Democratic governors like Cuomo is a nonstarter. Nonetheless, the RPA needs to understand that it needs to oppose governments hostile to public transit rather than ask them to improve. When Cuomo proposes a bad transportation project, say “no” and move on to more important things; don’t try to work with him, because nothing good can come of that.

Second Avenue Subway Phase 2 to Cost $6 Billion

Since the 2015-9 capital plan, the New York MTA had been including the second phase of Second Avenue Subway in its capital plan, without a clear estimate of its projected cost. The rumors said the cost would be about $5 billion. A new media story finally gives an official cost estimate: $6 billion. The total length of the project, from 96th Street and 2nd Avenue to 125th Street and Lexington, is about 2.7 km. At $2.2 billion per km, this sets a new world record for subway construction costs, breaking that of the first phase of the same line, which only cost $1.7 billion per km. See a compendium of past posts here to look how these projects stack up. For people not interested in combing through multiple old posts of mine, the short version is that outside the Anglosphere, subway tunnels typically cost $100-300 million per km, with outliers in both directions, but even inside the Anglosphere, costs are in the mid-to-high hundreds of million per km.

In some way, the high cost of SAS phase 2 is more frustrating than that of phase 1. This is because 1 km of the 2.7 km of route preexists. SAS construction began in the 1970s, but was halted due to New York’s financial crisis. In East Harlem, some actual tunnel segments were dug, roughly between the proposed station locations at 96th, 106th, 116th, and 125th Streets; Wikipedia has a more detailed list. Construction of phase 2 thus involves just the stations, plus a short bored segment under 125th Street to get from Second Avenue to Lexington, for a connection to the 4, 5, and 6 trains.

Not having to build tunnels between the stations is beneficial, not as a cost saver in itself but as a way to reduce station costs. In phase 1, it appears that most costs were associated with the stations themselves; if I remember correctly, the cost breakdown was 25% for each of three new stations, and 25% for the tunnels in between. The reason is that the stations are quite deep, while the tunneling in between is bored, to reduce surface disruption. Deep stations are more expensive because they require more excavation, while tunnel boring costs depend more on soil type and how much infrastructure is in the way than on depth. Counting the extra expense of stations, bored subways cost more per km than cut-and-cover subways, but create less surface disruption away from station sites, which is why this method was chosen for phase 1. In contrast, in phase 2, most construction is stations, which would favor a shallow cut-and-cover solution.

Unfortunately, according to rumors, it appears that the MTA now judges it impossible to use the preexisting tunnels in phase 2. If this is true, then this would explain the higher cost (though it would justify $400 million per km, not $2.2 billion): they’d have to build underneath those tunnels. But if this is true then it suggests severe incompetence in the planning stage, of the kind that should get senior employees fired and consultants blacklisted.

The reason is that Second Avenue Subway was planned as a single line. The Environmental Impact Statement was for the full line, including the proposed construction techniques. The phasing was agreed on by then; there was only enough state money for phase 1. This isn’t an unexpected change of plans. I’d understand if in the 2000s it was found that tunnels from the 1970s were not usable; this happened further south, in phase 4, where a preexisting tunnel under Chrystie Street was found to be difficult to use. But in the 2000s the SAS studies signed off on using the tunnels in Harlem, and what seems to be happening is that phase 1, built according to the specifications of the same study, is too deep for using the tunnels.

At $6 billion, this line shouldn’t be built. I know that it goes to a low-income, underserved neighborhood, one that I’ve attacked New York before for taking years to equip with bike lanes (scroll down to my comments here). But the ridership projection is 100,000 per weekday, and $60,000 per weekday rider is too much. Phase 1, providing an underrated east-west connection and serving a denser neighborhood, is projected to get 200,000, for a projection of around $25,000 per weekday rider, which isn’t terrible, so it’s a justified project even if the costs could be an order of magnitude lower.

Were costs lower, it would be possible to build subways to many more low-income neighborhoods in New York. A 125th Street crosstown line, extending phase 2 of SAS, would provide Harlem with crucial east-west connectivity. Subways under Nostrand and Utica Avenues would serve a mixture of working- and middle-class neighborhoods in Brooklyn. A subway under Northern Boulevard in Queens, connecting to phases 3 and 4 of SAS, would serve one of the poorest parts of Queens. A network of tramways would improve surface transit in the South Bronx. Triboro Line would connect poor areas like the South Bronx and East New York with richer ones like Astoria. New York could achieve a lot, especially for its most vulnerable residents, if it could construct subways affordably.

But in a world in which subways cost $60,000 per weekday rider and $2.2 billion per km, New York cannot extend the subway. If it has money in its budget for investment, it should look into things other than transportation, such as social housing or schools. Or it could not borrow money at all to pay for big projects, and in lieu of the money spent on interest, reduce taxes, or increase ongoing social spending.

Given persistent high costs, I would recommend shelving SAS and future rail extensions in New York, including the Gateway tunnel, until costs can be drastically cut. There’s no shortage of worthy priorities for scarce budget in New York, both city and state. Health care in the US is too expensive by a factor of 2, not 10, and transfer payments have near-100% efficiency no matter what; it’s possible to exhaust the tax capability of a state or city just on these two items. Perhaps the need to compete with other budget priorities would get the MTA to cut waste.

Scope Creep is the New Black

In 2009, studies began for a replacement of the Baltimore and Potomac (B&P) Tunnel. This tunnel, located immediately west of Baltimore Penn Station, has sharp curves, limiting passenger trains to about 50 km/h today. The plan was a two-track passenger rail tunnel, called the Great Circle Tunnel since it would sweep a wide circular arc; see yellow line here. It would be about 3 kilometers and cost $750 million, on the high side for a tunnel with no stations, but nothing to get too outraged about. Since then, costs have mounted. In 2014, the plan, still for two tracks, was up to $1 billion to $1.5 billion. Since then, costs have exploded, and the new Final Environmental Impact Statement puts the project at $4 billion. This is worth getting outraged about; at this cost, even at half this cost, the tunnel should not be built. However, unlike in some other cases of high construction costs that I have criticized, here the problem is not high unit costs, but pure scope creep. The new scope should be deleted in order to reduce costs; as I will explain, the required capacity is well within the capability of two tracks.

First, some background, summarized from the original report from 2009, which I can no longer find: Baltimore was a bottleneck of US rail transportation in the mid-19th century. In the Civil War, there was no route through the city; Union troops had to lug supplies across the city, fighting off mobs of Confederate sympathizers. This in turn is because Baltimore’s terrain is quite hilly, with no coastal plain to speak of: the only flat land on which a railroad could be easily built was already developed and urbanized by the time the railroad was invented. It took until the 1870s to build routes across the city, by which time the US already had a transcontinental railroad. Moreover, intense competition between the Pennsylvania Railroad (PRR) and the Baltimore and Ohio (B&O) ensured that each company would built its own tunnel. The two-track B&P is the PRR tunnel; there’s also a single-track freight tunnel, originally built by the B&O, now owned by CSX, into which the B&O later merged.

Because of the duplication of routes and the difficult geography, the tunnels were not built to high standards. The ruling grade on the B&P is higher than freight railroads would like, 1.34% uphill departing the station, the steepest on the Northeast Corridor (NEC) south of Philadelphia. This grade also reduces initial acceleration for passenger trains. The tunnel also has multiple sharp curves, with the curve at the western portal limiting trains today to 30 mph (about 50 km/h). The CSX tunnel, called Howard Street Tunnel, has a grade as well. The B&P maintenance costs are high due to poor construction, but a shutdown for repairs is not possible as it is a key NEC link with no possible reroute.

In 2009, the FRA’s plan was to bypass the B&P Tunnel with a two-track passenger rail tunnel, the Great Circle Tunnel. The tunnel would be a little longer than the B&P, but permit much higher speeds, around 160 km/h, saving Acela trains around 1.5 minutes. Actually the impact would be even higher, since near-terminal speed limits are a worse constraint for trains with higher initial acceleration; for high-performance trains, the saving is about 2-2.5 minutes. No accommodation was made for freight in the original plan: CSX indicated lack of interest in a joint passenger and freight rail tunnel. Besides, the NEC’s loading gauge is incompatible with double-stacked freight; accommodating such trains would require many small infrastructure upgrades, raising bridges, in addition to building a new tunnel.

In contrast, the new plan accommodates freight. Thus, the plan is for four tracks, all built to support double-stacked freight. This is despite the fact that there is no service plan that requires such capacity. Nor can the rest of the NEC support double-stacked freight easily. Of note, Amtrak only plans on using this tunnel under scenarios of what it considers low or intermediate investment into high-speed rail. Under the high-investment scenario, the so-called Alternative 3 of NEC Future, the plan is to build a two-track tunnel under Downtown Baltimore, dedicated to high-speed trains. Thus, the ultimate plan is really for six tracks.

Moreover, as pointed out by Elizabeth Alexis of CARRD, a Californian advocacy group that has criticized California’s own high-speed rail cost overruns, the new tunnel is planned to accommodate diesel trains. This is because since 2009, the commuter rail line connecting Baltimore and Washington on the NEC, called the MARC Penn Line, has deelectrified. The route is entirely electrified, and MARC used to run electric trains on it. However, in the last few years MARC deelectrified. There are conflicting rumors as to why: MARC used the pool of Amtrak electric locomotives, and Amtrak is stopping maintaining them as it is getting new locomotives; Amtrak is overcharging MARC on electricity; MARC wants fleet compatibility with its two other lines, which are unelectrified (although the Penn Line has more ridership than both other lines combined). No matter what, MARC should immediately reverse course and buy new electric trains to use on the Penn Line.

Freight trains are more complicated – all US freight trains are dieselized, even under catenary, because of a combination of unelectrified yards and Amtrak’s overcharging on electric rates. However, if freight through the Great Circle Tunnel is desired, Amtrak should work with Norfolk Southern on setting up an electric district, or else Norfolk Southern should negotiate trackage rights on CSX’s existing tunnel. If more freight capacity is desired, private companies NS and CSX can spend their own money on freight tunnels.

In contrast, a realistic scenario would ignore freight entirely, and put intercity and regional trains in the same two-track tunnel. The maximum capacity of a two-track high-speed rail line is 12 trains per hour. Near Baltimore Penn the line would not be high-speed, so capacity is defined by the limit of a normal line, which is about 24 tph. If there is a service plan under which the MARC Penn Line could get more than 12 tph at the peak, I have not seen it. The plans I have seen call for 4 peak tph and 2 off-peak tph. There is a throwaway line about “transit-like” service on page 17, but it’s not clear what is meant in terms of frequency.

Regardless of what the state of Maryland thinks MARC could support, 12 peak regional tph through Baltimore is not a reasonable assumption in any scenario in which cars remain legal. The tunnels are not planned to have any stations, so the only city station west of Baltimore Penn is West Baltimore. Baltimore is not a very dense city, nor is West Baltimore, most famous for being the location of The Wire, a hot location for transit-oriented development. Most of Baltimore’s suburbs on the Penn Line are very low-density. In any scenario in which high-speed rail actually fills 12 tph, many would be long-range commuters, which means people who live in Baltimore and work in Washington would be commuting on high-speed trains and not on regional trains. About the upper limit of what I can see for the Penn Line in a realistic scenario is 6 tph peak, 3-4 tph off-peak.

Moreover, there is no real need to separate high-speed and regional trains for reasons of speed. High-speed trains take time to accelerate from a stop at Baltimore: by the portal, even high-acceleration sets could not go much faster than 200 km/h. An in-tunnel speed limit in the 160-180 km/h area only slows down high-speed trains by a few seconds. Nor does it lead to any noticeable speed difference with electrified regional trains, which would reduce capacity: modern regional trains like the FLIRT accelerate to 160 km/h as fast as the fastest-accelerating high-speed train, the N700-I, both having an acceleration penalty of about 25 seconds.

The upshot is that there is no need for any of the new scope added since 2009. There is no need for four tracks; two will suffice. There is no need to design for double-stacked freight; the rest of the line only accommodates single-stacked freight, and the NEC has little freight traffic anyway. Under no circumstances should diesel passenger trains be allowed under the catenary, not when the Penn Line is entirely electrified.

The new tunnel has no reason to cost $4 billion. Slashing the number of tunnels from four to two should halve the cost, and reducing the tunnels’ size and ventilation needs should substantially reduce cost as well. With the potential time gained by intercity and regional trains and the reduced maintenance cost, the original budget of $750 million is acceptable, and even slightly higher costs can be justified. However, again because the existing two-track capacity can accommodate any passenger rail volume that can be reasonably expected, the new tunnel is not a must-have. $4 billion is too high a cost, and good transit activists should reject the current plan.