Category: Sweden

Good Practices for State Planning and Local Public Transportation

Earlier this week, I complained about the OPM (other people’s money) problem: federal funding of American public transportation, which is managed locally, leads to cost-raising behavior as local and state governments seek to maximize federal infusion of cash. This is a companion post about more positive and fruitful interactions of government at different levels on this side of the Pond. The examples here often look pointless or acrimonious by local standards, but at the end of the day, they produce cost-effective infrastructure and are positive examples to learn from.

Of note, all the examples below are from unitary, not federal states. This is just an artifact of where I have talked to the most people about this – from what I know of Germany, Austria, Switzerland, and Belgium, they all fall within the spectrum spanned by Italy, Turkey, France, and Sweden when it comes to state-local funding allocation. Moreover, the extent of subnational fiscal autonomy in Germany is not greater than that of Sweden, where there are extensive county and municipal taxes funding subnational government, whereas in Germany nearly all taxes are federal and the Länder mostly rely on transfers.

This is a theme I’ve been investigating ever since I talked to a planner at DOTr. Philippine construction costs are high, although that’s mainly for subways, while elevated lines have fairly average costs. The planner explained to me how planning and procurement are done and specifically how it contrasts with the role of the federal government in the US. Manila Metro projects are planned and designed by DOTr, and ever since that conversation I’ve learned to interpret interviews with European experts in that light.

Sweden: state-local negotiation

The Nordic states practice consensus government. This means that decisions are done by majority vote without veto points, but also there’s no such thing as a majority. In practice, infrastructure involves negotiations between different stakeholders. Bigger projects, including the subway megaprojects we study, require funding from different sources, creating more stakeholders in the process.

In the case of Stockholm, it’s instructive to compare Citybanan and Nya Tunnelbanan. Citybanan is a regional rail tunnel, and therefore the lead agency was the state’s Trafikverket – but even then, Stockholm County had extensive input. Regions send wishlists to the state, and compete for a fixed pot of funding for grants, but there are further negotiations about project details. Nya Tunnelbanan is a subway project led by the county’s SL, but funding comes 25% from local sources, 25% from the county, and 50% from the state.

Crucially, Trafikverket builds rather than just nudges. It has a strong professional civil service capable of designing and supervising the construction of infrastructure megaprojects – and the same pool of civil servants move between agencies within the Swedish public sector, so that some of the people I’ve spoken to have moved between Trafikverket and SL. The example planners I have in mind are mid-level, not top management – this is not a case of a mobile executive suite lording over mid- and low-level career bureaucrats who can’t move between agencies easily.

There is also integration of transport and housing, in the sense that residential upzoning in Stockholm County focuses on areas that have or will soon have urban rail access. Construction rates in Stockholm County are some of the highest in Europe: per SCB, annual completions were around 6.5-7 per 1,000 people in the five years before corona. I’ve been told that it’s a consensual process, with no further elaboration; in Oslo, in contrast, the state has to compel wealthy NIMBY municipalities to upzone as a precondition of giving them subway expansion, but state-local coordination is as far as I can tell otherwise similar to the situation in Stockholm.

Turkey: state-local competition, but no OPM

Turkey has one of the world’s lowest construction cost levels; more details will be available in a report to appear soon, led by Elif Ensari. Wages in Turkey are low by European standards and social protections are weak, but the direct labor share of subway construction is small enough that it is a secondary contributor to the low costs; Turkey dos some things more efficiently than Sweden and others less efficiently.

The situation of state-local relations there is the exact opposite of Sweden’s. There is no collaboration – rather, there are metro tunnels in Istanbul funded and built by the state and others funded and built by the city.

The city is not quite local – the municipality covers the entire metropolitan area of 15.5 million people, and Istanbul politics has an ideological left (i.e. anti-Erdoğan) vs. right (i.e. pro-Erdoğan) characteristic rather than the hyperlocal ties of New York and other American cities. Moreover, now that AKP lost the municipal election and the mayor is CHP’s Ekrem İmamoğlu, who will likely challenge Erdoğan in the 2023 presidential election, there is friction between the state and the city, each trying to argue that it builds more and better infrastructure. There are arguments between pro- and anti-Erdoğan sources over who is to blame, but the city has much less access to state financing now than before İmamoğlu’s victory, which it has been able to replace with financing from the European Investment Bank and other sources of loans, like JICA and Deutsche Bank.

In this situation, there is no coordination, and this is a drag on efficiency – one of the ways Istanbul has been able to keep costs down is finding parks and state land to use for station footprint to keep station construction costs down. However, because there is direct responsibility for the state or the city for infrastructure, there is no OPM problem – İmamoğlu’s political career depends in part on his ability to build infrastructure, and Erdoğan’s ability to interfere is real but limited.

Housing construction is extremely rapid. Istanbul has a housing surplus thanks to the construction of around 160,000 annual housing units; neighborhood character is not a priority there. But I do not know whether it is integrated with subway construction as in Sweden.

France: the capital is the state

France has a convoluted set of local and regional governing mechanisms. However, in Paris, much of the power remains in state and state-appointed organs. The transport association Ile-de-France Mobilités, which would be called a Verkehrsverbund in Germany, is coordinated by the Ile-de-France region, but its two largest components, SNCF and RATP, are both state-owned (though SNCF-RATP agency turf battles remain). Public services that elsewhere in France might be devolved are in Paris often run by the state – for example, the Paris Police Prefecture is part of the National Police, and it’s smaller cities, for example in the Riviera, that have local police departments.

This is not unique to France. In infrastructure, Sweden too exhibits more state involvement in urban rail planning in the capital than in smaller cities – Västlänken in Gothenburg is a Trafikverket project but more of the planning and funding come from the county than was the case for Citybanan. London is a mix: TfL is run by the mayor, offering much more devolution than the Metropolitan Counties of England have, but conversely the construction of infrastructure megaprojects like Crossrail is really within the purview of UK-wide politics.

The issue here is one of scale. Grand Paris Express is a 200 km, 80% tunneled project, and France is a medium- rather than low-cost country. Even the state barely has enough planning capacity for it – the Cour des Comptes report on the cost overruns, not seen before for smaller Métro extensions, blamed the insufficient size of existing planning organs, but unfortunately, the solution arrived at, the special-purpose delivery vehicle (SPDV) GPE, is not good, and is either in imitation of or evolved toward convergence with Crossrail. Nothing below the level of the state could build such a project.

And because the project is so large, it’s been forced into a situation that rhymes with Sweden’s intergovernmental negotiation. It’s also been discussed as part of national politics, with some redesigns stemming from the Sarkozy-Hollande transition. In some cases, this has led to OPM – namely, M18 is unpopular among the region’s public transportation advocates and remains because of pressure by the high-income suburbs it would serve. However, there is no visible impact on unit costs; it’s notable that the OPM the state would dispense is additional infrastructure at per-rider costs that are high for France but common in the United States, rather than extras of little use like signature stations or more expensive construction methods.

Finally, housing construction in Ile-de-France is, as in Stockholm County, among the YIMBYest in Europe. Yonah Freemark’s paper on the subject is indispensable: stating around 2017, the annual construction rate rose to 80,000 units regionwide, around 6.5/1,000 people. Construction is largely in the Petite Couronne suburbs, and not the city, and focuses on regions with current or future urban rail extensions, as in Stockholm.

Italy: state planning and austerity

A full report on Italy will appear soon, on a similar timeline as Turkey, written by Marco Chitti. In Italy, there has been a transition from municipal funding and planning of metros to state funding; in Rome, there was always more state involvement as I understand it.

The situation leading up to the Financial Crisis had similarities with the United States: state funding, municipal or regional responsibility for construction. However, the state always exercised far more oversight. The Italian state builds rather than just nudging. State regulation is done through administrative rather than judicial mechanisms, and thus questions of environmental and historical protection are decided by civil servants trained in engineering, archeology, history, and ecology; there are clear rules, providing similar final outcomes to the Nordic process of negotiation and superior ones to the American process of lawsuit.

More recently, the state has devolved some of the funding to regional, provincial, and municipal governance. This was an artifact of post-Crisis austerity, so the state would fund the majority (I believe 70%) of each project’s budget but not all of it. The result has not been positive – subnational governments have no money, not even wealthy ones like Milan, and to fill in for missing state funding they’ve resorted to PPP financing, which has not impacted construction costs but in effect required hidden loans at high interest bonded to future revenue.

Do Costs Run Over or Are They Underestimated?

The literature on cost overruns for infrastructure projects is rich, much more so than that for absolute costs. The best-known name in this literature is Bent Flyvbjerg, who in the early 2000s collated a number of datasets from the 1980s and 90s to produce a large enough N for analysis, demonstrating consistent, large cost overruns, especially for urban rail. Subsequently, he’s written papers on the topic, focusing on underestimation and on how agencies can prospectively estimate costs better and give accurate numbers to the public for approval. This parallels an internal trend in the US, where Don Pickrell identified cost overruns in 1990 already, using 1980s data; Pickrell’s dataset was among those analyzed by Flyvbjerg, and subsequent to Pickrell’s paper, American cost overruns decreased to an average of zero for light rail lines.

But a fundamental question remains: are cost overruns really a matter of underestimation, or a true overrun? In other words, if a project, say Grand Paris Express, is estimated to cost 22.6 billion € in 2012 (p. 7) and is up to 35.6 billion € today (p. 13), does it mean the cost was 35.6b€ all along and the 2012 analysis just failed to estimate it right? Or dos it mean the cost was 22.6b€ then, and then the budget ran over due to failures of planning that could have been avoided?

Transit agencies that just want to avoid the embarrassment of media headlines saying “they said it costs X but it costs 2X” care mostly about underestimation. This is also true of both generic project managers and political appointees, two groups that do not care about the details of how to build a subway, and think of everything in abstract terms in which a subway might as well be a box of shampoo bottles.

However, the concrete examples that I have seen or heard of for cost overruns look like overruns rather than underestimation. That is, those projects could have been done at the original cost, but planning mistakes drove the budget up, or otherwise created conditions that would enable other forces to drive the budget up.

The Netherlands: early commitment

Bert van Wee is among the world’s top researchers on cost overruns, even if he’s less well-known to the public than Flyvbjerg. He spoke to me about the problems of early commitment in Dutch planning, in which politicians commit to a project before design is finalized. Once the political decision has been made, it is easy for actors to extract surplus, because the state or city cannot walk away easily, while a 20% cost overrun is much easier to explain to the public. This problem plagued 2000s investments like HSL Zuid. To deter this, after 2009 the Netherlands passed reforms that attempt to tackle this problem, aiming to defer the formal political decision to later in the process.

This factor seems to correlate with absolute costs, if not with overruns. American planning is extremely politicized; Canadian planning is fairly politicized too, with individual subway projects identifiable as the brainchildren of specific politicians or parties; Southern European and Nordic planning is highly bureaucratized, with design driven by the civil service and politicians making yes or no decisions late in the process.

Sweden: changes in rules

According to a senior planner at Nya Tunnelbanan, the project has run over from 22.506 billion kronor in 2013 to 31.813 today, both in 2016 price levels; in US dollars, this is $2.551b/19.6 km to $3.606b/19.6 km, all underground. The reasons for the escalation come largely from tighter regulations as well as litigation:

  • Safety requirements have been tightened midway through the project, requiring a service tunnel in addition to the two track tunnels, raising excavation volume almost 50%
  • An environmental court ruling slowed down excavation further
  • Consensus with stakeholders took longer than expected
  • Excavated rock was reclassified midway through the project from useful building material to waste that must be disposed of

Focusing on underestimation is not really germane to what’s happened in Stockholm. The problem isn’t that early 2010s engineers failed to anticipate regulations that were not in force at the time. It’s that regulations were changed later. The rock removal process today actually increases greenhouse gas emissions, just because of the need to freight it away, let alone the systemwide effects on climate of making it harder to build subways.

California: scope creep and change orders

California High-Speed Rail is such a big project that its cost overruns, in multiple stages, were amply discussed in the media. The original announcements in the early 2010s, for example here, were largely about scope creep. At-grade segments turned into viaducts; above-ground segments, particularly in the Bay Area, were turned into tunnels. The reasons were mostly about agency turf battles.

Only in one case was the problem more about underestimation than overrun: the Central Valley segment had originally been planned to follow railroad rights-of-way, but had to be redesigned to have more viaducts and swerve around unserved small towns. This was bad planning, at two points: first, the original designs assumed trains could go at 350 km/h through unserved towns, which they don’t anywhere; and second, once the redesign happened, it was so rushed that land acquisition was time-consuming and acrimonious. Even then, much of the overdesign as identified by a Deutsche Bahn postmortem could have been prevented.

The second stage is more recent: the Central Valley construction contracts have long busted their budgets due to change orders. Change orders are a common problem in California, and in this case, it involved not only the change order king Tutor-Perini, but also the usually reasonable Dragados. The situation here must be ascribed to overrun rather than underestimation: a transparent process for handling changes, based on itemized costs, is an emerging best practice, known since the early 2000s to people who cared to know, and more recently seen in the economics literature for general infrastructure. That California failed to follow this practice – which, again, was available already in the late 2000s – is the source of malpractice. The original bids could have held if the process were better.

Absolute costs and cost overruns

Cost overruns are not the same as absolute costs. They are not even obviously correlated: witness the way the US eliminated most overruns on surface light rail projects in the 1990s and 2000s, to the point that projects with large overruns like the Green Line Extension are exceptional, while absolute costs have skyrocketed. But if we understand the problem to be about cost overruns from an ambitious but achievable budget rather than about underestimating a final cost that could not be improved on, then the study of the two topics is inherently intertwined.

Problems that recur in postmortems of cost overruns are not just about estimation. They’re about building better and cheaper. A bureaucratized planning process in which politicians retain the right to make yes-or-no decisions on complete design reduces cost overruns by reducing leakage and surplus extraction; the overruns such a process prevents are preventable extra costs, rather than higher initial estimates. The same is true of avoiding overbuilding, of not introducing extraneous regulations, of treating environmental questions as systemic and quantitative rather than as local under a do-no-harm principle. Even the question of change orders is more transparently about reducing absolute costs in the literature, since the overruns prevented tend to be seen in higher risk to the contractor leading to higher profit margin demands.

The upshot is that this makes the study of absolute costs easier, because we can reuse some of the literature for the related problem of cost overruns. But conceptually, it means that agencies need to be more proactive and treat early budgets as standards to be adhered to, rather than just blow up the budgets preemptively so that it’s easier to stick to them.

Why It’s Important to Remove Failed Leaders

Andrew Cuomo has a Midas touch. Everything he touches turns to gold, that is, shiny, expensive, and useless. Bin Laden killed 3,000 people in New York on 9-11. Cuomo, through his preference for loyalists who cover up his sexual assaults over competent people, has killed 60,000 and counting in corona excess deaths – 50% more than the US-wide average. And the state let it slide, making excuses for his lying about the nursing home scandal. Eventually the sexual assault stories caught up with him, but not before every state politician preferred to extract some meaningless budget concessions instead of eliminate the killer of New Yorkers at the first opportunity. Even now they delay, not wanting to impeach; they do not believe in consequences for kings, only for subjects.

Time and time again, powerful people show that they don’t believe in accountability. After all, they might be held accountable too, one day. This cascades from the level of a mass killer of a governor down to every middle manager who excuses failure. The idea is that the appearance of scandal is worse than the underlying offense, that somehow things will get better by pretending nothing happened.

And here is the problem: bad leaders, whether they are bad due to pure incompetence or malevolence, don’t get good. People can improve at the start of their careers; leaders are who they are. They can only be thrown away, as far as down as practical, as an example. Anders Tegnell proposed herd immunity for Sweden in early 2020 and then pretended he never did, and the country remained unmasked for most of the year; deaths, while below European averages due to low Nordic levels of cohabitation, are far and away the worst in the Nordic countries, and yet Tegnell is still around, still directing an anti-mask policy. Tegnell is incompetent; Sweden is a worse country for not having gotten rid of him in late spring 2020. Cuomo is malevolent; New York is a worse state for every day that passes that he’s not facing trial for mass manslaughter and sexual assault, every day that passes that his mercenary spokespeople who attacked his victims remain employed.

This is not a moral issue. It’s a practical issue. The most powerful signal anyone can get is promotion versus dismissal (there’s also pay, but it’s not relevant to political power). When Andrew Cuomo stripped Andy Byford of responsibilities as head of New York City Transit, it was a clear signal: you can be a widely acclaimed success, but you failed to flatter the monarch and prostrate before him and this is what matters to me. Byford read the signal correctly, resigned, and ended up promoted to the head of Transport for London, because Sadiq Khan and TfL appreciate competence every bit as Cuomo does not.

Likewise, the retention of Tegnell sends a signal: keep doing what you’re doing. The same is true of Cuomo, and every other failure who is not thrown away from the public.

If anything, it’s worse for a sitting governor. Cuomo openly makes deals. The state legislators who can remove this killer from the body politic choose to negotiate, sending a clear signal: corrupt the state and be rewarded. 60,000 dead New York State residents mean little to them; many more who will die as variants come in mean even less.

The better signal is you have nothing anyone wants, go rot at Sing Sing. This is the correct way to deal with a failure even of three fewer orders of magnitude. Fortunately, there’s only one Cuomo – never before has New York had such mass man-made death. Unfortunately, incidents that are still deadly and require surgical removal of malefactors are far more common. Many come from Cuomo’s lackeys; in my field, the subway, Sarah Feinberg is responsible for around a hundred preventable transit worker deaths, and should never work in or adjacent to this field again. But apolitical managers too screw up on costs, on procurement, on maintenance, on operations, on safety – and rarely suffer for it. But then the fish rots from the head. Chop it off and move on.

Density and Rail Transport (Hoisted from Social Media)

I wrote a long thread about regional rail and population density, and I’d like to explain more and give more context. The upshot is that higher population density makes it easier to run a rail network, but the effects are most visible for regional rail, rather than either urban rail or high-speed intercity rail. This is visible in Europe when one compares the networks in high-density Germany and low-density Sweden, and has implications elsewhere, for example in North America. I stress that high-speed rail is not primarily affected by background density, but only by the populations of cities within a certain range, and thus France, which has one of Western Europe’s lowest densities, manages to have high per-capita ridership on the TGV. However, the density of a regional mesh comes from background density, which is absent in such countries as France, Sweden, and Spain.

What is density?

Population density is population divided by area. This post is concerned with overall density at the level of an entire country or region, rather than the more granular level of the built-up urban area of a single city. What this means is that density is in large part a measurement of how close cities are to one another. In a high-density area like western Germany, Northern Italy south of the Alps, England, or the Low Countries, cities are spaced very close together, and thus people live at densities surpassing 300/km^2. In contrast, low-density areas have isolated cities, like Sweden, Australia, Canada, or the Western United States.

For example, take Stockholm. The region has about 2.5 million people, and has a strong urban and suburban rail network. However, there just aren’t a lot of cities near Stockholm. The nearest million-plus metro areas are Oslo, Gothenburg, and Helsinki, all about 400 km away, none much bigger than 1 million; the nearest 2 million-plus metro area is Copenhagen, 520 km away. The region I use as an example of German polycentrism, Rhine-Neckar, is about the same size as Stockholm, and has a good deal more suburban sprawl and car usage. The nearest million-plus region to Mannheim is Karlsruhe, 55 km away; it is a separate metropolitan area even though the Rhine-Neckar S-Bahn does have an hourly train to Karlsruhe. Frankfurt is 70 km away. A 400 km radius from Mannheim covers nearly the entirety of Germany, Switzerland, and the Low Countries; it reaches into Ile-de-France and into suburbs that share a border with Amsterdam. A 520 km radius covers Paris, Berlin, Hamburg, Milan, and Prague, and reaches close to Vienna.

Density and regional rail

Kaiserslautern is a town of 100,000 people, served by the Rhine-Neckar S-Bahn every half hour even though it is not normally seen as part of the Rhine-Neckar region. It has, in addition to the east-west S-Bahn, independent regional lines reaching north and south. When I visited two years ago, I saw these lines pulse while waiting for my delayed TGV back home to Paris.

This is viable because there are towns ringing Kaiserslautern, close enough that a low-speed regional train could connect them, with their own town centers such that there is a structure of density around their train stations. This in turn exists because the overall population density in Germany is high, even in Rhineland-Pfalz, which at 206/km^2 is slightly below the German average. The alternative structure to that of Germany would have fewer, larger cities – but that structure lends itself well to regional rail too, just with fewer, thicker lines running more frequently. If those smaller towns around Kaiserslautern did not exist but people instead lived in and right around Kaiserslautern, then it would be a city of about 400,000, and likewise Mainz might have 500,000 and the built-up area of Mannheim would have more people in Mannheim itself and in Ludwigshafen, and then there would be enough demand for a regional train every 10-20 minutes and not just every half hour.

I bring up Sweden as a low-density contrast, precisely because Sweden has generally well-run public transport. Stockholm County’s per capita rail ridership is higher than that of any metropolitan area of Germany except maybe Berlin and Munich. Regional rail ridership in and around Stockholm is rising thanks to the opening of Citybanan. Moreover, peripheral regions follow good practices like integrated intermodal ticketing and timed transfers. And yet, the accretion of a mesh of regional lines doesn’t really exist in Sweden. When I visited Växjö, which is not on the main intercity line out of Stockholm, I had a timed connection at Alvesta, but the timetable there and at Växjö looked sporadic. Växjö itself is on a spur for the network, but poking around the Krösatågen system it doesn’t look like an integrated timed transfer system, or if it is then Alvesta is not a knot. I was told in the replies on Twitter that Norrbotten/Västerbotten has an integrated network, but it runs every 2 hours and one doesn’t really string regional rail lines together to form longer lines the way one does in Germany.

Integrated regional networks

The integrated timed transfer concept, perfected in Switzerland, is ideal for regional and intercity networks that form meshes, and those in turn require high population density. With these meshes, regional rail networks overlap, underlaying an intercity network: already one can get between Frankfurt and Stuttgart purely on lines that are branded as S-Bahn, S-Bahn-like, or Stadtbahn, and if one includes RegionalBahn lines without such branding, the network is nationally connected. Even in Bavaria, a state with lower density than the German average, nearly all lines have at least hourly service, and those form a connected network.

It’s perhaps not surprising that Italy, which has high density especially when one excludes unpopulated alpine areas, is adopting German norms for its regional rail. As in Germany, this originates in urban networks, in Italy’s case that of Milan, but Trenord operates trains throughout Lombardy, most of whose population is not the built-up area of Milan, and even lines that don’t touch Milan run hourly, like Brescia-Parma. Italy is not unusual within Southern Europe in looking up to Germany; it’s only unusual in having enough population density for such a network..

Once the network is in place, it is obligatory to run it as an integrated timed transfer system. Otherwise, the connections take too long, and people choose to drive. This in turn means setting up knots at regular intervals, every 30 minutes for a mixed hourly and half-hourly system, and investing in infrastructure to shorten trip times so that major cities can be knots.

The concept of the knot is not just about regional service – high-speed rail can make use of knots as well. Germany has some low-hanging fruit from better operations and under-construction lines that would enable regularly spaced knots such as Frankfurt, then Mannheim, then Stuttgart, and far to the north Hanover and then Bielefeld. The difference is that Germany’s ideal high-speed rail network has around 20 knots and its existing regional rail network has about as many in Hesse alone. Nor can regional rail networks expect to get away with just building strong lines and spamming frequency on those, as the Shinkansen does – regional rail uses legacy alignments to work, generating value even out of lines that can only support an hourly train, whereas high-speed lines need more than that to be profitable.

Globally, the lowest-hanging fruit for such a system is in the Northeastern United States, followed by China and India. Population density in the Northeast is high, and cities have intact cores near their historic train stations. There is no excuse not to have a network of regional lines running at a minimum every 30 minutes from Portland down to Northern Virginia and inland to Albany and Harrisburg.

A few modifications to the basic Swiss system are needed to take into account the fact that the Northeast Corridor, run at high speeds, would fill a train every 5 minutes all day, and the core regional lines through New York could as well. But regional rail is not a country bumpkin mode of transportation; it works fine within 100 km of Frankfurt or Milan, and should work equally well near New York. If anything, a giant city nearby makes it easier to support high frequency – in addition to internal travel within the regional system, there are people interested in traveling to the metropole helping fill trains.

What about low-density places?

Low-density places absolutely can support good rail transport. But it doesn’t look like the German mesh. Two important features differ:

  1. It is not possible to cobble together a passable intercity rail network from regional express lines and upgrade it incrementally. Intercity lines run almost exclusively intercity traffic. This tilts countries toward the use of high-speed rail, including not just France but also Spain and now Sweden. This does not mean high-density countries can’t or shouldn’t build high-speed rail – they do successfully in Asia, Italy has a decent network, Britain has high-speed rail plans, and Germany is slowly building a good network. It just means that high-density countries can get away with avoiding building high-speed rail for longer.
  2. The connections between regional and intercity lines are simpler. Different regions’ suburban networks do not connect, and can be planned separately, for example by state-level authorities in Australia or provincial ones in Canada. These networks are dendritic: intercity lines connect to regional lines, and regional lines branch as they leave city center. Lines that do not enter the primary city center are usually weaker, since it’s unlikely that there are enough strong secondary centers at the right places that a line could serve them well without passing through the primary center.

In extreme cases, no long-distance rail is viable at all. Australia is a borderline case for Brisbane-Sydney-Melbourne high-speed rail – I think it’s viable but only based on projections of future population and economic growth. But Perth and Adelaide are lost causes. In the United States, railfans draw nationally-connected proposals, but in the Interior West the cities are simply too far apart, and there is no chance for a train to usefully serve Denver or Salt Lake City unless cars are banned. Connecting California and the Pacific Northwest would be on the edge of viable if the topography were flat, but it isn’t and therefore such a connection, too, is a waste of money in the economic conditions of the early 21st century.

Note that even then, cities can have suburban rail networks – Perth and Adelaide both have these, and their modal splits are about on a par with those of secondary French cities like Nice and Bordeaux or secondary American transit cities like Boston and Chicago. Denver is building up a light rail and a commuter rail network and one day these networks may even get ridership. The difference between the case of Perth or Denver and that of a German city is that Perth and Denver can rest assured their regional rail alignments will never be needed for intercity rail.

In less extreme cases, intercity trains are viable, and can still run together with regional trains on the same tracks. California is one such example. Its population density and topography is such that planning regional rail around the Bay Area and in Los Angeles can be kept separate, and the only place where intercity and regional trains could work together as in Germany is the Los Angeles-San Diego corridor. Blended planning with timed overtakes is still recommended on the Peninsula, but it’s telling that at no point have Bay Area-based reformers proposed a knot system for the region.

Those less extreme low-density cases are the norm, in a way. They include the Midwestern and Southern US, the Quebec-Ontario corridor, the Nordic countries, France, nearly all of Eastern Europe, and Southern Europe apart from Italy; this is most of the developed world already. In all of those places, regional rail is viable, as is intercity rail, but they connect in a dendritic and not meshlike way. Many of the innovations of Germany and its penumbra, such as the takt and the integrated intermodal plan, remain viable, and are used successfully in Sweden. But the exact form of regional rail one sees in Germany would not port.

No Cafe Cars, Please

European and American intercity train planning takes it as a given that every train must have a car dedicated to cafeteria service. This is not the only way to run trains – the Shinkansen doesn’t have cafe cars. Cafe cars waste capacity that could instead be carrying paying passengers. This is the most important on lines with capacity limitations, like the Northeast Corridor, the West Coast Main Line, the LGV Sud-Est, and the ICE spine from the Rhine-Ruhr up to Frankfurt and Mannheim. Future high-speed train procurement should go the Shinkansen route and fill all cars with seats, to maximize passenger space.

How much space do cafe cars take?

Typically, one car in eight is a cafe. The standard European high-speed train is 200 meters long, and then two can couple to form a 400-meter train, with two cafes since the two 200-meter units are separate and passengers can’t walk between them. In France, the cars are shorter than 25 meters, but a TGV has two locomotives and eight coaches in between, so again one eighth of the train’s potential passenger space does not carry passengers but rather a support service. Occasionally, the formula is changed: the ICE4 in Germany is a single 12-car, 300-meter unit, so 1/12 of the train is a cafe, and in the other direction, the Acela has six coaches one of which is a cafe.

A 16-car Shinkansen carries 1,323 passengers; standard class has 5-abreast seating, but even with 4-abreast seating, it would be 1,098. The same length of a bilevel TGV is 1,016, and a single-level TGV is 754. The reasons include the Shinkansen’s EMU configuration compared with the TGV’s use of locomotives, the lack of a cafe car in Japan, somewhat greater efficiency measured in seat rows per car for a fixed train pitch, and a smaller share of the cars used for first class. An intermediate form is the Velaro, which is an EMU but has a cafe and three first-class cars in eight rather than the Shinkansen’s three in 16; the Eurostar version has 902 seats over 16 cars, and the domestic version 920.

The importance of the first- vs. second-class split is that removing the cafe from a European high-speed train means increasing seated capacity by more than just one seventh. The bistro car is an intermediate car rather than an end car with streamlining and a driver’s cab, and if it had seats they’d be second- and not first-class. A German Velaro with the bistro replaced by a second-class car would have around 1,050 seats in 16 cars, almost even with a 4-abreast Shinkansen even with four end cars rather than two and with twice as many first-class cars.

How valuable are cafes to passengers?

The tradeoff is that passengers prefer having a food option on the train. But this preference is not absolute. It’s hard to find a real-world example. The only comparison I am aware of is on Amtrak between the Regional (which has a cafe) and the Keystone (which doesn’t), and Regional fares are higher on the shared New York-Philadelphia segment but those are priced to conserve scarce capacity for profitable New York-Washington passengers, and at any rate the shared segment is about 1:25, and perhaps this matters more on longer trips.

Thankfully, the Gröna Tåget project in Sweden studied passenger preferences in more detail in order to decide how Sweden’s train of the future should look. It recommends using more modern seats to improve comfort, making the seats thinner as airlines do in order to achieve the same legroom even with reduced pitch, and a number of other changes. The question of cafes in the study is presented as unclear, on PDF-p. 32:

Food and RefreshmentsWillingness to Pay
Coffee machine (relative to no service at all)3-6%
Free coffee and tea in each car6%
Food and drink trolley11%
Cafeteria14%
Restaurant with hot food17%

Put another way, the extra passenger willingness to pay for a cafeteria compared with nothing, 14%, is approximately equal to the increase in capacity on a Velaro coming from getting rid of the bistro and replacing it with a second-class car. The extra over a Shinkansen-style trolley is 3%. Of course, demand curves slope down, so the gain in revenue from increasing passenger capacity by 14% is less than 14%, but fares are usually held down to a maximum regulatory level and where lines are near capacity the increase in revenue is linear.

Station food

Instead of a bistro car, railroads should provide passengers with food options at train stations. In Japan this is the ekiben, but analogs exist at major train stations in Europe and the United States. Penn Station has a lot of decent food options, and even if I have to shell out $10 for a pastrami sandwich, I don’t think it’s more expensive than a Tokyo ekiben, and at any rate Amtrak already shorts me $90 to travel to Boston. The same is true if I travel out of Paris or Berlin.

Even better, if the station is well-designed and placed in a central area of the city, then passengers can get from the street to the platform very quickly. At Gare de l’Est, it takes maybe two minutes, including time taken to print the ticket. This means that there is an even broader array of possible food options by buying on the street, as I would when traveling out of Paris. In that case, prices and quality approach what one gets on an ordinary street corner, without the premium charged to travelers when they are a captive market. The options are then far better than what any bistro car could produce, without taking any capacity away from the train at all.

Building Depth and Window Space

How much window space does an apartment need, relative to its area, and how does this affect building style? A fascinating post from about a year ago on Urban Kchoze makes the argument that modern North American buildings are too deep – Simon calls them obese. Simon contrasts the typical building style in major cities in Europe and Asia with modern North American imitators and argues that the North American versions have too much ratio of floor area to exterior window width, which only works with loft-style apartments, which are not fit for families.

Is Simon correct? Not really. There’s an important feature of the block style in Europe that he’s missing. And this leads to an interesting observation by itself about area-to-window-width ratios.

The issue of building depth

Simon shows a bunch of satellite photos of buildings in a style called the euroblock. Here’s one example from Stockholm, in Södermalm:

The block has a width that looks like 14.6 meters. Midblock buildings have front windows overlooking the street and back windows overlooking a central courtyard; corner buildings overlook two streets. Either way, the area-to-frontage ratio is 7.3 meters. In general, buildings in Central Stockholm, urban Berlin, and Paris in average a depth of 13-14 meters, so the above typology would generate a ratio of 6.5-7 meters.

Simon contrasts this with American buildings. The euroblock typology is very uncommon in the US – New York’s typology is much less neat and liberally uses windows that overlook very narrow spaces. But it does exist, generally in higher-end recent developments. For example, here’s the Avalon East Norwalk, a condo project wedged between I-95 and the Northeast Corridor.

It has essentially the same built form as the euroblock. Its development history is of course different: there are no streets on the exterior, only parking lots, and it is a single project surrounding a big plaza with a swimming pool rather than many small buildings that together enclose a courtyard that comprises several separate gardens. But in terms of how the building looks from space, it’s similar. The width is 20 meters, for an area-to-frontage ratio of 10 meters, well above 6.5-7 meters.

However…

Euroblocks are complicated

The above Stockholm pic is a pretty simple building, conceptually: a linear building outlining the edge of a rectangle. This is not the typical euroblock; I had to look around Central Stockholm to find a fitting example. I could equally well use Hamburg or another such city of the same size class.

But in Paris, this form is almost unheard of, and in Berlin it is uncommon, I think mostly denoting postwar reconstruction. Paris and Berlin are larger cities, especially historically – in the Belle Epoque/Wilhelmine era, when this typology flourished, they were two of the largest few cities in the world, Berlin stagnating after World War Two and Paris growing exclusively in the suburbs. So they’d build up more of each lot and leave less unbuilt space between buildings. Instead, here is what a traditional Berlin block looks like, in this case in Neukölln:

These buildings enclose a central courtyard, as in Stockholm, but there the similarity ends. The courtyard is small, and there are several to a block. All these wings have internal corners with limited window space. Moreover, the wings that do not make it all the way to enclosing the courtyard, like the ones on the buildings north of Laubestrasse, have blank walls facing northeast, because they were built expecting the wing of another building to directly abut them. The wing of the building at the Laubestrasse/Elbestrasse eastern corner likewise has blank northeast-facing walls, and from space looks awkward, like a half-building. All of this was designed for more buildings, but some were never built or were knocked down.

If the euroblock has one big courtyard for the entire block as in the Stockholm and Norwalk examples, then the area-to-frontage ratio equals exactly half the building depth. But as soon as there are multiple courtyards, the ratio grows. The dimensions of the C-shaped building on Sonnenallee (one block south of Laubestrasse) just west of the corner building with which it shares the courtyard are 18 meters of street frontage by 38 of lot depth minus a half-courtyard of 11.5*12. This works out to 546 m^2/71 m, for a total ratio of 7.7 m, even though technically the building is never deeper than 13 m.

The blocks can get even more fractured. Here’s Prenzlauer Berg, in an area wedged between the former Wall and the Ringbahn:

The dimensions of the buildings fronting Korsörer Strasse on the north are pretty consistent. They all have an overall lot depth of about 32 meters, consisting of 14 meters of building, 11 meters of courtyard, and 7 meters of half-building with blank north-facing walls. The side wings are pretty consistently 7 meters deep each as half-buildings. Taking the pair of buildings flanking the second courtyard from the east as an example, they together are 35*32 minus 21*11, for 889 m^2/99 m = 9 m.

In Paris, building forms vary. But here is an example with wings, in the 17th:

The courtyards are smaller than in Berlin. Taking the second building from the west, we get 35*25 – 11*13, or 732 m^2/98 m = 7.5 m. When the courtyard is only about as wide as the building is deep, the above typology, similar to the image from Neukölln, generates a ratio equal to 5/8 the building depth, and not 1/2 as in the Stockholm example. The Prenzlauer Berg typology generates an even higher ratio, a full 2/3 of building depth if the courtyard is a square of side equal to the building depth.

And this matters. Buildings with simpler sides do get deeper in Paris. For example, this building in the 16th, wedged between two streets:

The depth of these buildings is 18 meters, so the area-to-frontage ratio is 9 m.

What does this mean?

My choice of the 16th and 17th in Paris for my examples is not random. Western Paris has been rich from the moment it urbanized – families of means choose to live this way. In general, within the family of euroblocks, the more desirable areas seem to have buildings with a slightly larger depth – the more working-class parts, such as Eastern Paris, have shallower buildings. Rich people would all else being equal prefer more window frontage space, but all else is not equal, and they prefer bigger apartments.

There is a definite limit on how deep buildings can be and how large the ratio of area to window frontage can be, but it is not as low as Simon posits. Ratios in the 8-9 region are not unheard of in old European buildings, and it stands to reason that euroblocks built in an environment of more prosperity, such as that of the early 21st century, could go slightly higher.

Moreover, the Norwalk example of a deeper building without wings is generally preferable to the traditional Berlin and Paris form of shallower buildings with wings. In Berlin, the apartments with street-facing windows are the most desirable. Historically, the wings were for the working class, which had to make do with narrow courtyards – sometimes narrower than today, the original statutory limit being less than 6 m wide due to 19th-century fire regulations. So the evolution of the euroblock is likely to be toward its American condo form.

The Greta Effect

Bloomberg is reporting that Germany and Sweden are seeing a trend of reduced domestic air travel and greater rail usage. In Germany, intercontinental air traffic is up 2% year-over-year and international European traffic is down 2%, but domestic traffic has crashed in the last few months and is down 12% now. In Sweden, domestic air traffic is down 11%.

The Greta effect

Greta Thunberg famously crossed the Atlantic by sailboat to avoid personally contributing to greenhouse gas emissions. But she’s fairly practical about alternatives and said right out that she travels in such conditions to highlight how difficult complete decarbonization is. She is also very insistent on the fact that while changes in behavior are nice, collective political action is still needed.

Moreover, the young (as in, younger than me) Greens I meet in Germany are themselves practical as well. The more committed might take a train to France or Italy, but there’s not much interest in back-to-the-land 1960s communes, degrowth, or political revolution in the sense of the socialists and anarchists. Nor have I seen anti-nuclear sentiments recently – the one anti-nuclear sign I saw at the September 20th climate march, which had 100,000 people in attendance, was held by a pensioner and someone who looked 40, whereas the median age at the rally looked like 20.

It’s relatively easy to change travel behavior to avoid domestic flying in Germany as well as Sweden. Domestic rail travel pain in Germany means hourly Hamburg-Munich and Berlin-Stuttgart trains take 5:40 each. International rail travel pain means Berlin-Paris trains take 8:11 with a short transfer that I don’t trust DB or SNCF to meet. Domestic trains only get this long if many transfers are needed, in which case the main competition to the train is the car rather than the airplane, or if one needs to travel between Umeå (population 123,000) and central or southern Sweden. It’s thus likely that the shift in travel pattern reflects a change in consumer desires to avoid polluting – other explanations, such as the grounding of the 737 MAX, would equally affect domestic and European air travel.

Upcoming carbon taxation

Germany has been planning climate legislation for years, but the September 20th protest created a lot of pressure on the government to enact an aggressive package. A carbon tax will begin at €25/t-CO2 in 2021 and rise to €55/t by 2025, where the original plan was to only go up to €35/t. Sweden has had a carbon tax going back to 1991; starting in 2014, the Löfven cabinet has hiked the tax on industry to match the tax on transportation, both currently at €114/t. The effects on the German economy are to be seen, but in Sweden, economic growth has been healthy throughout this period, ahead of any not-newly-industrialized developed country save Australia (although the differences near the top are small).

In addition to the German carbon tax package, the EU is planning to levy a carbon tax on jet fuel for internal flights; so far, international emissions, including international aviation and shipping, are not subject to carbon tax. A leaked report suggests the EU is considering a tax of €330 per 1,000 liters of jet fuel, which corresponds to a hefty €130/t-CO2, the high figure coming from the fact that a ton of CO2 emitted at high altitude causes more global warming than one emitted at ground level. A very fuel-efficient plane like the A320neo consumes 2.25 liters per 100 seat-km on a 1,200 km flight, raising fares on a full flight by €9.06, which is not a game changer but is noticeable at low-cost carrier rates.

Planning for busier trains

The upshot is that demand for flights in Europe is likely to go down, shifting toward rail. The article linked above about the Greta effect says that DB expects its intercity rail traffic to double to 260 million passengers a year by 2040. The article makes no mention of which further investments in intercity rail DB is assuming, but a virtuous cycle is likely: higher ridership justifies more investment, and faster and more convenient trains attract higher ridership.

Of note, the weakness of international rail in Europe points to international connections as an investment priority. In Sweden, trains from Stockholm are fast toward Gothenburg and Malmö, averaging almost 140 km/h, and there are unfunded plans for high-speed rail connecting the three largest cities. However, Stockholm-Oslo trains are quite slow (about 6 hours for what looks like 500 km), even though Oslo is bigger than Gothenburg and Malmö and there are extensive economic and cultural connections between the Nordic countries. The Greens have called for Stockholm-Oslo high-speed rail, and the government should work with Norway on establishing such a line.

In Germany, the situation is different. London and Paris are vast cities, and Paris is within reasonable high-speed rail distance of most of Germany, with good connections on the French side and poor ones on the German one. Trains between Paris and Frankfurt take about 3:48, of which 1:47 is between Paris and Saarbrücken on the German side of the border, a distance of 380 km, and then 2:00 is between Saarbrücken and Frankfurt, a distance of about 200 km by rail and 160 by air. In Belgium, the existing high-speed line east of Brussels is compromised to the point of being slower between Brussels and Liège or Aachen than legacy lines like Stockholm-Gothenburg or London-Manchester.

The reason the map of the high-speed rail I think Germany should build is heavy on international connections is mostly that Europe is gradually building thicker international economic and social connections. However, a future with more expensive air travel and a consumer taste for greener ways of travel does not change the basic picture, and makes it more urgent.

(Map legend: blue is existing or under-construction lines, red is lines that are either in planning or not even in planning but should be built.)

Speed and capacity

DB’s forecast for 260 million annual rail travelers argues in favor of building more capacity. However, in no way does this conflict with building a dedicated high-speed rail network for Germany. On the contrary, the bypasses providing relief to congested lines are already planned to be high-speed: this was the case for the Tokaido Shinkansen and LGV Sud-Est decades ago, and this is now the case for HS2 and the planned Frankfurt-Mannheim express connection.

A largely dedicated network for high-speed passenger rail, with freight using the legacy lines, improves intercity rail reliability, allowing average speeds to rise to be closer to their theoretical technical maximums. Average speeds of 250 km/h on a few lines are plausible, as on Paris-Strasbourg or Madrid-Barcelona. Moreover, through-tunnels enabling intercity trains to run through Frankfurt and possibly Munich without reversing direction facilitate planning high-speed rail as a separate system. Timed connections with regional trains remain important, but critical trunks like Frankfurt-Cologne and Berlin-Hanover can run very frequently.

The schedule I tried writing for the above map in which domestic city pairs mostly run every half hour all day, interlining on a few trunks, assumes ridership of about 250 million. This is not the same as DB’s forecast of 260 million: this counts only high-speed rail riders, and assumes the average trip is 350 km long. To get from DB’s forecast to 87.5 billion p-km per year requires the virtuous cycle of higher ridership and more investment to work over time, but this is plausible given high levels of investment.

Green convenience

When Greta talks about systemic solutions, she understands that it’s important to make it easier to live a comfortable life without greenhouse gas emissions and harder to live one with high emissions. There are many aspects to green convenience: carbon-free electricity (largely achieved in Sweden but not in Germany), pedestrian- and bike-friendly streets, urban and periurban public transport, intercity and freight rail, passive solar design, urban density, carbon-free industrial power generation.

In every case, it’s important to seize upon any social, economic, or political trend that facilitates the green option. If people want to live in big central cities, then governments should make it easy to build housing there so that more people can enjoy the low-carbon wealth of Munich or Stockholm rather than live in cheap declining rural areas and drive. If people support solar power, then governments should leverage its political popularity and subsidize it to decarbonize electricity.

In the case of intercity transportation, a shift in taste toward intercity rail is a cause for celebration. Europe is full of intercity trunk lines ranging from ones that scream “build me now” no matter what (HS2, completing Berlin-Munich, etc.) to speculative ones. Any positive shift toward rail justifies adding ever more marginal intercity rail lines to the network. Perhaps if the network I mapped was justified before the Greta effect, after the Greta effect the most marginal parts of the network (like Stuttgart-Würzburg) are on more solid footing, while unmapped marginal lines like Munich-Prague or even Bremen-Oldenburg-Groningen become plausible.

But celebration does not mean idleness. Climate change is a systemic issue. The state must plan ahead, using the shift toward rail to plan further investments now so that they open in the 2020s and early 30s. This way, the rail network will meet near- and medium-term growth in demand, while stimulating long-term growth, to be satisfied through future investment, paid by taxes on the richer Germany of the 2030s. Good transit activists should take a page from Greta’s refusal to treat good news as grounds for letting up, and demand intensive investment in Europe’s rail network to ensure that green travel will be more convenient, featuring higher speeds rather than more sitting on luggage in the corridors of full trains.

How Come Carbon Taxes are Good for the Economy?

Two of the cities I have lived in are in areas with a carbon tax regime: Vancouver and Stockholm. British Columbia implemented a carbon tax starting in 2008, at a level reaching C$30 per metric ton of CO2, under the right-wing BC Liberals, who favored the carbon tax as a market-friendlier approach than the left-wing NDP’s proposal for cap-and-trade. The tax was revenue-neutral, offsetting other taxes, and is seen as a success; the NDP has since won power and announced a hike in the tax to C$50/t by 2021.

Sweden’s carbon tax is higher and older. It was implemented by the Social Democrats in 1991, at a rate of 24/t for home use, such as fuel, and 6/t for industrial use; it has been subsequently hiked multiple times, reaching 88/t for home use by 2004, and Löfven’s coalition of Social Democrats and Greens has increased it to 114/t for both home and industrial use. Our World in Data cites it as a success too, linking it to high levels of political trust and low corruption levels in Sweden as well as in other European countries with carbon taxes, such as Switzerland.

The question of interest is, how come these carbon taxes are good not just for reducing greenhouse gas emissions, but also for the economy? British Columbia’s economy has grown somewhat faster than that of the rest of Canada. Sweden has had high economic growth since the 1990s as well – see for example World Bank data from 1990 to 2018, in which Sweden’s growth in GDP per capita only behind that of Norway and the Netherlands, both by very small margins. What gives? How come this is apparently good for raw economic growth, when it’s supposed to be an economic distortion that reduces living standards if one ignores long-term environmental benefits?

Negative carbon taxes

There is an array of policies that act as negative carbon taxes – that is, taxes on green activity, or subsidies to polluting activity. The construction of highways is one example – the negative effects of cars include not just climate change but also local air pollution, noise, and car accidents. There are various policies counteracting these effects, such as fuel taxes and mandatory insurance, but they are not enough. For example, in British Columbia the minimum insurance requirement is $200,000 in personal injury plus $300,000 in medical expenses and smaller sums for related torts like funeral costs, but the insurance value of human life is measured in the millions.

To the extent non-carbon taxes on cars are too low, the addition of a carbon tax should move the tax level closer to the true level of the negative externality even ignoring long-term climate change. Carbon taxes should not by themselves improve economic growth on a 30-year horizon, let alone a 10-year one, but lower levels of air pollution, fewer car crashes, and less traffic congestion would.

Another aspect is development. Various zoning laws, such as single-family residential zones in much of Vancouver and restrictions on high-rises in Central Stockholm, encourage people to live and work in lower-density areas. This is simultaneously a negative carbon tax of a sort and a drag on economic productivity. A carbon tax is no substitute for reforms making it easier to add housing – and thankfully, both Stockholm and Vancouver already have fast housing construction, unlike (say) New York – but it does help countermand the subsidies to suburbanization implicit in restrictive zoning.

Climate science vs. arbitrary rule

The economic reasoning behind why special fees on various activities are inferior to broad taxes on income, property, and consumption has to do with incentives and rule of law. Taxing a specific activity incentivizes people and corporations to find creative ways to shift apparent activity elsewhere, creating economic distortions. It also sends everyone a message, “spend more money on lobbying politicians to keep your sector’s taxes lower than those of other sectors.” Broad-based taxes don’t do that, first because the only way to avoid an income tax is to be poorer, and second because there are fewer moving parts to an income or sales tax.

However, carbon taxes are not your run-of-the-mill tax on an activity some politician does not like. Yes, there is a definitive political movement calling for restraining greenhouse gas emissions, but the reasoning behind it is telegraphed years and even decades in advance, and is based on a scientific consensus. Lobbyists can try to fight for exemptions, as they can from income taxes, but the tax itself is based on a process that is transparent to informed economic actors.

In green democracy as in social democracy, the role of the state is not to side with the interest groups that voted for the party in power, unlike in populism. Social democracy holds that the state has an expansive role to play in the economy, but this role is not based on arbitrary exceptions but rather on budgetary and regulatory priorities that have been largely stable for generations: income compression, labor unions, health care, education, child care, infrastructure, housing. It’s not a coincidence that the part of the world with the strongest social-democratic institutions, the Nordic countries, also has more or less the lowest corruption levels.

Green democracy has a different set of priorities from social democracy, but they too are well-known, especially when it comes to the transition away from greenhouse gases. There’s a lot of lobbying concerning specific spending priorities, but the point of a carbon tax is that it adjudicates how to prioritize different aspects of the transition apolitically.

Carbon taxes and good government

The World in Data’s praise of Sweden’s carbon tax regime talks about the necessity for low corruption and high trust levels for a carbon tax to work. But does the causation really run in that direction? What if the causation is different? It’s likely that a carbon tax could politically work in a wide variety of countries, but only in states with high levels of political transparency do politicians prefer it to opaque schemes that reward cronies and favored interest groups.

In other words, once British Columbia enacted its carbon tax the results were positive even without unusually low corruption for a rich country. But for the most part, governments without much transparency or rule of law such as much of the United States do not like the simplicity of a carbon tax. Politicians who call themselves green prefer schemes that either directly subsidize favored groups or at least politically empower them (“Green New Deal”), and that specifically ream difficulties on groups they do not favor (real estate developers, the nuclear industry, etc.).

But that American politicians do not like carbon taxation does not mean carbon taxation could not work in an American context. It does in a Canadian one, without any of the negative economic effects that people who take perverse joy in environmental destruction predicted. The private economy can and does adapt to changes in relative prices, as fuel becomes much more expensive and other products become cheaper to compensate – and judging by the experience of Sweden in particular, even a fairly high tax is compatible with fast economic growth for a mature economy. All it takes is someone willing to spend short-term political capital on the long-term green transition.

Construction Costs in the Nordic Countries

I write a lot about stereotypes in the context of construction costs. Countries with a reputation for corruption, such as Spain, South Korea, Greece, and Italy, often build subways very cheaply. Germany, for all its stereotype of efficiency, has high costs and some dysfunctional decisionmaking in what to build. Singapore, the self-styled most efficient government, pays its transport minister more than a million dollars per year to make excuses for why it has such high construction costs.

In the Nordic countries, the stereotype is correct: those countries have transparent, clean governments, and also build infrastructure cheaply.

Subway tunnels

All four mainland Nordic capitals have recent or ongoing metro expansion projects:

Stockholm just opened Citybanan, a regional rail connection including 6 km of tunnel with two deep stations in Central Stockholm and a 1.4 km bridge. The total cost was 16.8 billion SEK in 2007 terms, which in today’s PPP terms is about $330 million per km. It’s expensive for a suburban subway but not for regional rail.

Copenhagen is currently wrapping up construction on the fully underground, driverless City Circle Line. It is a circular but not circumferential line through city center. With repeated schedule slips, the budget is now 24.8 billion DKK, or $3.4 billion in PPP terms, which is $220 million per km.

Stockholm is expanding its metro in three directions. The fully underground extensions are together 19 km and 22.4 billion SEK, which in PPP terms is $130 million per km.

Helsinki has just opened an expansion of its metro westward to Espoo. This is a 13.5 km, 8-station fully underground line with a water crossing. After cost overruns, the current cost estimate is 1,186 million, which is in PPP terms $115 million per km.

Oslo recently opened a short connection, called Lørenbanen. It’s 1.6 km long and includes a single new station, for a total of NOK 1.33 billion, including 150 million for modernization of an existing connecting line. In PPP terms this is just $90 million per km in today’s money.

Other rail infrastructure

Sweden is investing heavily in mainline rail modernization. This includes a planned high-speed rail network connecting the country’s three biggest cities, which are spaced far apart and not on a line, requiring the total system to be 740 km long. The cost projection as of 2015 is 125 billion SEK, which in PPP terms is $14 million per km; I do not know if it is in 2015 prices or expected year of construction prices. This cost figure is comparable to that of Madrid-Barcelona and about half the at-grade norm for Europe.

Sweden is simultaneously investing in its mainline network, rather than neglecting it in favor of just HSR the way France is. A document from 2009 lists some of these on p. 38 based on the national plan of 2010-21, which did not include HSR. Of note, two full double-track projects are coming it at about $10 million per km or slightly more. In contrast, in Berlin, suburban S-Bahn double-tracking is around twice as expensive per the list on PDF-pp. 73-77 of the official wishlist.

In Denmark, a recent double-tracking project cost 675 million DKK for 20 km, or $4.6 million per km, even cheaper than in Sweden. The project includes not just double track but also an upgrade to 160 km/h.

Denmark is also investing heavily in electrification – see here for a list of projects, without costs. Costs for some of these projects are provided by Railway Gazette. The Fredericia-Aalborg line is 249 km and 4.7 billion DKK, the Roskilde-Kalundborg line is 56 km and 1.2 billion DKK, and the Esbjerg-Lunderskov line is 57 km and 1.19 billion DKK; all three lines are double-track. The longer line is $2.6 million per km, the shorter two are $2.9 million. This is much cheaper than in the core Anglosphere but more expensive than projects for which I have data in France, Israel, and New Zealand.

It’s cheap, but do people ride it?

Absolutely. Low construction costs can occur for projects that nobody has any reason to build, they’re so low-ridership, while some high-cost projects remain cost-effective if they have extremely high ridership, like Second Avenue Subway Phase 1.

In the case of the Nordic capitals, the recent extensions are well-patronized. The ridership prognosis for the City Circle Line is 289,000 per weekday, which means its cost is $11,800 per rider. The link above for the Stockholm T-bana extension projects 170,000 riders per day, which I believe means weekday rather than literal day; in that case, the projected cost per rider is $14,500. Løren’s ridership is 8,000 per day, which one former resident says is just boardings without alightings, which means total ridership is actually 16,000, making the cost of the line just shy of $9,000 per rider. And Helsinki’s West Metro is projected to get 100,000 daily riders, which means its cost is about $15,500 per rider.

Moreover, Stockholm’s overall use of public transportation is very healthy. The first 6 pages of this PDF comprise a report on modal split in Stockholm, out of all trips, not just work trips. In 2015, 32% of all trips in Stockholm County were by public transport, 38% were by car, 9% were by bike, and 16% were on foot. There had been a notable shift from cars to the other modes since 2004.

Converting this statistic to work trip mode share, the most stable metric and the one reported for the US, Canada, UK, and France, requires some additional work. However, where both statistics are available, they do provide some insight: in Hamburg in 2008, the overall car mode shares for all trips and for just work trips were similar (48% for work trips vs. 42% for all trips in the city, 65% vs. 63% in the suburbs); work trips alone exhibit much higher transit mode share (33% vs. 18% in the city, 16% vs. 8% in the suburbs), at the expense of non-motorized trips, which are disproportionately for short errands. It is very likely that the work trip public transport mode share in Stockholm County is comparable to Ile-de-France’s 43%, in a metro area one fifth the size.

Transit ridership in the other Nordic capitals is weaker, though still impressive for their size. Copenhagen lags in transit but has a strong bike network. Oslo had 118 million metro riders in 2017 (source, PDF-p. 31 – per same link you can also see the operating costs per car-km work out to just short of PPP$4, compared with a typical first-world range of $4-7), plus some additional commuter rail ridership (65 million nationwide, not just around Oslo). Helsinki had 63 million annual metro passengers in 2015, before the extension opened, and somewhat fewer additional commuter rail passengers, for a total ridership of perhaps 120 million. Both of the smaller cities have about the same metro area rail ridership per capita as New York, which is about fifteen times their size.

What does this mean?

Scandinavia has a reputation for efficient government at home as well as abroad. Right-wing pundits are far more likely to look for aspects of its governance that play to their desire for privatization, such as Sweden’s school voucher system or the contracting out of urban rail, than to assert that Scandinavia is a socialist failure. Unlike autocracies that have cultivated such reputation, the Nordic countries fully deserve this praise when it comes to building infrastructure cost-effectively. Sweden appears to consistently build rail for half the per-unit cost of Germany.

And yet, I don’t see that much praise for Nordic infrastructure. There are people in the English-speaking world making grandiose claims about how democratic countries need to be more like China and about how authoritarianism is just more efficient. I don’t know of any making that claim about how Nordic social democracy is more efficient, with its depoliticized state apparatus, multiparty elections, high levels of transparency, bureaucratic legalism, and near-universal collective bargaining.

Across all levels of public transportation investment, from high-speed rail down to routine track upgrades, we see inexpensive, efficient projects in the Nordic countries. They achieve high levels of rail usage without megacities in which only masochists drive, and keep expanding their networks in order to complete the green transition. Public transit managers in not just the laggard that is the US but also Germany and other relatively solid countries should make sure to study how things work in Scandinavia and how they can import Nordic success.

Growth and Environmentalism

I’ve been asked to write about the issue of growth versus no growth. This is in the context of planning, so broader questions of degrowth are not within this post’s main scope. Rather, it’s about whether planning for more growth is useful in combating pollution and greenhouse gas emissions. The answer is yes, though the reasoning is subtle. Smart growth is the key, and yet it’s not a straightforward question of transit construction and transit-oriented development helping the environment; it’s important to figure out what the baseline is, since a large urban apartment still emits more CO2 than the closets people end up living in in parts of San Francisco and New York.

The argument for growth specifically is that a high baseline level of growth is what enables smart growth and TOD policies. Vancouver’s secular increase in transit usage, and to a lesser extent the ongoing revival in Seattle and that of Washington in the 2000s, could not happen in a region with Midwestern population growth.

Smart growth vs. no growth

VTPI has many references to studies about smart growth here. The idea of smart growth is that through policies that encourage infill development and discourage sprawl, it’s possible to redirect the shape of urban areas in a greener direction. Here’s one specific VTPI paper making this comparison directly on PDF-p. 3.

Unfortunately, the reality is that there are at least three poles: in addition to sprawl and smart growth, there is no growth. And moreover, many of the bureaucratic rules intended to encourage smart growth, such as comprehensive zoning plans, in fact lead to no growth. The following table is a convenient summary of housing permitting rate vs. my qualitative impression of how smart the growth is.

The permitting rate is absolute, rather than relative to birth rates, immigration, and internal migration pressure as seen in average incomes. Tokyo’s permitting rate is similar to Vancouver’s – Tokyo Prefecture’s rate of 10 annual units per 1,000 people and so is Metro Vancouver’s, but Japan’s population is falling whereas Canada’s is rising. See also European rates linked here and American rates here.

The infill vs. sprawl dimension is qualitative, and combines how transit-oriented the construction is with whether the development is mostly in the city or in the suburbs. Berlin’s suburbs are shrinking due to the depopulation of East Germany, and growth in the suburbs of Tokyo and West Germany is weak as well, but city growth is going strong. Paris is building a lot of public transit and is very dense, but there’s more development per capita in the suburbs, and likewise in California most development is in exurbs rather than in central cities; Seattle is penalized for having bad transit, and Atlanta for having no transit, but in both there’s a lot more development in the city than in the suburbs. Stockholm and Vienna have growth all over and excellent public transit.

The significance of the diagram is that by the standards of European transit cities, California is not an example of smart growth, but of no growth.

Shaping growth

In the high-growth area of the diagram, the most interesting case is not Tokyo, but Vancouver and Seattle. In these cities, there is a transit revival. Metro Vancouver’s mode share went up from 13% in 1996 to 20% on the eve of the Evergreen extension’s opening. Moreover, for most of this period Vancouver saw car traffic decrease, despite high population growth. Metro Seattle’s transit revival is more recent but real, with the mode share rising from the “no transit” to “bad transit” category (it is 10% now).

Both cities invested heavily in transit, Vancouver much more so than Seattle, but it was specifically transit aimed at shaping growth. Before the Expo Line opened, Downtown had few skyscrapers, Metrotown did not yet exist, New Westminster had a low-rise city center, and the areas around Main Street-Science World, Joyce-Collingwood, and Edmonds were nonresidential and low-density. The combination of fast growth and rapid transit ensured that new development would add to transit ridership rather than to road traffic. Moreover, the strong transit spine and growing employment at transit-oriented centers meant existing residents could make use of the new network as well.

The same situation also exists in Europe, though not on the same transformative scale as in Vancouver, since the cities in question came into the new millennium with already high transit usage. Stockholm just opened a regional rail tunnel doubling cross-city capacity and is expanding its metro network in three directions. This program is not available to lower-growth cities. Berlin has grandiose plans for U-Bahn expansion and has even safeguarded routes, but it has no active plans to build anything beyond the U5-U55 connection and S21 – the city just isn’t growing enough.

Public transit without growth

By itself, growth is not necessary for the existence of a robust transit network. Vienna proper had more people on the eve of WW1 than it has today, though in the intervening generations there has been extensive housing construction, often publicly subsidized (“Red Vienna”), increasing the working class’s standard of living. However, in a modern auto-oriented city – say, anything in North America other than New York – it is essential.

This becomes clear if we look at the next tier of American cities in transit usage after New York, that is Chicago, San Francisco, Washington, and Boston. Washington is the odd one – it had a transit revival before the Metro collapse of this decade, and got there through TOD in choice locations like Arlington. The others inherited a prewar transit network and made some improvements (like the Transbay Tube replacing the Key System), but froze urban development in time. Essentially all postwar development in those cities has been sprawl. Chicago had big enough a core to maintain a strong city center, but outside the Loop the job geography is very sprawled out. Boston and the Bay Area sprouted suburban edge cities that became metonyms for their dominant industries, with a transit modal share of about 0%.

Chicago’s transportation situation is difficult. The city is losing population; some specific neighborhoods are desirable and some around them are gentrifying, but the most optimistic prognosis is that it’s akin to New York in the 1970s. If there’s no population to justify a public transit investment today, there won’t be the population to justify it tomorrow. Any investment has to rely on leveraging the city’s considerable legacy mainline network, potentially with strategic cut-and-cover tunneling to connect Metra lines to each other.

And if Chicago’s situation is difficult, that of poorer, smaller cities is most likely terminal. Detroit’s grandiose plans are for urban shrinkage, and even then they run into the problem that the most economically intact parts of the region are in low-density suburbs in Oakland County, where nobody is going to agree to abandonment; the shrinkage then intensifies sprawl by weakening the urban core. Even in European cities where the shrinkage is from the outside in, there’s no real hope for any kind of green revival. Chemnitz will never have rapid transit; its tram-train has 2.6 million annual passengers.

Idyll and environmentalism

The environmental movement has from the start had a strong sense of idyll. The conservationism that motivated John Muir and Teddy Roosevelt was about preserving exurban wilderness for rich adventurers to travel in. The green left of the 1960s dropped the explicit classism but substituted it for new prejudices, like the racism embedded in population control programs proposed by Westerners for the third world. Moreover, the romantic ideals of Roosevelt-era environmentalism transformed into small-is-beautiful romanticism. Even Jane Jacobs’ love for cities was tempered by a romanticism for old low-rise neighborhoods; she predicted the Upper West Side with its elevator buildings would never be attractive to the middle class.

But what’s idealized and what’s green are not always the same. Lord of the Rings has a strong WW1 allegory in which the hobbits (Tolkien) leave the Shire (the English Midlands) to go to war and come back to find it scoured by industrialization. But on the eve of WW1, Britain was already a coal-polluted hellscape. Per capita carbon emissions would remain the same until the 1970s and thence fall by half – and in the first three quarters of the 20th century the fuel source shifted from coal to oil, which is less polluting for the same carbon emissions. The era that Tolkien romanticized was one of periodic mass deaths from smog. The era in which he wrote was one in which public health efforts were undertaken to clean up the air.

Likewise, what passes for environmentalism in communities that openly oppose growth freezes the idyll of postwar America, where suburban roads were still uncongested and the middle class had midsize houses on large lots. But American greenhouse gas emissions per capita were the same in 1960 as today, and had been the same in good economic times going back to the eve of the Great Depression. Only centenarians remember any time in which Americans damaged the planet less than they do today, and “less” means 14 tons of CO2 per capita rather than 16.5.

The upshot is that in the developed world, environmentalism and conservation are opposing forces. Conservation means looking back to an era that had the same environmental problems as today, except often worse, and managed to be poorer on top of it all.

Growth and environmentalism

Strictly speaking, growth is not necessary to reduce emissions. The low-growth city could just as well close its road network, ban cars, and forbid people to use electricity or heating generated by fossil fuels – if they’re cold, they can put on sweaters. But in practice, low-emission developed countries got to be where they are today by channeling bouts of economic growth toward clean consumption of electricity as well as transportation. Regulatory coercion and taxes that inconvenience the middle class are both absolutely necessary to reduce emissions, and yet both are easier to swallow in areas that have new development that they can channel toward green consumption.

The environmentalist in the Parises and Stockholms has the easiest time. Those cities have functioning green economies. There are recalcitrant mostly right-wing voters who like driving and need to be forced to stop, but a lifestyle with essentially no greenhouse gas emissions except for air travel is normal across all socioeconomic classes. The Vancouvers are not there but could get there in a generation by ensuring future development reinforces high local density of jobs and residences. The pro-development policies of the Pacific Northwest are not in opposition to the region’s environmentalism but rather reinforce it, by giving green movements a future to look forward to.

The environmentalist in the Clevelands and Detroits has the hardest time. It’s even worse than in the Chemnitzes – Saxony may be a post-industrial wasteland with 10% fewer people now than it had in 1905, but it’s coming into the 21st century with German emissions rather than American ones. These are cities with American emissions and economies based substantially on producing polluting cars, propped by special government attention thanks to the American mythology of the Big Three.

But whereas the Rust Belt has genuine problems, NIMBYvilles’ low growth is entirely self-imposed. New York and Los Angeles have the same per capita metro housing growth as Detroit, but only because they choose stasis; where the price signal in Detroit screams at people to run away, that in New York and California screams to build more housing. Their political institutions decided to make it harder to build any green future not only for their current residents but also for tens of millions who’d like to move there.