Category: New York

New York is Shrinking

The US Census Bureau has just released 2019 population estimates by county. Metro New York, after slowly rising for decades more than making up the 1970s losses, went down by 60,000 people, or 0.3% of the population. The city is down 53,000 people.

Why?

The city chooses stagnation and ignorance. In the 1970s, the city was losing an average of 80,000 people per year, but the situation now is profoundly different. Incomes are up: the metro area’s per capita income as a proportion of the US average went from 126% in 1970 to 118% in 1980; but more recently it went from 135% in 2010-5 to 141% in 2018, the last year for which the BEA has data. Crime is down, the murder rate falling below the national average starting in 2013. Rent is up, sending a strong signal: more people want to live here.

But the entire political constellation of the city chooses not to grow. Housing growth is anemic, permits averaging around 21,000 per year in 2010-9, maybe 2.6 per 1,000 New York residents. It accelerated over the decade but not by much, reaching 26,500 in 2019, or 3.2/1,000. In the in-state suburbs, growth is even lower, less than 1 unit per 1,000 in each of Nassau, Suffolk, and Westchester Counties. New Jersey has somewhat higher growth rate, around 4/1,000, thanks to the Mount Laurel doctrine requiring high-cost municipalities to approve some affordable housing, which they typically do in the most out-of-the-way place they can find. The metro area overall approves about the same amount of housing as the city proper, around 2.5/1,000.

The most recent data I have for Korea is from the first half of 2019. In six months, Seoul, a shrinking city of 9.5 million, approved 38,000 dwellings, and the metro area writ large approved 129,000 on a population of about 26 million, an annualized rate of 10/1,000 (less in the city, more in the suburbs). This is a suburbanizing region, but suburbanization often means moving to a planned new town built on top of a subway or commuter rail line, like Ilsan, Bundang, and Anyang.

It’s not Tokyo that has high housing growth. It’s Tokyo, and Seoul, and to a lesser extent the metro area of Taipei (more suburbs than city proper), and Paris. In the presence of a strong economy and a state that doesn’t choose stagnation the way rich American regions choose with local empowerment, housing growth in a large city should be high, as more people want to move there to take advantage of its higher incomes and opportunities.

But New York chose differently. It chose stagnation and eventually decline. It chose to be expensive.

Why are they like this?

The US has an unusual system of governance, in which not only is there a separation of federal and state governments, as in Germany or Canada or Australia or Switzerland, but also the states delegate unusual powers to local governments. Education, policing, and housing are largely local responsibilities. Even when states do get involved, there is usually no partisan competition (most states are safe), leading to empowerment of local representatives on what are considered local issues, and even when there is people vote based on national issues.

But even that raises questions. For example, why do locals consider new development bad? Even YIMBY activists let NIMBYs whip them into thinking this way – they talk about sharing the burden, as if new buildings and new people are a burden that everyone must endure for some grand moral reason.

What if the reason people take it for granted that growth is bad is that the people who are most locally empowered are a specific anti-growth lobby? People who work for a living don’t have time to go to a citizen engagement meeting at 3 in the afternoon. They work and socialize with people from other neighborhoods, so they have little interest in neighborhood rags that report individual counts of parking spaces lost to a bus lane. They are far more interested in job growth than in hobby community gardens. A political system that requires very high levels of local social capital for one’s opinions to count will naturally undervalue their opinions and overvalue those of idle people and professional intermediaries.

The high levels of Covid-19 infection in New York are part of this system. The specific cause is not hyperlocalism, but rather the murky authority of the state. The city is plagued by the feud between Mayor de Blasio and Governor Cuomo. Both enjoy unlimited executive power, I think Cuomo more so than de Blasio. Both need it for their higher political aspirations. But neither can have it while the other exists as an independent political entity, nor is there a clear delineation of state and local authority. Thus, they are obligated to sabotage each other’s ideas, to the detriment of the city that has the misfortune to be governed by them. The entire West delayed its reaction to the virus, but New York especially so, as Cuomo and de Blasio tried denying each other credit.

Professional ignorance

I’ve been writing a lot about the role of incuriosity in high construction costs in the English-speaking world in general, and New York in particular – see for example this recent coronavirus-tainted piece, or this more random piece about Metro-North’s executives’ ignorance.

But this can apply more generally, as it did to the virus. Americans are quite provincial when it comes to the rest of the world, and New Yorkers especially so – go ahead, try telling a New Yorker that some other city does something better than New York. The out-of-town comparison, a powerful tool that places that view themselves as more peripheral (like Israel) use to correct errors, dos not work in a place like New York. New York literally made the collective decision to die and not to learn from the rest of the world. Mass death is not making New Yorkers demand the immediate removal of their mass manslaughterers who are their governor and mayor; why would a dip in population?

Part of it is related to local empowerment. Acquiring local social capital comes at the expense of worldliness; those years one spends learning foreign languages, living abroad, and socializing with foreigners are dead years for most political ambitions, including all ambitions that start locally.

But an even greater part of it is that New York self-perceives as the center of the world, which is not true elsewhere. Korea self-flagellates all the time: about its legal system (it adopted a limited jury system in 2009), about its engineering (see e.g. here), about its elevated air pollution levels (it’s adopting EU standards). The United States instead views all variations with the rest of the world as evidence of America’s unique greatness, and New York does the same both internationally and domestically. The city brims with immigrants, and yet it tells them, your home country is deficient and you must become a real New Yorker, that is someone whose world does not extend past city limits, to be a whole person. Until that changes, the government of New York will remain managed by dregs and incompetents and housing, transportation, and as we see health care will earn the mockery of other big first-world cities.

This is not World War Two

Entrenched hierarchies do not like outside criticism, especially when it’s right. They fight off knowledge that they don’t have or can’t control. In a business setting, the main way out is to found a competing company and drive the one that won’t change out of business. But when it’s not possible, the way out involves a massive crisis – something like a total war, in which people can rapidly rise through the ranks through demonstrating success in battle.

I bring this up because the coronavirus crisis in not such a total war. Branko Milanovic compares it with World War Two, contrasting economists who view it purely as an economic crisis akin to the 2008 crisis or the Depression. That comparison is apt when it comes to looking at non-economic aspects of it, namely the need to centrally plan a public health response. But the scale of the crisis is much smaller, it seems. The rich countries of Asia are emerging only somewhat battered, and even in the West some places seem to be over the hump judging by growth rates in the last few days, especially the Nordic countries but possibly also France. This isn’t the next Spanish Flu, a crisis so big that it would force Westerners to reckon with the fact that the West needs to learn from other places. Even in the United States, where things look worse, the solipsistic population looks for internal comparisons (e.g. between blue and red states) more than international ones, let alone international ones with Asia.

A small crisis is not going to nudge the hierarchy in a more open direction. I see this often in public transportation – institutions that feel embattled respond by entrenching and refusing any reform. The standard excuse is “we’re too busy fighting fires,” often by people that fires seem to erupt around regularly. The virus seems to have the same effect so far – less openness, less sanity checking proposals by looking at what works elsewhere, more digging in around traditional social hierarchies.

American nationalists are saber-rattling with the Chinese government, as in the “Chinese virus” dysphemism and Tom Cotton’s blaming the entire death toll on the PRC. But they still do this on the usual American terms, that is without any assurance that Taiwan is a success story to learn from, or even South Korea and Japan, two American allies that unlike Taiwan the US formally recognizes. If a virus that demonstrates to starkly that Taiwan governs itself better than the PRC won’t get American nationalists to start speaking favorably of Taiwan, what will? To people like Cotton, a crisis is a perfect time to proclaim American superiority, no matter what reality is.

Domestically, too, the American response seems to be to repeat old wives’ tales – for example, traditional American hostility to big cities. Governor Andrew Cuomo went as far as saying that New York is too dense; Seoul, a bigger and denser city, has 700 infections as of 2020-3-22 out of a metro population of 26 million, maybe a factor of 20 better than New York. But he’s the governor and he keeps giving speeches and appearing on television, and a few hundred and even a few thousand dead New Yorkers is not enough to make people ask questions about his and Mayor Bill de Blasio’s squabbling. After all, when nearly 3,000 New Yorkers died on 9/11, few asked why Mayor Rudy Giuliani had put the city’s anti-terrorism response center at World Trade Center against the advice of security experts who pointed out the Twin Towers were a likely target; 9/11’s effect on Giuliani’s popularity was an unmixed blessing.

In an environment in which more national pundits say Cuomo is looking presidential than say he should resign in disgrace, it’s unlikely the crisis will lead Americans in a more open direction. The magnitude of the crisis isn’t enough to create a new crop of leaders. It’s a good thing in the sense that the death toll will not be apocalyptic, but it just underscores what I mean when I say this isn’t World War Two.

Budget-cutting administrations, demanding reform before revenue, have not produced any reform. American state building stalled in the middle of the 20th century when various white middle-class interests realized localism could protect them from too much racial and economic equality. Then around the 1980s and 90s it went into reverse, with a continued assault on state capacity through public-private partnerships, outsourcing planning to consultants, and impositions of managers whose experience was in the private sector in unrelated industries. American construction costs were already high beforehand, but in Canada and Singapore, both of which seem to have had the same trend, costs exploded in the 2000s and 2010s.

The question remains: how come the reform-before-revenue mentality never produced any reform?

I bring this up because I believe the answer is the same as what we are seeing right now with the response to the coronavirus crisis. Budget-cutting or timid politicians are not an existential crisis to the civil service. They can scare off ambitious people the way Cuomo ran Andy Byford out of New York City Transit leadership; they can create a hostile work environment; they can force managers to contend with scarcity; they can force the unions to agree to wage reductions for entering workers. But they do not have the power to close entire departments, to stop running schools or public transportation or firefighting entirely, and the managers and workers both know this.

Just as the Covid-19 crisis is not World War Two, all attempts at privatizing the state in the Anglosphere have amounted to much less than a total war of extermination. It’s a cold war. Like the original Cold War, it has the same stupefying effect as a hot war – hierarchs are all too happy to be unaccountable to the broad public and to pretend their cloak-and-dagger politics achieve any results. Unlike a hot war, it is too low-intensity for people who disagree with the hierarchy but are right to demonstrate competence – nor is the other side going to be destroyed at the end.

The construction cost crisis in the United States, particularly New York, might actually be a big enough crisis to have the same effect on the established order as a total war. It’s unclear, but before the virus came to the United States, there was a lot of genuine interest in making things better, though not in every city.

I suspect the mechanism for costs is that they are so high that there must be a significant enough reduction to make a career without screwing some politically necessary constituency. I don’t know; I don’t yet know the drivers of high New York costs in sufficient detail. But the magnitude and breadth of the problem point to many different explanations each increasing costs by a significant but not apocalyptic amount. Moreover, the fact that there must be many causes seems to be accepted in the local political ecosystem. Thus, people can afford to make reforms, perhaps focusing on the politically low-hanging fruits.

This is less cynical than it may sound. A small success story, such as if Ned Lamont had figured out a way to build 30-30-30 or if the MTA manages to noticeably reduce the cost of some project, creates a visible trail of success, creating more pressure to keep the reforms. Nothing succeeds like success.

A New York that can build subways even at $300 million per kilometer, let alone $100 million per kilometer, and builds housing at a pace befitting a rich global city with considerable immigration, is a completely different place from the failed city that it is today. That New York is a dynamic, rapidly growing city in which there is far more kvetching about how it’s sucking in jobs and people from more static places than kvetching about how it’s exporting jobs and people to cheaper places. I’m using analogy here because low costs by themselves do not protect a city from disease (Italy and Switzerland both have low costs and high coronavirus infection levels), but the same kind of public-sector resurgence can presumably be done for public health, ensuring New York will respond to the next pandemic like Seoul or Tokyo or Taipei.

Empire State High- and Low-Speed Rail

If Swiss planners were hired to design an intercity rail network for New York State, they might propose something that looks like this:

The trip times depicted on the map are a few minutes longer than intended, especially next to a terminus station like Niagara Falls, Watertown, and Ithaca. The depicted times are inclusive of turnaround time: the 45-minute Buffalo-Niagara Falls line is intended to take around 35 minutes in actual service, with 10-minute turnarounds.

Swiss planning is based on hourly and half-hourly timetables repeating all day on a clockface pattern: if a train leaves your station at 8:24 am, a train will leave your station at xx:24 all day, and if the line runs every half hour then also at xx:54. Moreover, at major nodes, trains are timetabled to arrive a few minutes before the hour and depart a few minutes after, letting passengers connect between different trains with minimal wait. To minimize transfer time and turn time, trains run as fast as necessary – that is, the state invests in higher-speed lines to ensure connections between major cities take a few minutes less than an hour. The Bahn 2000 program set up connections between Zurich, Basel, and Bern taking just less than an hour, with a few further connections elsewhere taking just less than an integer number of half-hours; the Bahn 2030 program aims to do the same with more cities all over the country.

The above map is an adaptation of the concept to New York State. I hope the explanation of how to adapt Switzerland to New York will be of interest to rail advocates elsewhere – the differences between the two geographies matter elsewhere, for example in Germany, France, or Sweden, or for that matter in California or New England.

High-speed rail

There is no high-speed rail in Switzerland, unless one counts the mixed passenger and freight rail tunnels through the Alps, which allow 250 km/h passenger trains. The Bahn 2030 planning calls for a 2-hour trip time between Zurich and Lugano, a distance of about 170 km, even with heavy tunneling under all significant mountains; with so much tunneling, 1.5-hour trips are easy and even 1-hour trips are feasible with a bypass around Zug. Clearly, even when higher speeds are allowed, Swiss planning sticks to low- and medium-speed rail, targeting an average speed of about 120 km/h.

This works for Switzerland, a small country in which even Geneva is only 2:45 from Zurich. In New York, it does not. At the speed of upgraded legacy rail, comparable to the Northeast Corridor, the links on the above map along the high-speed spine would take 2 hours each rather than an hour. New York-Buffalo trains would take 6 hours, too long for most travelers, and New York-Rochester would take 5 hours, which is marginal at best. Trains doing New York-Albany in 2 hours could get fairly popular, but even that is long enough that cutting it to just less than an hour is feasible.

Frequency

Trains are to run every half hour, with the exception of urban lines, namely Buffalo-Niagara Falls, Albany-Troy-Mechanicsville, and Utica-Rome, which run every 15 minutes. The reason for the half-hourly frequency is that all lines need it for either capacity or ridership. The lines either run to New York, which is so big it can easily fill a train every half hour and perhaps even every 15 minutes, or are quite short, so that running only every hour reduces ridership and it’s better to run shorter trains every 30 minutes.

With half-hourly timetables, a stub-end line can take an integer number of quarter-hours and not just half-hours. For example, Syracuse and Albany should have a pulse at :00 and :30 every hour. This in turn means that trains from Albany to Glens Falls can take 1:15, departing Albany just after :00 and :30, arriving at Glens Falls just before :15 and :45, turning back toward Albany just after :15 and :45, and then returning to Albany just before :00 and :30.

The only worry with quarter-hour trip times is that every cycle must sum up to an integer number of half-hours, not quarter-hours. Otherwise, some connections are broken, offset by 15 minutes. Thankfully, the only cycle on this map is New York-Albany-Syracuse-Binghamton-New York, which takes 7 hours.

Syracuse regional rail

Syracuse is depicted as having the most expansive regional rail network in the state, despite being the smallest of Upstate New York’s four major metropolitan areas. The reason is that the goal of the planned network is to provide intercity rather than local service. Rochester has some useful urban lines, for example to Freeport or northwest to the lakefront, but they are so short that they should run every 10 or 15 minutes and not every half hour. However, Rochester has no significant independent towns within an hour or so by rail, and thus there are no timed connections there. In contrast, Syracuse is located right between Watertown, Oswego, Auburn, and Cortland with its connection onward to Ithaca.

The Syracuse system is intended to be fully on the RegionalBahn side of the S-Bahn vs. RegionalBahn divide. The shared segment between Syracuse and the split between the lines to Oswego and Watertown is not meant to overlay to run frequent urban service. Instead, trains should tailgate, followed by a gap of nearly half an hour. Syracuse-bound trains may well call at Liverpool at :20 and :22, arriving at Syracuse at :25 and :27 to exchange passengers with other trains and then continue south, one of Oswego and Watertown paired with Cortland and Binghamton and the other terminating. If north-south S-Bahn service is desired, trains should be slotted in between the intercity trains.

New lines

The map depicts greenfield alignments for the high-speed line except on the approaches to New York and Toronto, and legacy alignments for the low-speed lines.

As in Switzerland, the low-speed lines do not necessarily slavishly adhere to legacy alignments. However, the deviations are not the same. Switzerland uses bypasses and tunnels to speed lines up. In New York, the main mechanisms to speed up lines are electrification, track renewal, and higher superelevation. Tunnels are too expensive for the population density of Upstate New York. I can see some bypasses, potentially getting Syracuse-Cortland and Cortland-Binghamton down to 30 minutes each, but none of the Upstate cities off the high-speed line is big enough to justify major civil works.

The one depicted bypass on a blue-colored line is the use of the Boonton Branch in New Jersey to offer an express bypass around the Morristown Line with its dense station spacing. This requires some additional tracks on busy urban regional lines as well as a short tunnel in Paterson, but New York is big enough that investing in faster service to Dover, Delaware Water Gap, and Scranton is worth it.

Upstate, the important deviations involve restoring old tracks, including between Cortland and Ithaca and within some town centers. Corning and Glens Falls both have disused rail alignments serving their centers better than the existing freight lines. But most importantly, Syracuse has an underused freeway running east-west through its center, which I am assuming replaced with a rail line. This is not a new idea – Syracuse is already removing a branch of the freeway, which should be used for a rail connection toward Binghamton, and even the mainline is a vestige of when midcentury planners thought Upstate cities would keep growing. The current Syracuse station is at an inconvenient location, making rail realignment a good use of the right-of-way.

Onward connections

New York State is much more integrated with its neighbors than Switzerland – it’s all the same country. There is extensive interstate travel, and rail planning must accommodate this. Forget the Deutschlandtakt – an Americatakt would be the most complex rail plan in a developed country out of sheer size. Thankfully, the connections depicted on the New York State plan accommodate interstate travel fairly well.

Going east, there are connections to Vermont, Massachusetts, and Connecticut. Albany-Boston can be done in around an hour, which makes for a half-hour takt connection between Albany and Springfield and 45 minutes minus turnaround between Springfield and Boston. Springfield-New Haven is 30 minutes by high-speed rail or 45 minutes by fast legacy rail, both with a stop at Hartford and few to no others; Springfield can then get its own small regional rail line toward Northampton (with some urban overlays for an S-Bahn) and Greenfield. Vermont can get a slow line to Rutland, and/or a fast line to Burlington continuing to Montreal; thence New York-Montreal and Boston-Toronto trains can be timed to connect at Albany, with New York-Toronto trains slotted in between, timed to connect only to the more frequent urban lines like Buffalo-Niagara Falls.

Going south, New York is separated from Pennsylvania by the northern reach of the Appalachians, called the Southern Tier in New York and the Northern Tier in Pennsylvania. This area had many coal mines in the 19th century and as a result has many legacy rail lines, but they are curvy and connect villages. But Scranton is a significant city on a nice line with Allentown and Philadelphia; unfortunately, the Philadelphia-Allentown line stretches via Reading and the Allentown-Scranton line is hilly and curvy, justifying some greenfield construction with some tunneling near the northern end.

Finally, going west, the I-90 route serves Erie and the Midwest. But this is a plausible high-speed rail connection toward Chicago, and so no low-speed interface is needed within the state. Erie could get a line to Youngstown and Pittsburgh, but it would be slower than connecting between high-speed trains in Cleveland; the largest city between Erie and Youngstown is Meadsville, population 13,000.

Costs

The cost of the high-speed spine is considerable, but if New York can keep it to the level of France (around $25 million/km), or even Germany (around $35 million/km), the benefits should exceed the costs. New York is huge, and even though nothing in Upstate New York is, the combined populations of Syracuse, Rochester, and Buffalo would add up to a big French or German city. And then there is Toronto at the other end, anchoring everything.

The low-speed lines should be quite cheap. Track renewal in Germany is around $1 million per single-track kilometer; at the frequency envisioned, all the low-speed lines can stay single-track with passing segments. Electrification is maybe $1.5 million per kilometer in Israel, despite a lawsuit that delayed the project by three years.

Is this feasible?

Technically, all of this is feasible. Good transit advocates in the Northeastern United States should push elected officials at the federal and state levels to quickly plan such a system and aim to begin construction early this decade. Bahn 2000 was supposed to take the 1990s to be built, but was delayed to 2004; this is a bigger program but can still happen by 2030 or so.

The trip times, frequencies, and coverage chosen for the map are deliberately conservative. It’s possible to squeeze higher speed at places, and add more branches to smaller towns, like Rochester-Niagara Falls or Buffalo-Jamestown. Bahn 2000 is followed up with Bahn 2030 or Bahn 2035, and likewise rail improvements can accrete in the United States. But as a starter system, this is a solid network connecting all large and nearly all small cities in New York State to one another with maximum convenience and minimum hassle. I hope state planners take heed and plan to invest soon.

Transfers from Infrequent to Frequent Vehicles

Imagine yourself taking a train somewhere, and imagine the train is big and infrequent. Let’s say it’s the commuter train from New York down the Northeast Corridor to Newark Airport, or perhaps a low-cost OuiGo TGV from Lyon to Paris. Now imagine that you change trains to a small, frequent train, like the AirTrain to Newark Airport, or the RER from the OuiGo stop in the suburbs to Paris itself. What do you think happens?

If your guess is “the train I’m connecting to will be overcrowded,” you are correct. Only a minority of a 200 meter long New Jersey Transit train’s ridership unloads at the Newark Airport station, but this minority is substantial enough to overwhelm the connection to the short AirTrain to the terminals. Normally, the AirTrain operates well below capacity. It uses driverless technology to run small vehicles every 3 minutes, which is more than enough for how many people connect between terminals or go to New York by train. But when a big train that runs every 20-30 minutes arrives, a quantity of passengers who would be easily accommodated if they arrived over 20 minutes all make their way to the monorail at once.

In Paris, the situation is similar, but the details differ. Until recently, OuiGo did not serve Paris at the usual terminal of Gare de Lyon but rather at an outlying station near Eurodisney, Marne-la-Vallée-Chessy, ostensibly to save money by avoiding the Gare de Lyon throat, in reality to immiserate passengers who don’t pay full TGV fare. There, passengers would connect from a 400-meter bilevel TGV on which the entire train ridership would get off to a 220-meter bilevel RER train running every 10 minutes. The worst congestion wasn’t even on the RER itself, but at the ticket machines: enough of the thousand passengers did not have Navigo monthly cards for the RER that long lines formed at the ticket machines, adding 20 minutes to the trip. With the RER connection and the line, the trips would be nearly 3.5 hours, 2 spent on the high-speed train and 1.5 at the Paris end.

I even saw something similar in Shanghai in 2009. I visited Jiaxing, an hour away at the time by train, and when I came back, a mass of people without the Shanghai Public Transportation Card overwhelmed the one working Shanghai Metro ticketing machine. There were three machines at the entrance, but two were out of service. With the 20 minutes of standing in line, I would have gotten back to my hotel faster if I’d walked.

This is a serious problem – the ticketing machine lines alone can add 20 minutes to an otherwise 2.5-hour door-to-door trip. To avoid this problem, railroads and transit agencies need a kit with a number of distinct tools, appropriate for different circumstances.

Run trains more frequently

Commuter trains have to run frequently enough to be useful for short-distance trips. If the RER A consistently fills a train every 10 minutes off-peak between Paris and Marne-la-Vallée, New Jersey Transit can consistently fill a local train every 10 minutes off-peak between Manhattan and New Brunswick. Extra frequency induces extra ridership, but fewer people are going to get off at the Newark Airport stop per train if trains run more often. There are some places where adding frequency induces extra ridership proportionately to the extra service, or even more, but they tend to be shorter-range traffic, for example between Newark and Elizabeth or between Newark and New York.

This tool is useful for urban, suburban, and regional service. A train over a 20 kilometer distance can run frequently enough that transfers to more frequent shuttles are not a problem. Even today, this is mostly a problem with airport connectors, because it’s otherwise uncommon for outlying services to run very frequently. The one non-airport example I am familiar with is in Boston on the Mattapan High-Speed Line, a light rail line that runs every 5 minutes, connecting Mattapan with Ashmont, the terminus of the Red Line subway, on a branch that runs every 8-9 minutes at rush hour and every 12-15 off-peak.

In contrast, this tool is less useful for intercity trains. France should be running TGVs more frequently off-peak, but this means every half hour, not every 10 minutes. The only long-distance European corridors that have any business running an intercity train every 10 minutes are Berlin-Hanover(-Dortmund) and Frankfurt-Cologne, and in both cases it comes from interlining many different branches connecting huge metropolitan areas onto a single trunk.

Eliminate unnecessary transfers

The problem only occurs if there is a transfer to begin with. In some cases, it is feasible to eliminate the transfer and offer a direct trip. SNCF has gradually shifted OuiGo traffic from suburban stations like Marne-la-Vallée and Massy to the regular urban terminals; nowadays, five daily OuiGo trains go from Lyon to Gare de Lyon and only two go to Marne-la-Vallée.

Gare de Lyon is few people’s final destination, but at a major urban station with multiple Métro and RER connections, the infrastructure can handle large crowds better. In that case, the transfer isn’t really from an infrequent vehicle, because a TGV, TER, or Transilien train unloads at Gare de Lyon every few minutes at rush hour. The Métro is still more frequent, but at the resolution of a mainline train every 5 minutes versus a Métro Line 1 or 14 train every 1.5 minutes, this is a non-issue: for one, passengers can easily take 5 minutes just to walk from the far end of the train to the concourse, so effectively they arrive at the Métro at a uniform rate rather than in a short burst.

Of note, Shanghai did this before the high-speed trains opened: the trains served Shanghai Railway Station. The capacity problems occurred mostly because two out of three ticketing machines were broken, a problem that plagued the Shanghai Metro in 2009. Perhaps things are better now, a decade of fast economic growth later; they certainly are better in all first-world cities I’ve taken trains in.

Eliminating unnecessary transfers is also relevant to two urban cases mentioned above: airport people movers, and the Mattapan High-Speed Line. Airport connectors are better when people do not need to take a landside people mover but rather can walk directly from the train station to the terminal. Direct service is more convenient in general, but this is especially true of airport connectors. Tourists are less familiar with the city and may be less willing to transfer; all passengers, tourists and locals, are likely to be traveling with luggage. The upshot is that if an airport connector can be done as an extension of a subway, light rail, or regional rail line, it should; positive examples include the Piccadilly line and soon to be Crossrail in London, the RER B in Paris, and the S-Bahn in Zurich.

The Mattapan High-Speed Line’s peculiar situation as an isolated tramway has likewise led to calls for eliminating the forced transfer. Forces at the MBTA that don’t like providing train service have proposed downgrading it to a bus; forces within the region that do have instead proposed making the necessary investments to turn it into an extension of the Red Line.

Simplify transfer interfaces

The capacity problem at the transfer from an infrequent service to a frequent one is not just inside the frequent but small vehicle, but also at the transfer interface. Permitting a gentler interface can go a long way toward solving the problem.

First, tear down the faregates. There should not be fare barriers between different public transport services, especially not ones where congestion at the transfer point can be expected. Even when everything else is done right, people can overwhelm the gates, as at the Newark Airport train station. The lines aren’t long, but they are stressful. Every mistake (say, if my ticket is invalid, or if someone else tries to ask the stressed station agent a question) slows down a large crowd of people.

And second, sell combined tickets. Intercity train tickets in Germany offer the option of bundling a single-ride city ticket at the destination for the usual price; for the benefit of visitors, this should be expanded to include a bundled multi-ride ticket or short-term pass. New Jersey Transit sells through-tickets to the airport that include the AirTrain transfer, and so there is no congestion at the ticketing machines, only at the faregates and on the train itself.

Both of these options require better integration between different service providers. That said, such integration is clearly possible – New Jersey Transit and Port Authority manage it despite having poor fare and schedule integration elsewhere. In France in particular, there exist sociétés de transport functioning like German Verkehrsverbünde in coordinating regional fares; SNCF and RATP have a long history of managing somehow to work together in and around Paris, so combined TGV + RER tickets, ideally with some kind of mechanism to avoid forcing visitors to deal with the cumbersome process of getting a Navigo pass, should not be a problem.

Cops on Public Transportation

I wrote a post about American moral panics about fare evasion two months ago, which was mirrored on Streetsblog. I made a mistake in that post that I’d like to correct – and yet the correction itself showcases something interesting about why there are armed police on trains. In talking about BART’s unique belts-and-suspenders system combining faregates with proof-of-payment fare inspections, I complained that BART uses armed police to conduct inspections, where the German-speaking world happily uses unarmed civilians. BART wrote me back to correct me – the inspections are done by unarmed civilians, called ambassadors. The armed cops on the trains are unrelated.

I’d have talked about my error earlier, but I got the correction at the end of November. The American Christmas season begins around Thanksgiving and ends after Sylvester, and in this period both labor productivity and news readership plummet; leave it to Americans to have five weeks a year of low productivity without giving workers those five weeks in vacation time. With that error out of the way – again, BART conducts inspections with unarmed ambassadors, not armed cops – it’s worth talking about why, then, there are armed cops on trains at all, and what it means for fare enforcement.

The answer to the “why armed cops on the train?” question is that among the broad American public, the police is popular. There are hefty differences by party identification, and in the Bay Area, the opinions of Republicans are mostly irrelevant, but even among Democrats; there are also hefty differences by race, but blacks are at their most anti-police divided on the issue. A Pew poll about trust in institutions asks a variety of questions about the police, none of which is “would you like to see more cops patrol the subway?”, but the crosstabs really don’t scream “no.” Vox cites a poll by Civis Analytics that directly asks about hiring more police officers, and even among black people the results are 60-18 in favor. In New York, NYPD Commissioner James O’Neill had positive net approval among all racial groups shortly before leaving office, the lowest rate being 43-28 among Hispanics.

The crosstabs only go so far, and it’s likely that among certain subgroups the police is much less popular, for example black millennials. It’s normal for a popular institution to still generate intense opposition from specific demographic, class-based, or ideological groups, and it’s even normal for a popular institution to be bad; I should know, Massachusetts’ Charlie Baker is one of America’s most popular governors and yet his do-nothing approach to infrastructure planning makes him unpopular at TransitMatters. But this doesn’t change the fact that, as a positive rather than normative statement, the police enjoys consensus support from the urban American public.

What this means is that there are cops on the subway in New York and on BART not because of an inherent necessity of the fare collection system, but because in the eyes of the people who run these systems, crime is a serious concern and having more cops around is the solution. Evidently, BART layers cops on top of two distinct fare enforcement mechanisms – fare barriers and the ambassadors. In New York, too, NYPD’s justification for arresting people for jumping the turnstiles is that a significant fraction of them have outstanding warrants (many of which are about low-level offenses like being behind on court payments).

I bring this up because there’s a growing argument on the American left that public transportation should be free because that way people won’t be arrested for fare-dodging. This argument slides in an assumption, all too common to socialists who are to the left of the mainline liberal or social democratic party, that there is a leftist majority among the public that is just waiting to be activated by a charismatic leader rejecting neoliberal or otherwise moderate political assumptions.

But in the real world, there is no such leftist majority. The median voter even in a very left-wing area like New York or San Francisco may not support the more violent aspects of tough-on-crime politics, but is mostly okay with more police presence. The average self-identified leftist may be more worried that having police patrols will lead to more brutality than that not having them will lead to more crime, but the average self-identified leftist is not the average voter even in the Bay Area.

In this reality, there are cops on the subway because a lot of people worry about crime on the subway and want to see more police presence. The cops themselves, who are well to the right of the average voter pretty much anywhere, may justify this in terms of fare beating, but what matters is what voters near the median think, and they worry about ordinary property and violent crime. Those worries may well be unfounded – for one, New York is very safe nowadays and has been getting steadily safer, so the recent binge of hiring more cops to patrol the subway is a waste of money – but so long as voters have them, there will be police patrols.

The upshot is twofold. First, fare enforcement and the politics of criminal justice have very little to do with each other. Cops patrol crowded public spaces that require payment to enter, like the subway, as they do crowded public spaces that do not, like city squares. If public transportation fares are abolished, cops will likely keep patrolling subway stations, just as they patrol pieces of transportation infrastructure that are fare-free, like the concourses of major train stations.

If the left succeeds in persuading more people that the police is hostile to their interests and the city is better off with less public police presence, then cops will not patrol either the subway or most city squares. In the future, this is not outside the realm of possibility – in fifteen years the popularity of same-sex marriage in the US went from about 2-to-1 against to 2-to-1 in favor, and the trend in other democracies is broadly similar. But in New York and San Francisco in 2020, this is not the situation.

And second, fare enforcement can be conducted with unarmed inspectors regardless of the political environment. Multiple Americans who express fear of crime have told me that inspections have to be done with armed police, because fare beaters are so dangerous they would never submit to an unarmed inspector. And yet, even in San Francisco, where a large fraction of the middle class is worried about being robbed, inspections are done without weapons.

I’ve recurrently told American cities to tear down the faregates. BART’s belts-and-suspenders fare enforcement is unnecessary, borne of a panic rather than of any calculation of costs and benefits to the system. But what BART should get rid of is not the ambassadors, but the faregates. The most successful transit city the rough size of San Francisco – Berlin – has no faregates and leaves most stations unstaffed to reduce costs. Berlin encourages compliance by making it easier to follow the law, for example by offering cheap monthly passes, rather than by hitting passengers in the face with head-level fare barriers.

If cops patrol the subway because most voters and most riders would prefer it this way, then there is no need to connect the politics of policing with the technical question of what the most efficient way to collect fares is. There is a clear best practice for the latter, and it does not involve faregates in a rapid transit system with fewer than multiple billions of annual riders. What the police does is a separate question, one that there is no reason to connect with how to raise money for good public transportation.

The Different Travel Markets for Regional Rail

At a meeting with other TransitMatters people, I had to explain various distinctions in what is called in American parlance regional rail or commuter rail. A few months ago I wrote about the distinction between S-Bahn and RegionalBahn, but made it clear that this distinction was about two different things: S-Bahns are shorter-distance and more urban than RegionalBahns, but they’re also more about service in a contiguous built-up area whereas RegionalBahns have the characteristics of interregional service. In this post I’d like to explore the different travel markets for regional rail not as a single spectrum between urban and long-range service, but rather as two distinct factors, one about urbanity or distance and one about whether the line connects independent centers (“interregional”) or a monocentric urban blob (“intraregional”).

This distinction represents a two-dimensional spectrum, but for simplicity, let’s start with a 2*2 table, so ubiquitous from the world of consulting:

Connection \ Range Short Long
Intraregional Urban rail, S-Bahn Big-city suburban rail
Interregional Polycentric regional rail RegionalBahn

The notions of mono- and polycentricity are relative. Downtown Providence, Newark, and San Jose all have around 60,000 jobs in 5 km^2. But Caltrain and the Providence Line are both firmly in the RegionalBahn category, the other end being Downtown San Francisco or Boston, 70-80 km away with 300,000-400,000 jobs in 5-6 km^2. Newark, in an essentially contiguous urban area with New York, 16 km from Midtown and its 1.2 million jobs in 6 km^2, is relatively weaker and does not fit into the interregional category; a New York-Newark line is an S-Bahn.

Size matters

On the 2*2 table, the appellations “big-city” and “polycentric” are necessary. This is because longer-range rail lines are likelier to get out of the city and its immediate suburbs and connect to independent urban centers. Exceptions mostly concern the size of the primary urban cluster. If it is large, like New York, it can cast a shadow for tens of kilometers in each direction: commuter volumes are high from deep into Long Island, as far up the Northeast Corridor as Westport, as far up the Hudson as northern Westchester, and so on. In Paris, I wouldn’t be comfortable describing any of the RER and Transilien lines as RegionalBahn. In London, the closest independent cities of reasonable size are Cambridge, Brighton, Oxford, and Portsmouth, the first two about 80 km away and the last two about 100.

Tokyo, about as big as New York and London combined, casts an even longer shadow. In my post on S-Bahns and RegionalBahns I called some of its outer regional rail branches RegionalBahn, giving the examples like the Chuo Line past Tachikawa. But even that line is not really interregional in any meaningful way. It stays within the Tokyo prefecture as far as Takao, 53 km from Tokyo Station, and commuter service continues until Otsuki at kp 88, but everything along the line is bedroom communities for Tokyo or outright rural. The branching and short-turns at Tachikawa mean that the Chuo Line through Tachikawa is a long S-Bahn, and past Tachikawa is really a suburban commuter line too long to be an S-Bahn but too monocentric and peaky to be Regionalbahn (the peak-to-base frequency ratio is about 2:1, whereas German RegionalBahn is more commonly 1:1).

At the other end, we can have regional rail that is short-range but connects two distinct centers. This occurs when relatively small cities are in proximity to each other. In a modern first-world economy, these cities would form a polycentric region, like the Rhine-Ruhr or Randstad. Smaller regions with these characteristics include the Research Triangle, where relatively equal-size Raleigh and Durham are 40 rail kilometers apart, and Nord, where Lille is 30-50 km from cities like Douai and Valenciennes. This may even occur in a region with a strong primary center, if the secondary center is strong enough, as is the case for Winterthur, 28 km from Zurich, which has Switzerland’s fourth highest rail ridership.

Size is measured in kilometers, not people. Stockholm is a medium-size city region, but Stockholm-Uppsala is firmly within RegionalBahn territory, as the two cities are 66 km apart. Randstad’s major cities are all closer to each other – Amsterdam-Rotterdam is about 60 km – and that’s a region of 8 million, not 3 million like Stockholm and the remainder of Uppland and Södermanland.

The issue of frequency

The importance of the 2*2 table is that distance and urban contiguity have opposite effects on frequency: high frequency is more important on short lines than on long lines, and matching off-peak frequency to peak frequency is more important on interregional than intraregional lines.

Jarrett Walker likes to say that frequency is freedom, but what frequency counts as freedom depends on how long passengers are expected to travel on the line. Frequency matters insofar as it affects door-to-door travel time including wait time, so it really ought to be measured as a fraction of in-vehicle travel time rather than as an absolute number. An urban bus with an average passenger trip time of 15 minutes should run every 5 minutes or not much longer; if it runs every half hour, it might as well not exist, unless it exists for timed connections to longer-range destinations. But an intercity rail line where major cities are 2 hours apart can easily run every half hour or even every hour.

The effect of regional contiguity is more subtle. The issue here is that an intraregional line is likely to be used mostly by commuters at the less dense end. The effect of distance can obscure this, but within a large urban area, a 45-minute train will be full of commuters traveling to the primary city in the morning and back to the suburbs in the afternoon or evening; the same train between two distinct cities, like Boston and Providence, will not have so many commuters. In contrast, the same 45-minute trip will get much more reverse-commute travel and slightly more non-commute travel if it connects two distinct cities, because the secondary city is likelier to have destinations that attract travelers.

In no case are the extreme peak-to-base ratios of American commuter lines justifiable. Lines with tidal commuter flows can run 2:1 peak-to-base ratios, as is common in Tokyo, but much larger ratios waste capacity. The marginal cost of service between the morning and afternoon peaks is so low until it matches peak service that having less midday than peak service at all is only justifiable in very peaky environments. The 45-minute suburbs of New York, Tokyo, and other huge cities can all live with a 2:1 ratio, but other lines should have lower ratios, and interregional lines should have a 1:1 ratio.

The implication is that just as peak-to-base ratios going as high as 2:1 are acceptable for long-range intraregional lines, short-range interregional lines must run a constant, high frequency all day. I would groan at the thought of even half-hourly frequency on a 40-km interregional line; the worst I’m comfortable with is 15-20 minutes all day. Of note, such lines are necessarily pretty fast, since by assumption they make few intermediate stops to speed up travel between the two main cities – if there are significant cities in the middle then the lines connect even shorter-range cities and should be even more frequent.

Urban, suburban, intercity

Individual lines may have the characteristics of multiple variants of regional rail. They pass through urban neighborhoods on their way to outlying areas, which may be suburbs or independent cities; they may also pass through multiple kinds of independent areas.

In practice, in big cities this leads to three tiers on the same line: urban at the inner end, suburban at the middle end, interregional at the outer end. Inversions, in which there are independent cities and then suburbs, are possible but extremely rare – I can’t think of any in Paris, London, or New York, and arguably only three in Tokyo (Chiba, Saitama, Yokohama); fundamentally, if there are suburbs of the primary city beyond your municipality, then your municipality is likely to itself be popular as a suburb of the primary city.

That regional lines have these three tiers of demand type does not mean that every single regional line does. Some lines don’t reach any significant independent city. Some don’t usefully serve close-in urban areas – for example, the Providence Line barely serves anything urban, since the stop spacing is wide in order to speed up travel to high-demand suburbs and to Providence and the closest-in urban neighborhoods have Orange Line subway service. In rare cases, the suburban tier may be skipped, because there just isn’t much tidal suburban commuter ridership; in Boston, the Newburyport Line is an example, since its inner area has unbroken working-class urban development almost all the way to Salem, and then there’s almost nothing between Salem and Newburyport.

This does not mean that suburbs are always in between urban areas and independent cities – this is just a specific feature of large metropolitan areas. In smaller ones, the middle tier between urban and long-range interregional service is occupied by short-range interregional service rather than suburban commuter rail. Skipping the suburban tier, which is rare enough in large cities that in the cities I think about most often the only example I can come up with is the Newburyport Line, is thus completely normal in smaller cities.

Conclusion

There are common best practices for commuter rail: electrification, level boarding, frequent clockface schedules, timed transfers, fare integration, proof of payment fare collection.

However, high frequency means different things on lines of different characteristics. An interregional line should be running consistent all-day frequency, and if it is long enough could make do with half-hourly trains with timed connections to suburban buses; an urban line should be running every few minutes as if it were a metro line. Regional rail lines with characteristics off the main diagonal of the S-Bahn to RegionalBahn spectrum have different needs – suburban lines can have high peak frequency to reduce road congestion, although they should still have useful off-peak frequency; short-range interregional lines should run every 10-20 minutes all day.

The distinctions between intraregional and interregional lines and between short- and long-range lines may also affect other aspects of planning: station spacing, connections to local surface transit, connections at the city center end, through-running, etc. Even when the best industry practices are the same in all cases, the relative importance of different aspects may change, which changes what is worth spending the most money on.

Since an individual line can serve multiple markets on its way from city center to a faraway outlying terminal, it may be useful to set up a timetable that works for all of these markets and their differing needs. For example, urban lines need higher frequency than suburban and interregional ones, so a regional line with significant urban service should either branch or run short-turn trains to beef up short-range frequency. If there is a suburban area in the middle with demand for high peak frequency but also a secondary city at the outer end, it may be useful to give the entire line high all-day frequency, overserving the line off-peak just because the cost of service is low.

Ultimately, regional rail is about using mainline rail to fulfill multiple functions; understanding how these functions works is critical for good public transportation.

Queens Bus Redesign

New York City Transit has just released its draft redesign for the Queens bus network. It’s a further-reaching reform than what was planned for the Bronx. I’m still seriously skeptical about a number of aspects, but this redesign is genuinely a step forward. The required changes are for the most part tweaks, with just one big change in concept.

What’s in the redesign?

The redesign goes over the local and express bus routes in Queens. I am not going to look at the changes to the express buses, which are not an important part of the network anyway; Queens has a total of 674,000 local bus passengers per weekday and only 15,000 express passengers.

The changes to the local buses include a from-scratch redesign of the network; four new color-coded brands for the local buses; stop consolidation depending on color coding, of which the tightest spacing proposed is 400 meters; and a list of priority corridors where buses are to get dedicated lanes. The scope is only the Queens buses, but there are some new Brooklyn connections: the Metropolitan and Flushing Avenue routes (the new QT3, QT4) keep running through, as they do today, but the Myrtle Avenue route, the current Q55 and new QT55, stops at Ridgewood with a forced transfer to the Brooklyn Myrtle Avenue route.

The four color-coded brands are an unusual, though not unheard of, system. There are four distinct brands among the redesigned Queens buses: blue, red, purple, green. Blue is essentially select bus service, retaining the long stop spacing (“over a mile”), potentially intersecting some bus routes without a transfer; the point is to connect high-demand areas like Flushing with Jamaica. The other three are for various regular local routes. Red routes are distinguished exclusively in having slightly wider stop spacing, 660 meters versus 450 for purple and 400 for green, but otherwise look similar on the network map. Purple and green routes are distinguished in that purple routes are branded for neighborhoods far from the subway and intended to get people from outlying points to subway stations.

What’s good about it?

Stop consolidation is important and I’m glad to see it get play in New York. The choice of interstation across the non-blue routes is solid and close enough to the theoretical optimum that the exact value should depend on ensuring every intersection has an interchange rather than on squeezing a few extra seconds of door-to-door trip time for non-transfer passengers.

The same goes for the decision to designate 21 corridors as top priorities for dedicated bus lanes. The plan does not promise bus lanes on all of them, since the ultimate decision is in the hands of NYCDOT and not the state-owned MTA/NYCT. But it does the best it can, by putting the proposal front and center and announcing that these corridors should be studied as candidates for bus priority. Most of the important streets in Queens are on the list; the only glaring omissions are Union Turnpike, Myrtle, and Metropolitan.

The above two points are not strictly about the redesign. This is fine. When Eric Goldwyn and I tried estimating the benefits of our Brooklyn bus redesign plan, we found that, taking speed, access time, and frequency into account, the redesign itself only contributed 30% of the overall improvement. Stop consolidation and bus lanes contributed 30% each, and off-board fare collection 10%. The Queens plan at the very least has stop consolidation, off-board fare collection as planned when the OMNY smartcard is fully rolled out, and partial use of bus lanes.

But the bus network as redesigned has notable positive features as well. There’s greater reliance on the full network, for one. The JFK AirTrain is free for passengers boarding at Lefferts Avenue or Federal Circle rather than at the subway connection points at Jamaica and Howard Beach, and so the Lefferts Avenue route to JFK, the current Q10 and future QT14, stops at the AirTrain station instead of going all the way to the terminals.

Elsewhere, the bus network is more regular, with fewer bends. The network does not assume away the borough’s important nodes: you can still figure out where Flushing and Jamaica are purely from looking at the map. But it does offer some routes that bypass these nodes for crosstown traffic, for example the redesigned QT65, straightening the current Q65.

What’s bad about it?

The four-color system is just bad. The blue routes are understandable but still bad: they split frequency, so that passengers living next to the local stations on shared routes like Main Street get poor service. The red-purple-green distinction is superfluous – the map really does not make it clear how a red route differs from the others, and the purple and green routes are really the same kind of local bus, just one with a distinguished node at a subway stop and one where there may be multiple distinguished nodes.

The frequencies offered are also weak. Some routes are proposed to run every 8 minutes all day, namely QT route numbers 6, 10, 11, 14, 15, 16, 17, 19, 20, 32, 52, 55, 58, 66, 69, 70. Exactly one is proposed to run more frequently, the QT44 every 5 minutes. The rest run every 10-12 minutes or worse. On weekends, even the 8-minute routes drop to 10-15 minutes. Many routes are quite peaky and there’s no easy distinction between routes for which the report proposes an all-day headway (including all the 8-minute ones above) and ones for which the report proposes separate peak and base headways; the purple routes in general look somewhat peakier than the others, but it’s not a consistent distinction.

If the frequencies are weak, then it means that either the buses are too slow, or there are too many route-km to split a fixed service-hours budget across. NYCT mistakenly thinks that bus costs scale with service-km rather than service-hours, so the planned speedups can in fact be spent on more frequency, but it’s not enough to create a vigorous frequent network. Some pruning is needed; overall the network seems very dense to me, even in areas with decent subway coverage.

A few individual routes are weak too – I don’t think the QT1 idea, paralleling the Astoria Line on 21st Street and then the G train to Downtown Brooklyn, is a good idea. There are two more north-south routes running through to Williamsburg, where the relevant buses are pretty weak and pruning is advisable in order to redeploy service-hours to areas with more demand. If there’s somehow money that can only be spent on north-south service through Williamsburg, it’s better to increase frequency on the G train, which is faster than any bus could ever be.

Is this redesign valuable, then?

Yes! Between the stop consolidation, partial installation of bus lanes, and some of the aspects of the new network, the proposal looks like a two-thirds measure, at worst. It can’t be a full measure because there are serious drawbacks to the plan, not just on the level of details (i.e. too much service to Williamsburg) but also on the conceptual level of the four distinct brands. But it is a noticeable improvement over the current system, and I expect that if it is implemented, even with its many current flaws, then Queens will see a serious increase in bus patronage.

Moreover, the flaws in the plan are not inherent to it. If someone showed me the bus map without the color coding, just with stops and frequencies, I would not even notice the red-green-purple distinction. The blue routes I would notice, and suggest be reduced to the usual stop spacing of everything else; but the others, I wouldn’t. So even the most fundamentally bad part of the plan can be jettisoned while retaining all the good. Everything else is a tweak, and I expect that tweaks will happen one way or another.

Right now comes the community meetings stage, in which existing riders who have too much time will yell, and potential riders who don’t currently take the bus because it’s too slow don’t show up at all. The plan will be tweaked, and the tweaks may well make it worse rather than better. But what good transit activists in New York say matters, and so far the reaction should be positive, demanding certain changes but keeping the gist of the redesign.

Off-Peak Public Transport Usage

Earlier this year, I slowly stumbled across something that I don’t think is well-known in comparative public transportation: European cities have much higher public transport ridership than someone experienced with American patterns would guess from their modal splits. From another direction, Europe has much lower mode share than one would guess from ridership. The key here is that the mode share I’m comparing is for work trips, and overall ridership includes all trip purposes. This strongly suggests that non-work public transportation usage is much higher in European than in American cities even when the usage level for work trips is comparable. Moreover, the reason ought to be better off-peak service in Europe, rather than other factors like land use or culture, since the comparison holds for New York and not only for truly auto-oriented American cities.

Modal shares and ridership levels

My previous post brings up statistics for work trip mode share in England and France. For the purposes of this post, I am going to ignore England and focus on France and wherever I can find data out of Germany and Austria; the reason is that in the secondary cities of England, public transport is dominated by buses, which are hard to find any ridership data for, let alone data that doesn’t have severe double-counting artifacts for transfer passengers. For the same reason, I am not going to look at Canada – too many transfer artifacts.

In contrast, French and German-speaking metro areas with rail-dominated public transport make it relatively convenient to count rail trips per capita, as do the more rail-oriented American metro areas, namely Boston, New York, and Washington. A secondary check involving both bus and rail can be obtained from The Transport Politic, comparing the US with France.

City Population Definition Trips/year Trips/person Mode share
Boston 4,900,000 Subway, commuter rail 204,000,000 42 12%
New York 20,000,000 Subway, PATH, LIRR, MN, NJT Rail 2,050,000,000 103 31%
Washington 6,200,000 Metro, MARC (daily*280), VRE (daily*250) 245,000,000 40 12%
Vienna 3,700,000 U-Bahn, trams, S-Bahn (PDF-p. 44) 822,000,000 222 40%
Berlin 5,000,000 U-Bahn, trams, S-Bahn 1,238,000,000 248 35%
Hamburg 3,100,000 U-Bahn, S-Bahn 531,000,000 171 26%
Stuttgart 2,400,000 Stadtbahn, S-Bahn, Regionalbahn 223,000,000 93 26%
Lyon 2,300,000 Métro, trams, funiculars, 0.5*TER 325,000,000 141 20%
Marseille 1,800,000 Métro, trams (daily*280), 0.5*TER 139,000,000 77 16%
Toulouse 1,300,000 Métro, trams 125,700,000 97 13%
Bordeaux 1,200,000 Light rail 105,500,000 88 13%
Lille 1,200,000 Métro, trams 108,500,000 90 17%

 

Note that New York, with a 31% mode share, has not much more rail ridership per capita than French metro areas with mode shares in the teens, and is a quarter below Lyon, whose mode share is only 20%. This is not an artifact of transfers: just as the subway dominates ridership in New York, so does the metro dominate Lyon, Toulouse, and Lille, and so does the tram dominate Bordeaux. If anything, it’s Stuttgart, the only European city on this list with comparable ridership per unit of mode share to the US, that should have the most overcounting due to transfers.

Also note that French rail ridership nosedives in the summer, when people go on their 5-week vacations, and I presume that this equally happens in Germany and Austria. The ratio of annual to weekday ridership in France where it is available is fairly low, not because weekend ridership is weak, but because the weekday chosen to represent daily ridership is never in the summer vacation season.

Why?

Off-peak public transportation in the United States is quite bad. In New York, 10-minute frequency on most lettered routes is the norm. In Washington, the off-peak frequency is 12 minutes. In Boston, it varies by line; on the Red Line each branch is supposed to come every 12-13 minutes off-peak, but in practice trains don’t run reliably and often leave the terminal bunched, alternating between 3- and 10-minute gaps.

Moreover, commuter trains are so useless except for peak-hour commutes to city center that they might as well not exist. Hourly gaps and even worse are routine, and even the busiest New York commuter lines have at best half-hourly off-peak frequency. These lines are only about 15% of rail ridership in New York and Boston and 6% of rail ridership in Washington, but they contribute a decent volume of commuters who drive for all non-work purposes.

In Berlin, the off-peak frequency on the U-Bahn is a train every 5 minutes most of the day on weekdays. On Sundays it drops to a train every 8 minutes, and in the evening it drops to a train every 10 minutes far too early, leading to overcrowding on the first train after the cut in frequency around 9 pm. The S-Bahn trunks run frequently all day, but the branches in the suburbs only get 10-minute frequency, and the Ring has a 2-hour midday period with 10-minute gaps. The suburban areas with only S-Bahn service get comparable service to neighborhoods on New York subway branches, while closer-in areas get better service. No wonder people use it for more than just work – the train is useful for shopping and socializing at all hours of the day.

Why?

The people who manage public transportation in the United States do not have the same profile as most riders. They work traditional hours, that is 9 to 5 on weekdays only, at an office located in city center. Many senior managers do not use their own system. That NYCT President Andy Byford does not own a car or know how to drive and takes the subway and buses to events is unusual for such a senior person, and early media reports noted that some managers looked askance at his not driving.

Growing segments of the American middle class commute by public transportation. In Boston and Washington, transit commuters slightly outearn solo drivers, and in New York they do not but it is close. But those segments have different travel behavior from public-sector planners. For example, lawyers work long hours and depend on the subway at 8 or 9 pm, and programmers work shifted hours and both show up to and leave work hours after the traditional times. But public transportation agencies still work 9 to 5, and thus the middle-class transit-using behavior they are most familiar with is that of the denizen of the segregated suburb, who drives to all destinations but city center.

In such an environment, off-peak service is treated as a luxury. When there is a deficit, agencies cut there first, leading to frequency-ridership spirals in which lower frequency deters riders, justifying further cuts in service until little is left. In New York, there are guidelines for frequency that explicitly state it is to be adjusted based on ridership at the most crowded point of the route, without regard for whether cuts depress ridership further. There is a minimum acceptable frequency in New York, but it is set at 10 minutes on weekdays and 12 on weekends. For a similar reason, the planners tend to split buses between local and limited routes if each can support 10-12 minute headways, at which point the buses are not useful for short trips.

In contrast, in Germany and France, there is a mixture of drivers and public transportation users among managers. German planning stresses consistent schedules throughout the day, so the midday off-peak often gets the same frequency as the peak. French planning does vary frequency, but maintains a higher base frequency even late into the night. The Paris Métro runs every 5 to 7 minutes at 11 pm. The idea of running a big city metro line every 12 minutes is unthinkable.

The Brooklyn Bus Redesign is Out!

Marron just published my and Eric Goldwyn’s Brooklyn bus redesign proposal (with many thanks to Juliet Eldred for doing the graphics and design). The substance isn’t really changed from what we discussed last year. The delay in publication has had a few causes, of which I believe the biggest is that I completely missed that the links to many of the references in the lit review were dead and thus could not be typeset.

Instead of retyping an old blog post, I want to emphasize a few things that have come up in the last year. Some are specific to New York, others more general within the US. The idea of a bus redesign, introduced to the American discourse by Jarrett at the beginning of this decade, has gotten steadily more popular, and New York is beginning its own process, starting with the Bronx; in that context, it’s worthwhile pointing out specifics that Eric and I have learned from the Brooklyn process.

The redesign is a process, not a one-and-done program

Cities change. The point of a bus redesign is to let the bus network reflect the city of today and not that of when bus routes were set, typically when the streetcars were removed in the postwar era. The upshot is that the city can expect to change in the future, which means further bus redesigns may be necessary.

Instead of letting bus networks drift away from serving the city as is and doing a big redesign once in a generation, cities should change buses on an ongoing basis. American transit agencies are learning the principles of bus redesign this decade. They can and should use these principles for forward planning, tweaking bus routes as needed. Any of the following changes can trigger small changes in bus service:

  • New development
  • Shifts in commuting patterns even without new development
  • Changes in traffic patterns
  • Changes in the urban rail network
  • Long-term changes in driver labor, maintenance, etc.
  • Changes in bus technology, such as ride quality, dispatching, or pollution levels

In New York, the biggest ongoing change is probably the urban rail network. There are no subway extensions planned for Brooklyn, but there is expansion of subway accessibility, which changes the optimal bus network since some buses, like the B25 and B63, have no reason to exist if the subway lines they parallel are made accessible. There has been extensive activism about priorities here. To its credit, the MTA is accelerating accessibility retrofits, even though construction costs are extremely high.

New York’s current redesign process is flawed

Eric and I have heard negative feedback from various people involved in the process. Some are planners. One is a community activist, enough of a railfan and busfan not to NIMBY changes for the sake of NIMBYism, but nonetheless disaffected with how the Bronx redesign went.

As far as I can tell, the problem with the current process is that it’s too timid. In the Bronx, this timidity is understandable. The borough’s bus network is mostly good enough. The most important change in the Bronx is to speed up the buses through off-board fare collection, stop consolidation, bus lanes on main streets, and conditional signal priority, and plug the extra speed into higher frequency.

The MTA treats it as part of a separate process – select bus service (“SBS”) – and even though planning these two aspects separately is workable, the MTA does not understand that they are related and that speedups provide crucial resources for higher frequency. The problem here is with operating cost estimation. Like the other American agencies where I’ve asked, the MTA assumes bus costs scale with service-km, and thus higher speeds don’t change frequency. In reality, bus costs, dominated by driver wages, scale with service-hours. Higher speeds can be plugged one-to-one into higher frequency. In Brooklyn, only 30% of the benefits we estimate come from changing the network, and the other 70% come from speeding up the buses.

But Brooklyn is not the Bronx. The Bronx is largely good enough, in ways Brooklyn isn’t. Brooklyn is not terrible, but the bus network has too many circuitous or duplicative routes. Eric and I have consolidated about 530 km of bus route down to 350, without any of the coverage vs. ridership tradeoffs common to areas with less isotropic population density than Brooklyn. The MTA needs to be bolder in Brooklyn, and even bolder than that in Queens, if the redesign is to succeed.

The 14th Street bus lane

Eric and I encountered some political resistance to the idea of mass installation of bus lanes. Local interests listen to people with local connections, who are usually drivers. Transit riders are disproportionately riding to city center jobs, and have citywide rather than local political identities. When I went to an Open New York meeting, people began with a round of introductions in which people say their names and where they live, and the about 20 attendees represented maybe 15 different city neighborhoods. The upshot is that like Open New York’s mission of building more housing, the mission of diverting scarce street space from drivers to bus riders is best done on a citywide rather than street-by-street basis.

There is some hope of such a transformation happening. The bus lane on 14th Street survived a nuisance lawsuit, and ridership rose 17% almost immediately after it opened. The success is stark enough that a citywide increase in installation is plausible. City council speaker Corey Johnson promised to install 48 km of bus lane per year were he to be elected mayor, which is too passive but could do some good on the busiest routes.

I’m Giving a Talk About Construction Costs Tomorrow

By popular demand, I’m giving the talk I gave 2 weeks ago at NYU, again. The database will be revised slightly to include more examples (like Ukraine, which I added between when I gave the talk and when I blogged about it), and I may switch around a few things, but it should be similar to what I already said.

Where? Halyards in Brooklyn at 3rd Avenue and 6th Street, near the 4th Avenue/9th Street subway stop where the F/G and R intersect.

When? Monday December 2nd at 9 pm, for an hour.

Do I need to RSVP? No.

Will there be food? To some extent – the bar has minimal selection, although what it does have on the menu seems better for the price than most American bar food (which, to be fair, is like saying “better public transportation than Los Angeles”).