Category: New York

How Fast New York Regional Rail Could Be

A few years ago, when I started writing timetables for proposed regional rail lines, I realized how much faster they were than current schedules. This goes beyond the usual issues in Boston with electrification, which can cut the Boston-Providence trip from the current 1:10 or so to around 45 minutes. In New York the trains are already electrified, but trip times are slow, due to a combination of weak rolling stock, low platforms in New Jersey, poor maintenance in Connecticut, and obscene schedule padding in Long Island. This post collects a few before-and-after comparisons of how fast regional rail in New York could be.

Due to time constraints, not all lines are included in this post; by popular demand I can complete this and make it a two-part post. In this post I am going to focus on the New Haven and Harlem Lines and the LIRR’s Ronkonkoma and Hempstead Branches.

The LIRR and Metro-North both have reasonable if conservative equipment. Thus, it is valuable to look at the trip times that current equipment could achieve, that is the M-8s on the New Haven Line and the M-7s on the other lines. Future equipment should be higher-performance, and in particular both railroads should procure modular platforms based on proven European regional rail designs, rather than stick with overweight, overpriced equipment as in the upcoming capital plan. Thus the following tables include trip times with both current equipment and a notional regional electric multiple unit (EMU) with the specs of a Talent 2, FLIRT, Coradia Continental, DBAG Class 425, or similar train.

As a note of caution, these trip times are not achievable at zero cost, only at low cost. No curve needs to be straightened, but some curves need to be superelevated, and in some areas, particularly Connecticut, additional track work is required. All of this is quite cheap based on European maintenance regimes, though perhaps not based on American ones, but it is not literally a day one timetable – figure a few months’ worth of work systemwide. Schedules would also need to be simpler, with fewer creative express patterns, to facilitate low schedule padding, 7% as in Switzerland rather than the LIRR’s current 30% pad.

Much of this work comes from this post about the LIRR and this one about the New Haven Line, but here I’m covering the Harlem and Hudson Lines as well, and using more recent computations for acceleration.

New Haven Line

Locals to Stamford:

Station Current time Future M-8 time Future Euro time
Grand Central 0:00 0:00 0:00
Harlem-125th 0:10 0:06 0:06
Fordham 0:18 0:12 0:11
Mount Vernon East 0:27 0:18 0:16
Pelham 0:30 0:20 0:18
New Rochelle 0:33 0:23 0:21
Larchmont 0:37 0:26 0:24
Mamaroneck 0:40 0:29 0:27
Harrison 0:43 0:32 0:29
Rye 0:48 0:35 0:31
Port Chester 0:51 0:37 0:33
Greenwich 0:55 0:40 0:36
Cos Cob 0:59 0:43 0:39
Riverside 1:02 0:45 0:41
Old Greenwich 1:04 0:47 0:42
Stamford 1:15 0:50 0:45

Some of the numbers are interpolated, but the end-to-end times as well as those to New Rochelle, Port Chester, and Riverside are exact. No curve is straightened, but all non-geometric speed limits, including those on the Cos Cob Bridge, are removed; the Cos Cob Bridge is not straight enough for high-speed rail, but a regional train could squeeze 150 km/h out of it, or 160 if it is replaced.

Expresses to New Haven are faster, as detailed in my older post on the subject:

Station Current time Future M-8 time Future Euro time
Grand Central 0:00 0:00 0:00
Harlem-125th 0:10 0:06 0:06
New Rochelle 0:18 0:17
Stamford 0:51 0:31 0:30
Noroton Heights 0:56 0:35 0:34
Darien 1:00 0:38 0:36
Rowayton 1:03 0:40 0:38
South Norwalk 1:07 0:43 0:41
East Norwalk 1:10 0:46 0:43
Westport 1:14 0:49 0:46
Greens Farms 1:18 0:53 0:49
Southport 1:23 0:56 0:52
Fairfield 1:26 0:58 0:54
Fairfield Metro 1:30 1:01 0:57
Bridgeport 1:38 1:05 1:00
Stratford 1:45 1:10 1:04
Milford 1:52 1:14 1:08
West Haven 1:59 1:20 1:14
New Haven 2:09 1:24 1:18

Numbers differ from my older post by a minute to allow for slightly slower approaches to the Grand Central stub-end, at 50 km/h rather than 100 km/h as with any future through-running. This is still several minutes faster than the current 10 mph speed limit out to a mile out of the station. It doesn’t matter too much; at the end of the day, this is a difference of 1:18 vs. 2:09, with one extra station. I repeat: better track maintenance, less conservative terminal approach speeds, higher superelevation on curves, modern schedule padding, and (on the margin) higher-performance equipment could reduce trip times from 2:09 to 1:18, a cut of 40% in trip time, without straightening a single curve.

Harlem Line

The Harlem Line today runs local and express trains, but this involves a long stretch from north of Mount Vernon West to North White Plains with three and two rather than four tracks; trains just don’t run frequently enough today that it’s a problem, but in the future they will need to. Therefore, my timetable below is all-local. Nonetheless, trip times to White Plains on the local train are comparable to those of today’s express trains.

Station Current time (local) Current time (express) Future M-7 time Future Euro time
Grand Central 0:00 0:00 0:00 0:00
Harlem-125th 0:10 0:10 0:06 0:06
Melrose 0:14 0:09 0:09
Tremont 0:17 0:12 0:11
Fordham 0:20 0:14 0:13
Botanical Gardens 0:22 0:16 0:15
Williams Bridge 0:25 0:18 0:17
Woodlawn 0:28 0:21 0:19
Wakefield 0:30 0:23 0:21
Mount Vernon West 0:32 0:24 0:23
Fleetwood 0:35 0:27 0:25
Bronxville 0:37 0:29 0:27
Tuckahoe 0:39 0:31 0:28
Crestwood 0:42 0:33 0:30
Scarsdale 0:46 0:36 0:33
Hartsdale 0:49 0:38 0:35
White Plains 0:53 0:36 0:41 0:38
North White Plains 1:01 0:41 0:44 0:40
Valhalla 0:45 0:47 0:43
Hawthorne 0:49 0:50 0:46
Pleasantville 0:53 0:53 0:49
Chappaqua 0:56 0:56 0:52
Mount Kisco 1:02 1:00 0:55
Bedford Hills 1:06 1:04 0:59
Katonah 1:09 1:07 1:01
Goldens Bridge 1:13 1:10 1:04
Purdy’s 1:17 1:13 1:08
Croton Falls 1:20 1:16 1:10
Brewster 1:26 1:20 1:15
Southeast 1:37 1:22 1:16

Observe that the current schedule has very long trip times before the end station – 8 minutes from White Plains to North White Plains on the local, 11 from Brewster to Southeast on the express. Southbound, both segments are timetabled to take only 4 minutes each. This is additional padding used to artificially inflate on-time performance, in lieu of the better practice of spacing out the pad throughout the schedule, at 1 minute per 15 minutes.

LIRR Main Line

The LIRR has a highly-branched system, and I’m only going to portray the Main Line to Ronkonkoma among the long express lines. This is because in the long term, the South Side lines shouldn’t be going to Penn Station but to Downtown Brooklyn and Lower Manhattan. The Port Jefferson Branch could benefit from a side-by-side comparison of trip times, but that is partly a matter of electrifying the outer part of the line, a project that is perennially on the LIRR’s wishlist.

Station Current time Future M-7 time Future Euro time
Penn Station 0:00 0:00 0:00
Sunnyside Junction 0:05 0:05
Woodside 0:10
Jamaica 0:20 0:12 0:12
Floral Park 0:17 0:17
New Hyde Park 0:20 0:19
Merillon Avenue 0:22 0:21
Mineola 0:37 0:24 0:23
Carle Place 0:28 0:26
Westbury 0:30 0:28
Hicksville 0:45 0:33 0:31
Bethpage 0:51 0:37 0:34
Farmingdale 0:55 0:40 0:37
Pinelawn 1:00 0:43 0:40
Wyandanch 1:02 0:46 0:43
Deer Park 1:06 0:50 0:47
Brentwood 1:11 0:54 0:50
Central Islip 1:15 0:57 0:53
Ronkonkoma 1:22 1:01 0:57

The fastest Main Line train of the day runs between Penn Station and Ronkonkoma stopping only at Hicksville, Brentwood, and Central Islip, not even stopping at Jamaica; it does the trip in 1:08, a few minutes worse than the M7 could with less schedule padding and small speedups at terminal zones (Penn Station throat slowdowns add 1-2 minutes, it’s not the mile-long slog of Grand Central).

Hempstead Branch

Finally, for local service supplementing the rapid Main Line, we can look at the Hempstead Branch, which under my regional rail maps should keep serving Penn Station along today’s alignment, continuing north along the Empire Connection to the Hudson Line. Today, only a handful of peak trains run between Penn Station and Hempstead – off-peak, Hempstead diverts to Atlantic Terminal. Here are side-by-side schedules, using the fastest peak train as a comparison:

Station Current time Future M-7 time Future Euro time
Penn Station 0:00 0:00 0:00
Sunnyside Junction 0:05 0:05
Woodside 0:11 0:08 0:07
Forest Hills 0:12 0:11
Kew Gardens 0:14 0:13
Jamaica 0:20 0:16 0:15
Hollis 0:28 0:19 0:18
Bellerose 0:31 0:22 0:20
Queens Village 0:33 0:24 0:22
Floral Park 0:35 0:26 0:24
Stewart Manor 0:38 0:28 0:26
Nassau Boulevard 0:41 0:30 0:28
Garden City 0:43 0:32 0:30
Country Life Press 0:47 0:34 0:32
Hempstead 0:51 0:36 0:33

Conclusion

Across the four lines examined – New Haven, Harlem, Main, Hempstead – trains could run about 50-66% faster, i.e. taking 33-40% less time. This is despite the fact that the rolling stock today is already EMUs: the vast majority of the speedup does not come from upgrading to higher-end trains, but rather from running faster on curves as all EMUs can, avoiding unnecessary slowdowns in station throats, and reducing schedule padding through more regular timetables.

The speedup is so great that the Harlem Line could achieve the same trip times of present-day nonstop trains on locals making 14 more stops between Manhattan and North White Plains, a distance of 38 km, and the LIRR could achieve substantially faster trip times than today’s nonstops on semi-rapid trains. In fact, the LIRR could even make additional local stops on the Main Line like Forest Hills and Hollis and roughly match the fastest peak trains, but expected traffic volumes are such that it’s best to leave the locals to the Hempstead Branch and put the Main Line on the express tracks.

Good transit activists in and around New York should insist that the managers prioritize such speedups. If locals can match today’s express trip times, there is no need to run creative express stopping patterns that force trains into complex patterns of overtakes. Just run frequent local service, using the maxim that a line deserves express service if and only if it has four tracks, as the New Haven Line and shared Main Line-Hempstead Branch segment do. With the slowest speed zones sped up, curve speeds raised to the capabilities of modern EMUs (including the conservative M-7s and M-8s), and schedule padding shrunk to where it should be, the suburbs could be so much closer to Manhattan at rush hour as well as off-peak, stimulating tighter metropolitan connections.

Small is not Resilient

I wrote about how the future is not retro, and Daniel Herriges Strong Towns just responded, saying that traditional development is timeless. I urge all readers to click the last link and read the article, which makes some good points about how cars hollowed out what both Daniel and I call the traditional prewar Midwestern town. There are really two big flaws in the piece. First, it makes some claims about inequality and segregation that are true in American cities but false in the example I give for spiky development, Vancouver. And second, it brings up the resilience of the traditional small town. It’s the second point that I wish to contest: small is not resilient, and moreover, as the economy and society evolve, the minimum size required for resilience rises.

Small cities in the 2010s

In the premodern era, a city of 50,000 was a bustling metropolis. In 1900, it was still a sizable city. In 2019, it is small. The difference is partly relative: a migrant to the big city had the option of moving to a few 200,000 cities in 1900 and one of about ten 1,000,000+ cities, whereas today the same migrant can move to many metro areas with millions of people. But part of it has to do with changes in the economy.

In Adam Smith’s day, big businesses were rare. If you had five employees, you were a big employer. Then came the factory system and firm size grew, but even then companies were small by the standards of today’s specialized economy. A city of 50,000 might well specialize in a single product, as was common in the American manufacturing belt (Krugman mentions this on pp. 11-12 here), but there would be many factories each with a few hundred employees.

But as the economy grows more complex, firm size grows, and so does the interdependence between different firms in the same supply chain. Moreover, the support functions within a city grow in complexity: schools, a hospital, logistics, retail, and so on. The proportion of the population employed in the core factory is lower, as the factory’s high productivity supports more non-manufacturing employees. The upshot is that it’s easy for a town of 50,000 to live off of a single firm and its supply chain. This is not resilient: if the firm fails, the town dies.

Occasionally, cities of that size can have more resilience. Perhaps they’re suburbs of a larger city, in which case they live off of commuting to a more diverse economic center. Perhaps they happen to live off of an industry that cannot die so easily, such as a state capital or a university. On social media one of my followers brought up farming as an example of an activity whose towns have held up in the Midwest better than manufacturing towns; farming is in fact extremely risky, but it has been subsidized since the 1930s, so it has some resilience thanks to subsidies from more internally resilient parts of the country.

Large cities and resilience

I read Ed Glaeser not so much for his observations about the housing market – he’s a lot of things but he’s not a housing economist – as for his economic history. He has a pair of excellent papers describing the economic histories of Boston and New York respectively. Boston, he argues, has reinvented itself three times in the last 200 years after declining, using its high education levels to move up the value chain. New York was never in decline except in the 1970s, and has resiled from its 1980 low as well.

These as well as other large cities have economic diversity that small cities could never hope to have. At the time Glaeser wrote his paper about New York, in 2005, the city seemed dominated by finance and related industries. And yet in the 2007-9 recession, which disproportionately hit finance, the metro area’s per capita income relative to the national average barely budged, falling from 135.3% to 133.8%; in 2017 it was up to 137.5%. The New York region is a center of finance, yes, but it’s also a center of media, academic research, biotech, and increasingly software.

New York is extremely large, and has large clusters in many industries, as do London, Paris, Tokyo, and other megacities. But even medium-size cities often have several clusters, if not so many. This is especially evident in Germany, where Munich, Hamburg, Stuttgart, and Frankfurt are not particularly large. Munich is the center of conglomerates in a variety of industries, including cars (BMW, far and away the largest employer, but also MAN), general industry (Siemens), chemicals (Linde), and finance (Allianz).

What’s true is that these large cities have much more knowledge work than menial work – yes, even Munich, much more a center of engineering than of menial production. But the future is not retro in the mix of jobs any more than it is in its urban layout. The nostalgics of the middle of the 20th century taxed productive industrial cities to subsidize farmers, treating industrial work as the domain of socialists, Jews, immigrants, and other weirdos; the nostalgics of the early 21st century propose to tax productive knowledge economies to subsidize menial workers, and in some specific cases, like American protection of its auto industry, this has been the case for decades.

Small cities as suburbs

In Germany, Switzerland, and the Netherlands, unlike in the United States or France, there is a vigorous tradition of historic small cities becoming suburbs of larger cities while retaining their identity. This doesn’t really involve any of Strong Towns’ bêtes noires about roads and streets – in fact pretty much all of these cities have extensive sprawl with big box retail and near-universal car ownership. Rather, they have tight links with larger urban cores via regional rail networks, and German zoning is less strict about commercialization of near-center residential areas than American zoning. There was also no history of white flight in these areas – the white flight in Germany is in the cores of very large cities, like Berlin, which can replace fleeing whites one to one with immigrants.

In this sense, various Rhineland cities like Worms and Speyer do better than Midwestern cities of the same size. But even though they maintain their historic identities, they are not truly economically independent. In that sense, a better American analogy would be various cities in New England and the mid-Atlantic that have fallen into the megalopolis’s orbit, such as Salem, Worcester, Providence, Worcester, New Brunswick, and Wilmington. Many of these are poor because of the legacy of suburbanization and white flight, but their built-up areas aren’t so poor.

However, the most important link between such small cities and larger urban core, the regional railway, heavily encourages spiky development. In Providence, developers readily build mid-rise housing right next to Providence Station. If the quality of regional rail to Boston improves, they will presumably be willing to build even more, potentially going taller, or slightly farther from the station. Elsewhere in the city, rents are not high enough to justify much new construction, and Downcity is so weak that the tallest building, the Superman Building, is empty. In effect, Providence’s future economic value is as part of the Boston region.

The relatively even development of past generations is of less use in such a city. The economy of a Providence or a Wilmington is not strong enough that everyone can work in the city and earn a good wage. If the most important destination is a distant core like Boston or Philadelphia, then people will seek locations right near the train station. Driving is not by itself useful – why drive an hour from Rhode Island when cheaper suburbs are available within half an hour? Connecting from local transit would be feasible if the interchange were as tightly timed and integrated as in Germany, but even then this system would be oriented around one dot – the train station – rather than a larger walkable downtown area.

A bigger city is a better city

Resilience in the sense of being able to withstand economic shocks requires a measure of economic diversity. This has always been easier in larger cities than in smaller ones. Moreover, over time there is size category creep: the size that would classify a city a hundred years ago as large barely qualifies it to be medium-size today, especially in a large continental superpower like the US. As global economic complexity increases, the size of businesses and their dedicated supply chains as well as local multipliers rises. The city size that was perfectly resilient in an economy with a GDP per capita of $15,000 is fragile in an economy with a GDP per capita of $60,000.

Usually, the absolute richest or more successful places may not be so big. There are hundreds of American metro areas, so a priori there is no reason for New York to be at the top, just as there is no reason for it to be at the bottom. Nonetheless, the fact that larger cities are consistently richer as well as at less risk of decline than smaller cities – New York is one of the richest metro areas, just not the single richest – should give people who think small is beautiful pause.

Whatever one’s aesthetic judgment about the beauty of the upper Mississippi versus that of the lower Hudson, the economic and social system of very large places weathers crises better, and produces more consistent prosperity. Economically and socially, a bigger city is a better city, and national development policy should reject nostalgia and make it possible for developers to build where there is demand – that is, in the richest, most populated metro areas, enabling these regions to grow further by infill as well as accretion. Just as 50,000 was fine in 1900 but isn’t today, a million is fine today but may not be in 2100, and it’s important to enable larger cities to form where people want to live and open businesses.

New York Rolling Stock Costs are Skyrocketing

The Metropolitan Transportation Authority has just released its capital plan for 2020-4. The cost is very high and the benefits substantial but limited, and I urge people to look over criticism by Henry Grabar at Slate about elevators and Ben Kabak’s overview at Second Avenue Sagas. Here I am going to focus on one worrying element: the cost of the trains themselves, on both the subway and commuter rail.

I started comparing subway construction costs nearly ten years ago. Here’s an early post on Second Avenue Sagas, hoisting something I wrote in comments. Over here I started writing about this in 2011. Early on, I was asked about the costs of the trains themselves rather than the tunnels, and said that no, there’s no New York premium there. At the time the most recent rolling stock order for the subway was the R160, for which the base order cost was $1.25 billion for 620 cars (source, PDF-p. 34), or about $110,000 per meter of length. Commuter rail was similar, about $2 million per 25-meter-long M7 in the early 2000s and $760 million for 300 M8s of the same length in the mid-2000s. London’s then-current order, the S Stock, cost £1.5 billion for 191 trains and 1,395 cars, around $90,000 per meter of length for narrower trains; Paris’s MP 05, a driverless rubber-tired train, cost €474 million for 49 trainsets, around $140,000 per meter.

But since then, costs have rapidly risen. The gap is still far smaller than that for infrastructure, which New York builds for an order of magnitude higher cost than the rest-of-world median. But it’s no longer a rounding error. Subway rolling stock costs are rising, and commuter rail rolling stock are rising even faster. The latest subway order, the R211, costs $1.45 billion for 535 cars, or $150,000 per meter, for the base order, and $3.69 billion for 1,612 cars, or $130,000 per meter, including options. Commuter rail equipment costs, once about $100,000 per meter of train length, inched up to $2.7 million per car in 2013, or $110,000 per meter, and then rose to $150,000 per meter for the M9 order.

Construction costs: subway trains

The 2020-4 capital plan has showcased even further rolling stock cost escalation. Go to the link for the MTA capital plan again. On PDF-p. 23 there’s a breakdown of different items on the subway, and rolling stock is $6.057 billion for a total of 1,977 cars, of which 900 are 15 meters long and the rest (I believe) 18, for a total of $185,000 per linear meter.

I’ve blogged before about comparative costs of light rail and regional rail rolling stock. In Europe, both still cluster around $100,000 per linear meter for single-level, non-high-speed equipment. There is no apparent premium over early- and mid-2000s cost even without adjusting for inflation, which is not surprising, as the real prices of manufactured goods tend to fall over time. But what about metros? Here, too, we can look at first-world world comparisons.

In London, a recent Piccadilly line order is, in exchange rate terms, $190,000/meter (the trains are 103 m long) – but it includes 40 years of maintenance and spare parts. In Singapore, a recent order is S$2.1 million per car, which is about $70,000 per meter in exchange rate terms. Grand Paris Express’s first tranche of orders costs €1.3 billion for 183 trains totaling 948 cars, each (I believe) 15 meters long, around $120,000 per meter. Metro Report states Busan’s recent order as 55.6 billion for 48 trainsets (replacing 140-meter long trains), which is almost certainly an error; assuming the actual cost is 556 billion, this is $70,000/meter in exchange rate terms and $90,000/meter in PPP terms (PPP is relevant as this is an entirely domestic order).

In Berlin, the situation is the diciest, with the highest costs outside New York (not counting London’s maintenance-heavy contracts). An emergency order of 20 52-meter trains, tendered because cracks were discovered in the existing trains, cost €120 million, around $150,000 per linear meter. A longer-term contract to supply 1,500 cars (some 13 meters long, most 16.5 meters long) for €3 billion by 2035 is on hold due to litigation: Siemens had already sued over the emergency order of Stadler cars, but now Alstom made its own challenge. But even here, costs are well below the levels of New York, even before we adjust for inflation since Berlin’s future contract is in 2020-35 prices and New York’s is in in 2020-24 prices.

Construction costs: New York-area commuter rail

Commuter rail is faring even worse. On PDF-p. 27 the LIRR is listed as spending $242 million on 17 coaches and 12 locomotives, and on PDF-p. 29 Metro-North is listed as spending $853 million on 80 EMU cars and 30 locomotives.

Figuring out exact comparisons is not easy, because locomotives do cost more than multiple-units and unpowered coaches, and there is a range of locomotive costs, with uncertainty due to currency conversions, as most information I can find about European locomotives is in Eastern Europe with its weak currencies, since Western Europe mostly uses multiple-units. Railway Gazette’s pages on the world rolling stock market suggest that a European locomotive is around €5 million (e.g. the PKP Vectron order), or $6.5 million; PKP’s domestic order (including some dual-modes) is around $4.2 million per unit measured in exchange rate terms, but twice as much in PPP terms; Bombardier has a sale to an undisclosed customer for about $4.8 million. Siemens claims the Vectron costs €2.5 million per unit, although all the contracts for which I can find prices are substantially more expensive.

For what it’s worth, in the US dual-mode locomotives for New Jersey Transit cost around $9.5 million apiece, which is still evidently lower than what the LIRR and Metro-North plan on spending. 242 – 9.5*12 = 128, and 128/17 = 7.5, or $300,000 per linear meter of unpowered coach; similarly, 853 – 9.5*30 = 568, and 568/80 = 7.1, or $280,000 per linear meter of new Metro-North EMU. If we take the normal-world cost of a locomotive at $6 million and that of an EMU or coach at $2.5 million per US-length car, then the LIRR has a factor-of-2.1 cost premium and Metro-North a factor-of-2.2 premium.

The equipment is conservative

The FRA recently realigned its regulations to permit lightly-modified European mainline trains to run on American tracks. Nonetheless, no American commuter rail operator has taken advantage of the new rules – the only ones buying European equipment had plans to do so even before the revision, going through costly waiver process that increased costs. At a public meeting last month, Metro-North’s vice president of engineering did not even know FRA rules had changed. The LIRR and Metro-North are buying the same equipment, to the same standards, as they have for decades.

The subway, likewise, is conservative. It is a laggard in adopting open gangways: the R211 order is the first one to include any, but that is just two test trainsets, the rest having doors between cars like all other older New York trainsets. It is not buying any of the modular products of the global vendors, like Bombardier’s Movia platform or the Alstom Metropolis. It is buying largely the same kind of equipment it has bought since the 1990s.

Despite this conservatism, costs are very high, consistent with a factor somewhat higher than 2 on commuter rail and somewhat lower than 2 on the subway.

But perhaps the conservatism is what increases costs in the first place? Perhaps the reason costs are high is that the world market has moved on and the MTA and some other American operators have not noticed. In Chicago, Metra found itself trying to order a type of gallery car that nobody makes any longer, using parts that are no longer available. Perhaps the same kind of outmoded thinking is present at the MTA, and this is why costs have exploded in the last 10 years.

A secular increase in costs of infrastructure construction is nearly universal. No such trend can be seen in rolling stock: nominal costs in Paris are 15% lower than they were 15 years ago, and real costs are about 30% lower, whereas in New York nominal costs are 70% higher than 10 years ago and real costs about 40% higher. Paris keeps innovating – M1 and M14 have the highest frequency of any metro system in the world, a train every 85 seconds at the peak, and M1 is the first driverless line converted from earlier manual operations rather than built from scratch. In contrast, New York is stuck in the 1990s, but far from keeping a lid on costs, it has seen rolling stock cost explosion.

Update 9/24: I just saw a new commuter rail coach order in Boston. These are bilevels so some cost premium is to be expected, but $345 million for 80 unpowered coaches, or $170,000 per meter, is excessive, and TransitMatters tried hard to fight against this order, arguing in favor of EMUs on the already-electrified Providence Line.

Circumferential Lines and Express Service

In a number of large cities with both radial and circumferential urban rail service, there is a curious observation: there is express service on the radial lines, but not the circumferential ones. These cities include New York, Paris, and Berlin, and to some extent London and Seoul. Understanding why this is the case is useful in general: it highlights guidelines for urban public transport design that have implications even outside the distinction between radial and circumferential service. In brief, circumferential lines are used for shorter trips than radial lines, and in large cities connect many different spokes so that an express trip would either skip important stations or not save much time.

The situation

Berlin has three S-Bahn trunk lines: the Ringbahn, the east-west Stadtbahn, and the North-South Tunnel. The first two have four tracks. The last is a two-track tunnel, but has recently been supplemented with a parallel four-track North-South Main Line tunnel, used by regional and intercity trains.

The Stadtbahn has a straightforward local-express arrangement: the S-Bahn uses the local tracks at very high frequency, whereas the express tracks host less frequent regional trains making about half as many stops as well as a few intercity trains only making two stops. The north-south system likewise features very frequent local trains on the S-Bahn, and a combination of somewhat less frequent regional trains making a few stops on the main line and many intercity trains making fewer stops. In contrast, the Ringbahn has no systemic express service: the S-Bahn includes trains running on the entire Ring frequently as well as trains running along segments of it stopping at every station on the way, but the only express services are regional trains that only serve small slivers on their way somewhere else and only come once or twice an hour.

This arrangement is mirrored in other cities. In Paris, the entire Metro network except Line 14 is very local, with the shortest interstations and lowest average speeds among major world metro systems. For faster service, there is Line 14 as well as the RER system, tying the suburbs together with the city. Those lines are exclusively radial. The busiest single RER line, the RER A, was from the start designed as an express line parallel to Line 1, the Metro’s busiest, and the second busiest, the RER B, is to a large extent an express version of the Metro’s second busiest line, Line 4. However, there is no RER version of the next busiest local lines, the ring formed by Lines 2 and 6. For non-Metro circumferential service, the region went down the speed/cost tradeoff and built tramways, which have been a total success and have high ridership even though they’re slow.

In New York, the subway was built with four-track main lines from the start to enable express service. Five four-track lines run north-south in Manhattan, providing local and express service. Outside the Manhattan core, they branch and recombine into a number of three- and four-track lines in Brooklyn, Queens, and the Bronx. Not every radial line in New York has express service, but most do. In contrast, the circumferential Crosstown Line, carrying the G train, is entirely local.

In Seoul, most lines have no express service. However, Lines 1, 3, and 4 interline with longer-range commuter rail services, and Lines 1 and 4 have express trains on the commuter rail segments. They are all radial; the circumferential Line 2 has no express trains.

Finally, in London, the Underground has few express segments (all radial), but in addition to the Underground the city has or will soon have express commuter lines, including Thameslink and Crossrail. There are no plans for express service parallel to the Overground.

Is Tokyo really an exception?

Tokyo has express trains on many lines. On the JR East network, there are lines with four or six tracks all the way to Central Tokyo, with local and express service. The private railroads usually have local and express services on their own lines, which feed into the local Tokyo subway. But not all express services go through the primary city center: the Ikebukuro-Shibuya corridor has the four-track JR Yamanote Line, with both local services (called the Yamanote Line too, running as a ring to Tokyo Station) and express services (called the Saikyo or Shonan-Shinjuku Line, continuing north and south of the city); Tokyo Metro’s Fukutoshin Line, serving the same corridor, has a timed passing segment for express trains as well.

However, in three ways, the area around Ikebukuro, Shinjuku, and Shibuya behaves as a secondary city center rather than a circumferential corridor. The job density around all three stations is very high, for one. They have extensive retail as well, as the private railroads that terminated there before they interlined with the subway developed the areas to encourage more people to use their trains. This situation is also true of some secondary clusters elsewhere in Tokyo, like Tobu’s Asakusa terminal, but Asakusa is in a historically working-class area, whereas the Yamanote area was historically and still is wealthier, making it easier for it to attract corporate jobs.

Second, from the perspective of the transportation network, they are central enough that railroads that have the option to serve them do so, even at the expense of service to Central Tokyo. When the Fukutoshin Line opened, Tokyu shifted one of its two mainlines, the Toyoko Line, to connect to it and serve this secondary center, where it previously interlined with the Hibiya Line to Central Tokyo; Tokyu serves Central Tokyo via its other line, the Den-en-Toshi Line, which connects to the Hanzomon Line of the subway. JR East, too, prioritizes serving Shinjuku from the northern and southern suburbs: the Shonan-Shinjuku Line is a reverse-branch of core commuter rail lines both north and south, as direct fast service from the suburbs to Shibuya, Shinjuku, and Ikebukuro is important enough to JR East that it will sacrifice some reliability and capacity to Tokyo Station for it.

Third, as we will discuss below, the Yamanote Line has a special feature missing from circumferential corridors in Berlin and Paris: it has distinguished stations. A foreigner looking at satellite photos of land use and at a map of the region’s rail network without the stations labeled would have an easy time deciding where an express train on the line should stop: Ikebukuro, Shinjuku, and Shibuya eclipse other stations along the line, like Yoyogi and Takadanobaba. Moreover, since these three centers were established to some extent before the subway was built, the subway lines were routed to serve them; there are 11 subway lines coming from the east as well as the east-west Chuo Line, and of these, all but the Tozai and Chiyoda Lines intersect it at one of the three main stations.

Interstations and trip length

The optimal stop spacing depends on how long passenger trips are on the line: keeping all else equal, it is proportional to the square root of the average unlinked trip. The best formula is somewhat more delicate: widening the stop spacing encourages people to take longer trips as they become faster with fewer intermediate stops and discourages people from taking shorter ones as they become slower with longer walk distances to the station. However, to a first-order approximation, the square root rule remains valid.

The relevance is that not all lines have the same average trip length. Longer lines have longer trips than short lines. Moreover, circular lines have shorter average trips than straight lines of the same length, because people have no reason to ride the entire way. The Ringbahn is a 37-kilometer line on which trains take an hour to complete the circuit. But nobody has a reason to ride more than half the circle – they can just as well ride the shorter way in the other direction. Nor do passengers really have a reason to ride over exactly half the circle, because they can often take the Stadtbahn, North-South Tunnel, or U-Bahn and be at their destinations faster.

Circumferential lines are frequently used to connect to radial lines if the radial-radial connection in city center is inconvenient – maybe it’s missing entirely, maybe it’s congested, maybe it involves too much walking between platforms, maybe happens to be on the far side of city center. In all such cases, people are more likely to use the circumferential line for shorter trips than for longer ones: the more acute the angle, the more direct and thus more valuable the circle is for travel.

The relevance of this discussion to express service is that there’s more demand for express service in situations with longer optimum stop spacing. For example, the optimum stop spacing for the subway in New York based on current travel patterns is the same as that proposed for Second Avenue Subway, to within measurement error of parameters like walking speed; on the other trunk lines, the local trains have denser stop spacing and the express trains have wider stop spacing. On a line with very short optimum spacing, there is not much of a case for express service at all.

Distinguished stops versus isotropy

The formula for optimal stop spacing depends on the isotropy of travel demand. If origins and destinations are distributed uniformly along the line, then the optimal stop spacing is minimized: passengers are equally likely to live and work right on top of a station, which eliminates walk time, as they are to live and work exactly in the middle between two stations, which maximizes walk time. If the densities of origins and destinations are spiky around distinguished nodes, then the optimal stop spacing widens, because planners can place stations at key locations to minimize the number of passengers who have to walk longer. If origins are assumed to be perfectly isotropic but destinations are assumed to be perfectly clustered at such distinguished locations as city center, the optimum stop spacing is larger than if both are perfectly isotropic by a factor of \sqrt{2}.

Circumferential lines in large cities do not have isotropic demand. However, they have a great many distinguished stops, one at every intersection with a radial rail service. Out of 27 Ringbahn stops, 21 have a connection to the U-Bahn, a tramway, or a radial S-Bahn line. Express service would be pointless – the money would be better spent increasing local frequency, as ridership on short-hop trips like the Ringbahn’s is especially sensitive to wait time.

On the M2/M6 ring in Paris, there are 49 stops, of which 21 have connections to other Metro lines or the RER, one more doesn’t but really should (Rome, with a missed connection to an M14 extension), and one may connect to a future extension of M10. Express service is not completely pointless parallel to M2/M6, but still not too valuable. Even farther out, where the Paris region is building the M15 ring of Grand Paris Express, there are 35 stops in 69 kilometers of the main ring, practically all connecting to a radial line or located at a dense suburban city center.

The situation in New York is dicier, because the G train does have a distinguished stop location between Long Island City and Downtown Brooklyn, namely the connection to the L train at Bedford Avenue. However, the average trip length remains very short – the G misses so many transfers at both ends that end-to-end riders mostly stay on the radials and go through Manhattan, so the main use case is taking it a few stops to the connection to the L or to the Long Island City end.

Conclusion

A large urban rail network should be predominantly radial, with circumferential lines in dense areas providing additional connectivity between inner neighborhoods and decongesting the central transfer points. However, that the radial and circumferential lines are depicted together on the same metro or regional rail map does not mean that people use them in the same way. City center lies ideally on all radials but not on the circumferentials, so the tidal wave of morning commuters going from far away to the center is relevant only to the radials.

This difference between radials and circumferentials is not just about service planning, but also about infrastructure planning. Passengers make longer trips on radial lines, and disproportionately travel to one of not many distinguished central locations; this encourages longer stop spacing, which may include express service in the largest cities. On circumferential lines, they make shorter trips to one of many different connection points; this encourages shorter stop spacing and no express service, but rather higher local frequency whenever possible.

Different countries build rapid transit in radically different ways, and yet big cities in a number of different countries have converged on the same pattern: express service on the strongest radial corridors, local-only service on circumferential ones no matter how busy they are. There is a reason. Transportation planners in poorer cities that are just starting to build their rapid transit networks as well in mature cities that are adding to their existing service should take heed and design infrastructure accordingly.

The Future is not Retro

One faction of urbanists that I’ve sometimes found myself clashing with is people who assume that a greener, less auto-centric future will look something like the traditional small towns of the past. Strong Towns is the best example I know of of this tendency, arguing against high-rise urban redevelopment and in favor of urbanism that looks like pre-freeway Midwestern main streets. But this retro attitude to the future happens everywhere, and recently I’ve had to argue about this with the generally pro-modern Cap’n Transit and his take about the future of vacations. Even the push for light rail in a number of cities has connections with nostalgia for old streetcars, to the point that some American cities build mixed-traffic streetcars, such as Portland.

The future was not retro in the 1950s

The best analogy for a zero-emissions future is ironically what it seeks to undo: the history of suburbanization. In retrospect, we can view midcentury suburbanization as a physical expansion of built-up areas at lower density, at automobile scale. But at the time, it was not always viewed this way. Socially, the suburbs were supposed to be a return to rural virtues. The American patrician reformers who advocated for them consciously wanted to get rid of ethnic urban neighborhoods and their alien cultures. The German Christian democratic push for regional road and rail connections has the same social origin, just without the ethnic dimension – cities were dens of iniquity and sin.

At the same time, the suburbs, that future of the middle of the 20th century, were completely different from the mythologized 19th century past, before cities like New York and Berlin had grown so big. Most obviously, they were linked to urban jobs; the social forces that pushed for them were aware of that in real time, and sought transportation links precisely in order to permit access to urban jobs in what they hoped would be rural living.

But a number of other key differences are visible – for one, those suburbs were near the big cities of the early 20th century, and not in areas with demographic decline. In the United States, the Great Plains and Appalachia kept depopulating and the Deep South except Atlanta kept demographically stagnating. The growth in that era of interregional convergence happened in suburbs around New York, Chicago, and other big then-industrial cities, and in parts of what would soon be called the Sunbelt, namely Southern California, Texas, and Florida. In Germany, this history is more complicated, as the stagnating region that traditionalists had hoped to repopulate was Prussia and Posen, which were given to Poland at the end of the war and ethnically cleansed of their German populations. However, we can still see postwar shifts within West Germany toward suburbs of big cities like Munich and Frankfurt, while the Ruhr stagnated.

The future of transit-oriented development is not retro

People who dislike the auto-oriented form of cities can easily romanticize how cities looked before mass motorization. They’d have uniform missing middle built form in most of the US and UK, or uniform mid-rise in New York and Continental Europe. American YIMBYs in particular easily slip into romanticizing missing middle density and asking to replace single-family housing with duplexes and triplexes rather than with anything more substantial.

If you want to see what 21st-century TOD looks like, go to the richer parts of East Asia, especially Tokyo, which builds much more housing than Hong Kong and Singapore. The density in Tokyo is anything but uniform. There are clusters of high-rise buildings next to train stations, and lower density further away, even small single-family houses fronting narrow streets far enough from train stations that it’s not economical to redevelop them. It offends nostalgic Westerners; the future often does.

In the context of a growing city like New York or London, what this means is that the suburbs can expect to look spiky. There’s no point in turning, say, everything within two kilometers of Cockfosters (or the Little Neck LIRR station) into mid-rise apartments or even rowhouses. What’s the point? There’s a lot more demand 100 meters from the station than two kilometers away, enough that people pay the construction cost premium for the 20th floor 100 meters from the stations in preference to the third floor two kilometers away. The same is true for Paris – there’s no solution for its growth needs other than high-rises near RER stations and key Metro stations in the city as well as the suburbs, like the existing social housing complexes but with less space between buildings. It may offend people who associate high-rises with either the poor or recent high-skill immigrants, but again, the future often offends traditionalists.

The future of transportation is not retro

In countries that do not rigidly prevent urban housing growth the way the US does, the trend toward reurbanization is clear. Germany’s big cities are growing while everything else is shrinking save some suburbs in the richest regions, such as around Munich. Rural France keeps depopulating.

In this context, the modes of transportation of the future are rapid transit and high-speed rail. Rapid transit is preferable to buses and surface trains in most cities, because it serves spiky development better – the stations are spaced farther apart, which is fine because population density is not isotropic and neither is job density, and larger cities need the longer range that comes with the higher average speed of the subway or regional train over that of the tramway.

High-speed rail is likewise preferable to an everywhere-to-everywhere low-speed rail network like that of Switzerland. In a country with very large metro areas spaced 500 km or so apart, like the US, France, or Germany, connecting those growing city centers is of crucial importance, while nearby cities of 100,000 are of diminishing importance. Moreover, very big cities can be connected by trains so frequent that untimed transfers are viable. Already under the Deutschlandtakt plan, there will be 2.5 trains between Berlin and Hanover every hour, and if average speeds between Berlin and the Rhine-Ruhr were increased to be in line with those of the TGVs, demand would fill 4-6 trains per hour, enough to facilitate untimed transfers from connecting lines going north and south of Hanover. The Northeast Corridor has even more latent demand, given the huge size of New York.

The future of travel is not retro

The transportation network both follows and shapes travel patterns. Rapid transit is symbiotic with spiky TOD, and high-speed rail is symbiotic with extensive intercity travel.

The implication is that the future of holidays, too, is not retro. Vacation trips between major cities will become easier if countries that are not France and Japan build a dense network of high-speed lines akin to what France has done over the last 40 years and what Japan has done over the last 60. Many of those cities have thriving tourism economies, and these can expect to expand if there are fast trains connecting them to other cities within 300-1,000 kilometers.

Sometimes, these high-speed lines could serve romanticized tourist destinations. Niagara Falls lies between New York and Toronto, and could see expansion of visits, including day trips from Toronto and Buffalo and overnight stays from New York. The Riviera will surely see more travel once the much-delayed LGV PACA puts Nice four hours away from Paris by train rather than five and a half. Even the Black Forest might see an expansion of travel if people connect from high-speed trains from the rest of Germany to regional trains at Freiburg, going from the Rhine Valley up to the mountains; but even then, I expect a future Germany’s domestic tourism to be increasingly urban, probably involving the Rhine waterfront as well as the historic cities along the river.

But for the most part, tourist destinations designed around driving, like most American national parks as well as state parks like the Catskills, will shrink in importance in a zero-carbon future. It does not matter if they used to have rail access, as Glacier National Park did; the tourism of the leisure class of the early 20th century is not the same as that of the middle class of the middle of the 21st. Grand Canyon and Yellowstone are not the only pretty places in the world or even in the United States; the Hudson Valley and the entire Pacific Coast are pretty too, and do not require either driving or taking a hypothetical train line that, on the list of the United States’ top transportation priorities, would not crack the top 100. This will offend people whose idea of environmentalism is based on the priorities of turn-of-the-century patrician conservationists, but environmental science has moved on and the nature of the biggest ecological crisis facing humanity has changed.

The non-retro future is pretty cool

The theme of the future is that, just as the Industrial Revolution involved urbanization and rural depopulation, urban development patterns this century involve growth in the big metro areas and decline elsewhere and in traditional small towns. This is fine. The status anxieties of Basil Fawlty types who either can’t or won’t adapt to a world that has little use for their prejudices are not a serious public concern.

Already, people lead full lives in big global cities like New York and London without any of the trappings of what passed for normality in the middle of the 20th century, like a detached house with a yard and no racial minorities or working-class people within sight. The rest will adapt to this reality, just as early 20th century urbanites adapted to the reality of suburbanization a generation later.

It’s not even an imposition. It’s opportunity. People can live in high-quality housing with access to extensive social as well as job networks, and travel to many different places with different languages, flora and fauna, vistas, architecture, food, and local retail. Even in the same language zone, Northern and Southern Germany look completely different from each other, as do Paris and Southern France, or New England and Washington. Then outside the cities there are enough places walking distance from a commuter rail line or on the way on a high-speed line between two cities that people can if they’d like go somewhere and spend time out of sight of other people. There’s so much to do in a regime of green prosperity; the world merely awaits the enactment of policies that encourage such a future in lieu of one dominated by small-minded local interests who define themselves by how much they can pollute.

Metro-North Doesn’t Know Best Industry Practices

Governor Ned Lamont’s plan for speeding up trains between New York, New Haven, and Hartford seems to have fallen by the wayside, but Metro-North and the Connecticut Department of Transportation are still planning for future investments. Several high-level officials met with the advocates from the Connecticut Commuter Rail Council, and the results are unimpressive – they have made false statements out of ignorance of not just best practices outside North America but also current federal regulations, including the recent FRA reform.

The meeting link is a video and does not have a searchable transcript, so I’m going to give approximate timestamps and ask that people bear with me. At several points, highly-paid officials make statements that are behind the times, unimaginative, or just plain incorrect. The offenders are Richard Andreski, the bureau chief of public transportation for CDOT, who according to Transparency.CT earns a total of $192,000 a year including fringe benefits, and Glen Hayden, Metro-North’s vice president of engineering, who according to See Through NY earns an annual base salary of $219,000.

20-25 minutes: there’s a discussion, starting a few minutes before this timestamp, about Metro-North’s future rolling stock procurement. In addition to 66 M8 electric multiple units (EMUs), the railroad is planning to buy 60 unpowered railcars. Grilled about why buy unpowered railcars rather than multiple units, such as diesel multiple units (DMUs), Andreski said a few questionable things. He acknowledged that multiple units accelerate faster than locomotive-hauled trains, but said that this was not needed on the lines in question, that is the unpowered Metro-North branch lines, Shore Line East, and the New Haven-Hartford line. In reality, the difference, on the order of 45 seconds per stop at a top speed of 120 km/h (55 seconds if the top speed is 144 km/h), and electrification both massively increases reliability and saves an additional 10 seconds per stop (or 30 if the top speed is 144).

More worryingly, Andreski talks about the need for flexibility and the installed base of diesel locomotives. He suggests unpowered cars are more compatible with what he calls the train of the future, which runs dual-mode. Dual-mode trains today are of low quality, and the innovation in the world focuses on single-mode electric trains, with a growing number of railroads electrifying as well as transitioning to multiple units. Metro-North itself is a predominantly EMU-based railroad – running more EMUs, especially on the already-wired Shore Line East, is more compatible with its existing infrastructure and maintenance regime than keeping low-performing diesel branches and running diesel under catenary on the trunk line.

1:14-1:17: Andreski states that the 60 unpowered single-level cars should cost about $250 million, slightly more than $4 million per car. When a reader of this blog noted that in the rest of the world, a 25-meter multiple-unit costs $2.5 million, Andreski responded, “this is not accurate.” The only trouble is, it is in fact accurate; follow links to contracts reported in Railway Gazette in the rolling stock cost section of this post. It is not clear whether Andreski is lying, ignorant, or in a way both, that is making a statement with reckless disregard for whether it is true.

Hayden then chimes in, talking about FRA regulations, saying that they’re different from American ones, so European and Asian prices differ from American ones, seemingly indifferent to the fact that he just threw Andreski under the bus – Andreski said that multiple-units do not cost $2.5 million per car and if a public contract says they do then it’s omitting some extra costs. The only problem is, FRA regulations were recently revised to be in line with European ones, with specific eye toward permitting European trains to run on American tracks with minimal modifications, measured in tens of thousands of dollars of extra cost per car. In a followup conversation off-video, Hayden reiterated that position to longtime reader Roger Senserrich – he had no idea FRA regulations had been revised.

Hayden’s response also includes accessibility requirements. Those, too, are an excuse, albeit a slightly defensible one: European intercity trains, which are what American tourists are most likely to have experience with, are generally inaccessible without the aid of conductors and manual boarding plates. However, regional trains are increasingly fully accessible, at a variety of floor heights, and it’s always easier to raise the floor height to match the high platforms of the Northeast Corridor than to lower it to match those of low-platform networks like Switzerland’s.

1:45: asked about why Metro-North does not run EMUs on the wired Shore Line East, a third official passes the buck to Amtrak, saying that Amtrak is demanding additional tests and the line is Amtrak’s rather than Metro-North’s property. This is puzzling, as 1990s’ Amtrak planned around electrification of commuter rail service east of New Haven, to the point of constructing its substations with room for expansion if the MBTA were ever interested in running electric service on the Providence Line. It’s possible that Amtrak today is stalling for the sake of stalling, never mind that commuter rail electrification would reduce the speed difference with its intercity trains and thus make them easier to schedule and thus more reliable. But it’s equally possible that CDOT is being unreasonable; at this point I would not trust either side of any Amtrak-commuter rail dispute.

Megaregions, Redux

Remember how ten years ago the American urbanist conversation was all about carving the country up into megaregions? The America 2050 project drew some lines connecting metro areas into regions, designed to imitate the Boston-Washington corridor in concept, and asserted that this would be the future of American growth. The concept seems to have dropped off the discourse, and for good reason, but it may be useful to have a second look. The Boston-Washington megalopolis is a genuine megaregion, and it’s useful to see which regions elsewhere in the world share its characteristics.

The key takeaway is that rich cities do not have to be in megaregions. The Northeast Corridor is a rich megaregion, and San Francisco, Los Angeles, and Chicago anchor smaller megaregions of their own; but in Europe, among the richest cities only Frankfurt and Amsterdam are in megaregions, while London, Paris, Hamburg, and Munich are not. Megaregions are areas of high population density and interlinked social networks. Their size may give them economic advantage, but it doesn’t have to; urbanists and urban geographers must avoid overselling their importance.

What is a megaregion?

The original Boston-Washington megalopolis was defined in the 1960s, as a linear region with continuous suburban sprawl. The core comes from New York and Philadelphia, which share some suburbs in Central Jersey, their regional rails meeting at Trenton. However, continuous sprawl goes north to New Haven, Hartford, and Springfield, with only a few tens of km of separation from Providence and Worcester on the way to Boston; and southwest to Baltimore and Washington, with suburbs spaced closely together along the I-95 corridor.

There are extensive academic connections. Academics are generally hypermobile, but form especially thick metropolitan connections. Living in Boston and reverse-commuting to Brown is normal, and people at Brown would sometimes go up to Harvard or MIT for seminars when sufficiently important or interesting people gave talks. Connections up and down the central part of the corridor are extensive as well, stretching from Yale down to Penn. There is a gap between New Haven and Providence, as Hartford and Springfield aren’t academic centers; perhaps for academics the megaregion only stretches from New Haven to Washington, but even so, at least two-thirds of the megaregion remains intact.

Socially, there are strong connections along the corridor as well. They’re rarely end-to-end, but people in fandom routinely go a state or two over for conventions, so conventions in Connecticut and Rhode Island draw from New York and Boston, conventions in New Jersey draw from Philadelphia and New Haven, and conventions in Maryland draw from Philadelphia and Northern Virginia. On some stretches, weekend trips are normal, like the Columbia students who’d go back to visit parents in suburban Philadelphia every weekend, or people in New York who dated people in New Haven and didn’t even really think of it as a long-distance relationship.

Which regions qualify as megaregions?

Outside the Northeast, it is difficult for me to judge the extent of social connections, with a few key exceptions. However, I can judge how continuous urbanization is and, using American survey data on commuting, whether two adjacent core urban areas share suburbs. In Europe, I do not have commuting data, but it is easy to look at regional rail maps and see when S-Bahn networks touch.

Asymmetric megaregions

In the United States, the three largest core metropolitan areas outside the Northeast – Los Angeles, Chicago, and San Francisco – all anchor megaregions. However, in all three cases, the big core metro area dominates the broader region. Los Angeles has continuous sprawl down the coast to San Diego, and the two metro areas’ commuter rail networks touch; Chicago similarly has continuous sprawl up to Milwaukee, and if Milwaukee bothered to run regional trains then they would probably go down to Kenosha and connect to Metra; the Bay Area’s high housing costs have driven many people to the San Joaquin Delta, most of the way to Sacramento, and the Amtrak route connecting San Jose and Oakland with Sacramento is largely planned as regional rail nowadays.

New York is of course much larger than the other core regions of the megalopolis, but its metro area has at most half the population of the region, and even that requires making the broadest assumptions on what counts as part of the metro area and the narrowest ones on what counts as part of the megalopolis. If metro New York excludes mostly economically independent areas like New Haven and Central Jersey, and the megalopolis includes some inland areas like Albany and Harrisburg, then New York is only one third of the megalopolis. In contrast, the five-county Los Angeles metro area has three quarters of Southern California’s population, the Bay Area has about two thirds of its megaregion’s population, and metro Chicago has about 85% of the combined population of Chicago and Milwaukee.

Suburb sharing in smaller megaregions

High population density and suburban sprawl can lead some core urban areas to share suburbs, forming a megaregion with much lower population than the megalopolis. Florida supplies at least one such example: out of 237,000 employed residents in Polk County, 26,000 commute to Orlando’s Orange County and 29,000 commute to Tampa’s Hillsborough County and St. Petersburg’s Pinellas County; the western parts of Polk County have a higher density of Tampa-bound commuters and the eastern parts have a higher density of Orlando-bound commuters, but there is a fair amount of mixing, as well as anywhere-to-anywhere commuting within the county. By all accounts, Orlando and Tampa should be placed into one megaregion.

South Florida is arguably a megaregion as well. It is treated as a metro area stretching from Miami or even Key West north to West Palm Beach, but its northern, central, and southern areas have distinct urban cores. Miami-Dade County has 982,000 employed residents, of whom only 28,000 work in Palm Beach County; in the other direction, 29,000 workers from Palm Beach commute to Miami-Dade out of 513,000. This megaregion stretches even further north – St. Lucie County has 13,000 out of 100,000 workers commuting to Palm Beach County – but there is a gap in both population density and commuting zones between Port St. Lucie and Space Coast. Socially, too, the people I know on Space Coast don’t have ties to South Florida, and barely have any to Orlando. So the bulk of Florida is really two linear megaregions, one north-south and one southwest-northeast, which may be close but do not merge.

Finally, crossing the Pond, Northern England features a megaregion out of core metro areas of similar size to those of Central Florida. Liverpool and Manchester are two historic cores and are formally two distinct metro areas, but are so interlinked they are arguably a single metro area, and are certainly a single multicore megaregion. There is contiguous suburban sprawl connecting the two cities with small gaps, and were British regional rail services better, their frequent urban rail networks would have touched. There are even some ties crossing the Pennines to Leeds; Britain has attempted to improve infrastructure between historic Lancashire and Yorkshire, using the language of megaregions to argue that this would boost the area’s economic profile.

Leapfrog urban connections

Western Germany and the Netherlands do not have contiguous sprawl in the same way that most developed countries do. On a satellite photo, the commuting zone of New York, Paris, Madrid, Toronto, or any other major city in their respective countries looks largely as a single blob of gray. The population density of this gray blob is higher in France than in the United States, but in both countries, a metropolitan area is made out of a single contiguous built-up area plus a handful of surrounding low-density exurbs.

In contrast, in Germany and the Netherlands there are undeveloped areas between adjacent cities. Most definitions of metropolitan agglomeration in Europe recognize that Cologne and Bonn are one metro area, but the two cities’ built-up areas barely touch and have farmland in between. The metro area of Frankfurt similarly contains multiple core cities with recognizable centers and some rural gaps between them, such as Darmstadt and Mainz. Urban areas with slightly bigger gaps do not necessarily fall into one metro area, but certainly comprise a single megaregion, including Germany’s largest, the Rhine-Ruhr with its roughly 11 million people and extensive internal S-Bahn connections.

Randstad is likewise a megaregion. The Netherlands zealously protects its high-yield farmland from urban sprawl, so suburbs are usually not contiguous with the cities they serve as bedroom communities for. There are agricultural gaps between Amsterdam, the cities of Flevoland, Utrecht, Rotterdam, and the Hague, and not too much commuting between the southern and northern edges of the combined region, and yet intermediate commuting and tight economic links mean it must be viewed as more than two or three disparate metro areas.

More controversially, I claim that the lower reaches of the Upper Rhine, from Frankfurt and Mainz up to Karlsruhe, form a single megaregion, and may even stretch farther up all the way into Basel. The gaps in urbanization between Frankfurt and Mannheim are not large – there is a city every few kilometers on both rail lines connecting the two cities. Moreover, the Frankfurt and Rhine-Neckar regions’ S-Bahns touch at Mainz, the Mainz-Mannheim line having recently been designated as S-Bahn quality and appearing on the regional schedules. The Rhine-Neckar S-Bahn in turn serves Karlsruhe. South of Karlsruhe the population density is high but less so, and the gaps between the cities are larger. But even without Baden south of Karlsruhe, the combined region has nearly 10 million people, and certainly has the highest GDP in Germany, as it is much richer than the Rhine-Ruhr.

Remember the Blue Banana?

In 1989, a group of French geographers led by Roger Brunet coined the term blue banana for a European megalopolis. As defined, it stretched from London or even Liverpool and Manchester in the north, across the Channel to the Low Countries, up the Rhine to Switzerland, and then across the Alps to Milan. The original definition deliberately omitted Paris from this zone, arguing that French urban geography was dominated by internal national links centered around the capital rather than the polycentrism of the Low Countries, western Germany, Switzerland, and Italy.

The last 30 years have not been kind to the Blue Banana. Much of Continental Europe was beset by a period of slow growth in the 1990s, sometimes called eurosclerosis; parts of it have slowly recovered in the 2000s and 2010s, most notably Germany, while others have stagnated, most notably Italy. In the 1990s, it was plausible to view Milan as more like Northern Europe than like Southern Italy. Today, it is no longer tenable. Before the 2008 crisis, Lombardy was as rich as Hamburg and southern Hesse and much richer than Stockholm and Copenhagen; today it is slightly behind Stockholm and slightly ahead of Copenhagen, and well behind Hamburg and southern Hesse.

The story of growth in the last generation has mostly been one of states, not regions. Northern Italy is much richer than Southern Italy, just as it has always been, but the entire country has equally stagnated. French growth has not been spectacular over this period, but it’s been better than Italian growth. Belgium, within the Blue Banana, has done better than France in the last generation, but not by much. In this entire period, the most notable subnational per capita income changes have been that London has pulled ahead while Northern England has stagnated, and that East Germany has grown faster than West Germany.

Megaregions and wealth

In the United States, the big megaregions have been loci of wealth, particularly the megalopolis. This has intensified in the current century. According to BEA data, since 2000, economic growth in the four core Northeast combined metro areas has exceeded the national average, gaining about 4 percentage points relative to the rest of the country in terms of both per capita income (from all sources) and net earnings (i.e. income from work). But even there, this is not the whole story, since Seattle, which is not in any megaregion, has had even faster growth.

Moreover, in Europe, there is no real correlation between megaregions and growth. The largest single megaregion in Europe, the Rhine-Ruhr, has slower economic growth than both the surging cities of southern Germany and the converging ones of the East. Paris and London are doing just fine as independent metro areas, Munich is still the richest city region in the EU, and Berlin is steadily converging to West German income levels.

Of course, no correlation and negative correlation are two different things. Just as the Rhine-Ruhr is slowly stagnating, the Frankfurt-Mannheim megaregion is growing, and Randstad has managed to recover from the recession alongside the rest of the Netherlands.

To the extent that there’s a link between megaregions and wealth, it’s that in developing countries, or even in midcentury America, poorer regions are mostly rural, and their cities tend to be small and less likely to interlink to form large metro areas. Thus, Eastern China has three megaregions with tens of millions of people each – Beijing-Tianjin, the Yangtze Delta, and the Pearl River Delta – underlying the wealth and urbanization of these regions; in contrast, the Indo-Gangetic Plain’s lower level of economic development means that even though population density from Bangladesh up the Ganges toward Delhi is as high as in southern Jiangsu, the cities are too small and too separated to form a Bangladeshi or West Bengali or Doabi megaregion.

But in a first-world context, the urbanization rate is about 100%. Even on-paper rural areas are within city regions and just happen to be small municipalities whose residents can drive in half an hour to a larger number of people than any premodern village pedestrian could interact with over a lifetime.

What this suggests is that the right way to think of first-world megaregions is not in terms of economic output, but in terms of density. In dense areas like the Netherlands, western Germany, England, and the Northeastern US, megaregions are likely to form out of links between adjacent cities. Not for nothing, the only part of the American Sunbelt where I’m comfortable describing metro areas as linking to form megaregions, Florida, also has the highest population density. The economies of Atlanta, Dallas, and Houston are a lot stronger than that of Central Florida, which is frankly a basket case, but cities in Texas and the Deep South are too far apart to function as megaregions.

Does high background density lead to higher incomes? Maybe. Strong urban networks really do allow for more economic specialization. But then these networks can be global, untethered from where one can travel by regional rail or urban highways. It’s an interesting question of economic geography, but on the level of a sanity check, some of the richest cities in Europe are doing just fine without the polycentric megaregional links going up and down the Rhine.

S-Bahn and RegionalBahn

The American rail activist term regional rail refers to any mainline rail service short of intercity, which lumps two distinct service patterns. In some German cities, these patterns are called S-Bahn and RegionalBahn, with S-Bahn referring to urban rail running on mainline tracks and RegionalBahn to longer-range service in the 50-100 km range and sometimes even beyond. It’s useful to distinguish the two whenever a city wishes to invest in its regional rail network, because the key infrastructure for the two patterns is different.

As with many this-or-that posts of mine, the distinction is not always clear in practice. For one, in smaller cities, systems that are labeled S-Bahns often work more like RegionalBahn, for example in Hanover. Moreover, some systems have hybrid features, like the Zurich S-Bahn – and what I’ve advocated in American contexts is a hybrid as well. That said, it’s worth understanding the two different ends of this spectrum to figure out what the priority for rail service should be in each given city.

S-Bahn as urban rail

The key feature of the S-Bahn (or the Paris RER) is that it has a trunk that acts like a conventional urban rapid transit line. There are 6-14 stations on the trunks in the examples to keep in mind, often spaced toward the high end for rapid transit so as to provide express service through city center, and all trains make all stops, running every 3-5 minutes all day. Even if the individual branches run on a clockface schedule, people do not use the trunk as a scheduled railroad but rather show up and go continuously.

Moreover, the network layout is usually complementary with existing urban rail. The Munich S-Bahn was built simultaneously with the U-Bahn, and there is only one missed connection between them, The Berlin S-Bahn and U-Bahn were built separately as patchworks, but they too have one true missed connection and one possible miss that depends on which side of the station one considers the crossing point to be on. The RER has more missed connections with the Metro, especially on the RER B, but the RER A’s station choice was designed to maximize connections to the most important lines while maintaining the desired express stop spacing.

Urban rail lines rarely terminate at city center, and the same is true for S-Bahn lines. In cities whose rail stations are terminals, such as Paris, Munich, Frankfurt, and Stuttgart, there are dedicated tunnels for through-service; London is building such a tunnel in Crossrail, and built one for Thameslink, which has the characteristics of a hybrid. In Japan, too, the first priority for through-running is the most local S-Bahn-like lines – when there were only six tracks between Tokyo and Ueno, the Yamanote and Keihin-Tohoku Lines ran through, as did the Shinkansen, whereas the longer-range regional lines terminated at the two ends until the recent through-line opened.

The difference between an S-Bahn and a subway is merely that the subway is self-contained, whereas the S-Bahn connects to suburban branches. In Tokyo even this distinction is blurred, as most subway lines connect to commuter rail lines at their ends, often branching out.

RegionalBahn as intercity rail

Many regional lines descend from intercity lines that retooled to serve local traffic. Nearly every trunk line entering London from the north was built as a long-range intercity line, most commuter rail mainlines in New York are inner segments of lines that go to other cities or used to (even the LIRR was originally built to go to Boston, with a ferry connection), and so on.

In Germany, it’s quite common for such lines to maintain an intercity characteristic. The metropolitan layout of Germany is different from that of the English-speaking world or France. Single-core metro regions are rather small, except for Berlin. Instead, there are networks of independent metropolitan cores, of which the largest, the Rhine-Ruhr, forms an urban complex almost as large as the built-up areas of Paris and London. Even nominally single-core metro regions often have significant independent centers with long separate histories. I blogged about the Rhine-Neckar six months ago as one such example; Frankfurt is another, as the city is ringed by old cities including Darmstadt and Mainz.

But this is not a purely German situation. Caltrain connects what used to be two independent urban areas in San Francisco and San Jose, and many outer ends of Northeastern American commuter lines are sizable cities, such as New Haven, Trenton, Providence, and Worcester.

The intercity characteristic of such lines means that there is less need to make them into useful urban rail; going express within the city is more justifiable if people are traveling from 100 km away, and through-running is a lower priority. Frequency can be lower as well, since the impact of frequency is less if the in-vehicle travel time is longer; an hourly or half-hourly takt can work.

S-Bahn and RegionalBahn combinations

The S-Bahn and RegionalBahn concepts are distinct in history and service plan, but they do not have to be distinct in branding. In Paris, the distinction between Transilien and the RER is about whether there is through-running, and thus some lines that are RegionalBahn-like are branded as RER, for example the entire RER C. Moreover, with future extension plans, the RER brand will eventually take over increasingly long-distance regional service, for example going east to Meaux. Building additional tunnels to relieve the worst bottlenecks in the city’s transport network could open the door to connecting every Transilien line to the RER.

Zurich maintains separate brands for the S-Bahn and longer-distance regional trains, but as in Paris, the distinction is largely about whether trains terminate on the surface or run through either of the tunnels underneath Hauptbahnhof. Individual S-Bahn branches run every half hour, making extensive use of interlining to provide high frequency to urban stations like Oerlikon, and many of these branches go quite far out of the city. It’s not the same as the RER A and B or most of the Berlin S-Bahn, with their 10- and 15-minute branch frequencies and focus on the city and innermost suburbs.

But perhaps the best example of a regional rail network that really takes on lines of both types is that of Tokyo. In branding, the JR East network is considered a single Kanto-area commuter rail network, without distinctions between shorter- and longer-range lines. And yet, the rapid transit services running on the Yamanote, Keihin-Tohoku, and Chuo-Sobu Lines are not the same as the highly-branched network of faster, longer-range lines like Chuo Rapid, Yokosuka, Sobu Rapid, and so on.

The upshot is that cities do not need to neatly separate their commuter rail networks into two separate brands as Berlin does. The distinction is not one of branding for passengers, but one of planning: should a specific piece of infrastructure be S-Bahn or RegionalBahn?

Highest and best use for infrastructure

Ordinarily, the two sides of the spectrum – an S-Bahn stopping every kilometer within the city, and a RegionalBahn connecting Berlin with Magdeburg or New York with New Haven – are so different that there’s no real tradeoff between them, just as there is no tradeoff between building subways and light rail in a city and building intercity rail. However, they have one key characteristic leading to conflict: they run on mainline track. This means that transportation planners have to decide whether to use existing mainline tracks for S-Bahn or RegionalBahn service.

Using different language, I talked about this dilemma in Boston’s context in 2012. The situation of Boston is instructive even in other cities, even outside the United States, purely because its commuter rail service is so bad that it can almost be viewed as blank slate service on existing infrastructure. On each of the different lines in Boston, it’s worth asking what the highest and best use for the line is. This really boils down to two questions:

  1. Would the line fill a service need for intra-urban travel?
  2. Does the line connect to important outlying destinations for which high speed would be especially beneficial?

In Boston, the answer to question 1 is for the most part no. Thirty to forty years ago the answer would have been yes for a number of lines, but since then the state has built subway lines in the same rights-of-way, ignorant of the development of the S-Bahn concept across the Pond. The biggest exceptions are the Fairmount Line through Dorchester and the inner Fitchburg Line through suburbs of Cambridge toward Brandeis.

On the Fairmount Line the answer to question 2 is negative as well, as the line terminates within Boston, which helps explain why the state is trying to invest in making it a useful S-Bahn with more stops, just without electrification, high frequency, fare integration, or through-service north of Downtown Boston. But on the Fitchburg Line the answer to question 2 is positive, as there is quite a lot of demand from suburbs farther northwest and a decent anchor in Fitchburg itself.

The opposite situation to that of Fairmount is that of the Providence Line. Downtown Providence is the largest job center served by the MBTA outside Boston; the city ranks third in New England in number of jobs, behind Boston and Cambridge and ahead of Worcester and Hartford. Fast service between Providence and Boston is obligatory. However, Providence benefits from lying on the Northeast Corridor, which can provide such service if the regional trains are somewhat slower; this is the main justification for adding a handful of infill stops on the Providence Line.

In New York, the situation is the most complicated, befitting the city’s large size and constrained location. On most lines, the answers to both questions is yes: there is an urban rail service need, either because there is no subway service (as in New Jersey) or because there is subway service and it’s overcrowded (as on the 4/5 trains paralleling the Metro-North trunk and on the Queens Boulevard trains paralleling the LIRR trunk); but at the same time, there are key stations located quite far from the dense city, which can be either suburban centers 40 km out or, in the case of New Haven, an independent city more than 100 km out.

Normally, in a situation like New York’s, the solution should be to interline the local lines and keep the express lines at surface terminals; London is implementing this approach line by line with the Crossrail concept. Unfortunately, New York’s surface terminals are all outside Manhattan, with the exception of Grand Central. Penn Station has the infrastructure for through-running because already in the 1880s and 90s, the ferry transfers out of New Jersey and Brooklyn were onerous, so the Pennsylvania Railroad invested in building a Manhattan station fed by east-west tunnels.

I call for complete through-running in New York, sometimes with the exception of East Side Access, because of the island geography, which makes terminating at the equivalent of Gare du Nord or Gare de Lyon too inconvenient. In other cities, I might come to different conclusions – for example, I don’t think through-running intercity trains in Chicago is a priority. But in New York, this is the only way to guarantee good regional rail service; anything else would involve short- and long-range trains getting in each other’s way at Penn Station.

Urban Stereotypes and the Real Nation

Americans periodically talk about the stereotype that various large cities are not Real America. The standard explanations among American liberal for why this stereotype exists are a combination of partisanship (cities vote for Democrats by large margins) and racism (cities are racially diverse), but these have never sat well with me. Stereotypes that the major cities are a different world from the rest of the country are not uniquely American – they exist in England, France, and Israel just as in the US, and sociologists in Europe increasingly try to turn them into pan-European comparisons of urban middle-class globalists in tension with The Real Nation. This also exists historically: the best reference is Ernest Gellner’s Nations and Nationalism. This post is an explanation of Gellner’s theory and how it applies today.

Gellner’s theory of nationalism

To Gellner, modern nationalism is an inevitable byproduct of industrialization and modernization. Peasants live their entire lives within walking distance of where they were born. They have an intensely local culture with local customs, and politics revolving around jockeying for favors of the local notables, who are often entitled nobility. There is no social mobility to speak of in a traditional agrarian society, hence no need for compatibility between villages in different part of the same state. Moreover, the individual usually does not interact with the state directly, but rather through intermediaries, who again may be entitled nobles, but could equally well be powerful families in any of the premodern European republics.

A national culture may appeal to the more mobile elite, but not to the large majority of the population. In Aquitaine, the nobility transitioned from speaking Occitan to speaking French at the end of the Middle Ages, but the commoners didn’t even view themselves as part of France well into the Early Modern Era, and kept speaking Occitan until the 20th century. The standard Italian language is a creation of the Renaissance, and standard German is a creation of the Reformation, but neither was spoken widely before the modern era; standard German was only written, not spoken, until the 19th century.

Industrialization changes this situation. Workers from all over urbanize, and often urbanize far away from where they were born; people from Prussia moved west to the Ruhr to work in the factories, people from small American towns moved to the big industrial cities in the North, etc. A common language is essential. Common customs are useful as well: workers become interchangeable parts in a Fordist production system, so they need to have similar needs (for example, holidays) to be useful to the capitalist elite.

Even when minorities get some recognition, the state shoehorns them into a common culture for easier governance. Today we speak of Occitan and of the French state’s imposition of Parisian French on the South, but the term Occitania is only attested from the 16th century, and did not exist in Toulouse’s medieval heyday. In the communist world, state anthropologists grouped together people who had no conception of identity beyond their immediate village or tribe and labeled them as a particular ethnic group, such as the Uighurs or the Zhuang.

Gellner stresses that the promulgation of national culture is a top-down process, driven by the needs of the urban middle class. National education enforces a standard language and shames speakers of minority languages, such as Welsh, any minority language in France, immigrants in the US, or indigenous people in North America and Australia. Even when they lack a separate identity as the Welsh or Occitans do, the state teaches the peasants to speak correctly, that is, to speak as the elite does in and around the capital. Children are taught loyalty through rituals, national history, and irredentism, and in most of Europe this culminated in conscripted armies. In the era in question, education policy is decided entirely by political elites, be they local notables (as in the US) or urban-based national parties (as in Europe).

Even the socialist conception of workers with class consciousness only arises after industrialization and national homogenization. Factory workers can go on strike; Early Modern apprentices bound to a specific master cannot, and servants on a manor compete for favors from the lord and do not act in solidarity.

Nationalism and rural romanticism

A key aspect of nationalism is rural romanticism. As with national homogenization, Gellner stresses that this process is driven by the urban middle class, and not by rural dwellers themselves, who identify with their particular village or region more than with the nation.

The art of the Belle Epoque tells this story. Impressionist and postimpressionist painters in France might paint industrial scenes, such as train stations, but they were much likelier to paint rural ones, often in faraway regions. People in modern-day Provence have used Paul Cézanne’s paintings of the area’s rural idyll to argue against high-speed rail construction, saying it would despoil their historic culture – but Cézanne himself was educated in Aix and spent most of his life in Paris. Across the Pond, New York-based artists would paint romantic scenes in Upstate New York.

To Gellner, this romanticism is bundled with capital-centrism, as in France or England; he recognizes that polycentric models exist, such as that of Germany, but focuses on France as the purest example. In France, the middle class would not romanticize its own situation in Paris, which might be too special to generalize to the rest of the country. It would happily impose Parisian French in education, but could not romanticize the life of the Parisian worker. Instead, the object of romanticism had to be far away.

Stereotypes and familiarity

Gellner’s theory studies Europe in the Second Industrial Revolution, but we can look at applications at other times and places. In the United States, we can write a bunch of stereotypes that apply to the entire country and distinguish it culturally from the rest of the developed world:

  • Cities are car-oriented and low-density, but still have a high-rise central business district, ringed by mostly single-family houses and suburban job centers. If people take public transport, it’s because they are too poor to afford a car, or possibly because they commute to a large central business district at rush hour.
  • Cities are much poorer than their suburbs – the middle class prefers to live outside the city and drive in. If there are sections of central cities that are nice and attract the middle class, the people living therein are usually childless, and many end up moving to the suburbs and buying houses when they have children.
  • Schools are governed at a very local level, down to the individual small town, and parents spend a lot of money on buying houses in favored school districts, leading to intense school segregation by race and parental education. But within each district there is no tracking into academic versus vocational schools.
  • While there is no hierarchy of schools (except across districts), there is a rigid hierarchy of universities. Harvard is the best, but is unattainable to the vast majority of the public. Generally, private universities have higher prestige than public ones. Except at the lowest level of prestige, that of the community college, it’s normal to go far away for university, often out of state, and the university will moreover often be located in a small or medium-size town and not in a big city.
  • Non-Hispanic whites are the dominant group demographically, politically, and economically. They may have sub-identities, such as Italian, Scotch-Irish, or Puritan, but they will usually identify with whites with other sub-identities more closely than with nonwhite Americans. Moreover, they do not feel threatened by neighboring countries, and view themselves as the globally dominant ethnicity rather than possessing a siege mentality the way Israeli Jews and Chinese-Singaporeans do. Finally, within the white majority, Protestants from Northern and Western Europe occupy a privileged position of being the default group, to the point of not even being viewed as ethnic.

All of the above stereotypes are broadly true of the United States, but all have exceptions in various regions. New York’s high density and broad use of public transportation are well-known, and in urbanist discourse this makes it a lightning rod for accusations that it is not Real America.

And yet, some of the other stereotypes are more Northern than Southern. The school segregation picture is specifically Northern: the South is less likely to have segregated districts, and the segregation it does have comes from private (often sectarian) schools. Children in Florida grow up going to schools with children of other races, unlike children in New England. The university hierarchy is not only Northern but specifically Northeastern – in several Midwestern states, the state flagships are their respective states’ most prestigious institutions; and whether the universities are in big cities or smaller towns is idiosyncratic.

There is probably a case that New York is more different from standard average America than other regions are, but there is no plausible case regarding a number of other American cities commonly stereotyped as not Real America, such as Boston, Washington, or even San Francisco.

However, those other cities are too familiar to the cultural elites. Some frustrated liberals do try to say that the Deep South is not Real America for its various special social and political characteristics, but they cannot say with a straight face that Boston is Real America, because they are familiar enough with Boston to know its idiosyncrasies, such as its high-by-American-standards public transport usage and its job centralization pattern.

In contrast, the rural Midwest is disconnected enough from cultural production centers that people can say with a straight face that a randomly-selected Midwestern town represents Real America. It will have plenty of idiosyncrasies, and may even play them up for tourism (as at state fairs), but it will portray them as “we are unique, just like everyone else.” The uniqueness is a claim to special knowledge, and thus power, on behalf of the local elites, rather than a claim to political separateness. A politician is supposed to visit such a town, eat whatever food the locals proclaim is a local delicacy, and do photo-ops with the mayor and richest business owners, rather than to actually change national spending priorities. It’s the politics of personal connections, rather than ideology. Politicians can proclaim it Real America precisely because it is nonthreatening. Rural areas that demand ideological concessions, as the South did on segregation in the 20th century, have a harder time being taken seriously as Real America.

Fractal nationalism

Gellner does not get into the homogenization of minority identity, but it is a real issue within the theory of nationalism. The same principles of nationalism equally apply to minority groups, even ones that have had to politically fight to have cultural autonomy. On the level of identity, this means that groups that did not identify as a single ethnos begin to do so under the influence of a larger, more powerful culture; this includes not just top-down examples like the Uighurs and the Zhuang, but also more organic ones like the formation of a unified Muslim American identity including Middle Easterners, South Asians, and Africans.

The formation of sub-nationalism includes rural romanticism among sub-identities as well. It’s common enough on the level of the state or province, even if it’s a region that the nation writ large denigrates. Californians see the rest of America denigrate them as either ungovernable or elitist, depending on taste, and yet within the state they display the same romanticism for the state’s rural minority. In the interminable California High-Speed Rail alignment debates, people who supported routing the trains through Gilroy would talk up the area’s garlic festival as some kind of important marker of state culture.

In Europe, too, we see people specifically overrate the rural even in minority regions. French sociologists have spilled far too much ink about how modern social changes including globalization have hollowed out small towns, and multiple articles have specifically looked at Albi. They either directly say or imply that in the era of national unity, Occitania was great, but immigration and globalization have left it in decline. The reality is that Southern France has economically boomed in the last two generations – Toulouse is one of the fastest-growing cities in Europe thanks to the Airbus factory – but somehow, Toulouse and Bordeaux are not Real Midi whereas any small town where one may find extreme right voters is.

This romanticism goes even below the level of a state of province. Within cities, too, there are patterns to which neighborhoods are called Real New York and which are not, and as a rule, these neighborhoods are always the farthest-out ones. I have heard speculation that City Council Speaker Corey Johnson will face a major headwind in the 2021 mayoral election purely because he’s from Manhattan. I have spent years talking to New Yorkers and heard a lot of Real New York complaints and do not recall a single instance in which people accused Kew Gardens Hills and Midwood of being not-Real New York, never mind that their Orthodox Jewish populations behave in ways atypical of the city much more so than the upper middle class residents of the Upper West Side do.

Politicizing charisma

Some regions, professions, or social classes end up having considerable charisma, in the sense that other people view them as national symbols. Often these specifically represent the past, since it’s had more time to insinuate itself into national culture than the future: all over the United States as well as Western Europe, there is more attention to declining industrial regions such as the Midwest or the Ruhr than to demographically growing regions even if they’re equally poor, such as ones with economies driven by tourism and retirement.

Usually what makes a group charismatic is that it makes no ideological demands on the state, only personal ones. And yet, there is ideology in personal demands, which leads to overspending on such groups, for example lush farm subsidies and agricultural protectionism.

This is a pitfall for urbanism specifically, since the biggest cities genuinely have different needs from small towns. Public transport can succeed in small cities (like Strasbourg, Geneva, Karlsruhe, or Brno) given supportive policies and fail in big ones (like Los Angeles) given hostile ones – but there is practically always a size gradient. New York will always have better public transport than the rest of the United States. The upshot is that the sort of investment that is designed to maximize transport usage intensity relative to spending will concentrate in a few big cities, especially New York – and much of the potential for success elsewhere in the United States involves models of transit-oriented development that in effect New Yorkize other cities.

Since the modes of transportation that move people the most efficiently – various flavors of rapid transit – are difficult to implement in most American cities other than New York, nationalists face a dilemma. They can abandon nationalism, and declare that if (say) Tampa and Grand Rapids cannot make urban rail work, they will receive less funding. But this will look insensitive, not just to locals of Tampa and Grand Rapids, but also to various New York elites that have turned small cities like Tampa and Grand Rapids into national bellwethers. Most instead choose to politicize transport decisions and argue for things that small cities can implement, no matter how poor the results are (“learn to love the bus”).

One of the two options in the dilemma is politically correct, but keeps American transportation and urbanism frozen in amber in the 1950s; nationalism always romanticizes the past more than the future. The other moves forward, but is not so politically correct. Who wants to openly argue in favor of more investment in a two-thirds nonwhite and two-fifths foreign-born city, with enough minority prosperity that its most elite school is two-thirds Asian? Who wants to euthanize the national industry that played such a big role in the mythology of postwar prosperity, at least for those who could afford it and had the correct skin color? Who wants to openly argue for greater adoption of a vernacular architecture that a large majority of America emotionally associates with the living standards of a hundred years ago, never mind that individuals like it enough that developers build it on their own at market rate wherever they are allowed to?

The future of nationalism

Nationalism was the ideology that suited the Second Industrial Revolution, and globalism is what suits the information technology era. The extent of economic specialization of 1900 lent itself well to nation-states. Those nation-states did not have to be very big – Sweden wasn’t – but if they were small they needed to have open economies and institutions allowing extensive trade even in the absence of mass migration.

The extent of economic specialization of 2020 in the developed world is not the same as that of 1900. Industrial specialization, as when each industrial Northern American city produced a different good, is in decline, but instead there are hyper-specialized clusters of academic and industrial research, drawing on international talent. This requires stepping up from nationalism toward globalism. Linguistically this means English, stripped of a few Americanisms and Anglicisms like non-metric units; in literature this means reading a selection of many different cultures’ great authors, usually in translation, and not just one linguistic canon; in science this means an academia that trends toward international exchanges and often nation-hopping in training. It’s too vast a world for cultural Fordism, which encourages post-Fordist specialization – think Starbucks and its many different options for coffee and not the McDonald’s of 20 years ago with its limited menu.

The United States happens to be very well-suited for some aspects of globalization: most importantly, it is already Anglophone. It is ill-suited for others: Americans’ sense of national pride is bound in industries and consumption patterns that are destroying the planet. Any green transition, and really any improvement in infrastructure beyond the 1950s and 60s, will offend Americans’ sense of nationhood and elevate subcultures they are used to denigrating. This is not partisan and this is not even mostly racial. Nationalism romanticizes the nation’s imagined past, and in the United States more than anywhere else the past in question must be discarded as an era of wanton pollution.

Overnight Public Transit

American cities try to aim for 24/7 rail service, imitating New York. European cities except Copenhagen do not, and instead have night bus networks. Both of these options have fascinated various transit reformers, but unfortunately sometimes the reformers propose the wrong option for the specific city. This post is intended to be a set of guidelines for night buses and the possibility of 24/7 urban rail.

Maintenance windows

The reason rail service does not run 24/7 is maintenance. Tracks require regular inspections and work, which are done in multi-hour windows. Over the last century or so, the big urban rail systems of the world have standardized on doing this maintenance at night. For example, in Paris there are about 4.5-5 hours every weeknight between the last train of the night and the first train of the morning, and one hour less every weekend night. In Berlin trains run all night on weekends and have 3.5-hour windows of closure on weeknights.

The regular windows may be supplemented by long-term closures, during which passengers are told to use alternatives. Berlin occasionally closes some S-Bahn segments for a few days, and (I believe much more rarely) U-Bahn segments. Paris does so very rarely, usually for an entire summer month during which many Parisians are away on vacation and systemwide ridership is lower, and usually when there are easy alternatives, such as the RER A and Metro Line 1 substituting for each other.

The English-speaking world tends to have extensive weekend shutdowns for maintenance. London has them quite often in addition to nighttime shutdowns. New York runs trains 24/7, using the express tracks on most of its trunk lines to provide service even when the local stations on some segment are closed for maintenance. As American cities have mostly copied New York, they do not know how to wrap up maintenance during their usual nighttime windows and seek weekend closures or shorter hours as well. Thus, for example, BART has claimed that it needs 7-hour windows during weekend nights, citing the example of Paris, whose weekend night closures actually last less than 4 hours.

Flagging

I know of one city that runs its subway 24/7 without interruptions: Copenhagen. Overnight, Copenhagen single-tracks around worksites – frequency is low enough that trains can be scheduled not to conflict. As the trains are driverless, wrong-way running is quite easy. Moreover, there is ample separation between the tracks thanks to the Copenhagen Metro’s twin bore construction; thus, trains do not need to slow down next to worksites, nor must work slow down when a train runs on an adjacent track.

In New York, tracks on each line are right next to each other, with little separation between them. Thus, there are rules that are collectively called flagging under which trains must slow down to a crawl (I believe 10 miles per hour, or 16 km/h) when next to a worksite, while work must pause next to a moving train. The flagging rules apply even when there is more substantial separation between adjacent tracks, such as columns and retaining walls, provided there is any opening allowing passage between the tracks. The safety margins have been made more generous over the last 20 years, which is part of the reasons trains have slowed down, as reported separately by myself, Dan Rivoli, and Aaron Gordon. At the other end, maintenance costs in New York are very high thanks to the constant interruptions.

If it is possible to single-track at night without onerous flagging rules, then cities should go in that direction, using automated rail signaling such as CBTC, even stopping short of driverless trains. In cities with twin-bored tunnels this works provided there are regularly-spaced crossovers between tracks in opposite directions. London is generally poor in such crossovers, and installing new ones may be prohibitively expensive if blasting new connections between tunnels is required. In contrast, on Line 14 in Paris, there are almost sufficient crossovers – the longest stretch is between Bibliotheque and Madelaine, at 14 minutes one-way, and single-direction switches exist at Chatelet and Gare de Lyon, just one of which needs to upgraded to a full diamond crossover. There, 24/7 operation is plausible, though perhaps not so useful as the rest of the system is not 24/7.

Even some cut-and-cover metros can have sufficient separation between tracks for nighttime single-tracking. In Berlin the distance is adequate, at least for some stretches – the tracks are not right next to each other. Even in New York, there are segments where it is feasible to construct partitions between tracks, provided the agency changes flagging rules to permit regular operations and maintenance on adjacent tracks if a partition has been constructed. The cut-and-cover nature of these systems should facilitate this pattern since the cost of building the required crossovers is not prohibitive, just high.

Night buses

Night buses are attractive for a number of reasons. The most important is that in the after hours there is so little surface traffic that buses can match the speed of rapid transit. Moreover, ridership is usually low enough that a bus has adequate capacity. Finally, surface transit can make small detours, for example to reach a common timed transfer, since transit is dependent on both scale and mode. During the day Vancouver has a bus grid, with most buses arriving every 8-10 minutes, but at night it has a half-hourly radial network with a timed transfer, and little relationship with the shape of the SkyTrain network.

Nevertheless, not every city can make appropriate use of night buses. The important factors to consider include the following:

  1. How much does the rapid transit network follow major streets? If it mostly runs on two-way streets, as in Berlin, then running buss that duplicate the metro is easy. But if there are major deviations, especially if there are water crossings involved, then this is harder; in New York, where there are far more crossings of the East River by subway than by road, a night bus network would be virtually useless. Shuttle buses substituting for weekend trackwork are likewise complete failures whenever the subway is more direct than the streets, e.g. the Boston Red Line between Charles-MGH and Park Street.
  2. What is the expected size of the network? A minimum number of lines is required for success, and unless they are very frequent, transfers have to be timed. The half-hourly night buses in Berlin do not work well if untimed, for example.
  3. How long are the routes? This has two aspects. First, very long routes are less competitive with taxis if there are motorways. And second, a half-hourly night bus had better take around an integer number of half-hours minus turnaround time per roundtrip, to avoid wasting service hours. A 25-minute one-way trip is excellent, a 32-minute one a disaster.