Category: New York

The Other People’s Money Problem

I did a poll on Patreon about cost issues to write about. This is the winning option, with 12 votes; project- vs. budget-driven plans came second with 11 and I will blog about it soon, whereas neighborhood empowerment got 8.

OPM, or other people’s money, is a big impediment to cost reform. In this context, OPM refers to any external infusion of money, typically from a higher-level government from that controlling an agency. Any municipal or otherwise local agency, not able or willing to raise local taxes to fund itself, will look for external grants, for example in a federal budget. The situation then is that the federal grantor gives money but isn’t involved in the design of where the money goes to, leading to high costs.

OPM at ground level

Local and regional advocates love OPM. Whenever they want something, OPM lets them have it without thinking in terms of tradeoffs. Want a new piece of infrastructure, including everything the local community groups want, with labor-intensive methods that also pay the wages the unions hop for? OPM is for you.

This was a big problem for the Green Line Extension’s first iteration. Somerville made ridiculous demands for signature stations and even a bike path (“Somerville Community Path”) thrown in – and all of these weren’t jut extra scope but also especially expensive, since the funding came from elsewhere. The Community Path, a 3 km bike path, was budgeted at $100 million. The common refrain on this is “we don’t care, it’s federally funded.” Once there’s an outside infusion of money, there is no incentive to spend it prudently.

OPM modifying projects

In capital construction, OPM can furthermore lead to worse projects, designed to maximize OPM rather than benefits. Thus, not only are costs high, but also the results are deficient. In my experience talking to New Englanders, this takes the place of trying to vaguely connect to a politician’s set of petty priorities. If a politician wants something, the groups will try pitching a plan that is related to that something as a sales pitch. The system thus encourages advocates and local agencies to invest in buying politicians rather than in providing good service.

This kind of behavior can persist past the petty politician’s shelf life. To argue their cases, advocates sometimes claim that their pet project is a necessary component of the petty politician’s own priority. Then the petty politician leaves and is replaced by another, but by now, the two projects have been wedded in the public discourse, and woe betide any advocate or civil servant who suggests separating them. With a succession of petty politicians, each expressing interest in something else, an entire ecosystem of extras can develop, compromising design at every step while also raising costs.

The issue of efficiency

In the 1960s, the Toronto Transit Commission backed keeping a law requiring it to fund its operations out of fares. The reason was fear of surplus extraction: if it could receive subsidies, workers could use this as an excuse to demand higher wages and employment levels, and thus the subsidy would not go to more service. As it is, by 1971 this was untenable and the TTC started getting subsidies anyway, as rising market wages required it to keep up.

In New York, the outcome of the cycle of more subsidies and less efficiency is clearer. Kyle Kirschling’s thesis points out on PDF-p. 106 that New York City Transit’s predecessors, the IRT and BMT, had higher productivity measured in revenue car-km per employee in the 1930s than the subway has today. The system’s productivity fell from the late 1930s to 1980, and has risen since 1980 but (as of 2010) not yet to the 1930s peak. The city is one of a handful where subway trains have conductors; maintenance productivity is very low as well.

Instead of demanding efficiency, American transit advocates tend to demand even more OPM. Federal funding only goes to capital construction, not operations – but the people who run advocacy organizations today keep calling for federal funding to operations, indifferent to the impact OPM would have on any effort to increase efficiency and make organizations leaner. A well-meaning but harmful bill to break this dam has been proposed in the Senate; it should be withdrawn as soon as possible.

The difference between nudging and planning

I am soon going to go over this in more details, but, in brief, the disconnect between funding and oversight is not a universal feature of state funding of local priorities. In all unitary states we’ve investigated, there is state funding, and in Sweden it’s normal to mix state, county, and municipal funding. In that way, the US is not unique, despite its federal system (which at any case has far more federal involvement in transportation than Canada has).

Where the US is unique is that the Washington political establishment doesn’t really view itself as doing concrete planning. It instead opts for government by nudge. A federal agency makes some metrics, knowing that local and state bodies will game them, creating a competition for who can game the other side better. Active planning is shunned – the idea that the FTA should have engineers who can help design subways for New York is unthinkable. Federal plans for high-speed rail are created by hiring an external consultant to cobble together local demands rather than the publicly-driven top-down planning necessary for rail.

The same political advocates who want more money and care little for technical details also care little for oversight. They say “regulations are needed” or “we’ll come up with standards,” but never point to anything concrete: “money for bus shelter,” “money for subway accessibility,” “money for subway automation,” etc. Instead, in this mentality the role of federal funding is to be an open tab, in which every leakage and every abnormal cost is justified because it employed inherently-moral $80,000/year tradesmen or build something that organized groups of third-generation homeowners in an expensive city want. The politics is the project.

Mixing High- and Low-Speed Trains

I stream on Twitch (almost) every week on Saturdays – the topic starting now is fare systems. Two weeks ago, I streamed about the topic of how to mix high-speed rail and regional rail together, and unfortunately there were technical problems that wrecked the recording and therefore I did not upload the video to YouTube as I usually do. Instead, I’d like to write down how to do this. The most obvious use case for such a blending is the Northeast Corridor, but there are others.

The good news is that good high-speed rail and good legacy rail are complements, rather than competing priorities. They look like competing priorities because, as a matter of national tradition of intercity rail, Japan and France are bad at low-speed rail outside the largest cities (and China is bad even in the largest cities) and Germany is bad at high-speed rail, so it looks like one or the other. But in reality, a strong high-speed rail network means that distinguished nodes with high-speed rail stations become natural points of convergence of the rail network, and those can then be set up as low-speed rail connection nodes.

Where there is more conflict is on two-track lines with demand for both regional and intercity rail. Scheduling trains of different speeds on the same pair of tracks is dicey, but still possible given commitment to integration of schedule, rolling stock, and timetable. The compromises required are smaller than the cost of fully four-tracking a line that does not need so much capacity.

Complementarity

Whenever a high-speed line runs separately from a legacy line, they are complements. This occurs on four-track lines, on lines with separate high-speed tracks running parallel to the legacy route, and at junctions where the legacy lines serve different directions or destinations. In all cases, network effects provide complementarity.

As a toy model, let’s look at Providence Station – but not at the issue of shared track on the Northeast Corridor. Providence has a rail link not just along the Northeast Corridor but also to the northwest, to Woonsocket, with light track sharing with the mainline. Providence-Woonsocket is 25 km, which is well within S-Bahn range in a larger city, but Providence is small enough that this needs to be thought of as scheduled regional rail. A Providence-Woonsocket regional link is stronger in the presence of high-speed rail, because then Woonsocket residents can commute to Boston with a change in Providence, and travel to New York in around 2 hours also with a change in Providence.

More New England examples can be found with Northeast Corridor tie-ins – see this post, with map reproduced below:

The map hides the most important complement: New Haven-Hartford-Springfield is a low-speed intercity line, and the initial implementation of high-speed rail on the Northeast Corridor should leave it as such, with high-speed upgrades later. This is likely also the case for Boston-Springfield – the only reason it might be worthwhile going straight from nothing to high-speed rail is if negotiations with freight track owner CSX get too difficult or if for another reason Massachusetts can’t electrify the tracks at reasonable cost and run fast regional trains.

There’s also complementarity with lines that are parallel to the Northeast Corridor, like the current route east of New Haven, which the route depicted in the map bypasses. This route serves Southeast Connecticut communities like Old Saybrook and can efficiently ferry passengers to New Haven for onward connections.

In all of these cases, there is something special: Woonsocket-Boston is a semireasonable commute, New London connects to the Mohegan Sun casino complex, New Haven-Hartford and Boston-Springfield are strong intercity corridors by themselves, Cape Cod is a weekend getaway destination. That’s fine. Passenger rail is not a commodity – something special almost always comes up.

But in all cases, network effects mean that the intercity line makes the regional lines stronger and vice versa. The relative strength of these two effects varies; in the Northeast, the intercity line is dominant because New York is big and off-mainline destinations like Woonsocket and Mohegan are not. But the complementarity is always there. The upshot is that in an environment with a strong regional low-speed network and not much high-speed rail, like Germany, introducing high-speed rail makes the legacy network stronger; in one that is the opposite, like France, introducing a regional takt converging on a city center TGV station would likewise strengthen the network.

Competition for track space

Blending high- and low-speed rail gets more complicated if they need to use the same tracks. Sometimes, only two tracks are available for trains of mixed speeds.

In that case, there are three ways to reduce conflict:

  1. Shorten the mixed segment
  2. Speed up the slow trains
  3. Slow down the fast trains

Shortening the mixed segment means choosing a route that reduces conflict. Sometimes, the conflict comes pre-shortened: if many lines converge on the same city center approach, then there is a short shared segment, which introduces route planning headaches but not big ones. In other cases, there may be a choice:

  • In Boston, the Franklin Line can enter city center via the Northeast Corridor (locally called Southwest Corridor) or via the Fairmount Line; the choice between the two routes is close based on purely regional considerations, but the presence of high-speed rail tilts it toward Fairmount, to clear space for intercity trains.
  • In New York, there are two routes from New Rochelle to Manhattan. Most commuter trains should use the route intercity trains don’t, which is the Grand Central route; the only commuter trains running on Penn Station Access should be local ones providing service in the Bronx.
  • In the Bay Area, high-speed rail can center from the south via Pacheco Pass or from the east via Altamont Pass. The point made by Clem Tillier and Richard Mlynarik is that Pacheco Pass involves 80 km of track sharing compared with only 42 km for Altamont and therefore it requires more four-tracking at higher cost.

Speeding up the slow trains means investing in speed upgrades for them. This includes electrification where it’s absent: Boston-Providence currently takes 1:10 and could take 0:47 with electrification, high platforms, and 21st-century equipment, which compares with a present-day Amtrak schedule of 0:35 without padding and 0:45 with. Today, mixing 1:10 and 0:35 requires holding trains for an overtake at Attleboro, where four tracks are already present, even though the frequency is worse than hourly. In a high-speed rail future, 0:47 and 0:22 can mix with two overtakes every 15 minutes, since the speed difference is reduced even with the increase in intercity rail speed – and I will defend the 10-year-old timetable in the link.

If overtakes are present, then it’s desirable to decrease the speed difference on shared segments but then increase it during the overtake: ideally the speed difference on an overtake is such that the fast train goes from being just behind the slow train to just ahead of it. If the overtake is a single station, this means holding the slow train. But if the overtake is a short bypass of a slow segment, this means adding stops to the slow train to slow it down even further, to facilitate the overtake.

A good example of this principle is at the New York/Connecticut border, one of the slowest segments of the Northeast Corridor today. A bypass along I-95 is desirable, even at a speed of 200-230 km/h, because the legacy line is too curvy there. This bypass should also function as an overtake between intercity trains and express commuter trains, on a line that today has four tracks and three speed classes (those two and local commuter trains). To facilitate the overtake, the slow trains (that is, the express commuter trains – the locals run on separate track throughout) should be slowed further by being made to make more stops, and thus all Metro-North trains, even the express trains, should stop at Greenwich and perhaps also Port Chester. The choice of these stops is deliberate: Greenwich is one of the busiest stops on the line, especially for reverse-commuters; Port Chester does not have as many jobs nearby but has a historic town center that could see more traffic.

Slowing down the intercity trains is also a possibility. But it should not be seen as the default, only as one of three options. Speed deterioration coming from such blending in a serious problem, and is one reason why the compromises made for California High-Speed Rail are slowing down the trip time from the originally promised 2:40 for Los Angeles-San Francisco to 3:15 according to one of the planners working on the project who spoke to me about it privately.

Modernizing Rail, and a Note on Gender

Modernizing Rail starts in 15 hours! Please register here, it’s free. The schedule can be viewed here (and the Zoom rooms all have a password that will be given to registered attendees); note that the construction costs talk is not given by me but by Elif Ensari, who for the first time is going to present the Turkish case, the second in our overall project, to the general public. But do not feel obligated to attend, not given what else it’s running against.

I made a video going into the various breakout talks that are happening, in which I devoted a lot of time to the issue of gender. This is because Grecia White didn’t have enough time at last year’s equity session to talk about it, so this time she’s getting a full session, which I have every intention of attending. The video mentions something that fizzled out because of difficulties dealing with US census UI, which is a lot harder to use than the old Factfinder: the issue of gender by commuting. So I’d like to give this more time, since I know Grecia is going to talk about something adjacent but not the same.

The crux is this: public transit ridership skews female, to some extent. US-wide, 55% of public transit trips are by women; an LA-specific report finds that there, women are 54% of bus riders and 51% of rail riders. The American Community Survey’s Means of Transportation to Work by Selected Characteristics Table has men at 53% of the overall workforce but transit commuters splitting 50-50; the difference, pointed out in both links, is that women ride more for non-work trips, often chaining trips for shopping and child care purposes rather than just commuting to work.

In the video, I tried to look at the gender skew in parts of the US where transit riders mostly use commuter rail, like Long Island, and there, the skew goes the other way, around 58-42 for men. In Westchester, it is 54-46. In New York, which I struggled to find data for in the video, the split is 52-48 female – more women than men get to work on public transit.

But an even better source is the Sex of Workers by Means of Transportation to Work table, which (unlike Selected Characteristics) details commute mode choice not just as car vs. transit but specifies which mode of public transit is taken. There are, as of the 2019 ACS, 3,898,132 male transit commuters and 3,880,312 female ones – that’s the 50-50 split above. But among commuter rail riders, the split is 533,556 men, 387,835 women, which is 58-42. Subways split about 50-50, buses skew 52-48 female.

In the video, I explain this referencing Mad Men. Commuter rail is stuck in that era, having shed all other potential riders with derogatory references to the subway; it’s for 9-to-5 suburban workers commuting to the city, and this is a lifestyle that is specifically gendered, with the man commuting to the city and the woman staying in the suburb.

This impacts advocacy as well. In planning meetings for the conference, we were looking for more diverse presenters, but ran into the problem that in the US, women and minorities abound in public transit advocacy but not really in mainline rail, which remains more white and male. I believe that this is true of the workforce as well, but the only statistics I remember are about race (New York subway and bus drivers are by a large majority nonwhite, commuter rail drivers and conductors are the opposite), and not gender. Of course there are women in the field – Adina Levin (who presented last year) and Elizabeth Alexis are two must-read names for understanding what goes on both in general and in the Bay Area in particular – but it’s unfortunately not as deep a bench as for non-mainline transit, from which it is siloed, which has too many activists to list them all.

Regional Rail and Subway Maintenance

Uday Schultz has a thorough post about New York’s subway service deterioration over the last decade, explaining it in terms of ever more generous maintenance slowdowns. He brings up track closures for renewal as a typical European practice, citing examples like Munich’s two annual weekends of S-Bahn outage and Paris’s summertime line closures. But there’s a key aspect he neglects: over here, the combination of regional rail and subway tunnels means that different trunk lines can substitute for one another. This makes long-term closures massively less painful and expensive.

S-Bahn and subway redundancy

S-Bahn or RER systems are not built to be redundant with the metro. Quite to the contrary, the aim is to provide service the metro doesn’t, whether it’s to different areas (typically farther out in the suburbs) or, in the case of the RER A in Paris, express overlay next to the local subway. The RER and Métro work as a combined urban rail network in Paris, as do the S- and U-Bahns in German cities that have both, or the Metro and Cercanías in Madrid and Barcelona.

And yet, in large urban rail systems, there’s always redundancy, more than planners think or intend. The cleanest example of this is that in Paris, the RER A is an express version of Métro Line 1: all RER A stops in the city have transfers to M1 with the exception of Auber, which isn’t too far away and has ample if annoying north-south transfers to the Champs-Elysées stations on M1. As a result, summertime closures on the RER A when I lived in the city were tolerable, because I could just take M1 and tolerate moderate slowdowns.

This is the case even in systems designed around never shutting down, like Tokyo. Japan, as Uday notes, doesn’t do unexpected closures – the Yamanote Line went decades with only the usual nighttime maintenance windows. But the Yamanote Line is highly redundant: it’s a four-track line, and it is paralleled at short distance by the Fukutoshin Line. A large city will invariably generate very thick travel markets, and those will have multiple lines, like the east-west axis of M1 and the RER A, the two north-south axes of M12 and M13 and of M4 and the RER B, the east-west spine from Berlin Hauptbahnhof east, the Ikebukuro-Shibuya corridor, or the mass of lines passing through Central Tokyo going northeast-southwest.

The issue of replacement service

In the United States, standard practice is that every time a subway line is shut for maintenance, there are replacement buses. The buses are expensive to run: they are slow and low-capacity, and often work off the overtime economy of unionized labor; their operating costs count as part of the capital costs of construction projects. Uday moreover points out that doing long-term closures in New York on the model of so many large European cities would stress the capacity of buses in terms of fleet and drivers, raising costs further.

This is where parallel rail lines come in. In some cases, these can be other subway lines: from north of Grand Central to Harlem-125th, the local 6 and express 4/5 tracks are on different levels, so the express tracks can be shut down overnight for free, and then during maintenance surges the local tracks can be shut and passengers told to ride express trains or Second Avenue Subway. On the West Side, the 1/2/3 and the A/B/C/D are close enough to substitute for each other.

But in Queens and parts of the Bronx, leveraging commuter rail is valuable. The E/F and the LIRR are close enough to substitute for each other; the Port Washington Branch can, to some extent, substitute for the 7; the Metro-North trunk plus east-west buses would beat any interrupted north-south subway and would even beat the subway in normal service to Grand Central.

Running better commuter rail

The use of commuter rail as a subway substitute, so common in this part of the world, requires New York to run service along the same paradigm that this part of the world does. Over here, the purpose of commuter rail is to run urban rail service without needing to build greenfield tunnels in the suburbs. The fares are the same, and the frequency within the city is high all day every day. It runs like the subway, grading into lower-density service the farther one goes; it exists to extend the city and its infrastructure outward into the suburbs.

This way, a coordinated urban rail system works the best. Where lines do not overlap, passengers can take whichever is closest. Where they do, as is so common in city center, disruption on one trunk is less painful because passengers can take the other. The system does not need an external infusion of special service via transportation-of-last-resort shuttle buses, and costs are easier to keep under control.

New Leadership for New York City Transit and the MTA

Andrew Cuomo resigned, effective two weeks from now, after it became clear that if he didn’t the state legislature would remove him. As much of the leadership of public transportation in the state is his political appointees, like Sarah Feinberg, the incoming state governor, Lieutenant-Governor Kathy Hochul, will need to appoint new heads in their stead. From my position of knowing more about European public transit governance than the New York political system does, I’d like to make some recommendations.

Hire from outside the US

New York’s construction costs are uniquely high, and its operating costs are on the high side as well; in construction and to a large extent also in operations, it’s a general American problem. Managers come to believe that certain things are impossible that in fact happen all the time in other countries, occasionally even in other US cities. As an example, we’ve constantly heard fire safety as an excuse for overbuilt subway stations – but Turkey piggybacks on the American fire safety codes and to a large extent so does Spain and both have made it work with smaller station footprints. Much of the problem is amenable to bringing in an outsider.

The outsider has to be a true outsider – outside the country, not just the agency. An American manager from outside transportation would come in with biases of how one performs management, which play to the groupthink of the existing senior management. Beware of managers who try to perform American pragmatism by saying they don’t care about “Paris or such,” as did the Washington Metro general manager. Consultants are also out – far too many are retirees of those agencies, reproducing the groupthink without any of the recent understanding by junior planners of what is going wrong.

Get a Byford, not Byford himself

Andy Byford is, by an overwhelming consensus in New York, a successful subway manager. Coming in from Toronto, where he was viewed as a success as well, he reformed operations in New York to reduce labor-management hostility, improve the agency’s accessibility program, and reduce the extent of slow orders. Those slow orders were put in there by overly cautious management, such as Ronnie Hakim, who came in via the legal department rather than operations, and viewed speed as a liability risk. Byford began a process called Save Safe Seconds to speed up the trains, which helped turn ridership around after small declines in ridership in the mid-2010s.

The ideal leader should be a Byford. It cannot be Byford himself: after Cuomo pushed him out for being too successful and getting too much credit, Byford returned to his native Britain, where Mayor Sadiq Khan appointed him head of Transport for London. Consulting with Byford on who to hire would be an excellent idea, but Byford has his dream job and is very unlikely to come back to New York.

Look outside the Anglosphere

High operating costs are a New York problem, and to some extent a US problem. Canada and the UK do just fine there. However, construction costs, while uniquely bad in New York, are also elevated everywhere that speaks English. The same pool of consultants travel across, spreading bad ideas from the US and UK to countries with cultural cringe toward them like Canada, Australia, and Singapore.

The MTA has a $50 billion 5-year capital plan. Paris could only dream of such money – Grand Paris Express is of similar size with the ongoing cost overruns but is a 15-year project. The ideal head of the MTA should come from a place with low or at worst medium construction costs, to supervise such a capital plan and coordinate between NYCT and the commuter rail operators.

Such a manager is not going to be a native English speaker, but that’s fine – quite a lot of the Continental European elite is fluent in English, though unfortunately this is not as true in Japan, South Korea, or Taiwan. If it is possible to entice a Spanish manager like Silvia Roldán Fernández of Madrid Metro to come in, then this is ideal, given the number of Spanish-speaking New Yorkers; Madrid of course also has legendarily low construction costs, even today. Gerardo Lertxundi Albéniz of Barcelona is a solid option. Italian managers are an option as well given the growing networks in Italy, not just building new lines but also making old stations accessible: Stefano Cetti of Milan’s public works arm MM, Gioia Ghezzi of the operating company ATM, Giovanni Mottura of Rome’s ATAC, etc. Germans like Munich’s Bernd Rosenbusch or Ingo Wortmann or Berlin’s Eva Kreienkamp have experience with juggling conflicting local and state demands and with more labor militancy than people outside Germany associate Germany with. Laurent Probst may well be a good choice with his experience coordinating an even larger transit network than New York’s – assuming that he wouldn’t view New York as a demotion; the same is true of RATP’s head, the generalist Catherine Guillouard.

This is not meant to be a shortlist – these are just the heads of the transit organs of most of the larger Continental Western European systems. Japanese, Korean, and Taiwanese heads should be considered too, if they speak English and if they don’t view working in the US, in a city smaller than Tokyo or Seoul, as a demotion.

Let the civil service work

American civil service is broken – or, more precisely, was never allowed to become an administrative state, thanks to postwar anti-state paranoia. Professionals learn to be timid and wait for the word of a political appointee to do anything unusual. Cuomo did not create this situation – he merely abused it for his own personal gain, making sure the political appointees were not generic liberal Democrats but his own personal loyalists.

The future cannot be a return to the status quo that Cuomo exploited. The civil service has to be allowed to work. The role of elected politicians is to set budgets, say yes or no to megaproject proposals, give very broad directions (“hire more women,” “run like a business,” etc.), and appoint czars in extreme situations when things are at an impasse. Byford acted as if he could work independently, and Cuomo punished him for it. It’s necessary for New York to signal in advance that the Cuomo era is gone and the next Byford will be allowed to work and rewarded for success. This means, hiring someone who expects that the civil service should work, giving them political cover to engage in far-reaching reforms as required, and rewarding success with greater budgets and promotions.

Why It’s Important to Remove Failed Leaders

Andrew Cuomo has a Midas touch. Everything he touches turns to gold, that is, shiny, expensive, and useless. Bin Laden killed 3,000 people in New York on 9-11. Cuomo, through his preference for loyalists who cover up his sexual assaults over competent people, has killed 60,000 and counting in corona excess deaths – 50% more than the US-wide average. And the state let it slide, making excuses for his lying about the nursing home scandal. Eventually the sexual assault stories caught up with him, but not before every state politician preferred to extract some meaningless budget concessions instead of eliminate the killer of New Yorkers at the first opportunity. Even now they delay, not wanting to impeach; they do not believe in consequences for kings, only for subjects.

Time and time again, powerful people show that they don’t believe in accountability. After all, they might be held accountable too, one day. This cascades from the level of a mass killer of a governor down to every middle manager who excuses failure. The idea is that the appearance of scandal is worse than the underlying offense, that somehow things will get better by pretending nothing happened.

And here is the problem: bad leaders, whether they are bad due to pure incompetence or malevolence, don’t get good. People can improve at the start of their careers; leaders are who they are. They can only be thrown away, as far as down as practical, as an example. Anders Tegnell proposed herd immunity for Sweden in early 2020 and then pretended he never did, and the country remained unmasked for most of the year; deaths, while below European averages due to low Nordic levels of cohabitation, are far and away the worst in the Nordic countries, and yet Tegnell is still around, still directing an anti-mask policy. Tegnell is incompetent; Sweden is a worse country for not having gotten rid of him in late spring 2020. Cuomo is malevolent; New York is a worse state for every day that passes that he’s not facing trial for mass manslaughter and sexual assault, every day that passes that his mercenary spokespeople who attacked his victims remain employed.

This is not a moral issue. It’s a practical issue. The most powerful signal anyone can get is promotion versus dismissal (there’s also pay, but it’s not relevant to political power). When Andrew Cuomo stripped Andy Byford of responsibilities as head of New York City Transit, it was a clear signal: you can be a widely acclaimed success, but you failed to flatter the monarch and prostrate before him and this is what matters to me. Byford read the signal correctly, resigned, and ended up promoted to the head of Transport for London, because Sadiq Khan and TfL appreciate competence every bit as Cuomo does not.

Likewise, the retention of Tegnell sends a signal: keep doing what you’re doing. The same is true of Cuomo, and every other failure who is not thrown away from the public.

If anything, it’s worse for a sitting governor. Cuomo openly makes deals. The state legislators who can remove this killer from the body politic choose to negotiate, sending a clear signal: corrupt the state and be rewarded. 60,000 dead New York State residents mean little to them; many more who will die as variants come in mean even less.

The better signal is you have nothing anyone wants, go rot at Sing Sing. This is the correct way to deal with a failure even of three fewer orders of magnitude. Fortunately, there’s only one Cuomo – never before has New York had such mass man-made death. Unfortunately, incidents that are still deadly and require surgical removal of malefactors are far more common. Many come from Cuomo’s lackeys; in my field, the subway, Sarah Feinberg is responsible for around a hundred preventable transit worker deaths, and should never work in or adjacent to this field again. But apolitical managers too screw up on costs, on procurement, on maintenance, on operations, on safety – and rarely suffer for it. But then the fish rots from the head. Chop it off and move on.

Leisure Travel by Public Transit

I’ve written before about tourism by rail, but only in an intercity context, and it’s worthwhile talking about leisure travel by rail at more local and regional scale too. Most travel is local, and this includes leisure travel.

Local neighborhood travel

A trip to dinner in a neighborhood well-known for a specific kind of cuisine is a type of local leisure trip. Ethnic enclaves abound in diverse cities and people routinely go to other neighborhoods to enjoy food; this kind of trip is so common that it’s not even treated as a leisure trip, just as ordinary consumption.

This can be done by car or by public transportation. The advantage of cars is that such trips tend to happen outside rush hour, when there’s less traffic; that of public transport is that usually ethnic business districts are in busy areas, where there’s more traffic, even if they’re not at city center. The best example of a diverse auto-oriented city is Los Angeles, where getting from one region to another takes too long even off-peak, making it cumbersome for a Westsider to have Chinese food in San Gabriel Valley or Vietnamese food in Orange County regularly. New York and London do a lot better on access to such amenities, thanks to their greater centralization of destinations and public transport networks.

Regional travel

Regional travel starts including things people conceive of as leisure trips more regularly. These can include any of the following:

  • Museums, galleries, and other cultural amenities
  • Concerts, sports games, conventions, and other special events
  • Beaches
  • Non-urban outdoor recreation such as hiking and biking trails
  • Historic towns that have fallen into the orbit of a larger city

It is striking, in retrospect, how local such travel is. For example, when I LARPed at Intercon, in 2012-6, I was almost the only person flying in from another country, and a large majority of the attendees were local to the Boston area rather than flying in from far away – and the top locations people were coming in from otherwise were New York and Albany, not Chicago or California. This is equally true of conventions in general, except for a handful of international and national ones like Worldcon or Comic Con.

These are all regional rather than local destinations. If they’re not tethered to a geographic feature like a beach or a mountain, they try to locate based on the transportation network as far as possible, so that the biggest and richest conventions are in city center. New York Comic Con is on the Far West Side, but Dexcon is in Morristown. The upshot is that such events want to be close to public transportation and the issue is then about providing both good transit and sufficient event space in central areas.

The issue of TOD

Transit-oriented development is usually thought of as permitting more residential and commercial buildings near public transport. But this is equally true of leisure destinations. The term TOD did not exist then, but early urban renewal involved building event spaces in or near city centers, for example Lincoln Center.

This is equally true of outdoor places. Of course, TOD can’t create a beach or a suitable hilly region for hiking. But it can promote growth at particular places. Historically, New York had excursion railways to Coney Island, which then became much of the subway in Southern Brooklyn, and the same companies that owned the early railways also developed beachfront hotels. Later, amusement parks developed in the area, back when the main uses of other city waterfront were industrial.

Trails, too, can be served by public transportation if it is there. Germany has patches of forest, rehabilitated in the last 200 years, and some of these patches are near train stations so that people can walk through. The Appalachian Trail has segments accessible by commuter rail from New York, even if the weekend frequency leaves a lot to be desired.

Good transit practices

Leisure travel practically never takes place during commute hours. It peaks on weekends, to the point that in areas close to regional leisure destinations, like the Museum of Natural History or Yankee Stadium or Coney Island, trains have as many riders on weekends as on weekdays or even more.

The point of running regional rail on an all-day, everyday takt is that it facilitates such travel, and not just commuter travel. The same timetable can be used for work trips, errand trips, school trips, intercity trips, and leisure trips, each peaking at a different time. Some trains from Berlin to leisure destinations like the trolleyferry are filled with commuters, others with tourists; either way, they run every 20 minus to Strausberg.

This remains best practice even if there aren’t obvious leisure destinations nearby. A transit city like New York is full of transit users, and providing better suburban service is likely to gradually create transit-oriented leisure in the suburbs catering to these millions of carless city residents. Those can be beaches near convenient train stations, or hiking trails, or historic and cultural places like Sleepy Hollow. But the transit has to be there for any such development to happen.

The Leakage Problem

I’ve spent more than ten years talking about the cost of construction of physical infrastructure, starting with subways and then branching on to other things, most.

And yet there’s a problem of comparable size when discussing infrastructure waste, which, lacking any better term for it, I am going to call leakage. The definition of leakage is any project that is bundled into an infrastructure package that is not useful to the project under discussion and is not costed together with it. A package, in turn, is any program that considers multiple projects together, such as a stimulus bill, a regular transport investment budget, or a referendum. The motivation for the term leakage is that money deeded to megaprojects leaks to unrelated or semi-related priorities. This often occurs for political reasons but apolitical examples exist as well.

Before going over some examples, I want to clarify that the distinction between leakage and high costs is not ironclad. Sometimes, high costs come from bundled projects that are costed together with the project at hand; in the US they’re called betterments, for example the $100 million 3 km bike lane called the Somerville Community Path for the first, aborted iteration of the Green Line Extension in Boston. This blur is endemic to general improvement projects, such as rail electrification, and also to Northeast Corridor high-speed rail plans, but elsewhere, the distinction is clearer.

Finally, while normally I focus on construction costs for public transport, leakage is a big problem in the United States for highway investment, for political reasons. As I will explain below, I believe that nearly all highway investment in the US is waste thanks to leakage, even ignoring the elevated costs of urban road tunnels.

State of good repair

A month ago, I uploaded a video about the state of good repair grift in the United States. The grift is that SOGR is maintenance spending funded out of other people’s money – namely, a multiyear capital budget – and therefore the agency can spend it with little public oversight. The construction of an expansion may be overly expensive, but at the end of the day, the line opens and the public can verify that it works, even for a legendarily delayed project like Second Avenue Subway, the Berlin-Brandenburg Airport, or the soon-to-open Tel Aviv Subway. It’s a crude mechanism, since the public can’t verify safety or efficiency, but it’s impossible to fake: if nothing opens, it embarrasses all involved publicly, as is the case for California High-Speed Rail. No such mechanism exists for maintenance, and therefore, incompetent agencies have free reins to spend money with nothing to show for it. I recently gave an example of unusually high track renewal costs in Connecticut.

The connection with leakage is that capital plans include renewal and long-term repairs and not just expansion. Thus, SOGR is leakage, and when its costs go out of control, they displace funding that could be used for expansion. The NEC Commission proposal for high-speed rail on the Northeast Corridor calls for a budget of $117 billion in 2020 dollars, but there is extensive leakage to SOGR in the New York area, especially the aforementioned Connecticut plan, and thus for such a high budget the target average speed is about 140 km/h, in line with the upgraded legacy trains that high-speed lines in Europe replace.

Regionally, too, the monetary bonfire that is SOGR sucks the oxygen out of the room. The vast majority of the funds for MTA capital plans in New York is either normal replacement or SOGR, a neverending program whose backlog never shrinks despite billions of dollars in annual funding. The MTA wants to spend $50 billion in the next 5 years on capital improvements; visible expansion, such as Second Avenue Subway phase 2, moving block signaling on more lines, and wheelchair accessibility upgrades at a few stations, consists of only a few billion dollars of this package.

This is not purely an American issue. Germany’s federal plan for transport investment calls for 269.6 billion euros in project capital funding from 2016 to 2030, including a small proportion for projects planned now to be completed after 2031; as detailed on page 14, about half of the funds for both road and rail are to go to maintenance and renewal and only 40% to expansion. But 40% for expansion is still substantially less leakage than seen in American plans like that for New York.

Betterments and other irrelevant projects

Betterments straddle the boundary between high costs and leakage. They can be bundled with the cost of a project, as is the case for the Somerville Community Path for original GLX (but not the current version, from which it was dropped). Or they can be costed separately. The ideal project breakdown will have an explicit itemization letting us tell how much money leaked to betterments; for example, for the first Nice tramway line, the answer is about 30%, going to streetscaping and other such improvements.

Betterments fall into several categories. Some are pure NIMBYism – a selfish community demands something as a precondition of not publicly opposing the project, and the state caves instead of fighting back. In Israel, Haifa demanded that the state pay for trenching portions of the railroad through the southern part of the city as part of the national rail electrification project, making specious claims about the at-grade railway separating the city from the beach and even saying that high-voltage electrification causes cancer. In Toronto, the electrification project for the RER ran into a similar problem: while rail electrification reduces noise emissions, some suburbs still demanded noise walls, and the province caved to the tune of $1 billion.

Such extortion is surplus extraction – Israel and Toronto are both late to electrification, and thus those projects have very high benefit ratios over base costs, encouraging squeaky wheel behavior, raising costs to match benefits. Keeping the surplus with the state is crucial for enabling further expansion, and requires a combination of the political courage to say no and mechanisms to defer commitment until design is more advanced, in order to disempower local communities and empower planners.

Other betterments have a logical reason to be there, such as the streetscape and drainage improvements for the Nice tramway, or to some extent the Somerville Community Path. The problem with them is that chaining them to a megaproject funded by other people’s money means that they have no sense of cost control. A municipality that has to build a bike path out of its own money will never spend $100 million on 3 km; and yet that was the projected cost in Somerville, where the budget was treated as acceptable because it was second-order by broader GLX standards.

Bad expansion projects

Sometimes, infrastructure packages include bad with good projects. The bad projects are then leakage. This is usually the politically hardest nut to crack, because usually this happens in an environment of explicit political negotiation between actors each wanting something for their own narrow interest.

For example, this can be a regional negotiation between urban and non-urban interests. The urban interests want a high-value urban rail line; the rest want a low-value investment, which could be some low-ridership regional rail or a road project. Germany’s underinvestment in high-speed rail essentially comes from this kind of leakage: people who have a non-urban identity or who feel that people with such identity are inherently more morally deserving of subsidy than Berlin or Munich oppose an intercity high-speed rail network, feeling that trains averaging 120-150 km/h are good enough on specious polycentricity grounds. Such negotiation can even turn violent – the Gilets Jaunes riots were mostly white supremacist, but they were white supremacists with a strong anti-urban identity who felt like the diesel taxes were too urban-focused.

In some cases, like that of a riot, there is an easy solution, but when it goes to referendum, it is harder. Southern California in particular has an extreme problem of leakage in referendums, with no short- or medium-term solution but to fund some bad with the good. California’s New Right passed Prop 13, which among other things requires a 2/3 supermajority for tax hikes. To get around it, the state has to promise somthing explicit to every interest group. This is especially acute in Southern California, where “we’re liberal Democrats, we’re doing this” messaging can get 50-60% but not 67% as in the more left-wing San Francisco area and therefore regional ballot measures for increasing sales taxes for transit have to make explicit promises.

The explicit promises for weak projects, which can be low-ridership suburban light rail extensions, bond money for bus operations, road expansion, or road maintenance, damage the system twice. First, they’re weak on a pure benefit-cost ratio. And second, they commit the county too early to specific projects. Early commitment leads to cost overruns, as the ability of nefarious actors (not just communities but also contractors, political power brokers, planners, etc.) to demand extra scope is high, and the prior political commitment makes it too embarrassing to walk away from an overly bloated project. For an example of early commitment (though not of leakage), witness California High-Speed Rail: even now the state pretends it is not canceling the project, and is trying to pitch it as Bakersfield-Merced high-speed rail instead, to avoid the embarrassment.

The issue of roads

I focus on what I am interested in, which is public transport, but the leakage problem is also extensive for roads. In the United States, road money is disbursed to the tune of several tens of billions of dollars per year in the regular process, even without any stimulus funding. It’s such an important part of the mythos of public works that it has to be spread evenly across the states, so that politicians from a bygone era of non-ideological pork money can say they’ve brought in spending to their local districts. I believe there’s even a rule requiring at least 92% of the fuel tax money generated in each state to be spent within the state.

The result is that road money is wasted on low-growth regions. From my perspective, all road money is bad. But let’s put ourselves for a moment in the mindset of a Texan or Bavarian booster: roads are good, climate change is exaggerated, deficits are immoral (German version) or taxes are (Texan version), the measure of a nation’s wealth is how big its SUVs are. In this mindset, road money should be spent prudently in high-growth regions, like the metropolitan areas of the American Sunbelt or the biggest German cities. It definitely should not be spent in declining regions like the Rust Belt, where due to continued road investment and population decline, there is no longer traffic congestion.

And yet, road money is spent in those no-congestion regions. Politicians get to brag about saving a few seconds’ worth of congestion with three-figure million dollar interchanges and bypasses in small Rust Belt towns, complete with political rhetoric about the moral superiority of regions whose best days lay a hundred years ago to regions whose best days lie ahead.

Leakage and consensus

It is easy to get trapped in a consensus in which every region and every interest group gets something. This makes leakage easier: an infrastructure package will then have something for everyone, regardless of any benefit-cost analysis. Once the budget rather than the outcome becomes the main selling point, black holes like SOGR are easy to include.

It’s critical to resist this trend and fight to oppose leakage. Expansion should go to expansion, where investment is needed, and not where it isn’t. Failure to do so leads to hundreds of billions in investment money most of which is wasted independently for the construction cost problem.

Commuter Rail Express Service Best Practices

After my last post on poor timetabling in the New York area, I got a lot of feedback comparing New York’s zonal system with existing high-quality commuter rail networks. Some of it was in comments, but most interesting was a post by the pseudonymous socialist Emil Seidel, who compares the situation in New York with that of Munich.

I’m going to go over some best practices here – this is not intended as a highlight of poor American practices. That said, because of the application to New York, I’m going to go over Paris and Tokyo, as they’re both very large cities, in addition to cleaner German examples, including Berlin (where I live), Nuremberg (where Herbert in comments lives and where a Twitter commenter pointed out express service), and finally Emil’s example of Munich.

The upshot is that yes, commuter trains do often have express service, and it’s common for the express service to run local on an outer segment and then express closer in. However, this is not really the New York zone theory. Most importantly, high-quality local service always comes first, and everything else is an overlay. This is common to all of the examples we will look at, and is the most fundamental fact of commuter rail: S-Bahn service is urban rail on mainline tracks.

Infrastructure for local trains

Local service always comes first, ahead of any longer-range regional service. This can be readily seen in infrastructure allocation: in all examples I know of in the German-speaking world, Paris, and Tokyo, when there’s scarce infrastructure built for through-service, local trains get it ahead of longer-range regional ones.

  • In Paris, the RER is defined as what runs through on newly-built tunnels, whereas Transilien service terminates at one of the historic terminals of Paris. This distinction is fundamental and precedes other distinctions, such as frequency – there are sections of Transilien H, J, and L that have higher frequency than some RER branches. And where the two systems run side-by-side, the RER is the more local one.
  • In Germany, newly-built tunnels are for S-Bahn service. For example, in Munich, the S-Bahn gets to use the tunnel, while other trains terminate on the surface; this is also the case in Frankfurt, Stuttgart (until the upcoming Stuttgart 21), and Berlin (until the North-South Main Line opened).
  • In Zurich, there are two through-tunnels under Hauptbahnhof. The older one is used principally by the S-Bahn; the newer one is used by the S-Bahn as well as longer-distance trains. But many long-distance trains stay on the surface.
  • In Tokyo, local commuter trains get preference in JR through-running. The original set of through-tracks at Tokyo Station was used for local trains on the Yamanote and Keihin-Tohoku Line, while faster, longer-distance regional trains were demoted, and through-running ceased entirely when the Shinkansen took their space in the 1990s. Regional trains only resumed through-running when the Ueno-Tokyo Line opened in 2015. The Shinkansen’s use of space over regional train is justified because it serves large secondary cities in the Tohoku region and not just suburbs.

Timetabling for local trains

Local trains are also the most important priority for high frequency. In all of the five example cities for this post, local frequency is high, even on branches. In Tokyo and Paris, the trunks don’t really run on takts; Japan and France overall have less rigid takts than Germany but do have off-peak takt patterns, it’s just not very important to passengers when a train on the RER A or the Chuo Line comes every 4-5 minutes off-peak.

Elsewhere, there are takts. There are also takts on the branches in Paris. Typical frequencies are a train every 10, 15, or 20 minutes; they may be lower on outer branches, especially ones that are operationally half-branches, i.e. branches of branches like the two halves of S1 and S2 in Munich. All of this depends on city size; Berlin is bigger than Munich, which is bigger than Nuremberg.

  • In Berlin, S-Bahn branches run every 10 or 20 minutes, but the ones running every 10 usually have short-turning variants, so the outer portions only get 20-minute service. The outer ends of 10-minute service – Spandau, Buch, Frohnau, Friedrichshagen, Teltow Stadt, Grünau – tend to be 15-18 km from the center, but one, Potsdam, is almost 30 km out.
  • In Munich, S-Bahn branches likewise run every 10 or 20 minutes at rush hour, with some tails that have ugly 40-minute headways. Off-peak, the numbered branches run every 20 minutes.
  • In Nuremberg, frequency is weaker, as it is a small city. But S2 has a 20-minute takt up to Schwabach, about 15 km out.

Let us now compare larger cities. Just as Berlin has higher frequency at a given radius than Munich and Nuremberg, so does Paris have even higher frequency, and Tokyo yet higher. On the RER A, branches run every 10 minutes all day; Marne-la-Vallée, home to Disneyland Paris as well as a suburban office park, sees trains every 10 minutes off-peak, 37 km outside city center. At the other end, Cergy sees a train every 10 minutes all day at similar distance, and at rush hour this rises to 5 minutes, but half the trains run on Transilien L rather than the RER.

Some of these Parisian RER trains run express. The RER B, off-peak, has a pattern with three services, each running every 15 minutes: at each end these go minor branch (Robinson or Mitry-Claye), major branch express (major stops to Massy and then local to Saint-Rémy or nonstop to CDG), major branch local (local to Massy or CDG). So yes, nonstop trains exist, in the special context of an airport, but local trains still run every 15 minutes as far as 20-30 km from city center. At rush hour, frequencies rise and there’s no more room for express trains to the north, so trains run every 6 minutes to each of CDG or Mitry, all local: local service always comes first.

Tokyo has even higher local frequency. Rapid lines tend to have their own dedicated pair of tracks, there is so much traffic. For example, the Chuo Line has four tracks to Mitaka: the local tracks carry the Chuo-Sobu Line, and the express tracks carry the Chuo Rapid Line farther out. Both patterns are very frequent.

What Tokyo does have is a melange of express services with names like Special Rapid, Limited Express, or Liner. However, they are timetabled around the local services, or the regular rapid ones if there’s a rapid track pair as on Chuo, even in environments with competition between private railways for commuter traffic. The Chuo Rapid Line’s basic pattern, the vanilla rapid, runs irregularly every 3-8 minutes off-peak, with Special Rapid trains making limited stops timetabled around those, with timed overtakes at major stations. Thus frequency stays very high even as far out as Tachikawa, 37.5 km from Tokyo Station. Moreover, at rush hour, where frequency is denser, there is less, sometimes no, special express service.

Timetabling for express trains

All of our five example cities have express trains. In Berlin, Munich, and Nuremberg, they’re branded as RegionalBahn, distinct from the S-Bahn. In Paris, some RER trains run express, but mostly Transilien provides extra express service. In Tokyo, it’s all branded as part of the Kanto area commuter rail network. This is the core of Emil’s argument: express service exists in Germany, but has separate branding.

Nonetheless, there are best practices for how to do this. In Jarrett Walker’s bus-based terminology, it is better to run limited, that is make major stops, than to run express, that is have long nonstop sections from outer areas to city center. Sometimes patterns are somewhat of a hybrid, like on some New York subway lines, but the basic principle is that regional trains never skip major stations.

  • In Berlin, the Stadtbahn, built in the 1880s, has four tracks, two dedicated to local S-Bahn trains and two to everything else. Intercity trains on the Stadtbahn only stop at Hauptbahnhof and Ostbahnhof, but regional trains make roughly every other S-Bahn stop. Elsewhere, some stations are never missed, like Lichtenberg and Wannsee. Note also that as in Paris, Berlin likes its airport express service, branded FEX, which skips the RegionalBahn station and S-Bahn branch point Schöneweide.
  • In Munich, some RegionalBahn services express from the S-Bahn terminal, where they always stop, to Hauptbahnhof; some also make a few stops on the way. It depends on the line – Dachau and Laim are both popular RegionalBahn stops.
  • In Nuremberg, I encourage people to look at the map. Express trains abound, at fairly high frequency, each named service running hourly, and they always make certain major stations like Erlangen and Fürth.

The stopping pattern can be more local once there’s no S-Bahn, but it’s not really local. For example, at both ends of Berlin’s RE 1, a half-hourly regional line between Brandenburg an der Havel and Frankfurt an der Oder with half the trains continuing west to Magdeburg and south awkwardly to Cottbus, there are stops spaced 7-10 km apart between the built-up area of Berlin-Potsdam and those of Brandenburg and Frankfurt.

In Paris and Tokyo, similarly, express trains stop at major stations. The RER B’s express pattern does run nonstop between Gare du Nord and CDG, but to the south of Paris, it makes major stops like Bourg-la-Reine rather than trying to run nonstop from Massy to Paris; moreover, the RER trains make all stops within the city core, even neighborhood stops like Cité-Universitaire or Nation. Tokyo’s Special Rapids likewise stop at major stations like Kokubunji, and don’t run nonstop from outer suburban branches to Shinjuku and Tokyo.

What this means for New York

New York does not run its commuter rail in the above way. Not even close. First, local frequency is weak. The pre-corona timetables of the New Haven and Harlem Lines have 30-40 minute gaps at rush hour at radii where Berlin still has some 10-minute service. Off-peak the schedule is more regular but still only half-hourly. Hourly S-Bahn systems exist, for example in Mannheim, but those are mocked by German railfans as not real S-Bahns but barely upgraded regional rail systems using the term S-Bahn for marketing.

And second, express trains are not designed to provide an express overlay on top of local trains with transfers where appropriate. When they’re zoned, they only make a handful of stops at rush hour and then express, often without overlapping the next zone for a transfer. This is the case even where the infrastructure is a four-track line set up for more normal express service: the Hudson Line is set up so that Ossining, Tarrytown, and Yonkers have express platforms, but its timetable largely ignores that in favor of long nonstops, with 20-minute gaps at Yonkers.

In the future, it is critical to focus on a high-quality local takt, with frequency depending on city size. In Boston, a Berlin-size city, the TransitMatters plan calls for a 15-minute takt, sometimes 10 minutes, generally as far out as 20-30 km. But New York is a larger city, and needs 5 minutes within the city and 10 well into suburbia, with a strong local schedule that express trains can go around if appropriate. S-Bahn service, by whatever name or brand it has, is always about using mainline infrastructure to operate urban rail and extend the city into the suburbs.

The Invention of Bad Railroad Timetables

The rail advocate Shaul Picker has uploaded a fascinating potpourri of studies regarding commuter rail operations. Among them, two deserve highlight, because they cover the invention of bad timetable practices in New York, and, unfortunately, not only think those practices are good, but also view their goodness as self-evident. They are both by Donald Eisele, who was working for the New York Central and implemented this system on the lines that are now Metro-North, first introducing the concept to the literature in 1968, and then in 1978 asserting, on flimsy evidence, that it worked. Having implemented it in 1964 based on a similar implementation a few years earlier in the Bay Area, Eisele must be viewed as one of the people most responsible for the poor quality of American mainline service, and his idea of zone theory or zonal operations must be discarded in favor of the S-Bahn takt.

Zone theory

Eisele’s starting point is that commuter rail service should be exclusively about connecting the suburbs with city center. He contrasts his approach with urban transit, which is about service from everywhere to everywhere; trips short of Manhattan were 20% of single-trip ticket revenue for New York Central suburban operations and 5% of multi-ride pass revenue, and the railroad wanted to eliminate this traffic and focus on suburb-to-city commuters. From this inauspicious starting point, he implemented a timetable in which suburban stations are grouped into zones of a few contiguous stations each, typically 2-4 stations. At rush hour, a train only stops within one zone, and then expresses to city center, which in the original case means Grand Central.

The idea behind zone theory is that, since all that matters is a rapid connection to city center, trains should make as few stops as possible. Instead of trying to run frequently, it’s sufficient to run every 20 or 30 minutes, and then once a train fills with seats it should run express. This is accompanied by a view that longer-haul commuters are more important because they pay higher fares, and therefore their trips should not be slowed by the addition of stops closer in.

It’s important to note that what zone theory replaced was not an S-Bahn-style schedule in which all trains make all stops, and if there’s more demand in the inner area than the outer area then some trains should short-turn at a major station in the middle. American railroads had accumulated a cruft of timetables; Eisele goes over how haphazard the traditional schedules were, with short but irregular rush-hour intervals as some trains skipped some stations, never in any systematic way.

The first paper goes over various implementation details. For example, ideally a major station should be the innermost station within its zone, to guarantee passengers there a nonstop trip to city center. Moreover, considerable attention goes to fare collection: fares are realigned away from a purely distance-based system to one in which all stations in a zone have the same fare to city center, simplifying the conductors’ job. The followup paper speaks of the success of this realignment in reducing fare collection mistakes.

The failure of zone theory

We can see today that zone theory is a complete failure. Trains do not meaningfully serve anyone except 9-to-5 suburban commuters to the city, a class that is steadily shrinking due to job sprawl and a change in middle-class working hours. Ridership is horrendous: all three New York commuter railroads combined have less ridership than the Munich S-Bahn, a single-trunk, seven-branch system in a metropolitan area of 3 million. Metro-North would brag about having an 80% market share among rush hour commuters from its suburban shed to Manhattan, but that only amounts to about 90 million annual riders. In contrast, the modal split of rail at major suburban job centers, even ones that are adjacent to the train station like White Plains and Stamford, is single-digit percent – and Metro-North is the least bad of New York’s three railroads in this category.

Even on the original idea of providing fast service from the suburbs to city center, zone theory is a failure. The timetables are not robust to small disturbances, and once the line gets busy enough, the schedules have to be padded considerably. I do not have precise present-day speed zones for Metro-North, but I do have them for the LIRR courtesy of Patrick O’Hara, and LIRR Main Line service is padded 30% over the technical travel time of present-day equipment on present-day tracks. A textbook I have recently read about scheduling best practices cites a range of different padding factors, all single-digit percent; Switzerland uses 7%, on a complex, interlined network where reliability matters above all other concerns. With 30% padding, the LIRR’s nonstop trains between Ronkonkoma and Penn Station, a distance of 80 km, take about as long as local trains would with 7% padding.

Eisele is right in the papers when he complains about the institutional inertia leading to haphazard schedules. But his solution was destructive, especially in contrast with contemporary advances in scheduling in Europe, which implemented the all-day clockface schedule, starting with Spoorslag ’70 and then the Munich S-Bahn takt in 1972.

Zone theory and reliability

The first paper claims as self-evident that zonal timetables are reliable. The argument offered is that if there is a short delay, it only affects trains within that zone, and thus only affects the stations within the zone and does not propagate further. There is no attempt at modeling this, just claims based on common sense – and transport is a field where intuition often fails and scientific analysis is required.

The problem is that zone theory does not actually make trains in different zones independent of one another. The second paper has a sample timetable on PDF-p. 4 for the evening rush hour, and this can also be reversed for the morning. In the morning, trains from outer zones arrive in city center just after trains from inner zones; in the afternoon, trains serving outer zone stations depart city center first, always with a gap of just a few minutes between successive trains. In the morning, a delay in a suburban zone means that the trains in the zones behind it are delayed as well, because otherwise they would clash and arrive city center at literally the same minute, which is impossible.

This isn’t purely an artifact of short headways between running trains. Subway systems routinely have to deal with this issue. The key is that on a subway system, trains do not have much of their own identity; if a train is delayed, the next train can perfectly substitute for it, and cascading delays just mean that trains run slightly slower and (because the equipment pool is fixed) are slightly more crowded. The principle that individual suburban stations should only be served every 20-30 minutes means no such substitution is possible. S-Bahn trains are not as interchangeable as subway trains, which is why they cannot run as frequently, but they still manage to run every 2-3 minutes with 7% padding, even if they can’t reach the limit values of a train very roughly 1.5 minutes achieved by some big city subways.

Eisele did not think this through and therefore made an assertion based on intuition that failed: reliability did not improve, and with long-term deterioration of speed and lack of reduction in operating expenses, the express timetables at this point are slower than an all-stops S-Bahn would be.