Category: New York

Public Transportation in Megacities

I’ve been talking so much lately about integrated timed transfer in the context of Boston that people started asking me if it’s also applicable to New York. The answer is that the basic principles are not scale-dependent, but the implementation is, so in very large cities, public transport planning should not look like in Switzerland, a country whose largest metro area is staring at 2 million people from the bottom.

The one caveat here is that most cities are not huge. The developed world has seven megacities: Tokyo, Seoul, New York, Los Angeles, Osaka, London, Paris. And Los Angeles doesn’t really have public transportation, so we’re down to six. The middle-income world has a bunch more for sanity checking – Mexico City, São Paulo, Rio de Janeiro, Buenos Aires, Johannesburg, Moscow, Istanbul, Tehran, Beijing, Shanghai, Guangzhou, Shenzhen, Bangkok – but all are either still in convergence mode building up their networks or (mostly in Latin America) have given up. So much of this comes down to the idiosyncrasies of six cities, of which the largest three networks are substantially in the same planning tradition.

Demand is huge

Big cities have big centers, which can’t really be served by any mode except rapid transit. Even in Los Angeles, what passes for a central business district has around a 50% public transport modal split. This means that the transport network has to deliver high throughput to a relatively small city center. Even in a low-kurtosis city like Paris, most Métro lines converge on a narrow area ranging from Les Halles to Saint-Lazare; in a high-kurtosis one like New York or Tokyo, there are a few square kilometers with 200,000 jobs per km^2, which require an exceptionally dense network of rapid transit lines.

Some other network design principles follow from the need to amply serve city center. Specifically, high frequency is rarely a worry, because there’s so much demand even off-peak that usually megacity subway systems do not venture into the frequency range where long waits deter traffic; New York’s 10-minute midday gaps are bad, but that’s unusual and it comes from a combination of the legacy of postwar fear of subway crime suppressing demand and excessive branching.

But other principles require careful planning still.

Electronics before concrete, megacity version

The driverless lines in Paris support peak throughput of 42 trains per hour – a train every 85 seconds. CBTC on Line 13 without driverless operation supports 38 tph, and London’s CBTC-equipped lines support 36 tph when the branching isn’t too complex. It is imperative for other cities to learn from this and do whatever they can to reach similar headways. The difference between 21 tph, as in Shanghai, and Paris’s 42, is equivalent to building a brand new subway line. And what’s more, in a city in the size class we’re talking about, the primary concern is capacity – coverage is already good, so there really is no reason to build two 21 tph lines instead of one 42 tph one.

The situation in Paris is in a context with self-contained lines. That said, extremely busy self-contained lines do exist in other megacities – London has a bunch with near-Parisian levels of throughput, New York has some, Tokyo has a few, Seoul and Osaka are both more self-contained than Tokyo is.

Throughput and organization

The primacy of throughput means that it’s worthwhile to build small infrastructure upgrades, even with concrete, if they help with capacity. Right now the Northern line reverse-branches with the branches to the north recombining with those in the center, and Transport for London would like to split the line in two, reducing branching complexity, which would increase capacity. But doing so requires improving pedestrian circulation in the corridors of the branch point, Camden Town, where TfL expects very large transfer volumes if there’s a split and already there are circulation problems today without a split. Hence the plan in the medium term is to upgrade Camden Town and then split.

If there are bumper tracks at the end of a line, as at 8th Avenue on the L or Flushing-Main Street on the 7, then it’s useful to dig up the street for another block just to add some tail tracks. That way, trains could enter the station at full speed. This increases throughput, because the terminal interlocking has trains heading in opposite directions crossing each other at-grade, which imposes schedule constraints; it’s best if trains can go through the interlocking as fast as possible to reduce the time they’re in a constrained environment, but that in turn requires short tail tracks so that an overrun of a few meters is not catastrophic. Ideally the tail tracks should even extend a full train length past the platform to place the interlocking on the other side of it, as is done in Paris and Moscow; in that case, trains cross the interlocking out of service, when it’s easier to control their exact timings.

Such projects are disruptive, but the disruption is very localized, to just one transfer station for a deinterlining project as in London or one terminal as in New York, and the impact on capacity is very large, if not quite as large as the full suite of signaling and track upgrades that make the difference between a train every 3 minutes and a train every 1.5 minutes.

Network design

The ideal metro network is radial. Megacities already support that just because so many lines have to serve city center. However, it’s important to make sure every pair of lines intersects, with a transfer. No large metro network in the world achieves this ideal – Mexico City’s network is the largest without missed connections, but it is not radial and its only three radial lines are overburdened while the other lines have light ridership. Paris has just a single missed connection on the Métro proper, not counting the RER, but it has many pairs of lines that do not intersect at all, such as M1 and M3. London is more or less a pure radial, but there are a handful of misses, including one without any transfer between the two lines anywhere, namely the Metropolian line (including Hammersmith and City) and the Charing Cross branch of the Northern line.

Big cities that plan out a metro network have to make sure they do better. Missed connections reduce passenger ridership and lead riders to overload the lines that do get connections; for example, in Tokyo one reason cited for the high ridership of the Tozai Line is that until Fukutoshin opened it was the only one with a transfer to every other subway line, and in Shanghai, Line 1 was extremely congested as long as the alternatives going north either had critical missed connections (like Line 8) or avoided city center (like Line 3).

The role of regional rail

Regional rail as a basic concept is mostly scale-invariant. However, the design principles for trains that come every half hour are not the same as those for trains that come every 5 minutes. If trains come every half hour, they had better connect cities in a roundtrip time equal to an integer number of half hours minus turnaround times, so that they don’t have to loiter 25 minutes at a terminal collecting dust and depreciating. If they come every 5 minutes, they’re not going to loiter 25 minutes anyway, and the difference between a 5-minute turnaround and a 7-minute turnaround is not really relevant.

The design principles are then mostly about throughput, again. The most important thing is to build independent trunk lines for trains to serve city center. Even in a huge city, the finances of building a purely greenfield subway deep into suburbia are poor; Tokyo has done it with the Tsukuba Express but it’s mostly above-ground, and for the most part regional lines there and elsewhere come from taking existing suburban lines and linking them with city center tunnels.

Tokyo’s insistence on making these city center tunnels also form a coherent metro network is important. Only one non-Tokyo example is worth mentioning to add to all of this: this is Berlin, which is not a megacity but has three independent S-Bahn trunk lines. Berlin, unlike London and Paris, painstakingly made sure the S-Bahn lines would have transfers with the U-Bahn; its network has only one U-Bahn/S-Bahn missed connection, which is better than the situation in Tokyo, Paris, or (with Thameslink and Crossrail) London.

The role of development

All first-world megacities, and I believe also all megacities elsewhere, have high housing demand by domestic standards. All are very wealthy by domestic standards except Los Angeles, and Los Angeles is still incredibly expensive, it just doesn’t have the high wages to compensate that London and New York and Paris have. In such an environment, there’s no need to try to be clever with steering development to transit-oriented sites. Anywhere development is legal, developers will build, and the public transport system has a role to play in opening more land for more intense development through fast trips to the center.

A laissez-faire approach to zoning is useful in such an environment. This contrasts with smaller cities’ reliance on finger plans, like the original one in Copenhagen or the growing one in and around Berlin. No limits on development anywhere are required. The state’s planning role remains strong through transportation planning, and the suburbs may well form natural finger plans if developers are permitted to replace single-family houses with apartment buildings anywhere, since the highest-value land is near train stations. But state planning of where housing goes is counterproductive – high transit ridership comes from the impossibility of serving a large central business district by cars, and the risk of politicization and policy capture by homeowners is too great.

The advantage of this approach is also that because in a high-demand city public transport can to some extent shape and not just serve development, it’s okay to build lines that are good from the perspective of network coherence, even if the areas they serve are a bit light. This principle does not extend indefinitely – subway and regional rail lines should still go where people are – but for example building key transfer points in near-center neighborhoods that are not in high demand is fine, because demand will follow, as is building lines whose main purpose is to close some gap in the network.

Construction costs

The larger the city, the more important cost control is. This may sound counterintuitive, since larger cities have more demand – only in Manhattan could a $1.7 billion/km extension like Second Avenue Subway pencil out – but larger cities also have a bigger risk of cost blowouts. Already Tokyo has stopped building new rapid transit in the core despite very high crowding levels on the existing network, and London builds next to nothing as well. New York’s poor cost control led Philip Plotch to entitle his book about Second Avenue Subway The Last Subway. Even Paris builds mostly in the suburbs. Extensive city center and near-center construction continues in Seoul, in the context of very low construction costs.

The flip side is that a New York (or even London) that can build subways at the cost of Paris, let alone Seoul, is one that can rapidly solve all of its transport problems. My Assume Nordic Costs map fixates on a region of the world with small cities, but the construction costs in South Korea are if anything lower than in the Nordic countries. And even that map, given free reins for developers, is underbuilt – some lines would look ridiculous at current costs and zoning but reasonable given low costs and liberal zoning, for example something meandering through currently industrial parts of New Jersey.

Small cities designed their public transportation philosophy around scarcity: Switzerland really can’t just draw crayon and build it, because housing and transport demand there are finite and limited. Cities like New York and London, in contrast, should think in terms of abundance of infrastructure and housing, provided their regulations are set up in a way that permits the state to build infrastructure at low costs and private homebuilders to redevelop large swaths as they become easily accessible to city center.

More on Suburban Circles

In the last post, I criticized the idea of large-radius suburban circle, using the example of the Berlin Outer Ring, at radius 10-26 km from city center. In comments, Andrew in Ezo brought up a very good point, namely that Tokyo has a ring at that radius in the Musashino Line, and ridership there is healthy enough to fill a train every 10 minutes off-peak. Of course, the Musashino Line’s intersections with the main JR East lines, like Nishi-Kokubunji and Minami-Urawa, have the ridership of a city center station in Germany rather than that of a station 25 km out. So to discuss this further, let’s drop midsize cities like Berlin and look at an actually large city: New York. Consider the following possible circle in New York, at radius 20-25 km:

See full-size version here (warning: 55 MB).

Most of the radial extensions I’ve already discussed in previous posts – for example, here. Here these extensions go somewhat further in order to meet the ring, including at Newark Airport, on Staten Island, in Bay Ridge, at Floyd Bennett Park, in Canarsie, at Starrett City, near the Queens/Nassau County line, and in Yonkers.

The ring is 151 km, of which around 87 km would be above ground, mostly replacing highways like the Belt Parkway to reduce costs. Of note, this cannot be done adjacent to an extant highway – the fast car traffic deters nearby development, making transit-oriented development impossible. So key road links around the region have to go, which is fine, since people should be transitioning from driving to taking trains. With some additional elevated construction including through City Island, across the Long Island Sound, and in low-density parts of North Jersey where demolishing houses even at $1 million per unit is cheaper than tunneling, construction costs could be reduced further. But it’s still a $20-25 billion project at average world costs, maybe $15 billion at Nordic or Korean or Southern European or Turkish costs.

The only way to pay off the costs of such a line, not to mention to fill enough trains to support frequency that can take untimed transfers (at worst a train every 10 minutes), is to have very high ridership, on the order of 400,000-500,000 per day. This is for a line that misses Manhattan and all of the big secondary job centers, like Downtown Brooklyn and Long Island City. Is this plausible?

The answer is not an obvious no. Sufficiently aggressive TOD could plausibly create ridership. But it’s still questionable. There are really a few different forces pulling such a line in different directions:

  • Using existing rights-of-way to reduce costs, hence the use of the Belt Parkway and not the denser development around Avenue U or even Flatlands.
  • Serving secondary nodes like JFK, Coney Island, EWR, and Yonkers. Potentially it would be plausible to veer inward in New Jersey in order to hit Downtown Newark, at the cost of a few extra kilometers of tunnel, making the line radial from Newark’s perspective, whereas the line as depicted above is circumferential from Newark’s perspective since it goes around city center.
  • The need to connect to radial subway and commuter rail lines, which means serving stations, opening plausible infill stations, and extending some lines toward the ring.

There are different ways to resolve this tension; the line I depicted is not the only one. For example, a higher-cost, higher-ridership version could veer inward in the Bronx and Queens, aiming to connect to Flushing and Jamaica and then replace the AirTrain JFK, leading to a ring of radius closer to 16 km than to 20-25.

I only bring this up to point out how many things have to work if you want such a ring to work out. Keeping costs to even semi-reasonable levels requires demolishing highways and engaging in aggressive TOD, which is only possible in an environment of total political victory over NIMBY and pro-car interests (note: these two are not the same!).

This is not the history of the Musashino Line. The Musashino Line originates in a freight bypass around the built-up area of Tokyo, which eventually turned into a circumferential passenger line. This is why it connects to the radial lines near but not at the busiest regional stations – at Nishi-Kokubunji and not Kokubunji, at Minami-Urawa and not Urawa, at Shin-Matsudo and not Matsudo or Kashiwa.

But even when the line is new, there are always compromises on right-of-way. Uncompromised right-of-ways are 100% possible, but not at 25 km radius, because the cost is too high to always go to the most important secondary centers. They happen when the radius is smaller, like Paris’s 8-10 km for M15, because then ridership can be high enough (M15 projects nearly a million riders a day). Farther away, ridership drops and costs rise because the line gets longer faster than per-km costs drop, so compromises are inevitable.

I am not proposing the ring above as a definitive crayon. I’m just mentioning it as something that highlights the difficulties of circumferential public transportation in the suburbs. Even as it is, the strongest segment of the ring is most likely the one in the city taking over the Belt Parkway, which could replace busy buses like the B15, B1, B3, B6, and B82. The suburban segments are weaker – there isn’t that much commuting across the Hudson that far north, and building up such commuting requires heavy commercial TOD in Yonkers, Mount Vernon, and New Rochelle.

Meme Weeding: Climate Resilience

I recently heard of state-level American standards for climate resilience that made it clear that, as a concept, it makes climate change worse. The idea of resilience is that catastrophic climate change is inevitable, so might as well make the world’s top per capita emitter among large economies resilient to it through slow retreat from the waterfront. The theory is bad enough – Desmond Tutu calls it climate apartheid – but the practice is even worse. The biggest, densest, and most desirable American cities are close to the coast. Transit-oriented development in and around those cities is the surest way of bringing green prosperity, enabling emissions to go down without compromising living standards. And yet, on a number of occasions I have seen Americans argue against various measures for TOD and transit improvements on resilience grounds.

The worst exhibit is Secaucus Junction. The station is a few kilometers outside Manhattan, on New Jersey Transit’s commuter rail trunk, with excellent service. So close to city center, it doesn’t even matter that the trains are full – the seats are all occupied but there’s standing room, which may not appeal to people living 45 minutes out of Midtown but is fine at a station that is around 10 minutes away today and should be 6 minutes away with better scheduling and equipment.

The land use around Secaucus is also very conducive to TOD. Most of the area around the station is railyards and warehouses, which can pretty easily be cleaned up and replaced with high-density housing, retail, and office development. A small section of the walkshed is wetlands, but the large majority is not and can be built up to be less ecologically disturbing than the truck traffic the current storage development generates.

Politically, this is also far from existing NIMBY suburbia. In North America, the single-family house is held to be sacrosanct, and even very YIMBY regions like Vancouver only redevelop brownfields, not single-family neighborhoods; occasionally there are accessory dwelling units, but never anything that has even medium density or visibly looks like an apartment building. Well, Secaucus Junction is far from the residential areas of Secaucus, so the most common form of NIMBYism would be attenuated.

And yet, there is no concerted effort at TOD. This is not even just a matter of unimaginative politicians. Area advocacy orgs don’t really push for it, and I’m forgetting whether it was ReThinkNYC or the RPA that told me explicitly that their regional rail proposal omits Secaucus TOD on climate adaptation grounds. The area is 2 meters above sea level, and building there is too risky, supposedly, because a 2 meter sea level rise would only flood tens of millions of South Asians, Southeast Asians, and Africans, and those don’t count.

This goes beyond just wasting money on needless infrastructure projects like flood walls, or leaving money on the table that could come from TOD. In the 2000s, New York City was emitting 7 metric tons of CO2 per capita, which was better than Germany and a fraction of the US average. This must have gotten better since – New York had an abnormally high ratio of building emissions (i.e. energy) to transportation emissions (i.e. cars), and in every developed country I’m aware of, only energy emissions have fallen, not car emissions.

A bigger New York, counting very close-in suburbs as New York, is an important part of the American green transition. To have the emissions of the inner parts of the city within the city is a luxury people pay $3,000 a month in rent for; to have it in exurbia means having a smaller car than everyone else in an environment in which accumulating lots of stuff is the only way one can show off status. Breaking the various interests that prevent New York (and Los Angeles, and San Francisco, and Boston, and Washington) from growing denser is a valuable political fight. But here, no such breaking is even needed, because the anti-growth interests think locally, and the only locals around Secaucus Junction live in one high-rise development and would if anything welcome more such buildings in lieu of the warehouses.

And yet, Americans argue from the position of climate resilience against such densification. Normally it’s just a waste of money, but this would not just waste money (through leaving money on the table) but also lead to higher emissions since housing would be built in other metropolitan regions of the US, where there is no public transportation. Once adaptation and resilience became buzzwords, they took over the thinking on this matter so thoroughly that they are now directly counterproductive.
Somehow, the goal of avoiding catastrophic climate change has fallen by the wayside, and the usual American praxis of more layers of red tape before every decisions can be made (about climate resilience, design for equity, etc.) takes over. The means justify the ends: if the plan has the word climate then it must be environmentally progressive and sensitive, because what matters is not outcome (it’s too long-term for populists, and all US discourse is populist) but process: more lawsuits, more red tape, more accretion of special rules that everyone must abide by.

Eliminate Local Government

What is the purpose of having any local government? So much local activism just takes it for granted that the local is superior to the national or the global. “It’s a tight-knit neighborhood” is supposed to evoke positive feelings, and not, say, close-minded local notables whose oyster is a few square kilometers. So instead of this, let me positively propose that there should not exist government below the level of the state, or the province in a federal system. Cities like New York or Munich should just be places on a map, subject to a one state, one law principle.

Some of this comes from the realization that there is no federalism in a pandemic, and that if the EU were the leviathan state of the imagination of British tabloid readers, the EU would’ve had Japanese or Korean infection rates. (For one, in the first week of March there was widespread “it’s just Italy, it doesn’t affect us” sentiment in Germany.) But this is not really about corona. Localism causes a lot of other problems, which go away at the national and provincial levels whereas pandemics do not.

Physical issues

Progress does not come from localism. Housing, for example, is generally more plentiful when decisions are made at a higher level. Zoning is a national law in Japan, and the national government does not care about the opinions of local NIMBYs and therefore has made it easy to build more housing on your own property. (Takings, in contrast, are extremely hard in Japanese law, which has driven up urban transportation construction costs.)

Infrastructure is in theory more workable at the local level. In the past, municipalities built great public transportation and water works. But that is in decline now thanks to the growth of metropolitan areas with broader linkages. In the United States, this was already evident in the late 1930s and early 1940s, in the context of road construction: there was extensive high-income suburbanization in New York already, and each of the suburbs wanted easy road access to Manhattan jobs but did not want to be drive-through country for suburbs farther out. There were political fights over regional planning at the time, and eventually the solution that emerged, enabling regional road planning while protecting the privileges of wealthy suburbs, was Robert Moses’s arbitrary government; once the roads were built, he was no longer necessary, and it became possible to revert to empowering every wealthy community.

And that history is one of roads. Public transportation requires more coordination between different levels of government. Germany divides itself into broad metropolitan regions with their own transport associations, but in some places like Frankfurt and the Rhine-Neckar region they overlap, and even though the boundaries do not conform to state lines except in the Berlin-Brandenburg region and probably North-Rhine-Westphalia, there is no need for local government to exist either.

Tiebout’s law

The idea that people vote with their feet to choose the government they’d like is powerful, and makes a lot of sense at the national and provincial level. I can avoid Bavaria and go to Berlin’s more welfare state-oriented system. But this stops at that level. At the local level, such a broad choice makes no sense. Were the various neighborhoods of Berlin their own autonomous zones like American suburbs, with local tax base, the difference between their provision of services would not be about choice, but about resources. It’s much easier for rich people to cluster in one part of the region, be it Westchester, Hauts-de-Seine, or Charlottenburg, and then work to exclude others from living there, e.g. through restrictive zoning.

What’s more, choosing among 16 German states is reasonable. Even choosing among 50 American states is feasible, since there are differences between various American regions and then people can pick a state within one general area. But choosing among tens of thousands of municipalities is not reasonable. At that level it’s not about exact combinations of issues but about which local government markets itself the best to various classes of people, and about micro-level locations, e.g. on one particular train line. There is no need for such fractional governance.

The democratic deficit

I brought up the issue of the local-level democratic deficit last year. Anti-EU people like complaining about the EU-level democratic deficit, but it’s easier to get informed about EU-level issues in advance of a European Parliament election and choose the right political party for one’s views than to do the same at the local level. I lived in New York through a City Council election and was Facebook friends with a lot of American voters interested in politics and had no idea who was in favor of what, and this has not changed since. Between New York’s extent of primary voter suppression and the total lack of ideological politics, there is no democratic legitimacy in the city’s local elections, and at this point I’m ready to even include the mayor and not just the council.

In Europe, things are not any better than in New York, even though voter turnout is much higher so in principle there should be more democratic legitimacy. I can’t tell you how it even mattered who I voted for in the Stockholm city and county elections, which I was eligible to vote in as an EU citizen. In Berlin I’ve talked to a number of public transportation advocates and I know a lot about Andreas Scheuer and his agenda but about the most I’ve gleaned regarding local elections is the Neukölln bike lane network, except that even there the changes seem subtle by the standards of (say) Anne Hidalgo’s streetscaping, and at any rate people in Neukölln might want to bike to other neighborhoods.

The broad issue here is that local elections are not ideological, but personal. People can pick up an ideology easily and transfer it around. Even modifications for the local situation are not too hard to pick up: people can easily transmit information like “SPD in Berlin is on the moderate side because more left-wing people can vote for Die Linke and the Greens.” I have never lived in San Francisco but could still tell you about the difference between progressives and moderates there and how it differs from same in New York. On the national level it’s even easier, because there’s prestige media covering elections and their issues.

And I suspect that to the people who like localism as it is, the fact that local elections hinge on personality contests is a good thing. If you’ve lived 40 years in one city, you know all the local notables and their petty fights and how you can us them to pass your agenda. You’re empowered. It’s people who have recently moved in who are in practice disenfranchised, but for them you have slurs: “rootless cosmopolitan,” “transplant,” “globalist,” and so on. This democratic deficit persists because powerful people enjoy their power.

This means that the destruction of local government is specifically not just about good government but also about disempowering various local notables, including ones who have sob stories of how much they matter to their communities. They are in favor of bad government, and need to no longer have any power beyond the ability to vote for a party list once in four years.

New York as a Six-Minute City

What would it take to improve public transportation in New York so that all or nearly all routes would run at worst even six minutes during midday? Today, frequencies are tailored to individual routes; a bunch of subway lines are a 10-minute city (and the A branches are a 15-minute city), and in Brooklyn, the median midday bus headway is 12 minutes, with wide variations.

The bus origin of six minutes

Six minutes is not an arbitrary number. It comes from Eric’s and my Brooklyn bus redesign; speeding up routes through stop consolidation, dedicated lanes, and off-board fare collection, and pruning and recombining some routes, lets every bus run every six minutes from 6 am to 10 pm all day every day, with higher frequency on those routes that already have it today because they are too busy for just ten buses per hour. We didn’t study the other boroughs as deeply, but a quick doodle suggested the six-minute standard could be met in Manhattan and the Bronx as well, and a Bronx bus grid could even dip into a five-minute city.

Queens is a wildcard and I’m going to disappoint readers by not talking about it. It is clearly possible given the operational treatment we propose to make most of Queens a six-minute city, but at the price of long route spacing in Eastern Queens, and I don’t know what is optimal. It’s a hard question and I’m not going to tackle it unless I’m actually working on a longer-term project to do a Queens bus redesign.

Six minutes on the subway

The subway right now is a 10-minute city. A lettered or numbered route runs every 10 minutes off-peak, sometimes every 12 on Sundays and at night; the busier routes, especially the four that do not share tracks with other routes (1, 6, 7, L), run more frequently, but 10 minutes is the base frequency on large swaths of the network. The A branches in Ozone Park and the Rockaways even run every 15 minutes, but that’s unusual enough – evidently, nowhere else does one letter or number denote a route with its own branches – that it can be excluded.

For comparison, Berlin’s rail network is a 10-minute city, with some outer S-Bahn branches running every 20 minutes. Within the Ring, Berlin is a 5-minute city for the most part, excluding just a two-hour midday dip to 10 minutes on the Ring and 10-minute frequencies on the U1/U3 branches and the practically useless U4 route. Paris makes no effort to run different routes at the same intervals – French rapid transit planning has self-contained lines with their own fleets and schedules, so for example the RER A is on 10-minute off-peak takts and the RER B on 15-minute ones. So frequency there greatly depends on where in the region one lives and on what line. The Métro is a 5-minute city for the most part, as are the intramural RER trunks; intramural buses can be ignored. The suburbs are more or less a 15-minute city.

The reason New York is a 10-minute city on the subway is partly about interlining. The trunks in theory run every 5 minutes or better, but the trains do not come evenly because sometimes trains with different frequencies share the same trunk, and delays propagate easily. Interlining really doesn’t work unless all trains come at the same frequency; this is familiar in German planning, but not in American planning (or French planning, but there’s barely any interlining in Paris).

Putting every subway route on a 10-minute takt, with double service on the four non-interlined services, is possible but would lead to a lot of crowding on the busiest lines. About the worst possible frequency that works for everything is a train every 7.5 minutes; this lets the two A branches run on 15-minute takts, and everything else run on a 7.5-minute takt. But even then, New York has so many missed connections that it’s useful to do better. The six-minute city, matching buses, turns most of Manhattan and inner Brooklyn and Queens into a three-minute city.

Running all trains on the same takt also means timed connections. Trains that run every 5 or 6 minutes can routinely be timetabled to be at predictable places at predictable times, which facilitates local/express transfers on branches, for example in Southern Brooklyn. Even trunk transfers can be timed – 3-minute trains can still run on a timetable, and the most valuable transfers are local/express ones at 96th/Broadway, 125th/St. Nicholas, and 125th/Lex, all far enough north so as to not have the huge tidal crowds of Times Square or Grand Central.

What would it take?

On the buses, just good redesign, as long as the city is willing to exclude Staten Island from the six-minute city. In Queens, some increase in bus service is probably warranted.

On the subway, this requires on the order of 110-120 million revenue train-km a year, which is 1 billion car-km. The current figure is 560 million car-km/year. There is a lot of unnecessary expenditure on the subway, but fixing that requires something a lot deeper than a bus redesign. The cut in operating costs would be to levels that are well within first-world levels, and some of it would just come from better off-peak service making crew scheduling easier, without split shifts or wasted time. But it does require serious changes, especially in maintenance.

You Do Not Owe Staying to a Failed City

New York real estate media is speculating that people may want to leave the city after the total failures of the city, state, and federal governments to protect public health at the peak of corona in March and April. I do not know if this is actually happening and if people actually are moving out, as opposed to just writing about moving out and complaining that bankrupt retail and restaurant chains are closing. But a number of busybodies, including Mayor Bill de Blasio, have already complained that it is somehow immoral to leave. And the only reasonable reaction to this exhortation is, what?

It’s 100% reasonable to leave a city that cannot provide basic services. The problem with white flight is not that it’s immoral to leave; it’s that it’s stupid to treat segregation as a service the city must provide, rather than education, health care, electricity, transportation, affordable housing, and so on.

A lot of New York’s problems have been well-known for a while. It can’t provide affordable housing to anyone – middle-class renters pay $3,000 a month for an apartment that should be renting for $1,000; everyone in New York knows this, even if many (e.g. homeowners) like this arrangement and some others don’t but have the wrong explanation as for why (e.g. left-NIMBYs). Trash on the street has always been a problem, but only recently have New Yorkers begun realizing it doesn’t have to be this way. Crime was at a historic low on the eve of corona, and even with the recent spike is at sub-2000s levels. Schools in New York are as I understand it good by inner-city American standards.

But the health issue is looming. Six months ago, New York seemed like a place with genuinely good public health. Some of it was cultural (e.g. the city is anti-smoking even by American standards, let alone European or East Asian ones); some of it is selective migration of healthy workers; some of it is high physical activity levels in a city where the majority of people do not own cars, which is a policy issue but one coming from investments made in 1900-1940 and not today. But the hospitals enjoyed good reputation and there is a fair bit of public health care in the city.

And then came corona, and it turned out that the city, the state, and the country all failed at providing basic public health. De Blasio told people to go have fun at bars one last time on the day he announced forced closures in March; Governor Andrew Cuomo outdid him by sending elderly corona patients back to nursing homes, prohibiting subway employees from wearing masks early on, and taking a long time to even acknowledge that masks were useful; and the less said of Donald Trump’s response from when Taiwan first warned the world about the new virus around New Year’s to the present, the better.

The issue isn’t even so much that in the future the city is likelier to have a big second wave. The experience of having heard ambulance sirens all night made New Yorkers take the crisis more seriously than people elsewhere; daily infections are flat and higher than in Europe (36/million people, the EU average is around 23), but so much lower than in the rest of the US. But rather, the total failure of government at all levels to deal with this crisis means it will likely fail to deal with other crises in the future. The US doesn’t have the state capacity to deal with a crisis that democratic East Asia or even Western Europe has, and New York is run as a bunch of fiefdoms at both the city and state level in which the person in charge is selected for political loyalty rather than competence.

The criminal justice angle in New York is even more frustrating. It’s not even that there is crime, or police brutality. Politicians are free to run as pro-police, as Rudy Giuliani and Mike Bloomberg did. But de Blasio ran explicitly on a platform of reducing police brutality, in which capacity he failed – NYPD has killed around 10 people a year every year since the early 2000s. Losing an election is understandable, and even winning the election but then losing in negotiations is understandable and politicians often find themselves having to explain a certain compromise. But de Blasio’s response made no acknowledgment of such compromise – he has no ability to exercise civilian control of the police.

You do not owe anything to a place. Places don’t have feelings, and people who base their entire personal identity on emotional attachment to a place are not worth bothering with. If the city works for you, then great! Move there if you can, stay if you’re already there. There are a lot of great things about New York – New Yorkers are curious and diligent people, even if the people governing them are neither of these things. But if it doesn’t, just leave. It’s okay. I’ll help you with some information about how to move to Germany if you want.

Pedestrianizing Streets in New York

I was asked a few months ago about priorities for street pedestrianization in New York. This issue grew in importance during the peak of the corona lockdown, when New Yorkers believed the incorrect theory of subway contagion and asked for more bike and pedestrian support on the street. But it’s now flared again as Mayor de Blasio announced the cancellation of Summer Streets, a program that cordons off a few streets, such a the roads around Grand Central, for pedestrian and bike traffic. Even though the routes are outdoors, the city is canceling them, citing the virus as the reason even though there is very little outdoor infection.

But more broadly, the question of pedestrianization is not about Summer Streets, which is an annual event that happens once and then for the rest of the year the streets revert to car usage. It’s about something bigger, like the permanent Times Square and Herald Square pedestrianization.

In general, pedestrianization of city centers is a good thing. This can be done light, as when cities take lanes off of roadways to expand bike lanes and sidewalks, or heavy, as when an entire street loses car access and becomes exclusive to pedestrians and bikes. The light approach should ideally be done everywhere, to reduce car traffic and make it viable to bike; cycling in New York is more dangerous than in Paris and Berlin (let alone Amsterdam and Copenhagen) since there are too few separated bike lanes and they are not contiguous and since there is heavy car traffic.

The heavy approach should be used when feasible, but short of banning cars cannot be done everywhere. The main obstacle is that in some places a critical mass of consumers access retail by car, so that pedestrianization means drivers will go elsewhere and the region will suffer; this happened with 1970s-era efforts in smaller American cities like Buffalo, and led to skepticism about the Bloomberg-era Times Square pedestrianization until it was completed and showcased success. Of course, Midtown Manhattan is rich in people who access retail by non-auto modes, but it’s not the only such place.

Another potential problem is delivery access. This is in flux, because drone delivery and automation stand to simplify local deliveries, using sidewalk robots at pedestrian scale. If delivery is automated then large trucks no longer offer much benefit (they’re not any faster than a bicycle in a congested city). But under current technology, some delivery access is needed. In cities with alleys the main street can be pedestrianized with bollards while the alleys can be preserved for vehicular access, but New York has about three alleys, which are used in film production more than anything because they connote urban grit.

Taking all of this together, the best places for pedestrianization are,

  1. City centers and near-center areas. In New York, this is the entirety of Manhattan south of Central Park plus Downtown Brooklyn and Long Island City. There, the car mode share is so low that there is no risk of mass abandonment of destinations that are too hard to reach by car.
  2. Non-residential areas. The reason is that it’s easier to permit truck deliveries at night if there are no neighbors who would object to the noise.
  3. Narrow streets with plenty of commerce. They’re not very useful for drivers anyway, because they get congested easily. If there are deliveries, they can be done in off-hours. Of note, traffic calming on wider streets is still useful for reducing pollution and other ills of mass automobile use, but it’s usually better to use light rather than heavy traffic reduction, that is road diets rather than full pedestrianization.
  4. Streets with easy alternatives for cars, for example if the street spacing is dense. In Manhattan, this means it’s better to pedestrianize streets than avenues.
  5. Streets that are not useful for buses. Pedestrianized city center streets in Europe are almost never transit malls, and the ones I’m familiar with have trams and not buses, e.g. in Nice.

Taking this all together, some useful examples of where to pedestrianize in New York would be,

  1. Most of Lower Manhattan. There are no residents, there is heavy commerce, there is very heavy foot traffic at rush hour, and there are enough alternatives that 24/7 pedestrianization is plausible on many streets and nighttime deliveries are on the rest.
  2. Some of the side streets of Downtown Brooklyn and Long Island City. This is dicier than Manhattan – the mode share in those areas as job centers is far below Manhattan’s. A mid-2000s report I can no longer find claimed 50% for Downtown Brooklyn and 30% for LIC, but I suspect both numbers are up, especially LIC’s; Manhattan’s is 67%, with only 15% car. So there’s some risk, and it’s important to pick streets with easy alternatives. Fulton Mall seems like a success, so presumably expansions can start there and look at good connections.
  3. St. Mark’s. It’s useless for any through-driving; there’s a bus but its ridership is 1,616 per weekday as of 2018, i.e. a rounding error and a prime candidate for elimination in a bus redesign. There’s so much commerce most buildings have two floors of retail, and the sidewalk gets crowded.
  4. Certain Midtown side streets with a lot of commerce (that’s most of them) and no buses or buses with trivial ridership (also most of them). One-way streets that have subway stations, like 50th and 53rd, are especially attractive for pedestrianization. Two-way streets, again, are valuable targets for road diets or even transit malls (though probably not in Midtown – the only east-west Manhattan-south-of-59th-Street bus route that screams “turn me into a transit mall” is 14th Street).

School Transit-Oriented Development

Transit-oriented development, or TOD, means building more stuff in places with good access to public transportation, typically the immediate vicinity of a train station. This way people have more convenient access to transit and are encouraged to take it because they live or work near the train, or ideally both. In practice, American implementations heavily focus on residential TOD, and secondarily on commercial TOD, the latter focusing more on office than retail. I covered some retail issues here; in this post, I’m going to look at a completely different form of TOD, namely public-sector institutions that government at various levels can choose the location of by fiat. These includes schools, government offices, and cultural institutions like museums. Of these, the most important are schools, since a huge share of the population consists of schoolchildren, who need convenient transportation to class.

This principle here is that the state or the city can site public schools where it wants, whether it’s by diktat or by inducements through funding for school construction. This occurs even in situations with a great deal of autonomy: American suburban schools are autocephalous, but still receive state funding for school construction, and if anything that incentivizes moving to new suburban campuses inaccessible by public transit. Other cultural institutes are usually less autonomous and more strapped for cash, and getting them to move to where it’s easier for people to access them without a car should be easier.

School siting: central cities

Urban schools tend to spread all over the city. There are more schools in denser and younger neighborhoods; there also are more high-end schools (Gymnasiums, etc.) in richer neighborhoods. But overall, there isn’t much clustering. For example, here is what I get when Googling both Gymnasiums in Berlin:

There are many Gymnasiums in rich areas like Wilmersdorf and few in poor areas (the map shows one in Neukölln and none in Gesundbrunnen and Wedding, although a few that aren’t shown at this zoom level do exist). But overall, the school locations are not especially rail-oriented. They’re strewn all over the middle-class parts of the city, even though most students do not live close enough to walk. Only the most specialized of the elite schools is in city center, the French school.

The situation in New York is similar to that of Berlin – the schools in the city are all over. This is despite the fact that there’s extensive school choice at the high school level, so that students typically take the subway and bus network over long distances. New York’s school stratification is not the same as Berlin’s – its Specialized High Schools serve the top 3% of city population, Germany’s Gymnasiums serve maybe 30% – but there, too, schools that explicitly aim to draw from all over the city are located all over the city. Only the most elite of New York’s schools, Stuyvesant, is in the central business district, namely in Lower Manhattan; the second and third most elite, Bronx Science and Brooklyn Tech, are just outside Downtown Brooklyn and in the North Bronx, respectively. A huge fraction of Bronx Science’s student population commutes from feeder neighborhoods like Flushing, Sunset Park, Chinatown, Jackson Heights, and the Upper West Side, and has to wake up early in the morning for an hour-long commute.

If schools are not just for very local neighborhood children, then they should not be isotropic, or even middle-class-isotropic as in Berlin. They should be in areas that are easily accessible by the city’s rapid transit network, on the theory that the time of children, too, is valuable, and replacing an hour-long commute with a half-hour one has noticeable benefits to child welfare and educational outcomes.

Urban school nodes

So to improve transit access to school in transit cities, it’s useful to get schools to move to be closer to key nodes on the rail network. City center may be too expensive – the highest and best use of land around Times Square or Pariser Platz is not a school. But there are other useful nodes.

The first class of good locations is central and near-center areas that don’t have huge business demand. In New York, Lower Manhattan and Downtown Brooklyn both qualify – business prefers Midtown. In Berlin, there are a lot of areas in Mitte that don’t have the development intensity of Potsdamer Platz, and to some extent the French school picked such an area, on the margin of Mitte.

The second is key connection points on the rail network that are not in the center. Berlin is rich in such connections thanks to the Ring. To some extent there are a bunch of schools close to Ringbahn stations, but this isn’t perfect, and for example the Europasportspark shown on the map is between two Ringbahn stations, at one of the few arterial roads through the Ring that doesn’t have an S-Bahn station. In New York, there is no ring, so connections are more sporadic; desirable nodes may include Queensborough Plaza, Metropolitan/Lorimer in Williamsburg, and East New York.

East New York supplies an example of the third class: an area that is rich in transit connections but is commercially undesirable because the population is poor. (The Berlin equivalent is Gesundbrunnen – non-German readers would be astounded by the bile Germans I know, even leftists who vote for anti-racist politicians, heap on U8 and on Gesundbrunnen and Neukölln.) Since everyone goes to school, even working-class children, it is valuable to site schools and other cultural amenities in such areas for easy accessibility.

One important caveat is that freeways, which make office and retail more attractive, have the opposite effect on schools. Air pollution makes learning more difficult, and children do not own cars and thus do not benefit from the convenience offered by the car. If rail lines are near freeways, then schools should be set somewhat away, on the principle that the extra 5-minute walk is worth the gain in health from not sitting hours in a polluted environment.

The suburbs

Outside the cities, the place for schools is the same as that for local retail and offices: the town center, with a regional rail station offering frequent access by train and timed connections by bus. Even when the student population is local, as it is in American suburbs, the density is too low for people to walk, forcing some kind of mechanized transportation. For this, the school bus is a poor option – it is capital-intensive, requiring what is in effect a second bus system, one that is as useless for non-students as the regular buses are for students if the school is far away from the local transit network.

Instead, a central school location means that the suburban bus network, oriented around city center, is useful for students. It increases transportation efficiency rather than decreasing it – there is no duplication of service, and the school peaks don’t usually coincide with other travel peaks, like the office worker peak and the retail worker peak. The bus network, designed around a 15- or 30-minute clockface schedule, also means that students can stay in longer, if they have on-campus club activity or if they have things to do in the town center, such as going shopping.

In some distant suburbs the school peak, arriving around 8 in the morning, may be the same as the peak for office workers who take the bus to the train to go to the central city. This isn’t necessarily a bad thing – for parents who insist on driving, this makes it easier to drop off children on the way to work. If this turns out to create real congestion on the bus, then the solution is to move school start time later, to 9 or so.

It’s crucial to use state power to effect this change when possible. For example, Massachusetts funds school construction through state funds but not renovation, which has encouraged schools to move to new campuses, generally in harder-to-reach areas. Fitchburg’s high school used to be in city center but recently moved to a suburban location close to nothing. Even in environments with a lot of local autonomy, the state should fund school construction in more central areas.

Density and Subway Stop Spacing

Normally, the best interstation distance between subway or bus stops does not depend on population density. To resurrect past models, higher overall density means that there are more people near a potential transit stop, but also that there are more people on the train going through it, so overall it doesn’t influence the decision of whether the stop should be included or deleted. Relative density matters, i.e. there should be more stops in areas that along a line have higher density, for example city centers with high commercial density, but absolute density does not. However, there is one exception to the rule that absolute density does not matter, coming from line spacing and transfer placement. This can potentially help explain why Paris has such tight stop spacing on the Métro and why New York has such tight stop spacing on the local subway lines.

Stop spacing and line spacing

The spacing between transit stops interacts with that between transit lines. The reason is that public transportation works as a combined network, which requires every intersection between two lines to have a transfer. This isn’t always achieved in practice, though Paris has just one missed connection on the Métro (not the RER), M5/M14 near Bastille; New York has dozens, possibly as many as all other cities combined, but the lines built before 1930 only have one or two, the 3/L in East New York and maybe the 1/4-5 around South Ferry.

The upshot is that the optimal stop spacing depends on the line spacing. If the line spacing is tight – say this is Midtown Manhattan and there is a subway line underneath Lex/Park, Broadway, 6th, 7th, and 8th – then crossing lines have to have tight stop spacing in order to connect to all of these parallel lines. In the other direction, there were important streetcars on so many important cross-streets that it was desirable to intersect most or ideally all of them with transfers. With so many streetcar lines extending well past Midtown, it is not too surprising that there had to be frequent subway stops.

So why would denser cities have tighter line spacing?

Line spacing and density

The intuitive relationship between line spacing and density is that denser cities need more capacity, which requires them to build more rail lines.

To see this a bit more formally, think of an idealized city on a grid. Let’s say blocks are 100*100 meters, and the planners can figure out the target density in advance when designing the subway network. If the city is very compact, then the subway could even be a grid, at least locally. But now if we expect a low-density city, say 16 houses per block, then the subway grid spacing should be wide, since there isn’t going to be much traffic justifying many lines. As the city densifies, more subway is justifiable: go up to missing middle, which is around 30-40 apartments per block; then to the Old North of Tel Aviv, which would be around 80; then to a mid-rise euroblock, which is maybe 30-40 per floor and 150-200 per block; then finally a high-rise with maybe 500-1,000 apartments.

Each time we go up the density scale, we justify more subway. This isn’t linear – an area that fills 500 apartments per block, which is maybe 100,000 people per km^2, does not get 20 times the investment of an area on the dense side of single-family with 16 houses per block and 5,000 people per km^2. Higher density justifies intensification of service, with bigger and more frequent trains, as well as more crowding. With more subway lines, there are more opportunities for lines to intersect, leading to more frequent stop spacing.

Even if the first subway lines are not planned with big systems in mind, which New York’s wasn’t, the idea of connections to streetcar lines was historically important. A stop every 10 blocks, or 800 meters, was not considered on the local lines in New York early on; however, stops could be every 5 blocks or every 7, depending on the spacing of the major crosstown streets.

Dense blobs and linear density

Line spacing is important to stop spacing not on parallel lines, but crossing lines. If a bunch of lines go north-south close to one another, this by itself says little about the optimal spacing on north-south lines, but enforces tight spacing on east-west lines.

This means that high density encourages tight stop spacing when it is continuous in a two-dimensional area and not just a line. If large tracts of the city are very dense, then this provides justification for building a grid of subway, since the crosstown direction is likely to fill as well; in New York, 125th Street is a good candidate for continuing Second Avenue Subway Phase 2 as a crosstown line for this reason.

In contrast, if dense development follows a linear corridor, then there isn’t much justification for intense crosstown service. If there’s just one radial line, then the issue of line spacing is moot. Even if there are two closely parallel radial lines in the same area, a relatively linear development pattern means there’s no need for crosstown subways, since the two lines are within walking distance of each other. The radial urban and suburban rail networks of Tokyo and Seoul do not have narrow interstations, nor do they have much crosstown suburb-to-suburb service: density is high but follows linear corridors along rapid transit. Dense development in a finger plan does not justify much crosstown service, because there are big low-density gaps, and suburb-to-suburb traffic is usually served efficiently by trips on radial lines with a transfer in city center.

The Problem of Infrastructure Profits

I’m sometimes asked about the private sector’s role in infrastructure. I’ll cover this more broadly in the future, but for now, let me pour some cold water on the idea that a private actor could build an urban rail system for profit. This is a political and not technical problem: it is possible to build a few (but not many) urban rail lines that, at good but not unheard of construction and operating costs, would generate decent financial returns. However, such lines are extremely vulnerable to confiscation of profits by government at all levels, especially the local level. Moreover, it is not possible for a local government to give any credible guarantee of security of property for a private rail line.

Lines and extensions

There is a great many rail lines in the world where new construction can be profitable. For example, Tokyo subway lines turn a profit, and the government is not building more because it demands a minimum of 3% rate of financial return – and Tokyo has high construction costs. Seoul has low costs, and it’s plausible that if Tokyo could build subways at the cost of Seoul, it would go over the 3% threshold. London is roughly breaking even on the Underground, and I think Berlin is on the U-Bahn, so some of the stronger extensions might be profitable too.

However, in such cases, the profitable additions are mostly extensions of existing lines. These can be profitable, but not to a private operator, only to the agency that controls the existing line. Even new lines often come as part of a broader system designed around transfers; for example, a short line under consideration in Tokyo is designed to connect existing rail lines in Central Tokyo with the growing waterfront area. Usually, these lines work best with free transfers, so an independent operator can’t easily build them – it’s possible Tokyo will build the line as an independent one with extra fares for transfers rather than as a Toei subway, but if so this will be unusual by global standards.

That said, there do exist places where an independent actor could build an entirely new line and not have to worry too much about connections. The example I keep going back to is Geary Boulevard in San Francisco, where a line could connect Downtown San Francisco, say around Transbay Terminal (or even Union Square to save money and avoid tunneling under Market Street), with the Outer Richmond. The bus along this route has 57,000 riders per weekday, and the total including closely parallel routes is 110,000. Bus connections are useful, but a subway on Geary could succeed without them. The same is true of connections to the BART and Muni subways at Market Street – free transfers would be really useful, but the San Francisco central business district is strong enough that a private investor might well take the hit on ridership to avoid being too entangled with public governance.

A few more plausible independent lines include the Downtown Relief Line planned for Toronto, an east-west line between Queens and New Jersey via Midtown Manhattan, and and maybe even the dormant U10 for Berlin; U10 is unlikely to work at all without fare integration, but fortunately the Verkehrsverbund Berlin-Brandenburg provides a local mechanism for revenue sharing without getting too entangled in public governance, though even then I don’t think the returns would be high enough to interest a private investor.

Some technically plausible returns

Let’s focus on Geary in San Francisco. Total ridership on or parallel to the route is 110,000 per weekday, but that’s on slow buses. A rapid transit line would get much more than that – 250,000 is plausible on a very frequent driverless train averaging 35 km/h end-to-end. High frequency would also encourage off-peak ridership, but let’s keep the annual-to-weekday ridership ratio at 300, typical of New York, and not the higher figures seen in London, since passengers would have to pay a separate fare to connect to non-CBD destinations. So this is 75 million riders a year.

What’s the plausible average fare? The Richmond is a middle-class neighborhood, but even there, fares significantly above the current Muni rate are likely to discourage ridership. Muni currently charges $2.50 one-way or $81 for a monthly ($98 with BART, but we’re assuming no free transfers). Assuming New York behavior again, a pass holder averages 46 trips a month; averaging with occasional riders, let’s say this is $2/trip, or $150 million a year.

Against this, what’s the operating cost? If 75 million trips a year average 5 km (half the route length), and there are 30 passengers per car (the New York subway average, and 20% more than the commuter-oriented BART average), this is 12.5 million car-km per year. This is equivalent to 19 5-car trains per hour in each direction 18 hours a day every day. The non-New York first-world range of operating costs is $4-7.5 per car-km as of 2014, but none of the systems studied in the report is all or even mostly driverless, and entirely driverless operations as in Vancouver would reduce costs to the low end of this range. So make it around $50 million a year in operating costs, plus maybe $8 million in depreciation on rolling stock – and let’s even bump it up a bit to $70 million because the maintenance workers are local, even if everything else can be offshored, and San Francisco wages are high. So, $80 million in operating profits per year.

Finally, the construction costs. This is a 10 km line, so at the global median of construction costs this is $2.5 billion. But Scandinavia, Southern Europe, and Korea are all capable of substantially below-median construction – and Nordic working-class wages aren’t necessarily lower than Californian ones. $1.5 billion is plausible, and even $1 billion is ambitious but not outside the realm of possibility if the line only runs to Union Square, not Transbay Terminal.

Profiting $80 million a year on $1.5 billion in investment is thus plausible, giving somewhat better returns than 5%. There’s risk inherent in the figure – costs may escalate, ridership may disappoint, operating costs may be higher than expected. All three happened almost from the dawn of rail technology – they all were rampant in the Railway Mania. The good news is that there is also some upside – office growth in the center of San Francisco could generate more demand, and mass upzoning in the Richmond could happen and was recently a near-miss in the state legislature.

Nonetheless, 5% returns at this level of risk, given decent confidence in one’s cost control, are still reasonable. However…

The government will confiscate profits

Unfortunately for any prospective private investor, the city and state governments have a large toolkit with which to confiscate all profits:

  • Impact fees – such a subway would have positive impact on the neighborhood, but the city can still find grounds to levy fees.
  • Nuisance suits – groups can invent grounds to sue on and demand bribes (“community benefits”) in exchange for dropping the suit.
  • Construction regulations demanding more expensive methods that are (or seem) less disruptive, e.g. a ban on the use of cut-and-cover even for stations.
  • Requirements that all workers be unionized and that nothing be outsourced, even things that can be done remotely like the control center.
  • Rules calling all new housing construction along the line a benefit to the company, for which the company has to pay a fee.
  • Unfunded mandates for fare discounts for seniors, children, the poor, and other groups; the city can pay these discounts out of its own budget, but why not claw into the profits of a private rail operator?
  • Hearings at the inevitable objections (someone is always unhappy) in which legislators demand personal favors (“community benefits,” again) in exchange for a yes vote.

The operating requirements, like the unfunded discount mandate, can always be imposed in the future in case the operator profits more than expected. This means that there is not much upside – if profits are higher, there will be more confiscation. The effective profit rate net of the cost of compliance with regulations approaches zero. It may well be negative – the city has every interest in driving a private operator that just spent $1.5 billion of its own money on a subway into liquidation, buy out the infrastructure, and operate service itself.

This in fact happened in New York in the 1920s and 30s. Starting under Mayor John Hylan, the city used regulatory denials to deliberately drive the private streetcar companies out of business. Simultaneously, through the construction of the IND to compete with the private IRT and BMT subways and through denial of a fare hike from 5 cents a ride to 10 cents even after post-WW1 inflation halved the value of the dollar, the city did the same to the private subway operators; the IRT went bankrupt in the Depression, and in 1940 the city bought it and the BMT out.

Obedience, emigration, or the graveyard

The state, or any actor more powerful than you, always offers you this choice. The meaning of obedience is flexible (the political opposition in a democracy is still obedient), and the meaning of the graveyard is usually not literal (“you’ll never work in this town again,” not “you will be killed”). But the choice is still this.

The main way of avoiding the graveyard, emigration, is not available here. Subways are physically fixed infrastructure. If a local government doesn’t like you, you can’t take your capital and move somewhere else. For this reason, owners of tangible property, like small business owners, have had anti-socialist politics going back to the emergence of socialism as a real political force around the Paris Commune, whereas skilled workers didn’t mind socialism as much.

Modifying the meaning of obedience is possible in a place with stronger norms of rule of law. In a capitalist country, earning a profit and paying the normal corporate tax rather than 100% is obedience – the risk is not federal confiscation but state or local confiscation, where the United States never established such norms, relying on the threat of capital flight to lower-tax, lower-regulation states to discipline governments.

I brought up the example of Berlin because I think that here the threat of local confiscation is smaller (but not zero – witness the rent control bill), but even then it’s unlikely to be a 250,000 riders/10 km line – it’s probably a breakeven line or slightly better, ideal for public but not private construction. For the most part, the subway lines that can be profitably built in the EU have already been built; there aren’t huge cities here with unique construction cost problems, except London, where I don’t think there’s an even semi-decent case for any rail line that’s not an extension of existing lines (counting Crossrail as an inward extension of suburban lines).

However, within the US and probably also Canada, even a well-capitalized corporation can’t really modify the meaning of obedience to include profitably constructing urban infrastructure. It can only emigrate, which in this case means knowing not to allocate capital to fixed infrastructure in the first place. Even if apparent returns beat the market, which I don’t think they do, the real returns will be zero so long as state and local governments remain as they are.