How Ambitious is Mayor de Blasio’s Bus Plan?

You have to give Bill de Blasio credit: when someone else forces his hand, he will immediately claim that he was on the more popular-seeming side all along. After other people brought up the idea of a bus turnaround, starting with shadow agencies like TransitCenter and continuing with his frontrunning successor Corey Johnson, the mayor released an action plan called Better Buses. The plan has a bold goal: to speed up buses to 16 km/h using stop consolidation and aggressive enforcement of bus priority. And yet, elements of the plan leave a bad taste in my mouth.

Bus speeds

The Better Buses plan asserts that the current average bus speed in New York is 8 miles per hour, and with the proposed treatments it will rise to 10. Unfortunately, the bus speed in New York is lower. The average according to the NTD is 7.05 miles per hour, or 11.35 km/h. This includes the Select Bus Service routes, whose average speed is actually a hair less than the New York City Transit average, since most of them are in more congested parts of the city. The source the report uses for the bus speed is an online feed that isn’t reliable; when I asked one of the bus planners while working on the Brooklyn route redesign, I was told the best source to use was the printed schedules, and those agree with the slower figures.

In Brooklyn, the average bus speed based on the schedules is around 11 km/h. But the starting point for the speed treatment Eric Goldwyn and I recommended is actually somewhat lower, around 10.8 km/h, for two reasons: first, the busiest routes already have faster limited-stop overlays, and second, the redesign process itself reduces the average speed by pruning higher-speed lightly-used routes such as the B39 over the Williamsburg Bridge.

The second reason is not a general fact of bus redesigns. In Barcelona, Nova Xarxa increased bus speeds by removing radial routes from the congested historic center of the city. However, in Brooklyn, the redesign marginally slows down the buses. While it does remove some service from the congested Downtown Brooklyn area, most of the pruning in is outlying areas, like the industrial nooks and crannies of Greenpoint and Williamsburg. Without having drawn maps, I would guess the effect in Queens should be marginal in either direction, for essentially the same set of reasons as in Brooklyn, but in the Bronx it should slow down the buses by pruning coverage routes in auto-oriented margins like Country Club.

With all of the treatments Eric and I are proposing, the speed we are comfortable promising if our redesign is implemented as planned is 15 km/h and not 16 km/h.

How does the plan compare with the speaker’s?

City Council Speaker Johnson’s own plan for city control of NYCT proposes a bus turnaround as well. Let us summarize the differences between the two plans:

Aspect Johnson’s plan De Blasio’s plan
Route redesign Yes Yes
Bus shelters Yes Probably
Stop consolidation Not mentioned Yes
Bus lanes 48 km installed per year 16-24 km installed per year
Bus lanes vs. cars Parking removal if needed Not mentioned
Physically separated bus lanes Yes 3 km pilot
Median bus lanes Probably Maybe
Signal priority 1000 intersections equipped per year 300 intersections equipped per year

For the most part, the mayor’s plan is less ambitious. The question of bus lanes is the most concerning. What Eric and I think the Brooklyn bus network should look like is about 350 km. Even excluding routes that already have bus lanes (like Utica) or that have so little congestion they don’t need bus lanes (like the Coney Island east-west route), this is about 300 km. Citywide this should be on the order of 1,000 km. At the speaker’s pace this is already too slow, taking about 20 years, but at the mayor’s, it will take multiple generations.

The plan does bring up median lanes positively, which I appreciate: pp. 10-11 talk about center-running lanes in the context of the Bx6, which has boarding islands similar to those I have observed on Odengatan in Stockholm and Boulevard Montparnasse in Paris. Moreover, it suggests physically separated lanes, although the picture shown for the Bx6 involves a more obtrusive structure than the small raised curbs of Paris, Stockholm, and other European cities where I’ve seen such separation. Unfortunately, the list of tools on pp. 14-15 assumes bus lanes remain in or near the curb, talking about strategies for curb management.

The omission of Nostrand

The mayor’s plan has a long list of examples of bus lane installation. These include some delicate cases, like Church Avenue. However, the most difficult, Nostrand, is entirely omitted.

Nostrand Avenue carries the B44, the second busiest bus in the borough and fifth in the city. The street is only 24 meters wide and therefore runs one-way southbound north of Farragut Avenue, just north of the crossing with Flatbush Avenue and Brooklyn College. Northbound buses go on New York Avenue if they’re local or on Rogers if they’re SBS, each separated from Nostrand by about 250 meters. The argument for the split is that different demographics ride local and SBS buses, and they come from different sides of Nostrand. The subway is on Nostrand and so is the commerce. And yet, parking is more important to the city than a two-way bus lane on the street to permit riders to access the main throughfare of the area most efficiently.

Moreover, even the bus lanes that the plan does discuss leave a lot to be desired. The second most important street in Brooklyn to equip with high-quality physically separated bus lanes, after Nostrand, is Church, like Nostrand a 24-meter street where something has to give. The plan trumpets its commitment to transit priority, and yet on Church it includes a short segment with curb lanes partly shared with delivery trucks using curb management. Limiting merchant complaints is more important to the mayor than making sure people can ride buses that are reliably faster than a fast walk.

Can the city deliver?

Probably not.

The mayor has recurrently prioritized the needs of people who are used to complaining at public meetings, who are typically more settled in the city, with a house and a car. New York may have a majority of its households car-free, but to many of them car ownership remains aspirational and so does home ownership, to the point that the transit-oriented lifestyle remains a marker of either poverty or youth, to be replaced with the suburban auto-oriented lifestyle as one achieves middle-class status. Even as there is cultural change and this mentality is increasingly not true, the city’s political system keeps a process that guarantees that millions of daily transit users must listen to drivers who complain that they have to park a block away.

The plan has an ambitious number: 16 km/h. But when it comes to actually implementing it, it dithers. Its examples of bus lanes are half-measures. There’s no indication that the city is willing to overrule merchants who think they have a God-given right to the street that their transit-riding customers do not. Without this, bus lanes will remain an unenforced joke, and the vaunted speed improvements will be localized to too small a share of bus route-km to truly matter.

The most optimistic take on Better Buses is that the mayor is signaling that he’s a complete nonentity when it comes to bus improvement, rather than an active obstacle. But more likely, the signal is that the mayor has heard that there are political and technical efforts to improve bus service in the city and he wants to pretend to participate in them while doing nothing.

Little Things That Matter: Bus Shelter

Many years ago, probably even before I started this blog, I visited family in Hamden, a suburb of New Haven. I took the bus from Union Station. When it was time to go back to New York, I timed myself to get to the bus that would make my train, but it rained really hard and there was no shelter. The time passed and as the bus didn’t come, I sought refuge from the rain under a ceiling overhang at a store just behind the bus stop, in full view of the road. A few minutes later, the bus went through the station at full speed, not even slowing down to see if anyone wanted to get on, and to get to my train I had to hitchhike, getting a ride from people who saw that I was a carless New Yorker.

Fast forward to 2018. My Brooklyn bus redesign plan with Eric Goldwyn calls for installing shelter everywhere, which I gather is a long-term plan for New York but one that the city outsourced to a private advertising firm, with little public oversight over how fast the process is to take. When I asked about the possibility of reducing costs by consolidating stops I was told there is no money for shelter, period. It was not a big priority for us in the plan so we didn’t have costs off-hand, but afterward I went to check and found just how cheap this is.

Streetsblog lists some costs in peripheral American cities, finding a range of $6,000-12,000 per stop for shelter. Here‘s an example from Florida for $10,000 including a bench. In Providence I asked and was told “$10,000-20,000.” In Southern California a recent installation cost $33,000 apiece. I can’t find European costs for new installation, but in London replacing an existing shelter with a new one is £5,700, or $8,000.

So let’s say the costs are even somewhat on the high American side, $15,000. What are the benefits?

I’ve found one paper on the subject, by Yingling Fan, Andrew Guthrie, and David Levinson, entitled Perception of Waiting Time at Transit Stops and Stations. The key graph is reproduced below:

The gender breakdown comes from the fact that in unsafe neighborhoods, women perceive waits as even longer than the usual penalty, whereas in safe ones there is no difference between women and men.

The upshot is that if the wait time is 10 minutes, then passengers at a stop with a bench and shelter perceive the wait as 15 minutes, and if there’s also real-time information then this shrinks to 11 minutes. If there are no amenities, then passengers perceive a 15-minute wait when they’ve waited just 6.5 minutes and an 11-minute wait when they’ve waited just 4. In other words, to estimate the impact of shelter we can look at the impact of reducing waits from 10 minutes to 6.5, and if there’s also real-time info then it’s like reducing waits to 4 minutes.

If the wait is 5 minutes then the impact is similar. With bench and shelter the perceived wait is 8.5 minutes, equivalent to a 3-minute wait without any amenities; with real-time information, the perceived wait is 6.5 minutes, equivalent to a 2-minute wait without amenities. There is some scale-dependence, but not too much, so we can model the impact of shelter as equivalent to that of increasing frequency from every 10 minutes to every 6.5 minutes (without real-time displays) or every 4 minutes (with real-time displays).

I have some lit review of ridership-frequency elasticity here. On frequent buses it is about 0.4, but this is based on the assumption that frequency is 7.5-12 minutes, not 4-6 minutes. At the low end this is perhaps just 0.3, the lowest found in the literature I’ve seen. To avoid too much extrapolation, let’s take the elasticity to be 0.3. Fan-Guthrie-Levinson suggests shelter alone is equivalent to a 50-66% increase in frequency, say 60%; thus, it should raise ridership by 15%. With real-time info, make this increase 30%.

What I think of as the upper limit to acceptable cost of capital construction for rail is $40,000-50,000 per weekday rider; this is based on what makes activists in Paris groan and not on first principles. But we can try to derive an equivalent figure for buses. On the one hand, we should not accept such high costs for bus projects, since buses have higher operating expenses than rail. But this is not relevant to shelter, since it doesn’t increase bus expenses (which are mostly driver labor) and can fund its ongoing maintenance from ads. On the other hand, a $40,000/rider rail project costs somewhat more per new rider – there’s usually some cannibalization from buses and other trains.

But taking $40,000/rider as a given, it follows that a bus stop should be provided with shelter if it has at least ($15,000/$40,000)/0.15 = 2.5 weekday boardings. If the shelter installation includes real-time info then the denominator grows to 0.3 and the result falls to 1.25 weekday boardings.

In New York, there are 13,000 bus stops, so on average there are around 180 boardings per stop. Even in Rhode Island, where apparently the standard is that a bus stop gets shelter at 50 boardings (and thus there is very little shelter because apparently it’s more important to brand a downtown trunk as a frequent bus), there are 45,000 weekday riders and 3,000 stops, so at 15 riders per stop it should be fine too put up shelter everywhere.

The only type of stop where I can see an exception to this rule is alighting-only stops. If a route is only used in a peak direction, for example toward city center or away from city center, then the outbound stops may be consistently less used to the point of not justifying shelter. But even that notion is suspicious, as American cities with low transit usage tend to have weak centers and a lot of job and retail sprawl. It’s likely that a large majority of bus stops in Rhode Island and all stops within Providence proper pass the 2.5 boardings rule, and it’s almost guaranteed that all pass the 1.25 boardings rule. And that’s even before consolidating stops, which should be done to improve bus speed either way.

At least based on the estimates I’ve found, installing bus shelter everywhere is a low-hanging fruit in cities where this is not already done. In the situation of New York, this is equivalent to spending around $550 per new weekday rider on transit – maybe somewhat more if the busier stops already have shelter, but not too much more (and actually less if there’s stop consolidation, which there should be). Even in that of Providence, the spending is equivalent to about $6,600 per rider without stop consolidation, or maybe $3,000 with, which is much better than anything the state will be able to come up with through the usual channels of capital expansion.

If it’s not done, the only reason for it is that transit agencies just don’t care. They think of buses as a mode of transportation of last resort, with a punishing user experience. Cities, states, and transit agencies can to a large extent decide what they have money for, and letting people sit and not get drenched is just not a high priority, hence the “we don’t have money” excuse. The bosses don’t use the buses they’re managing and think of shelter as a luxury they can’t afford, never mind what published transportation research on this question says.

Growth and Environmentalism

I’ve been asked to write about the issue of growth versus no growth. This is in the context of planning, so broader questions of degrowth are not within this post’s main scope. Rather, it’s about whether planning for more growth is useful in combating pollution and greenhouse gas emissions. The answer is yes, though the reasoning is subtle. Smart growth is the key, and yet it’s not a straightforward question of transit construction and transit-oriented development helping the environment; it’s important to figure out what the baseline is, since a large urban apartment still emits more CO2 than the closets people end up living in in parts of San Francisco and New York.

The argument for growth specifically is that a high baseline level of growth is what enables smart growth and TOD policies. Vancouver’s secular increase in transit usage, and to a lesser extent the ongoing revival in Seattle and that of Washington in the 2000s, could not happen in a region with Midwestern population growth.

Smart growth vs. no growth

VTPI has many references to studies about smart growth here. The idea of smart growth is that through policies that encourage infill development and discourage sprawl, it’s possible to redirect the shape of urban areas in a greener direction. Here’s one specific VTPI paper making this comparison directly on PDF-p. 3.

Unfortunately, the reality is that there are at least three poles: in addition to sprawl and smart growth, there is no growth. And moreover, many of the bureaucratic rules intended to encourage smart growth, such as comprehensive zoning plans, in fact lead to no growth. The following table is a convenient summary of housing permitting rate vs. my qualitative impression of how smart the growth is.

The permitting rate is absolute, rather than relative to birth rates, immigration, and internal migration pressure as seen in average incomes. Tokyo’s permitting rate is similar to Vancouver’s – Tokyo Prefecture’s rate of 10 annual units per 1,000 people and so is Metro Vancouver’s, but Japan’s population is falling whereas Canada’s is rising. See also European rates linked here and American rates here.

The infill vs. sprawl dimension is qualitative, and combines how transit-oriented the construction is with whether the development is mostly in the city or in the suburbs. Berlin’s suburbs are shrinking due to the depopulation of East Germany, and growth in the suburbs of Tokyo and West Germany is weak as well, but city growth is going strong. Paris is building a lot of public transit and is very dense, but there’s more development per capita in the suburbs, and likewise in California most development is in exurbs rather than in central cities; Seattle is penalized for having bad transit, and Atlanta for having no transit, but in both there’s a lot more development in the city than in the suburbs. Stockholm and Vienna have growth all over and excellent public transit.

The significance of the diagram is that by the standards of European transit cities, California is not an example of smart growth, but of no growth.

Shaping growth

In the high-growth area of the diagram, the most interesting case is not Tokyo, but Vancouver and Seattle. In these cities, there is a transit revival. Metro Vancouver’s mode share went up from 13% in 1996 to 20% on the eve of the Evergreen extension’s opening. Moreover, for most of this period Vancouver saw car traffic decrease, despite high population growth. Metro Seattle’s transit revival is more recent but real, with the mode share rising from the “no transit” to “bad transit” category (it is 10% now).

Both cities invested heavily in transit, Vancouver much more so than Seattle, but it was specifically transit aimed at shaping growth. Before the Expo Line opened, Downtown had few skyscrapers, Metrotown did not yet exist, New Westminster had a low-rise city center, and the areas around Main Street-Science World, Joyce-Collingwood, and Edmonds were nonresidential and low-density. The combination of fast growth and rapid transit ensured that new development would add to transit ridership rather than to road traffic. Moreover, the strong transit spine and growing employment at transit-oriented centers meant existing residents could make use of the new network as well.

The same situation also exists in Europe, though not on the same transformative scale as in Vancouver, since the cities in question came into the new millennium with already high transit usage. Stockholm just opened a regional rail tunnel doubling cross-city capacity and is expanding its metro network in three directions. This program is not available to lower-growth cities. Berlin has grandiose plans for U-Bahn expansion and has even safeguarded routes, but it has no active plans to build anything beyond the U5-U55 connection and S21 – the city just isn’t growing enough.

Public transit without growth

By itself, growth is not necessary for the existence of a robust transit network. Vienna proper had more people on the eve of WW1 than it has today, though in the intervening generations there has been extensive housing construction, often publicly subsidized (“Red Vienna”), increasing the working class’s standard of living. However, in a modern auto-oriented city – say, anything in North America other than New York – it is essential.

This becomes clear if we look at the next tier of American cities in transit usage after New York, that is Chicago, San Francisco, Washington, and Boston. Washington is the odd one – it had a transit revival before the Metro collapse of this decade, and got there through TOD in choice locations like Arlington. The others inherited a prewar transit network and made some improvements (like the Transbay Tube replacing the Key System), but froze urban development in time. Essentially all postwar development in those cities has been sprawl. Chicago had big enough a core to maintain a strong city center, but outside the Loop the job geography is very sprawled out. Boston and the Bay Area sprouted suburban edge cities that became metonyms for their dominant industries, with a transit modal share of about 0%.

Chicago’s transportation situation is difficult. The city is losing population; some specific neighborhoods are desirable and some around them are gentrifying, but the most optimistic prognosis is that it’s akin to New York in the 1970s. If there’s no population to justify a public transit investment today, there won’t be the population to justify it tomorrow. Any investment has to rely on leveraging the city’s considerable legacy mainline network, potentially with strategic cut-and-cover tunneling to connect Metra lines to each other.

And if Chicago’s situation is difficult, that of poorer, smaller cities is most likely terminal. Detroit’s grandiose plans are for urban shrinkage, and even then they run into the problem that the most economically intact parts of the region are in low-density suburbs in Oakland County, where nobody is going to agree to abandonment; the shrinkage then intensifies sprawl by weakening the urban core. Even in European cities where the shrinkage is from the outside in, there’s no real hope for any kind of green revival. Chemnitz will never have rapid transit; its tram-train has 2.6 million annual passengers.

Idyll and environmentalism

The environmental movement has from the start had a strong sense of idyll. The conservationism that motivated John Muir and Teddy Roosevelt was about preserving exurban wilderness for rich adventurers to travel in. The green left of the 1960s dropped the explicit classism but substituted it for new prejudices, like the racism embedded in population control programs proposed by Westerners for the third world. Moreover, the romantic ideals of Roosevelt-era environmentalism transformed into small-is-beautiful romanticism. Even Jane Jacobs’ love for cities was tempered by a romanticism for old low-rise neighborhoods; she predicted the Upper West Side with its elevator buildings would never be attractive to the middle class.

But what’s idealized and what’s green are not always the same. Lord of the Rings has a strong WW1 allegory in which the hobbits (Tolkien) leave the Shire (the English Midlands) to go to war and come back to find it scoured by industrialization. But on the eve of WW1, Britain was already a coal-polluted hellscape. Per capita carbon emissions would remain the same until the 1970s and thence fall by half – and in the first three quarters of the 20th century the fuel source shifted from coal to oil, which is less polluting for the same carbon emissions. The era that Tolkien romanticized was one of periodic mass deaths from smog. The era in which he wrote was one in which public health efforts were undertaken to clean up the air.

Likewise, what passes for environmentalism in communities that openly oppose growth freezes the idyll of postwar America, where suburban roads were still uncongested and the middle class had midsize houses on large lots. But American greenhouse gas emissions per capita were the same in 1960 as today, and had been the same in good economic times going back to the eve of the Great Depression. Only centenarians remember any time in which Americans damaged the planet less than they do today, and “less” means 14 tons of CO2 per capita rather than 16.5.

The upshot is that in the developed world, environmentalism and conservation are opposing forces. Conservation means looking back to an era that had the same environmental problems as today, except often worse, and managed to be poorer on top of it all.

Growth and environmentalism

Strictly speaking, growth is not necessary to reduce emissions. The low-growth city could just as well close its road network, ban cars, and forbid people to use electricity or heating generated by fossil fuels – if they’re cold, they can put on sweaters. But in practice, low-emission developed countries got to be where they are today by channeling bouts of economic growth toward clean consumption of electricity as well as transportation. Regulatory coercion and taxes that inconvenience the middle class are both absolutely necessary to reduce emissions, and yet both are easier to swallow in areas that have new development that they can channel toward green consumption.

The environmentalist in the Parises and Stockholms has the easiest time. Those cities have functioning green economies. There are recalcitrant mostly right-wing voters who like driving and need to be forced to stop, but a lifestyle with essentially no greenhouse gas emissions except for air travel is normal across all socioeconomic classes. The Vancouvers are not there but could get there in a generation by ensuring future development reinforces high local density of jobs and residences. The pro-development policies of the Pacific Northwest are not in opposition to the region’s environmentalism but rather reinforce it, by giving green movements a future to look forward to.

The environmentalist in the Clevelands and Detroits has the hardest time. It’s even worse than in the Chemnitzes – Saxony may be a post-industrial wasteland with 10% fewer people now than it had in 1905, but it’s coming into the 21st century with German emissions rather than American ones. These are cities with American emissions and economies based substantially on producing polluting cars, propped by special government attention thanks to the American mythology of the Big Three.

But whereas the Rust Belt has genuine problems, NIMBYvilles’ low growth is entirely self-imposed. New York and Los Angeles have the same per capita metro housing growth as Detroit, but only because they choose stasis; where the price signal in Detroit screams at people to run away, that in New York and California screams to build more housing. Their political institutions decided to make it harder to build any green future not only for their current residents but also for tens of millions who’d like to move there.

Shut Down the Brooklyn-Queens Expressway

New York’s high construction costs are not just a problem for public transit. Roads exhibit the exact same problem. Case in point: replacing 2.5 km of the deteriorating Brooklyn-Queens Expressway (BQE) in Brooklyn Heights is slated to cost $3-4 billion, take 6-8 years, and require temporarily closing the pedestrian promenade supported on top of the highway. This is not even a tunnel – some local NIMBYs have proposed one in order to reduce the impact of construction, but the cost would then be even higher. No: the projected cost, around $1.5 billion per kilometer, is for an above-ground highway replacement.

The section in question is between the Brooklyn-Battery Tunnel and the Brooklyn Bridge; the Promenade is the northern half of this section.

Is it worth it?

No.

There exist infrastructure projects that are worth it even at elevated cost. Second Avenue Subway Phase 1 cost $4.6 billion where it should have cost $700 million, but the expected ridership was very high, 200,000 per day, and so far ridership is on track to meet projections: the three new stations had a total of 138,000 boardings and alightings between them in 2017, and the revamped 63rd Street station went up by another 8,000. The BQE replacement is not such a project. Current traffic on the highway is stated as 153,000 vehicles per day, so on a per-vehicle basis it’s similar to Second Avenue Subway’s per-rider projection, around $23,000. But cars are not transit and cities need to understand that.

The construction of a subway creates noise and traffic disruption, but once the subway is up, all of that is done. Even elevated trains cause limited problems if built properly from materials that minimize noise – the trains on the viaducts on the Paris Metro are less noisy than the cars on the street below. There are operating costs involved with subways, but fixed costs are so dominant that even in New York a busy line like Second Avenue Subway should be at worst revenue-neutral net of costs; for reference, in Vancouver the projection for the Broadway subway extension’s operating costs is well below the revenue from the projected extra ridership.

Cars are not like that. They are noisy and polluting, and greenwashing them with a handful of expensive electric cars won’t change that. There are benefits to automobility, but the health hazards cancel out a lot of that. The Stern Review estimates the cost of unmitigated climate change at 20% of global GDP (e.g. PDF-p. 38), which in current terms approaches $500 per metric ton of CO2. The US has almost the same emissions intensity per dollar of production as the rest of the world; the negative impact of cars coming from climate change alone is comparable to the total private cost of transportation in the US, including buying the car, maintenance, fuel, etc. Now add car accidents, noise, and local air pollution.

In a region where cars are an absolute lifeline, there’s a case for building connections. The costs are low since grading a road for medium speed with level crossings is not expensive. In cities, the situation is different. Drivers will grumble if the BQE is removed. They will not lose access to critical services.

Is anyone proposing removing the BQE?

Yes, there are some proposals to that effect, but they’re so far only made haltingly. Council Speaker and 2021 mayoral frontrunner Corey Johnson’s report on municipal control of the subway includes the following line: “Before spending $4 billion to reconstruct a 1.5 mile stretch of highway, the City should study alternatives to the reconstruction of this Robert Moses-era six lane road, including the removal of the BQE in its entirety.” The halting part here is that to study does not mean to enact; Johnson himself opposes repurposing car lanes for bus service in his own district.

City Comptroller Scott Stringer, who has relied on a lot of the information I have brought up in this space in his reports, proposes to keep the BQE but only allow access to trucks. Bloomberg’s transportation commissioner Janette Sadik-Khan agrees with the idea and even pitches it as a brave alternative to the car. In other words, per the comptroller and former commissioner, billions of dollars are to be spent on the reconstruction of a somewhat narrower structure for 14,000 trucks per day. Stringer’s report even says that the comparable urban freeways that have been removed did not allow trucks in, which is incorrect for the Embarcadero Freeway in San Francisco and for the Voie Georges Pompidou in Paris (look for “camions” here). In reality, if closing the BQE means adding just 14,000 vehicles to surface streets, then it’s an almost unmitigated success of road dieting, since it means much less pollution and noise.

The Regional Plan Association proposes its usual quarter-measures as well, sold under the guise of “reimagining.” It does not mention closure at all – it proposes rebuilding the structure with four lanes, down from the current six, and even dares to cite the closure in Paris as precedent. Everything in its analysis points out to the benefits of full closure and yet the RPA feels too institutional to propose that. Presumably if the RPA had opined on lynchings in the midcentury American South it would have proposed a plan to cut total lynchings by 25% and if it had opined on Fourth Republic-era colonialism in Algeria it would have proposed to cut the incidence of torture by a third while referencing the positive precedent of British decolonization in India.

What should replace the BQE?

The BQE should be removed all the way from the Brooklyn-Battery Tunnel to the Williamsburg Bridge. Its curves in Downtown Brooklyn with the loops to the Brooklyn and Manhattan Bridges consume valuable real estate, and farther east they divide neighborhoods. The new Navy Yard developments are disconnected from the rest of Brooklyn because of the BQE.

Going east through Fort Greene, the BQE is flanked on both sides by Park Avenue. Buildings face the street, though many of the lots are empty or low-value. Thus, the surface streets have to stay. Selling what is now Park Avenue as parcels for residential and commercial development and mapping a street on the BQE’s 30-meter footprint is probably not viable. Instead, most of the footprint of the expressway should be parceled into lots and sold, converting Park Avenue into a one-way pair with streets about 12-15 meters in width each. East-west buses will continue running on Flushing and Myrtle, and north-south buses should probably not make stops at Park.

In contrast, going south through South Brooklyn, buildings do not face the abutting surface street, Hicks. They present blank walls, as if it was midblock. This is a prime opportunity to narrow the street as if the highway has never been there, creating an avenue perhaps 20 or 30 meters in width. The wider figure is more appropriate if there are plans for bus lanes and bike lanes; otherwise, if buses stay on Columbia, 20 is better.

In South Williamsburg, the road is nearly block-wide. The neighborhood is pro-development due to high birthrates among the Haredi population. Thus the footprint of the freeway must be used for private housing development. The area next to the Marcy Avenue subway station on the J/M/Z is especially desirable for the non-Haredi population, due to the proximity to Manhattan jobs. The city should retain an avenue-width roadway for Williamsburg Bridge access from the south, but beyond that it should restore the blocks of the neighborhood as they were before the BQE was built.

Heal, don’t placemake

If there’s a common thread to the various proposals by local politicians and shadow agencies (that is, the RPA), it’s an attempt at placemaking, defined to be any project that they can point to and say “I built that!”. A BQE rebuilt slightly narrower, or restricted to trucks, achieves that goal, with some greenwashing for what remains a waste of billions of dollars for motorist convenience.

But the same can be said of a park, as in one architect’s proposal for the BQE. I can see a case for this in Brooklyn Heights, where the Promenade is an important neighborhood destination, but elsewhere, the case is extraordinarily weak. In South Brooklyn, the most important benefit of removing the BQE is easier pedestrian access to the waterfront; recreation space should go there. Fort Greene and the Navy Yard are both rich in parks; BQE removal makes the large parks on both sides of the motorway easier to access. And Williamsburg is hungry for private development, whether near the subway for Manhattan workers or elsewhere for Haredi families.

Thirty years from now, nobody is going to walk on the remade street grid of South Williamsburg or the narrowed Hicks Street and wonder which politician set this up. But people may well notice the lower rents – and they may well notice them within a few years of the deconstruction of the road and the sale of the land for housing development. Ultimately city residents do notice if things are improving or deteriorating. It’s on the city to nudge infrastructure development in the direction of less pollution and fewer boondoggles.

European Union to Coordinate Carbon Tax, Infrastructure Investment

In advance of next month’s European Parliament election, several sources at the major mainstream parties have said that there are plans to coordinate a carbon tax, paired with investment in green infrastructure. Representatives of the European People’s Party (EPP), the Socialists and Democrats group (S&D), the Alliance of Liberals and Democrats for Europe (ALDE), and the Greens-European Free Alliance group (G/EFA) have agreed on an outline, to be passed after the election. The unaffiliated La Republique En Marche, which is expected to be the largest party in France in the coming election, is in on the agreement as well, and has been a key driver of the deal under the leadership of President Emmanuel Macron. As the four parties as well as LREM are expected to have a large majority of the seats among them, the deal should not have difficulties passing.

At heart is an attempt to unify different national approaches to climate change. One source specifies that after frustration with the slow pace of decarbonization in France, in large part due to the Gilets Jaunes’ street riots against higher fuel taxes, Macron sought a Europe-wide approach. While the left in France was skeptical, green and social-democratic parties in the rest of Europe were supportive. Italy’s Democratic Party (S&D) was especially interested, citing worries that France’s lower fuel taxes were causing motorists in western Liguria to drive over the border to fill up in the nearby French Riviera. The Social Democrats in Sweden, under the leadership of Prime Minister Stefan Löfven, have been supportive as well, and several sources agree that they played a role in persuading the entire S&D group to support a strong carbon tax law.

Obtaining the consent of EPP was more difficult due to its skepticism over tax increases. There is no first-hand on-the-record reporting for how this was achieved, but a large number of second-hand sources agree that Chancellor Angela Merkel agreed in order to appeal to German Green Party voters, as the party is rising in the polls in the European as well as German elections and has popular state-level leadership.

The deal will impose a minimum carbon tax starting at 50 per metric ton of CO2-equivalent in 2020, rising gradually to €200 per ton in 2035. The tax will include border adjustments for the carbon content of imported goods, a clause that is said to have come at the insistence of union-affiliated S&D leaders who worried about competition from outside the EU. Controversially, the language of the draft deal permits individual member states to give industries credit toward exports.

The tax will be collected entirely at the member state level, like existing taxes on fuel and tobacco and VAT, where the EU mandates minimum floors (such as 15% for VAT) and monitors compliance but does not collect the taxes itself or redistribute the proceeds. Sweden’s existing carbon tax, currently 120 per ton, will therefore stay where it is. The EU will ensure member states collect the tax and do not give undue exceptions to industrial users; only exports and fuel for extra-EU flights and shipping may be exempted from the tax.

Simultaneously, the parties agreed to accelerate spending on EU-wide green infrastructure. As with the tax, member states will have considerable latitude, in order to mollify concerns among some Greens that the EU will stealthily mandate the construction of new nuclear power plants, as well as concerns among most EPP and ALDE parties that government spending would rise too much. Germany, in particular, has plans to reduce taxes on businesses: the Merkel cabinet has had to resist the business community’s demands for tax cuts, arguing that it is in growth times like this year that is is most tempting to engage in fiscal profligacy. There will also be additional spending on urban rail, motivated by the projected mode shift away from cars as a result of the new tax, but people close to the key decisionmakers say that massive federal spending in Germany is unlikely.

In France, the plan is to use the proceeds to invest in transportation alternatives, including a roster of new urban rail lines in Paris as well as most secondary cities. Macron is said to be in favor of accelerating the construction of new TGV lines connecting the entire country to Paris within at most 4 hours, as well as orbital lines connecting provincial cities to one another.

The timing of the leak is unusual. One source speculated that it is timed for the eve of Brexit, to nudge Britain to revoke Article 50 and stay in the EU to avoid finding itself fighting another EU bureaucracy if it left without a deal. While the spokespeople for the British Conservative Party who were contacted for this story oppose the climate agreement, the agreement can pass the European Parliament even over the party’s objections.

Nonetheless, euroskeptical forces have used the leak as an opportunity to portray the EU in conspiratorial terms, particularly ones affiliated with the far-right Europe of Freedom and Direct Democracy (EFDD) and Europe of Nations and Freedom (ENF) groups. The Italian Lega (ENF), expected to emerge as the single largest national party after the election, attacked the EU for dictating to member states. France’s National Rally (ENF), the party of the Le Pen family, said that Macron is immiserating France, that carbon emissions are caused by corporate shipping and not by driving, and that Europe would not have any environmental problems if it did not have population growth due to immigration. The UK Independence Party (EFDD) added that it’s not even clear if climate change is real, and said that this is why it always backed Brexit.

Nonetheless, the polls are stable enough that all observers expect ENF and EFDD, and even the UK Conservatives’ European Conservatives and Reformists (ECR) group, to lack the power to defeat or even weaken the proposed legislation. In response to threats by the Gilets Jaunes to call a massive nationwide rally next Saturday, the leader of the opposition Republicans (EPP) threatened that perhaps France should declare martial law to forestall riots.

Both Macron and Löfven have since taken political ownership of the agreement, calling it an example of pan-European cooperation to solve global problems. After the agreement leaked, Macron touted the plan as a way forward for France as Europe’s leader in high-speed rail, and promised that French industry would manufacture the trains, wind turbines, and solar cells while combating the country’s Western Europe-leading air pollution levels at the same time. He referenced the slogan from the 1970s’ oil crisis leading to the construction of the TGV and nuclear plants: “in France we have ideas.”

In Sweden, sources close to the Löfven cabinet point out that the country’s long-time moral leadership is paying off, as there is an extensive clean industry in Sweden, including rolling stock as well as engineering professional services. A spokesperson for the Swedish Greens added that this was also an example of European moral leadership, which would exercise soft power in order to convince other big countries and blocs to follow suit, such as Japan and South Korea. But when pressed on the issue of the US and China specifically, sources demurred.

As this article goes to press, no national politicians in the United States from either party have commented, despite multiple attempts to reach out and ask if they were willing to implement a similar policy in America.

Prudence Theater

The phrase security theater refers to the elaborate selling of airport security to the public through humiliating spectacle, like making people take off their shoes, with no safety value whatsoever. By the same token, prudence theater is the same kind of ritual of humiliating people, often workers, in the name of not wasting money. Managers who engage in prudence theater will refuse pay hikes and lose the best employees in the process, institute hiring freezes at understaffed departments and wonder why things aren’t working, and refuse long-term investments that look big even if they have limited risk and high returns. This approach is endemic to authoritarian managers who do not understand the business they are running – such as a number of do-nothing political leaders who make decisions regarding public transit.

I’ve talked a bunch about this issue in the context of capital investment, for example Massachusetts’ Charlie Baker, California’s Gavin Newsom, New Jersey’s Chris Christie, and New York‘s Andrew Cuomo, using phrases such as “Chainsaw Al” and “do-nothing.” But here I want to talk specifically about operations, because there is an insidious kind of prudence theater there: the hiring freeze. The MBTA and MTA both have hiring freezes, though thankfully New York is a little more flexible about it.

Both New York and Boston have very high operating costs, for both subways and buses. They have extensive overstaffing in general, but that does not extend to overstaffing at every department. On the contrary, some departments are understaffed. Adam Rahbee told me a year and a half ago that subway operations planning in New York was short on workers, in contrast to the overstaffed department he saw in London. Of course London on average has much lower costs than New York, but individual departments can still be short on manpower even in otherwise-overstaffed cities. If anything, leaving one department understaffed can cause inefficiencies at adjacent departments, making them in effect overstaffed relative to the amount of service they can offer.

Bus dispatching

Buses require active supervision by a centralized control center that helps drivers stay on schedule. New York currently has 20 dispatchers but is planning an increase to 59, in tandem with using new technology. Boston has 5 at any given time, and needs to staff up to 15, which involves increasing hiring to about 40 full-time workers and doing minor rearrangement of office space to give them a place to work. With too few dispatchers, drivers end up going off-schedule, leading to familiar bunching, wasting hundreds of bus drivers’ work in order to save money on a few tens of supervisors.

I went over the issue of bus bunching in a post from last summer, but for the benefit of non-technical readers, here is a diagram that explains in essence what the problem of chaos is:

The marble on top of the curve is unlikely to stay where it is for a long time, because any small disturbance will send it sliding down one side or the other. Moreover, it’s impossible to predict in advance which direction the marble will land in, because a disturbance too small to see will compound to a big one over time.

Chaotic systems like this are ubiquitous: weather is a chaotic system, which is why it’s not possible to predict it for more than about two weeks in advance – small changes compound in unexpected directions. Unfortunately, bus service is a chaotic system too. For the bus to be on schedule is an unstable equilibrium. If the bus runs just a little behind, then it will have to pick up more passengers on its way, as passengers who would have just missed the bus will instead just make it. Those extra passengers will take some extra time to board, putting the bus even further behind, until the bus behind it finally catches it and the two buses leapfrog each other in a platoon.

There are ways to mitigate this problem, including dedicated bus lanes and off-board fare collection. But they do not eliminate it – they merely slow it down, increasing the time it takes for a bus to bunch.

The connection between dispatching and chaotic bus schedules may not be apparent, but it is real. The transportation engineering academic community has had to deal with the question of how to keep buses on schedule; here, here, and here are three recent examples. The only real way to keep buses on schedule is through active control – that is, dispatching. A dispatcher can tell a driver that the bus is too far ahead and needs to slow down, or that it is behind and the driver should attempt to speed up. If the traffic light system is designed for it, the dispatcher can also make sure a delayed bus will get more green lights to get back on track, a technology called conditional signal priority, or CSP. This contrasts with unconditional transit signal priority, or TSP, which speeds up buses but does not preferentially keep them evenly spaced to prevent bunching.

Moreover, some of the people who have done academic work on this topic have gone on to work in the transit industry, whether for the MBTA (such as David Maltzan and Joshua Fabian) or for thinktanks or private companies (such as Chris Pangilinan). Specific strategies to keep the buses on track include CSP giving delayed buses more green lights, holding buses at the terminal so that they leave evenly spaced, and in some cases even holding at mid-route control points. Left to their own devices, buses will bunch, requiring constant correction by a competent dispatching department with all the tools of better data for detection of where bunching may occur as well as control over the city’s streetlights.

Managers’ point view vs. passengers’ point of view

When I talk to transit riders about their experiences, I universally hear complaints. The question is just a matter of what they complain about. In suburban Paris people complain plenty about the RER, talking about crowding and about how the system isn’t as frequent or reliable as the Metro. These are real issues and indicate what Ile-de-France Mobilités should be focusing its attention on.

Americans in cities with public transit talk about bunching. In New York I’ve routinely sighted platoons of two buses even on very short routes, where such problems should never occur, like the 3 kilometer long M86. A regular rail user who talked to me a few months ago mentioned three-bus platoons in Brooklyn on a route that has a nominal frequency of about 10 minutes.

From the perspective of the transit operator or the taxpayer, if buses are scheduled to arrive every ten minutes, that’s an expenditure of six buses per hour. From that of the rider, if the buses in fact come in platoons of two due to bunching, then the effective frequency is 20 minutes, and most likely the bus they ride on will be the more crowded one as well. What looks like a service improvement to managers who never take the system they’re running may offer no relief to the customers on the ground.

I wish my mockery of transit managers who don’t use their own system were facetious, but it’s not. In New York, some of the more senior managers look at NYCT chief Andy Byford askance for not owning a car and instead using the subway to get to places. Planner job postings at North American transit agencies routinely require a driver’s license and say that driving around the city is part of the job. Ignorant of both the science of chaos and the situation on the ground, the managers and politicians miss low-hanging fruits while waxing poetic about the need to save money.

Is anything being done?

In New York there are some positive signs, such as the increase in the number of dispatchers. The warm reception Eric Goldwyn and I got from some specific people at the MTA is a good sign as well. The problem remains political obstruction by a governor and mayor who don’t know or care to know about good practices. Cuomo’s constant sidelining of Byford has turned into a spectacle among New York transit journalists.

In Boston, the answer is entirely negative. Last week’s draft of the Focus40 plan, released by the MBTA’s Fiscal Management and Control Board (FMCB), unfortunately entirely omits dispatching and operational supervision from its scope. It includes a variety of investments for the future, some of which are welcome, such as the Red-Blue Connector. But it reduces the issue of bus timetable keeping to a brief note in the customer experience section that mentions “Computer Aided Dispatch / Automatic Vehicle Location technology.” Good data is not a bad thing, but it is not everything. Warm bodies are required to act on this data.

Thus prudence theater continues. Massachusetts will talk about reform before revenue and about spending money wisely, but it is run by people with little knowledge of public transportation and no interest in acquiring said knowledge. Its approach to very real issues of high costs is to cut, even when there are parts of the system that are underfunded and undermanned. Staffing up to 15 dispatchers at a time, raising the headcount to about 40 full-time workers, would have the same effect on ridership as literally hundreds of bus drivers through better control. Will the administration listen? As usual, I hope for the best but have learned to expect the worst.

Battery-Electric Buses: New Flyer

Two months ago, after my article about battery-electric buses appeared in CityLab, New Flyer reached out to me for an interview. Already in one of the interviews I’d done for the article, I heard second-hand that New Flyer was more reasonable than Proterra and BYD and was aware of the problem of battery drain in cold weather. I spoke to the company’s director of sustainable transportation, the mechanical engineer David Warren, and this confirmed what I’d been told.

Most incredibly, I learned at the interview that the headline figures used in the US for electric bus performance explicitly exclude heating needs. The tests are done at the Altoona site and only look at electricity consumption for propulsion, not heating. New Flyer says that it is aware of this issue and has tried not to overpromise, but evidently Proterra and BYD both overpromise, and regardless of what any vendor says, American cities have bought into the hype. In Duluth this was only resolved with fuel-fired heaters; the buses only use electricity for propulsion, which is not the majority of their energy consumption in winter.

Warren and I discussed New York specifically, as it has a trial there on the M42. The heater there puts out 22 kW of energy at the peak, but on the day we discussed, January 29th, when the air temperature was about -7*, actual consumption was on average about 10 kW. Electricity consumption split as 40% heating, 20% propulsion, and 40% other things, such as the kneeling system for easier boarding.

The battery can last many roundtrips on the M42, specifically a very slow route. Electric vehicles tend to do much better then fuel-powered ones at low speed in city traffic, because of regenerative braking and higher efficiency. When I discussed the Proterra trial with MVTA, I was told specifically that the buses did really well on days when the temperature was above freezing, since the battery barely drained while the bus was sitting in rush hour Downtown Minneapolis traffic. This pattern is really a more extreme version of one that may be familiar to people who have compared fuel economy ratings for hybrid and conventional cars: hybrids are more fuel-efficient in city driving than on the highway, the opposite of a non-hybrid, because their electric acceleration and deceleration cycles allow them some of that regeneration.

The current system is called OppCharge (“opportunity charging”), and currently requires the bus to spend 6 minutes out of every hour idling for recharge; the Xcelsior presentation shows a bus with a raised pantograph at a charging station, and I wonder whether it can be extended to an appropriate length of wire to enable in-motion charging.

The New Flyer examples I have seen are in large cities – New York and Vancouver. New York’s system for opportunity charging does not require an attendant; Vancouver’s may or may not, but either way the charging is at a bus depot, where the logistics are simpler. In contrast, in Albuquerque the need for midday charging was a deal breaker. When I talked to someone who knew the situation of Albuquerque’s BRT line, ART, I was told that the BYD midday charge system would require an attendant as well as room for a charging depot. Perhaps an alternative system could get rid of the attendant, but the land for a bus that at the end of the day isn’t that busy has nontrivial cost even in Albuquerque.

Even with opportunity charging, batteries remain hefty. Warren said that they weigh nearly 4 tons per standard-length bus; the XE40 weighs 14 metric tons, compared with 11.3 for the older diesel XD40 platform. Specifically on a short, high-ridership density like the M42 and many other New York buses, there is likely to be a case for installing trolleywire and using in-motion charging. In-motion charging doesn’t work well with grids, since it is ideally suited to when several branches interline to a long trunk route that can be electrified, but ultimately it’s a bus network with ridership density comparable to that of some big American light rail networks like Portland’s.

*In case it’s unclear to irregular readers, I exclusively use metric units unless I mention otherwise, so this is -7 Celsius and not -7 Fahrenheit; the latter temperature would presumably drain the battery a lot faster.

Quick Note: the Importance of Long-Term Planning

Last week, Strong Towns ran a piece complaining about what it calls “go big or go home” transit. Per Strong Towns’ Daniel Herriges, rail expansion takes 20 years and reflects an obsession with megaprojects, so it’s better to look at small things. Strong Towns’ take is as follows:

“After 20 years of planning, the North Carolina Research Triangle’s signature transit project is fighting for its life.”

Boy. If this sentence doesn’t perfectly capture the folly of our megaproject-obsessed transit paradigm, we don’t know what does.

Here’s a better idea: Ask transit riders in Durham and Chapel Hill what’s the next, small step you could take that would improve their commutes *this* year. Then do it. Then next year, ask the same question. There are so many pressing needs going unmet while our cities focus on shaky silver-bullet efforts like this one; what do we have to lose?

It’s a perfect encapsulation of what is wrong with more traditionalist attitudes toward urbanism and green transport, and I want to explain why.

Short-term thinking – “what could improve this year” – does not scale. The Strong Towns article talks about scalability as a reason to improve bus service and add sidewalks rather than adding urban rail, but the reality is the exact opposite. Incrementalism works in cities that have 35% transit mode share and want to go up to 50% – and since, in the first world, all of these cities have rapid transit systems, getting to 50% means building more lines, as is happening in Paris and Berlin and London and Stockholm and Vienna and Copenhagen, and the last three don’t even have that many more people than the Research Triangle, where the rail link in question is to be built.

The Research Triangle does not have 35% transit mode share. For work trips the share in the Durham-Raleigh combined statistical area is 1.4%. All the things that year-by-year incremental progress does do not work, because improving the bus network increases ridership in relative numbers to current traffic.

Strong Towns understands this, in a way. It uses the “what do we have to lose?” language. And yet, it recommends not doing anything of importance, because building big things means megaprojects. Megaprojects involve doing something that visibly involves the government, requires central planning, and is new to the region. They empower planners whose expertise comes from elsewhere, because the local knowledge in a 1.4% transit share region is 100% useless for offering transportation alternatives.

It’s a mentality that seems endemic to groups that romanticize midcentury small towns. Strong Towns literally names itself after the idea of the old small-town main street, in which cars exist but do not dominate, back before hypermarkets and motorway bypasses and office parks changed it all. It’s an idea that evokes nostalgia among people who grew up in cities like that or in suburbs that imitated them and dread among people who didn’t. And it’s completely dead, because it’s too small-scale for transit to work and too spread out for a developer to have any interest in reproducing it today.

Transit revival doesn’t look like the 1950s, and planning for it doesn’t involve the same social groups that dominated then. That era between World War Two and the counterculture was dominated by an elite consensus that built megaprojects, but the middle-class elements of said consensus were precisely the one that bolted to the anti-state New Right, with its ethos of mocking the idea of “I’m from the government and I’m here to help.”

In a metro area that wants to get from 1.4% transit share to a transit share that’s not a rounding error, a few things need to happen, and none of them will make nostalgists happy. First, planning has to be for the long term. “What can be done this year?” means nothing. Second, extensive redevelopment is required, and it can’t be incremental. If you want transit-oriented development, look at what Calgary did in city center and what Vancouver did around suburban stations like Metrotown and Edmonds and do it in your Sunbelt American city. Third, wider sidewalks are cool and so is more bus service, but in a spread-out region, interurban rail is a must, and this means big projects with an obtrusive government and a public planning process. And fourth, people will complain because not everything is a win-win, and the government will need to either ignore those people (if they’re committee meeting whiners) or break them (if they’re Duke, which is opposing the light rail line on NIMBY grounds).

American transit reformers tend not to know much about good practices, but many are interested in learning. But then there are the ones who cling to traditional railroading, mixed-traffic heritage streetcars, village main streets, or really anything that lets them portray the car as an outside enemy of Real America rather than its apex with which it annihilated groups it deemed too deviant. It’s an attractive mythology, playing to a lot of powerful notions of community. It’s also how American cities got to be the car-choked horrors that they are today, rather than how they will turn into something better.

Park-and-Rides (Hoisted from Comments)

My post about the boundary zone between the transit-oriented city and its auto-oriented suburbs led to a lot of interesting discussions in comments, including my favorite thing to hear: “what you said describes my city too.” The city in question is Philadelphia, and the commenter, Charles Krueger, asked specifically about park-and-ride commuter rail stations. My post had mentioned Southeast on the Harlem Line as an interface between commuter rail and the Westchester motorway network, and the natural followup question is whether this is true in general.

The answer is that it’s complicated, because like the general concept of the cars/transit boundary zone, park-and-rides have to be rare enough. If they’re too common, the entire rail system is oriented around them and is not really a boundary but just an extension of the road network. This is the situation on every American commuter rail system today – even lines that mostly serve traditional town centers, like the New Haven Line, focus more on having a lot of parking at the station and less on transit-oriented development. Even some suburban rapid transit lines, such as the Washington Metro, BART, and the recent Boston subway extensions, overuse park-and-rides.

However, that American suburban rail systems overuse such stations does not mean that such stations must never be built. There are appropriate locations for them, provided they are used in moderation. Those locations should be near major highways, in suburbs where there is a wide swath of low-density housing located too far from the rail line for biking, and ideally close to a major urban station for maximum efficiency. The point is to use suburban rail to extend the transit city outward rather than the auto-oriented suburban zone inward, so the bulk of the system should not be car-oriented, but at specific points park-and-rides are acceptable, to catch drivers in suburbs that can’t otherwise be served or redeveloped.

Peakiness and park-and-rides

I’ve harped on the importance of off-peak service. The expensive part of rail service is fixed costs, including the infrastructure and rolling stock; even crew labor has higher marginal costs at the peak than off-peak, since a high peak-to-base ratio requires split shifts. This means that it’s best to design rail services that can get ridership at all times of day and in both directions.

The need for design that stimulates off-peak service involves supportive service, development, and infrastructure. Of these, service is the easiest: there should be bidirectional clockface schedule, ideally with as little variation between peak and off-peak as is practical. Development is politically harder, but thankfully in the main example case, the Northeastern United States, commuter rail agencies already have zoning preemption powers and can therefore redevelop parking lots as high-intensity residential and commercial buildings with walkable retail.

Infrastructure is the most subtle aspect of design for all-day service. Park-and-ride infrastructure tends to be peaky. Whereas the (peakier, more suburban) SNCF-run RER and Transilien lines have about 46% of their suburban boardings at rush hour, the LIRR has 67%, Metro-North 69%, and the MBTA 79%. My linked post explains this difference as coming from a combination of better off-peak service on the RER and more walkable development, but we can compare these two situations with the Washington Metro, where development is mostly low-density suburban but off-peak frequency is not terrible for regional rail. Per data from October 2014, this proportion is 56%, about midway between Transilien and the LIRR.

This goes beyond parking. For one, railyards should be sited at suburban ends of lines, where land is cheap, rather than in city center, where land is expensive and there is no need to park trains midday if they keep circulating. But this is mostly about what to put next to the train stations: walkable development generating a habit of riding transit all day, and not parking lots.

Where parking is nonetheless useful

In response to Charles’ comment, I named a few cases of park-and-rides that I think work well around New York, focusing on North White Plains and Jersey Avenue. There, the parking-oriented layout is defensible, on the following grounds:

  1. They are located in suburban sections where the reach of the highway network is considerable, as there is a large blob of low density, without much of the structure created by a single commuter line.
  2. They are near freeways, rather than arterials where timed connecting buses are plausible.
  3. They are immediately behind major stations in town centers with bidirectional service, namely White Plains and New Brunswick, respectively.

The importance of proximity is partly about TOD potential and partly about train operating efficiency. If the park-and-rides are well beyond the outer end of bidirectional demand, then the trains serving them will be inefficient, as they will get relatively few off-peak riders. A situation like that of Ronkonkoma, which is located just beyond low-ridership, low-intensity suburbs and tens of kilometers beyond Hicksville, encourages inefficient development. Thus, they should ideally be just beyond the outer end, or anywhere between the city and the outer end.

However, if they are far from the outer end, then they become attractive TOD locations. For example, every station between New York and White Plains is a potential TOD site. It’s only near White Plains that the desirability of TOD diminishes, as White Plains itself makes for a better site.

On rapid transit in American suburbia, one example of this principle is the Quincy Adams garage on the Red Line just outside Boston. While the station itself can and should be made pedestrian-friendlier, for one by reopening a gate from the station to a nearby residential neighborhood, there’s no denying the main access to the station will remain by car. Any TOD efforts in the area are better spent on Quincy Center and Braintree, which also have commuter rail service.

Where parking should urgently be replaced by TOD

American suburban rail lines overuse park-and-rides, but there are specific sites where this type of development is especially bad. Often these are very large park-and-ride structures built in the postwar era for the explicit purpose of encouraging suburban drivers to use mainline rail for commuter and intercity trips. With our modern knowledge of the importance of all-day demand, we can see that this thinking is wrong for regional trips – it encourages people to take rail where it is the most expensive to provide and discourages ridership where it is free revenue.

The most important mistake is Metropark. The station looks well-developed from the train, but this is parking structures, not TOD. Worse, the area is located in the biggest edge city in the Northeast, possibly in the United States, possibly in the world. Middlesex County has 393,000 jobs and 367,000 employed residents, and moreover these jobs are often high-end, so that what the Bureau of Economic Analysis calls adjustment for residence, that is total money earned by county residents minus total money earned in the county, is negative (Manhattan has by far the largest negative adjustment in the US, while the outer boroughs have the largest positive one). The immediate area around Metropark and Woodbridge has 46,000 jobs, including some frustratingly close to the station and yet not oriented toward it; it’s a huge missed opportunity for commercial TOD.

In general, edge cities and edgeless cities should be prime locations for sprawl repair and TOD whenever a suburban rail line passes nearby. Tysons, Virginia is currently undertaking this process, using the Silver Line extension of the Metro. However, preexisting lines do not do so: Newton is not making an effort at TOD on the existing Green Line infrastructure, it’s only considering doing so in a part of town to be served by a potential branch toward Needham; and the less said about commuter rail, the better. Mineola and Garden City on Long Island, Tarrytown in Westchester, and every MBTA station intersecting Route 128 are prime locations for redevelopment.

Commuter rail for whomst?

I believe it’s Ant6n who first came up with the distinction between commuter rail extending the transit city into the suburbs and commuter rail extending the suburbs into the city. If the trains are frequent and the stations well-developed, then people from the city can use them for trips into suburbia without a car, and their world becomes larger. If they are not, then they merely exist to ferry suburban drivers into city center at rush hour, the one use case that cars are absolutely infeasible for, and they hem car-less city residents while extending the world of motorists.

Park-and-rides do have a role to play, in moderation. Small parking lots at many stations are acceptable, provided the station itself faces retail, housing, and offices. Larger parking structures are acceptable in a handful of specific circumstances where there is genuinely no alternative to driving, even if the rest of the rail service interfaces with walkable town centers. What is not acceptable is having little development except parking at the majority of suburban train stations.

The Boundary Between the Transit City and Auto-Oriented Suburbia

Public transportation use is higher in cities than in suburbs. Cities with stronger transit networks have larger transit-rich, auto-hostile cores, and some have good transit in lower-density suburbs, but ultimately the transit city has a limited radius, beyond which automobiles dominate. Successful examples of suburban transit, like Zurich, just keep the city-suburb gradient shallower than in other transit cities.

The most fascinating aspect of this is the boundary between the transit-oriented city and the auto-oriented suburbs. Uniquely in the metro area, the boundary region has good access by car as well as by transit, making it ideal for uses that want to interface with both modes of transportation. This specifically includes bus stations, stadiums, and big box retail, as well as more sporadic meeting points between urban and suburban residents.

Where the boundary is

Because the boundary zone is defined by good transit as well as highway access, it may not be the literal boundary as defined by modal split, car ownership, or any other metric of transportation usage. It can be the outer end of some rail line extending into the suburbs, and in that case it may be a salient into auto-oriented territory. There are a number of examples in the United States, where the postwar rapid transit projects have not been accompanied by much transit-oriented development, and thus their outer stations are in low-density suburbs where transit service functions as expensive S-Bahns. BART and most of the Washington Metro are like this, as are the suburban lines of the Boston subway.

For example, here is Newton Centre, on the Green Line D branch:

The light rail station is just to the left (south) of the street. This is a walkable suburban street with a train that comes pretty frequently all day, and yet the dominant mode of transportation here is clearly cars, as one can see in the parking lot to the left. Transit usage here is similar to the metro area’s average – Newton averages 11.9%, the Boston metro area 13.4% – but this says more about the rest of metro Boston than about Newton Centre. Nonetheless, such a location is convenient to access from the city if one lives near the Green Line, and is also reasonable convenient by car, as it is just 4 km from the freeway, and the majority of the distance is along the fast arterial that is Route 9.

The importance of highway access also works in reverse. In cities with strong transit networks and weak motorway network, there may be a freeway salient into the city, creating a zone that is car-friendlier than the rest. If it also has ample parking, which it usually does, then it will end up creating a boundary within an area that is on most metrics transit-oriented.

In London, the urban renewal zones around Stratford and Canary Wharf are examples – the city is unusually poor in freeway infrastructure, but two of the few radial motorways hit these two business districts. Here is Stratford:

The built-up density is high, and Stratford is one of the busiest Underground stations. But the roads are big for the city they’re in and there are large surface parking lots all over.

I’m deliberately including two examples with very different urban layouts and actual transit usage levels to hammer home the point that the boundary is defined merely by the existence of supportive infrastructure for both cars and public transit.

Can the entire city be friendly to both cars and public transit?

No.

There are several reasons for this. The first and most fundamental is that public transit is only successful if it can leverage scale. The adage frequency is freedom comes from this fact, but the same can be said about related issues of span, reach, and network effects. This is why frequency-ridership spirals are so dangerous – a small cut in service can lead to a much greater reduction in ridership.

The second reason is that drivers prefer a different urban layout from transit users, cyclists, and pedestrians. Cars are space-intensive on the road as well as on the parking lot, but can achieve high average speed if there’s no traffic, so they end up preferring spread-out development. Public and active transport are space-efficient but involve a lot of slow walking, so they prefer dense development at distinguished nodes with train stations, featuring strong commercial city centers with high job concentration. The boundary zone I speak of must be underlain by a strong enough transit network in the city core that people will fill the trains at all hours of day.

Concretely, neither the example of Newton nor that of Stratford can work citywide. Newton cannot work citywide because if every residential metro station is a parking lot, then nobody will ride the trains off-peak, and the city will de facto be exclusively auto-oriented as a result. Two years ago I compared the proportion of boardings at suburban stations that occur in the morning peak in New York (67% LIRR, 69% Metro-North) and Paris (46% on the SNCF network). Well, I would later find data for the Washington Metro, which has high off-peak frequency like the RER but low-density parking lot stations like the LIRR and Metro-North, and the proportion of riders in the morning peak is much closer to that of the LIRR than to that of the RER.

Likewise, Stratford can’t work citywide, because most of the city is not a reclaimed railyard with enormous space for all manners of new development. Building the expansive motorway network that would allow cars to rapidly reach every part of the city would normally require extensive neighborhood demolitions; American cities only managed to do so because to the road builders, destroying working-class (and often black) neighborhoods was a feature rather than a bug. Building a new city with ample road infrastructure is possible without this history, but then one gets Houston, hardly an example of good transit accessibility.

Land use at the boundary

The boundary zone’s unique accessibility by both cars and transit makes it ideally suited for land use that really wants both. Such land use has to have the following features:

  1. It needs to have a large regional draw, or else distinct neighborhood centers, some transit-oriented and some car-oriented, can do better.
  2. It needs to specifically benefit from good highway access, for example for deliveries, but also from good transit access.
  3. It is not so high-value that city center’s better transit access in multiple directions trumps access by transit in one direction and by cars in another.

Sporadic meetings satisfy all three criteria. For one personal example, in 2013 I visited New York and participated in a LARP taking place in a camp somewhere in Massachusetts, accessible only by car; I traveled with friends in the suburbs and we arranged that they would pick me up at Southeast, the northern end of the Metro-North Harlem Line’s electrification, so chosen because of its excellent multidirectional freeway access.

I bring up LARPing because it’s such a small community that it has to draw regionwide – in the case of the one I went to, participants came from all over Eastern New England and even beyond – and thus, anywhere with lower transit usage than New York, must appeal primarily to the driver, not the transit user. Nerdy conventions in general tend to either be enormous, like Comic-Con, or take place in cheap suburban edge city hotels, with meetings for carpools arranged at choice suburban train stations.

More common uses that like the boundary zones include major stadiums and big box retail. Stadiums appeal to a broad section of the population with little differentiation between city residents and suburbanites. They have to have good transit access even in auto-oriented American cities for reasons of capacity, but they also have to have good auto access for the use of drivers; stadiums are land-intensive enough that they can’t locate in city center at all, with its omnidirectional transit access, so instead they must be at the boundary zone. Thus Stratford hosts the London Stadium, the Stade de France is in Saint-Denis with good motorway as well as RER access, and Yankee Stadium is tucked at a corner of the Bronx with two subway lines and good expressway infrastructure.

Big box retail is more complicated – for one, its draw is so local that even a small city can support several Walmarts, Carrefours, and Aldis (Walmart is weak in big cities, but the big European retailers aren’t). Nonetheless, boundary zone stores exist: the big supermarket I’m most familiar with in Boston, Star Market at Porter, is on top of a subway station but also has a large parking lot, while the supermarket I shop at here in Berlin, Kaufland, is a two-story big box next to the Gesundbrunnen U- and S-Bahn station, with the ground floor devoted to parking.

I suspect the reason big box retail likes the boundary zone is that while it is local, there are extensive mixed areas rich in both drivers and non-drivers, where a big store must appeal to both in order to succeed. The Gesundbrunnen area is one of the city’s densest, but car ownership in Berlin is still higher than in Paris or New York. The same is true of the area around Porter Square in Cambridge and Somerville, albeit at lower density and with lower transit usage, so Star Market puts its parking on the surface rather than in a structure.

Bus station siting

The most interesting land use that prefers the boundary zone, and the origin of this post, is the intercity bus station. Here is Herbert in comments:

Can you do a post on the contradictory demands for the site of the main intercity bus station?

On the one hand, it is desirable that it is within easy reach from the highway. On the other hand it should be as close to downtown as possible and also easily reachable by public transit. And last but not least there should of possible be one interchange station for every city for connecting passengers.

It’s almost impossible to find a site that goes all requirements. Berlin ZOB certainly doesn’t…

Whereas train stations have obvious preferred sites – the central business district – bus stations have to balance centrality with highway access. In Paris, this is Gallieni. This station is just outside the city at the end of Metro Line 3, where the Boulevard Peripherique meets the A3 autoroute, which connects to further motorways with good access to the north, south, and east. Like Stade de France, Gallieni is a salient of the auto-oriented suburbs almost into city limits, in inner suburbs with high public transit usage.

In New York, there are a few sites that would work fine, but each points in a different direction, making interchange difficult. Port Authority is excellent for buses going to New Jersey and points west and south, and curbside buses tend to pick up in that general area as well, often near Hudson Yards; this is facilitated by a unique situation in which the Lincoln Tunnel has a dedicated inbound bus lane in the morning peak, which many area transit activists wish existed in both directions all day. Buses to Boston could depart from Yankee Stadium, which also benefits from being just beyond the outer end of subway express service, so that travel speeds to Manhattan are faster. However, in practice they depart from the same curbside location on the Far West Side as the buses to Philadelphia and Washington, frustrating riders who see their bus spend an hour in city traffic.

The situation of New York is unusual in that it is located next to two wide rivers with few crossings, and thus does not have a proper orbital motorway with a location like Gallieni. But New York is not unique in having difficult bus station siting choices. London has the same problem: for one, the M25 orbital is so far out of the city; and perhaps more importantly, British buses are priced cheaper than trains in order to control crowding levels on trains to London, and thus dumping bus passengers on a regional train to Central London would be strictly worse than just letting them ride the train the entire way for a reasonable fare.