Transfers from Infrequent to Frequent Vehicles

Imagine yourself taking a train somewhere, and imagine the train is big and infrequent. Let’s say it’s the commuter train from New York down the Northeast Corridor to Newark Airport, or perhaps a low-cost OuiGo TGV from Lyon to Paris. Now imagine that you change trains to a small, frequent train, like the AirTrain to Newark Airport, or the RER from the OuiGo stop in the suburbs to Paris itself. What do you think happens?

If your guess is “the train I’m connecting to will be overcrowded,” you are correct. Only a minority of a 200 meter long New Jersey Transit train’s ridership unloads at the Newark Airport station, but this minority is substantial enough to overwhelm the connection to the short AirTrain to the terminals. Normally, the AirTrain operates well below capacity. It uses driverless technology to run small vehicles every 3 minutes, which is more than enough for how many people connect between terminals or go to New York by train. But when a big train that runs every 20-30 minutes arrives, a quantity of passengers who would be easily accommodated if they arrived over 20 minutes all make their way to the monorail at once.

In Paris, the situation is similar, but the details differ. Until recently, OuiGo did not serve Paris at the usual terminal of Gare de Lyon but rather at an outlying station near Eurodisney, Marne-la-Vallée-Chessy, ostensibly to save money by avoiding the Gare de Lyon throat, in reality to immiserate passengers who don’t pay full TGV fare. There, passengers would connect from a 400-meter bilevel TGV on which the entire train ridership would get off to a 220-meter bilevel RER train running every 10 minutes. The worst congestion wasn’t even on the RER itself, but at the ticket machines: enough of the thousand passengers did not have Navigo monthly cards for the RER that long lines formed at the ticket machines, adding 20 minutes to the trip. With the RER connection and the line, the trips would be nearly 3.5 hours, 2 spent on the high-speed train and 1.5 at the Paris end.

I even saw something similar in Shanghai in 2009. I visited Jiaxing, an hour away at the time by train, and when I came back, a mass of people without the Shanghai Public Transportation Card overwhelmed the one working Shanghai Metro ticketing machine. There were three machines at the entrance, but two were out of service. With the 20 minutes of standing in line, I would have gotten back to my hotel faster if I’d walked.

This is a serious problem – the ticketing machine lines alone can add 20 minutes to an otherwise 2.5-hour door-to-door trip. To avoid this problem, railroads and transit agencies need a kit with a number of distinct tools, appropriate for different circumstances.

Run trains more frequently

Commuter trains have to run frequently enough to be useful for short-distance trips. If the RER A consistently fills a train every 10 minutes off-peak between Paris and Marne-la-Vallée, New Jersey Transit can consistently fill a local train every 10 minutes off-peak between Manhattan and New Brunswick. Extra frequency induces extra ridership, but fewer people are going to get off at the Newark Airport stop per train if trains run more often. There are some places where adding frequency induces extra ridership proportionately to the extra service, or even more, but they tend to be shorter-range traffic, for example between Newark and Elizabeth or between Newark and New York.

This tool is useful for urban, suburban, and regional service. A train over a 20 kilometer distance can run frequently enough that transfers to more frequent shuttles are not a problem. Even today, this is mostly a problem with airport connectors, because it’s otherwise uncommon for outlying services to run very frequently. The one non-airport example I am familiar with is in Boston on the Mattapan High-Speed Line, a light rail line that runs every 5 minutes, connecting Mattapan with Ashmont, the terminus of the Red Line subway, on a branch that runs every 8-9 minutes at rush hour and every 12-15 off-peak.

In contrast, this tool is less useful for intercity trains. France should be running TGVs more frequently off-peak, but this means every half hour, not every 10 minutes. The only long-distance European corridors that have any business running an intercity train every 10 minutes are Berlin-Hanover(-Dortmund) and Frankfurt-Cologne, and in both cases it comes from interlining many different branches connecting huge metropolitan areas onto a single trunk.

Eliminate unnecessary transfers

The problem only occurs if there is a transfer to begin with. In some cases, it is feasible to eliminate the transfer and offer a direct trip. SNCF has gradually shifted OuiGo traffic from suburban stations like Marne-la-Vallée and Massy to the regular urban terminals; nowadays, five daily OuiGo trains go from Lyon to Gare de Lyon and only two go to Marne-la-Vallée.

Gare de Lyon is few people’s final destination, but at a major urban station with multiple Métro and RER connections, the infrastructure can handle large crowds better. In that case, the transfer isn’t really from an infrequent vehicle, because a TGV, TER, or Transilien train unloads at Gare de Lyon every few minutes at rush hour. The Métro is still more frequent, but at the resolution of a mainline train every 5 minutes versus a Métro Line 1 or 14 train every 1.5 minutes, this is a non-issue: for one, passengers can easily take 5 minutes just to walk from the far end of the train to the concourse, so effectively they arrive at the Métro at a uniform rate rather than in a short burst.

Of note, Shanghai did this before the high-speed trains opened: the trains served Shanghai Railway Station. The capacity problems occurred mostly because two out of three ticketing machines were broken, a problem that plagued the Shanghai Metro in 2009. Perhaps things are better now, a decade of fast economic growth later; they certainly are better in all first-world cities I’ve taken trains in.

Eliminating unnecessary transfers is also relevant to two urban cases mentioned above: airport people movers, and the Mattapan High-Speed Line. Airport connectors are better when people do not need to take a landside people mover but rather can walk directly from the train station to the terminal. Direct service is more convenient in general, but this is especially true of airport connectors. Tourists are less familiar with the city and may be less willing to transfer; all passengers, tourists and locals, are likely to be traveling with luggage. The upshot is that if an airport connector can be done as an extension of a subway, light rail, or regional rail line, it should; positive examples include the Piccadilly line and soon to be Crossrail in London, the RER B in Paris, and the S-Bahn in Zurich.

The Mattapan High-Speed Line’s peculiar situation as an isolated tramway has likewise led to calls for eliminating the forced transfer. Forces at the MBTA that don’t like providing train service have proposed downgrading it to a bus; forces within the region that do have instead proposed making the necessary investments to turn it into an extension of the Red Line.

Simplify transfer interfaces

The capacity problem at the transfer from an infrequent service to a frequent one is not just inside the frequent but small vehicle, but also at the transfer interface. Permitting a gentler interface can go a long way toward solving the problem.

First, tear down the faregates. There should not be fare barriers between different public transport services, especially not ones where congestion at the transfer point can be expected. Even when everything else is done right, people can overwhelm the gates, as at the Newark Airport train station. The lines aren’t long, but they are stressful. Every mistake (say, if my ticket is invalid, or if someone else tries to ask the stressed station agent a question) slows down a large crowd of people.

And second, sell combined tickets. Intercity train tickets in Germany offer the option of bundling a single-ride city ticket at the destination for the usual price; for the benefit of visitors, this should be expanded to include a bundled multi-ride ticket or short-term pass. New Jersey Transit sells through-tickets to the airport that include the AirTrain transfer, and so there is no congestion at the ticketing machines, only at the faregates and on the train itself.

Both of these options require better integration between different service providers. That said, such integration is clearly possible – New Jersey Transit and Port Authority manage it despite having poor fare and schedule integration elsewhere. In France in particular, there exist sociétés de transport functioning like German Verkehrsverbünde in coordinating regional fares; SNCF and RATP have a long history of managing somehow to work together in and around Paris, so combined TGV + RER tickets, ideally with some kind of mechanism to avoid forcing visitors to deal with the cumbersome process of getting a Navigo pass, should not be a problem.

Cops on Public Transportation

I wrote a post about American moral panics about fare evasion two months ago, which was mirrored on Streetsblog. I made a mistake in that post that I’d like to correct – and yet the correction itself showcases something interesting about why there are armed police on trains. In talking about BART’s unique belts-and-suspenders system combining faregates with proof-of-payment fare inspections, I complained that BART uses armed police to conduct inspections, where the German-speaking world happily uses unarmed civilians. BART wrote me back to correct me – the inspections are done by unarmed civilians, called ambassadors. The armed cops on the trains are unrelated.

I’d have talked about my error earlier, but I got the correction at the end of November. The American Christmas season begins around Thanksgiving and ends after Sylvester, and in this period both labor productivity and news readership plummet; leave it to Americans to have five weeks a year of low productivity without giving workers those five weeks in vacation time. With that error out of the way – again, BART conducts inspections with unarmed ambassadors, not armed cops – it’s worth talking about why, then, there are armed cops on trains at all, and what it means for fare enforcement.

The answer to the “why armed cops on the train?” question is that among the broad American public, the police is popular. There are hefty differences by party identification, and in the Bay Area, the opinions of Republicans are mostly irrelevant, but even among Democrats; there are also hefty differences by race, but blacks are at their most anti-police divided on the issue. A Pew poll about trust in institutions asks a variety of questions about the police, none of which is “would you like to see more cops patrol the subway?”, but the crosstabs really don’t scream “no.” Vox cites a poll by Civis Analytics that directly asks about hiring more police officers, and even among black people the results are 60-18 in favor. In New York, NYPD Commissioner James O’Neill had positive net approval among all racial groups shortly before leaving office, the lowest rate being 43-28 among Hispanics.

The crosstabs only go so far, and it’s likely that among certain subgroups the police is much less popular, for example black millennials. It’s normal for a popular institution to still generate intense opposition from specific demographic, class-based, or ideological groups, and it’s even normal for a popular institution to be bad; I should know, Massachusetts’ Charlie Baker is one of America’s most popular governors and yet his do-nothing approach to infrastructure planning makes him unpopular at TransitMatters. But this doesn’t change the fact that, as a positive rather than normative statement, the police enjoys consensus support from the urban American public.

What this means is that there are cops on the subway in New York and on BART not because of an inherent necessity of the fare collection system, but because in the eyes of the people who run these systems, crime is a serious concern and having more cops around is the solution. Evidently, BART layers cops on top of two distinct fare enforcement mechanisms – fare barriers and the ambassadors. In New York, too, NYPD’s justification for arresting people for jumping the turnstiles is that a significant fraction of them have outstanding warrants (many of which are about low-level offenses like being behind on court payments).

I bring this up because there’s a growing argument on the American left that public transportation should be free because that way people won’t be arrested for fare-dodging. This argument slides in an assumption, all too common to socialists who are to the left of the mainline liberal or social democratic party, that there is a leftist majority among the public that is just waiting to be activated by a charismatic leader rejecting neoliberal or otherwise moderate political assumptions.

But in the real world, there is no such leftist majority. The median voter even in a very left-wing area like New York or San Francisco may not support the more violent aspects of tough-on-crime politics, but is mostly okay with more police presence. The average self-identified leftist may be more worried that having police patrols will lead to more brutality than that not having them will lead to more crime, but the average self-identified leftist is not the average voter even in the Bay Area.

In this reality, there are cops on the subway because a lot of people worry about crime on the subway and want to see more police presence. The cops themselves, who are well to the right of the average voter pretty much anywhere, may justify this in terms of fare beating, but what matters is what voters near the median think, and they worry about ordinary property and violent crime. Those worries may well be unfounded – for one, New York is very safe nowadays and has been getting steadily safer, so the recent binge of hiring more cops to patrol the subway is a waste of money – but so long as voters have them, there will be police patrols.

The upshot is twofold. First, fare enforcement and the politics of criminal justice have very little to do with each other. Cops patrol crowded public spaces that require payment to enter, like the subway, as they do crowded public spaces that do not, like city squares. If public transportation fares are abolished, cops will likely keep patrolling subway stations, just as they patrol pieces of transportation infrastructure that are fare-free, like the concourses of major train stations.

If the left succeeds in persuading more people that the police is hostile to their interests and the city is better off with less public police presence, then cops will not patrol either the subway or most city squares. In the future, this is not outside the realm of possibility – in fifteen years the popularity of same-sex marriage in the US went from about 2-to-1 against to 2-to-1 in favor, and the trend in other democracies is broadly similar. But in New York and San Francisco in 2020, this is not the situation.

And second, fare enforcement can be conducted with unarmed inspectors regardless of the political environment. Multiple Americans who express fear of crime have told me that inspections have to be done with armed police, because fare beaters are so dangerous they would never submit to an unarmed inspector. And yet, even in San Francisco, where a large fraction of the middle class is worried about being robbed, inspections are done without weapons.

I’ve recurrently told American cities to tear down the faregates. BART’s belts-and-suspenders fare enforcement is unnecessary, borne of a panic rather than of any calculation of costs and benefits to the system. But what BART should get rid of is not the ambassadors, but the faregates. The most successful transit city the rough size of San Francisco – Berlin – has no faregates and leaves most stations unstaffed to reduce costs. Berlin encourages compliance by making it easier to follow the law, for example by offering cheap monthly passes, rather than by hitting passengers in the face with head-level fare barriers.

If cops patrol the subway because most voters and most riders would prefer it this way, then there is no need to connect the politics of policing with the technical question of what the most efficient way to collect fares is. There is a clear best practice for the latter, and it does not involve faregates in a rapid transit system with fewer than multiple billions of annual riders. What the police does is a separate question, one that there is no reason to connect with how to raise money for good public transportation.

The Different Travel Markets for Regional Rail

At a meeting with other TransitMatters people, I had to explain various distinctions in what is called in American parlance regional rail or commuter rail. A few months ago I wrote about the distinction between S-Bahn and RegionalBahn, but made it clear that this distinction was about two different things: S-Bahns are shorter-distance and more urban than RegionalBahns, but they’re also more about service in a contiguous built-up area whereas RegionalBahns have the characteristics of interregional service. In this post I’d like to explore the different travel markets for regional rail not as a single spectrum between urban and long-range service, but rather as two distinct factors, one about urbanity or distance and one about whether the line connects independent centers (“interregional”) or a monocentric urban blob (“intraregional”).

This distinction represents a two-dimensional spectrum, but for simplicity, let’s start with a 2*2 table, so ubiquitous from the world of consulting:

Connection \ Range Short Long
Intraregional Urban rail, S-Bahn Big-city suburban rail
Interregional Polycentric regional rail RegionalBahn

The notions of mono- and polycentricity are relative. Downtown Providence, Newark, and San Jose all have around 60,000 jobs in 5 km^2. But Caltrain and the Providence Line are both firmly in the RegionalBahn category, the other end being Downtown San Francisco or Boston, 70-80 km away with 300,000-400,000 jobs in 5-6 km^2. Newark, in an essentially contiguous urban area with New York, 16 km from Midtown and its 1.2 million jobs in 6 km^2, is relatively weaker and does not fit into the interregional category; a New York-Newark line is an S-Bahn.

Size matters

On the 2*2 table, the appellations “big-city” and “polycentric” are necessary. This is because longer-range rail lines are likelier to get out of the city and its immediate suburbs and connect to independent urban centers. Exceptions mostly concern the size of the primary urban cluster. If it is large, like New York, it can cast a shadow for tens of kilometers in each direction: commuter volumes are high from deep into Long Island, as far up the Northeast Corridor as Westport, as far up the Hudson as northern Westchester, and so on. In Paris, I wouldn’t be comfortable describing any of the RER and Transilien lines as RegionalBahn. In London, the closest independent cities of reasonable size are Cambridge, Brighton, Oxford, and Portsmouth, the first two about 80 km away and the last two about 100.

Tokyo, about as big as New York and London combined, casts an even longer shadow. In my post on S-Bahns and RegionalBahns I called some of its outer regional rail branches RegionalBahn, giving the examples like the Chuo Line past Tachikawa. But even that line is not really interregional in any meaningful way. It stays within the Tokyo prefecture as far as Takao, 53 km from Tokyo Station, and commuter service continues until Otsuki at kp 88, but everything along the line is bedroom communities for Tokyo or outright rural. The branching and short-turns at Tachikawa mean that the Chuo Line through Tachikawa is a long S-Bahn, and past Tachikawa is really a suburban commuter line too long to be an S-Bahn but too monocentric and peaky to be Regionalbahn (the peak-to-base frequency ratio is about 2:1, whereas German RegionalBahn is more commonly 1:1).

At the other end, we can have regional rail that is short-range but connects two distinct centers. This occurs when relatively small cities are in proximity to each other. In a modern first-world economy, these cities would form a polycentric region, like the Rhine-Ruhr or Randstad. Smaller regions with these characteristics include the Research Triangle, where relatively equal-size Raleigh and Durham are 40 rail kilometers apart, and Nord, where Lille is 30-50 km from cities like Douai and Valenciennes. This may even occur in a region with a strong primary center, if the secondary center is strong enough, as is the case for Winterthur, 28 km from Zurich, which has Switzerland’s fourth highest rail ridership.

Size is measured in kilometers, not people. Stockholm is a medium-size city region, but Stockholm-Uppsala is firmly within RegionalBahn territory, as the two cities are 66 km apart. Randstad’s major cities are all closer to each other – Amsterdam-Rotterdam is about 60 km – and that’s a region of 8 million, not 3 million like Stockholm and the remainder of Uppland and Södermanland.

The issue of frequency

The importance of the 2*2 table is that distance and urban contiguity have opposite effects on frequency: high frequency is more important on short lines than on long lines, and matching off-peak frequency to peak frequency is more important on interregional than intraregional lines.

Jarrett Walker likes to say that frequency is freedom, but what frequency counts as freedom depends on how long passengers are expected to travel on the line. Frequency matters insofar as it affects door-to-door travel time including wait time, so it really ought to be measured as a fraction of in-vehicle travel time rather than as an absolute number. An urban bus with an average passenger trip time of 15 minutes should run every 5 minutes or not much longer; if it runs every half hour, it might as well not exist, unless it exists for timed connections to longer-range destinations. But an intercity rail line where major cities are 2 hours apart can easily run every half hour or even every hour.

The effect of regional contiguity is more subtle. The issue here is that an intraregional line is likely to be used mostly by commuters at the less dense end. The effect of distance can obscure this, but within a large urban area, a 45-minute train will be full of commuters traveling to the primary city in the morning and back to the suburbs in the afternoon or evening; the same train between two distinct cities, like Boston and Providence, will not have so many commuters. In contrast, the same 45-minute trip will get much more reverse-commute travel and slightly more non-commute travel if it connects two distinct cities, because the secondary city is likelier to have destinations that attract travelers.

In no case are the extreme peak-to-base ratios of American commuter lines justifiable. Lines with tidal commuter flows can run 2:1 peak-to-base ratios, as is common in Tokyo, but much larger ratios waste capacity. The marginal cost of service between the morning and afternoon peaks is so low until it matches peak service that having less midday than peak service at all is only justifiable in very peaky environments. The 45-minute suburbs of New York, Tokyo, and other huge cities can all live with a 2:1 ratio, but other lines should have lower ratios, and interregional lines should have a 1:1 ratio.

The implication is that just as peak-to-base ratios going as high as 2:1 are acceptable for long-range intraregional lines, short-range interregional lines must run a constant, high frequency all day. I would groan at the thought of even half-hourly frequency on a 40-km interregional line; the worst I’m comfortable with is 15-20 minutes all day. Of note, such lines are necessarily pretty fast, since by assumption they make few intermediate stops to speed up travel between the two main cities – if there are significant cities in the middle then the lines connect even shorter-range cities and should be even more frequent.

Urban, suburban, intercity

Individual lines may have the characteristics of multiple variants of regional rail. They pass through urban neighborhoods on their way to outlying areas, which may be suburbs or independent cities; they may also pass through multiple kinds of independent areas.

In practice, in big cities this leads to three tiers on the same line: urban at the inner end, suburban at the middle end, interregional at the outer end. Inversions, in which there are independent cities and then suburbs, are possible but extremely rare – I can’t think of any in Paris, London, or New York, and arguably only three in Tokyo (Chiba, Saitama, Yokohama); fundamentally, if there are suburbs of the primary city beyond your municipality, then your municipality is likely to itself be popular as a suburb of the primary city.

That regional lines have these three tiers of demand type does not mean that every single regional line does. Some lines don’t reach any significant independent city. Some don’t usefully serve close-in urban areas – for example, the Providence Line barely serves anything urban, since the stop spacing is wide in order to speed up travel to high-demand suburbs and to Providence and the closest-in urban neighborhoods have Orange Line subway service. In rare cases, the suburban tier may be skipped, because there just isn’t much tidal suburban commuter ridership; in Boston, the Newburyport Line is an example, since its inner area has unbroken working-class urban development almost all the way to Salem, and then there’s almost nothing between Salem and Newburyport.

This does not mean that suburbs are always in between urban areas and independent cities – this is just a specific feature of large metropolitan areas. In smaller ones, the middle tier between urban and long-range interregional service is occupied by short-range interregional service rather than suburban commuter rail. Skipping the suburban tier, which is rare enough in large cities that in the cities I think about most often the only example I can come up with is the Newburyport Line, is thus completely normal in smaller cities.

Conclusion

There are common best practices for commuter rail: electrification, level boarding, frequent clockface schedules, timed transfers, fare integration, proof of payment fare collection.

However, high frequency means different things on lines of different characteristics. An interregional line should be running consistent all-day frequency, and if it is long enough could make do with half-hourly trains with timed connections to suburban buses; an urban line should be running every few minutes as if it were a metro line. Regional rail lines with characteristics off the main diagonal of the S-Bahn to RegionalBahn spectrum have different needs – suburban lines can have high peak frequency to reduce road congestion, although they should still have useful off-peak frequency; short-range interregional lines should run every 10-20 minutes all day.

The distinctions between intraregional and interregional lines and between short- and long-range lines may also affect other aspects of planning: station spacing, connections to local surface transit, connections at the city center end, through-running, etc. Even when the best industry practices are the same in all cases, the relative importance of different aspects may change, which changes what is worth spending the most money on.

Since an individual line can serve multiple markets on its way from city center to a faraway outlying terminal, it may be useful to set up a timetable that works for all of these markets and their differing needs. For example, urban lines need higher frequency than suburban and interregional ones, so a regional line with significant urban service should either branch or run short-turn trains to beef up short-range frequency. If there is a suburban area in the middle with demand for high peak frequency but also a secondary city at the outer end, it may be useful to give the entire line high all-day frequency, overserving the line off-peak just because the cost of service is low.

Ultimately, regional rail is about using mainline rail to fulfill multiple functions; understanding how these functions works is critical for good public transportation.

Why Do Public Transportation Commuters Outearn Car Commuters in Some American Cities?

More than a year ago, I compared Los Angeles with a number of other large American cities. I brought up issues of public transportation ridership, city center job concentration, and income differences, as in the Los Angeles region people who commute by public transit average barely half the earnings of people who drive alone. One of the things noted in that post is that in the secondary transit cities of the United States – Chicago, San Francisco, Washington, Boston – people who commute by transit outearn people who do not. I didn’t delve deeply into that issue in that post, but in this post I will, because it showcases a serious problem in all four cities. New York lacks this pattern as of 2017 – solo drivers outearn transit commuters, though by a small and declining margin, so by 2020 it may join the secondary cities.

The reason this is a problem is that in none of these cities is public transportation so good as to be a luxury good. Rather, the issue is that public transportation is mostly an option for people traveling to city center, where incomes are higher. Crosstown public transportation options are weak – there is rarely direct rapid transit, and transfer trips are inconvenient. There may also be a peak vs. off-peak artifact, but I have no data confirming that richer Americans are likely to commute at rush hour, when transit frequencies are higher and congestion is worse.

Income by mode of transportation to work

From the 2017 American Community Survey, we can grab data about median earnings for workers by their main mode of travel to work:

Metro area Workers PT mode share PT income Solo driver income Median income
New York 9,821,147 31% $44,978 $48,812 $45,150
Chicago 4,653,591 12.2% $46,796 $41,817 $41,232
Philadelphia 3,320,895 9% $37,213 $46,638 $43,472
Washington 2,915,178 12.8% $60,420 $53,390 $52,350
Boston 2,572,454 13.4% $50,593 $51,295 $50,201
San Francisco 2,371,803 17.4% $62,500 $54,923 $54,105
Seattle 1,997,545 10.1% $51,635 $50,183 $41,190

Other modes exist too, most notably carpooling, which has lower median incomes than both solo driving and public transport in all of the cities in the table. Also of note, public transportation user income is more polarized – even though the median is comparable to and usually even higher than the overall median, the poverty rate for transit commuters is higher than the general rate everywhere except in San Francisco, where the poverty rates are within the margin of error.

Why?

Car ownership increases with income. In Singapore, the highest-transit use city for which I have this data, the overall mode share is 58.7%, which splits as low 60s for roughly the bottom half of the income distribution and then less in higher categories, bottoming at 43% in the highest income category, covering the top 15%. It’s really weird that in American cities with public transportation we see the opposite pattern – transit usage is higher in higher income brackets.

The explanation has to be about where people work. OnTheMap doesn’t have great income data, but we can still compare the proportion of workers in the highest income category, which is $3,333/month. I’ve used different definitions of city center in different blog posts: the one about Los Angeles used a restricted one, just a few blocks by a few blocks, covering a single-digit percent of the region, whereas more recently I’ve made 100 km^2 blobs, covering one third of workers in some cities, to maintain comparability with Paris. For this post’s purposes, I’m going to use a definition around the center of a radial transit network (as in the LA post), as well as a looser definition corresponding to something like city limits; in Washington and New York the restricted definitions are somewhat looser to take into account the spread of the subway network just outside city center, but in Chicago and San Francisco the LA post’s definition is apt.

Metro area Workers $40,000+ City Workers $40,000+ CBD Workers $40,000+
New York 9,408,498 52.1% City proper 4,367,781 55.4% South of 60th 2,098,740 65.7%
Chicago 4,604,044 47.9% City proper 1,373,969 53.2% LA post 401,169 71.7%
Washington 2,830,896 55% DC, Arl. 714,075 63% Mass., 395, water 270,299 72.2%
Philadelphia 2,853,154 49.5% City proper 684,869 50.9% Center City 240,665 61.9%
Boston 2,682,278 56.3% Boston, Cam. 787,287 66% Arl., Stuart, water 228,300 72.1%
San Francisco 2,400,290 59.2% City proper 723,907 65.5% LA post 231,042 76.8%
Seattle 1,919,635 57.8% City proper 585,480 64.1% Jackson, I-5, Denny 180,482 71.2%

In all cities, the proportion of workers earning $40,000 a year or more is higher in the city than in the rest of the region, and higher yet in the CBD. Moreover, this effect is weakest in Philadelphia, which may explain why there, unlike in the other secondary transit cities, drivers still significantly outearn transit commuters.

Crosstown public transportation

In all the cities studied in this post, public transportation carries a high share of trips into city center, especially at rush hour. This props up its usage numbers among the middle class, especially the upper middle class – professional jobs cluster in city center.

The problem is that not everyone works in city center. Midtown and Downtown Manhattan are 22% of metro New York employment going by OnTheMap’s LEHD numbers, and even that is a pretty hefty area. In smaller cities, there are necessarily fewer rapid transit lines and a smaller zone of intersection in which service is good from all directions. Improving transit service to destinations outside city center, and thus for working- and lower middle-class jobs, requires more than just disjointed center-to-bedroom-communities rail lines.

One way to have vigorous crosstown public transportation is with buses. However, buses are slow, almost by definition slower than cars. Chicago has a pretty good bus grid, but it still has the pattern of transit commuters outearning solo drivers. And that’s in the city proper – in the suburbs it’s not really possible to have a bus grid, because distances are too great and street networks are usually too broken.

Instead, a better solution has to involve diagonal trips on rapid transit, with a transfer in or near city center, and trips that stay outside city center. A good recipe includes all of the following:

  • Easy downtown and near-downtown transfers, with no missed connections and a minimum of walking. San Francisco deserves especial demerits for forcing people to transfer between Muni and BART via the street, crossing two sets of faregates.
  • High frequency on commuter rail in both directions, with timed bus shuttle connections from stations to office parks too far to walk. In some cases, such buses can do double duty ferrying suburban commuters to those stations for trains to city center.
  • Complete fare integration, with free transfers and mode-neutral fares, to avoid forcing low-income commuters onto slow buses while richer ones get faster trains.
  • Through-running when feasible, since a worker in one neighborhood may end up finding a job at a suburban job site on another line, even the opposite side of the city, e.g. between Brooklyn or Queens and Newark.

Income differences and universal design

The principles for good crosstown service are largely class-neutral. They have to be: the differences between where rich and poor people work in a deindustrialized country are real but not enormous, enough to be noticeable but not enough to play to populist clichés of two Americas. Nonetheless, better public transportation service to non-CBD destinations is especially useful for the working class, because the working class is less likely to work in the CBD than the middle class.

The relevance of class here is twofold. First, every demographic pattern in transportation mode choice has a reason, and provides hints as to how different people travel. This is the case regardless of whether the socially more dominant group commutes by public transport more (the rich, the educated) or less (the native-born, men, whites in Western countries). It remains the case even when there’s no obvious social dominance hierarchy between the groups we compare, for examples professionals versus small business owners.

And second, the people who manage public transportation agencies are drawn from one social class. They are middle-class managers working in city center at traditional peak hours. They may not be aware of how other people commute, regardless of whether those other people are retail workers working two part-time jobs in two different neighborhoods or tech workers who work 12-8. They provide the service that people who are like them can use, and neglect other use cases.

Queens Bus Redesign

New York City Transit has just released its draft redesign for the Queens bus network. It’s a further-reaching reform than what was planned for the Bronx. I’m still seriously skeptical about a number of aspects, but this redesign is genuinely a step forward. The required changes are for the most part tweaks, with just one big change in concept.

What’s in the redesign?

The redesign goes over the local and express bus routes in Queens. I am not going to look at the changes to the express buses, which are not an important part of the network anyway; Queens has a total of 674,000 local bus passengers per weekday and only 15,000 express passengers.

The changes to the local buses include a from-scratch redesign of the network; four new color-coded brands for the local buses; stop consolidation depending on color coding, of which the tightest spacing proposed is 400 meters; and a list of priority corridors where buses are to get dedicated lanes. The scope is only the Queens buses, but there are some new Brooklyn connections: the Metropolitan and Flushing Avenue routes (the new QT3, QT4) keep running through, as they do today, but the Myrtle Avenue route, the current Q55 and new QT55, stops at Ridgewood with a forced transfer to the Brooklyn Myrtle Avenue route.

The four color-coded brands are an unusual, though not unheard of, system. There are four distinct brands among the redesigned Queens buses: blue, red, purple, green. Blue is essentially select bus service, retaining the long stop spacing (“over a mile”), potentially intersecting some bus routes without a transfer; the point is to connect high-demand areas like Flushing with Jamaica. The other three are for various regular local routes. Red routes are distinguished exclusively in having slightly wider stop spacing, 660 meters versus 450 for purple and 400 for green, but otherwise look similar on the network map. Purple and green routes are distinguished in that purple routes are branded for neighborhoods far from the subway and intended to get people from outlying points to subway stations.

What’s good about it?

Stop consolidation is important and I’m glad to see it get play in New York. The choice of interstation across the non-blue routes is solid and close enough to the theoretical optimum that the exact value should depend on ensuring every intersection has an interchange rather than on squeezing a few extra seconds of door-to-door trip time for non-transfer passengers.

The same goes for the decision to designate 21 corridors as top priorities for dedicated bus lanes. The plan does not promise bus lanes on all of them, since the ultimate decision is in the hands of NYCDOT and not the state-owned MTA/NYCT. But it does the best it can, by putting the proposal front and center and announcing that these corridors should be studied as candidates for bus priority. Most of the important streets in Queens are on the list; the only glaring omissions are Union Turnpike, Myrtle, and Metropolitan.

The above two points are not strictly about the redesign. This is fine. When Eric Goldwyn and I tried estimating the benefits of our Brooklyn bus redesign plan, we found that, taking speed, access time, and frequency into account, the redesign itself only contributed 30% of the overall improvement. Stop consolidation and bus lanes contributed 30% each, and off-board fare collection 10%. The Queens plan at the very least has stop consolidation, off-board fare collection as planned when the OMNY smartcard is fully rolled out, and partial use of bus lanes.

But the bus network as redesigned has notable positive features as well. There’s greater reliance on the full network, for one. The JFK AirTrain is free for passengers boarding at Lefferts Avenue or Federal Circle rather than at the subway connection points at Jamaica and Howard Beach, and so the Lefferts Avenue route to JFK, the current Q10 and future QT14, stops at the AirTrain station instead of going all the way to the terminals.

Elsewhere, the bus network is more regular, with fewer bends. The network does not assume away the borough’s important nodes: you can still figure out where Flushing and Jamaica are purely from looking at the map. But it does offer some routes that bypass these nodes for crosstown traffic, for example the redesigned QT65, straightening the current Q65.

What’s bad about it?

The four-color system is just bad. The blue routes are understandable but still bad: they split frequency, so that passengers living next to the local stations on shared routes like Main Street get poor service. The red-purple-green distinction is superfluous – the map really does not make it clear how a red route differs from the others, and the purple and green routes are really the same kind of local bus, just one with a distinguished node at a subway stop and one where there may be multiple distinguished nodes.

The frequencies offered are also weak. Some routes are proposed to run every 8 minutes all day, namely QT route numbers 6, 10, 11, 14, 15, 16, 17, 19, 20, 32, 52, 55, 58, 66, 69, 70. Exactly one is proposed to run more frequently, the QT44 every 5 minutes. The rest run every 10-12 minutes or worse. On weekends, even the 8-minute routes drop to 10-15 minutes. Many routes are quite peaky and there’s no easy distinction between routes for which the report proposes an all-day headway (including all the 8-minute ones above) and ones for which the report proposes separate peak and base headways; the purple routes in general look somewhat peakier than the others, but it’s not a consistent distinction.

If the frequencies are weak, then it means that either the buses are too slow, or there are too many route-km to split a fixed service-hours budget across. NYCT mistakenly thinks that bus costs scale with service-km rather than service-hours, so the planned speedups can in fact be spent on more frequency, but it’s not enough to create a vigorous frequent network. Some pruning is needed; overall the network seems very dense to me, even in areas with decent subway coverage.

A few individual routes are weak too – I don’t think the QT1 idea, paralleling the Astoria Line on 21st Street and then the G train to Downtown Brooklyn, is a good idea. There are two more north-south routes running through to Williamsburg, where the relevant buses are pretty weak and pruning is advisable in order to redeploy service-hours to areas with more demand. If there’s somehow money that can only be spent on north-south service through Williamsburg, it’s better to increase frequency on the G train, which is faster than any bus could ever be.

Is this redesign valuable, then?

Yes! Between the stop consolidation, partial installation of bus lanes, and some of the aspects of the new network, the proposal looks like a two-thirds measure, at worst. It can’t be a full measure because there are serious drawbacks to the plan, not just on the level of details (i.e. too much service to Williamsburg) but also on the conceptual level of the four distinct brands. But it is a noticeable improvement over the current system, and I expect that if it is implemented, even with its many current flaws, then Queens will see a serious increase in bus patronage.

Moreover, the flaws in the plan are not inherent to it. If someone showed me the bus map without the color coding, just with stops and frequencies, I would not even notice the red-green-purple distinction. The blue routes I would notice, and suggest be reduced to the usual stop spacing of everything else; but the others, I wouldn’t. So even the most fundamentally bad part of the plan can be jettisoned while retaining all the good. Everything else is a tweak, and I expect that tweaks will happen one way or another.

Right now comes the community meetings stage, in which existing riders who have too much time will yell, and potential riders who don’t currently take the bus because it’s too slow don’t show up at all. The plan will be tweaked, and the tweaks may well make it worse rather than better. But what good transit activists in New York say matters, and so far the reaction should be positive, demanding certain changes but keeping the gist of the redesign.

Outlying S-Bahn Tunnels

There’s a thread on Twitter by Stephen Smith bringing up Zurich’s S-Bahn as an alternative to extensive metro tunneling. It reminded me of something I’d been meaning to write about for a long time, about how S-Bahn tunnels, in Zurich and elsewhere, include not just the bare minimum for through-running but also strategic tunneling elsewhere to reach various destinations not on the mainline. Zurich’s S-Bahn includes about 19 km of tunnel built since the 1960s, which is similar per capita to the amount of tunneling built for the Washington Metro.

Such tunneling is important to ensure a regional rail network reaches destinations off the mainlines. Even cities with metro systems need to understand this as long as they have some mainline rail serving suburban destinations. For example, in the Center of Israel, Tel Aviv is getting a subway-surface light rail network, but outside the urban core rail transport will remain dominated by Israel Railways service; as Israel Railways avoids many city centers, such as Netanya, short strategic tunnels are critical.

Tunnels in Zurich

The core of the Zurich S-Bahn is three city center tunnels: the 2 km Käferberg Tunnel from Oerlikon to Hardbrücke, the 7 km combination of the Hirschengraben Tunnel and the Zürichberg Tunnel from Hauptbahnhof to the Right Bank of Lake Zurich and points northeast, and the 5 km Weinberg Tunnel from Hauptbahnhof to Oerlikon and points north. The Käferberg Tunnel is from the 1960s, the Hirschengraben and Zürichberg Tunnel opened in 1989-1990 as the core of the Zurich S-Bahn, and the Weinberg Tunnel opened in 2014 as a second S-Bahn route to add more capacity.

These 14 km of tunnel look like any standard picture of regional rail tunneling. However, Zurich has in addition built a 5 km tunnel for a loop to the airport. Without this tunnel, no regional or intercity rail service to the airport would have been possible, as the airport was at a distance from the mainline; only trams could have served the airport then.

In addition to these 19 km, there is some talk of building an additional tunnel of 7-10 km on the Zurich-Winterthur Line, called the Brüttener Tunnel, to speed up service between these two cities.

Tunnels on other regional rail systems

In Paris, the RER consists not just of legacy rail track and city center tunnels, but also outlying tunnels reaching new destinations. The RER B connection to Charles de Gaulle Airport is new construction, opening in 1976 as a commuter line just before the RER opened and incorporated it as a branch. It’s a mix of above- and underground construction, totaling 5.5 km of tunnel. Two more key RER lines, at both ends of the RER A, are new: the branch to Cergy, which opened between 1979 and 1994 and has 3 km of tunnel, and the branch to Marne-la-Vallée, which opened in stages starting on the same day as the RER A’s central tunnel and continuing until reaching its terminus in 1992.

All three new RER branches are busy. They have to be – if there weren’t so much demand for them, it would have been financially infeasible to build them and those areas would have had to make do with a bus connection to the existing mainlines. The Marne-la-Vallée branch carries about two thirds of the eastern branch ridership of the RER A, making it most likely the busiest single rail branch in Europe.

In London, the regional rail network is less modern than in Paris, Zurich, and other cities with extensive development of new tunnels. Nonetheless, the Crossrail plans do include a short outlying tunnel reaching Heathrow Airport. Moreover, one of the two eastern branches of the mainline has the characteristics of an outlying tunnel, namely the branch to Canary Wharf. Canary Wharf is only 5 km from the City of London and the tunnel connecting to it is contiguous with the central tunnel, but the branch is not really about improving connections to onward suburbs. Where La Défense was always on the way to western suburbs on the RER, Canary Wharf is only on the way to Abbey Wood. There are proposals among area railfans to extend this branch much farther to the east, but no official plans that I know of. In the currently planned paradigm for Crossrail, Canary Wharf is purely a destination.

In Munich, there is a new line toward the airport, with some tunneling on airport grounds as well as at two intermediate suburban stations. There is also a short above-ground spur connecting the airport to the western side of the S-Bahn, giving it two different routes to city center. Finally, there is a short tunnel slightly to the west of the main trunk tunnel to better connect S7 to the mainline.

Why are airports so prominent on this list?

The concept of using strategic tunnels to build new spurs and loops to connect mainlines to new destinations has nothing to do with airports. And yet, so many of these spurs connect to airports: Charles de Gaulle, Heathrow, Zurich, Munich. There are many more such examples, on regional or intercity lines: Schiphol, Arlanda, Ben-Gurion, soon-to-be Berlin-Brandenburg, Barajas. Why is that?

The answer is that the purpose of a spur or loop is to connect to a destination off the mainline. European cities for the most part developed around the railway or metro line. Virtually every important destination in London is on a legacy railway because during the city’s 19th and early 20th century growth period, the railway was the only way to get to Central London. Airports are consistent exceptions because they’re so land-intensive that it’s hard to site them near existing railways.

Where non-airport destinations somehow had to be developed away from the mainline, they’re attractive targets for spurs as well. Canary Wharf sits on the site of a disused dock, which generated some freight rail traffic but little demand for passenger rail. Cergy is one of several new towns built around Paris to act as suburban growth nodes, together with Marne-la-Vallée and Évry (served on a loop of the RER D).

In smaller cities than Paris and London, suburban growth often came together with a metro line. In Stockholm, the Metro was planned together with public housing projects, so many of the Million Program projects are right next to stations, facilitating high public transportation usage. There’s usually no need to build many new regional rail spurs, because such sites are close enough to the center for metro service to be quick enough.

The situation of regional rail in Israel

In Israel, urban development has ignored the railway almost entirely. The colonial network was weak and barely served the state’s travel needs. Investment was minimal, as the state’s political goals were population dispersal and Judaization of peripheral areas rather than efficient transportation. Towns were built around the road network, connected to one another by bus since people were too poor to afford cars.

Rail revival began in the early 1990s with the opening of the Ayalon Railway, providing through-service between points north and south of Tel Aviv. In the generation since, ridership has grown prodigiously, albeit from low initial levels, and the state has built new lines, with an ongoing project to electrify most of the passenger network. However, since the cities came first and the trains second, the new lines do not enter city centers, but rather serve them peripherally near the highway, often surrounded by parking.

Thus, Netanya’s train station is located to the east of the city’s built-up area, on the wrong side of the Route 2 freeway. Ashdod’s train station is on the periphery at a highway interchange, well to the east of city center. Ashkelon’s station is on the eastern margin. The under-construction line through Kfar Saba and Ra’anana passes just south of the built-up area.

In all of these cases, doing it right would require, or would have required, just short, strategic elevated or underground lines:

  • Netanya is at the northern end of the Tel Aviv commuter rail network, and so it can easily be served by a spur. The existing station can be retained as a junction for intercity rail service, but building a commuter rail spur would not compromise frequency. Such a spur would require no more than 2 km of tunnel.
  • In Ashdod and Ashkelon, there are north-south arterials that are so wide, 50-60 meters, that they could host cut-and-cover subways, effectively moving the line to the west to serve those cities better. In Ashdod there is a decision between going under B’nai Brith, which offers a more convenient through-route, and Herzl, which is more central but requires some boring at the southern end of the city.
  • In Kfar Saba and Ra’anana, about 8 km of tunnel under Weizmann and Ahuza are needed, and could potentially be done cut-and-cover as well, but these streets are 30 meters rather than 50 meters wide. Such a route would replace the under-construction combination of a freeway and railway.
  • In Rishon LeZion, a 6km route, not all underground, is needed to connect Rishonim with Moshe Dayan via city center and the College of Management rather than via the under construction freeway route avoiding these destinations.

Unfortunately, so far the state’s investment plans keep skirting city centers. It serves them with a cars-and-trains paradigm, which assumes the rail passenger is driving or riding a bus to the train station, never mind that in that case it’s more convenient to drive all the way to one’s destination. This suppresses ridership; not for nothing, the busiest station outside metropolitan centers is Rehovot, with 2.1 million annual entries, and not Ashdod, which is second with 1.9 million. Ashdod is a city of 220,000 and Rehovot one of 140,000, but Rehovot’s station is far more walkable. Were Ashdod not poor, few people would use the station at all – they’d all just drive.

Off-Peak Public Transport Usage

Earlier this year, I slowly stumbled across something that I don’t think is well-known in comparative public transportation: European cities have much higher public transport ridership than someone experienced with American patterns would guess from their modal splits. From another direction, Europe has much lower mode share than one would guess from ridership. The key here is that the mode share I’m comparing is for work trips, and overall ridership includes all trip purposes. This strongly suggests that non-work public transportation usage is much higher in European than in American cities even when the usage level for work trips is comparable. Moreover, the reason ought to be better off-peak service in Europe, rather than other factors like land use or culture, since the comparison holds for New York and not only for truly auto-oriented American cities.

Modal shares and ridership levels

My previous post brings up statistics for work trip mode share in England and France. For the purposes of this post, I am going to ignore England and focus on France and wherever I can find data out of Germany and Austria; the reason is that in the secondary cities of England, public transport is dominated by buses, which are hard to find any ridership data for, let alone data that doesn’t have severe double-counting artifacts for transfer passengers. For the same reason, I am not going to look at Canada – too many transfer artifacts.

In contrast, French and German-speaking metro areas with rail-dominated public transport make it relatively convenient to count rail trips per capita, as do the more rail-oriented American metro areas, namely Boston, New York, and Washington. A secondary check involving both bus and rail can be obtained from The Transport Politic, comparing the US with France.

City Population Definition Trips/year Trips/person Mode share
Boston 4,900,000 Subway, commuter rail 204,000,000 42 12%
New York 20,000,000 Subway, PATH, LIRR, MN, NJT Rail 2,050,000,000 103 31%
Washington 6,200,000 Metro, MARC (daily*280), VRE (daily*250) 245,000,000 40 12%
Vienna 3,700,000 U-Bahn, trams, S-Bahn (PDF-p. 44) 822,000,000 222 40%
Berlin 5,000,000 U-Bahn, trams, S-Bahn 1,238,000,000 248 35%
Hamburg 3,100,000 U-Bahn, S-Bahn 531,000,000 171 26%
Stuttgart 2,400,000 Stadtbahn, S-Bahn, Regionalbahn 223,000,000 93 26%
Lyon 2,300,000 Métro, trams, funiculars, 0.5*TER 325,000,000 141 20%
Marseille 1,800,000 Métro, trams (daily*280), 0.5*TER 139,000,000 77 16%
Toulouse 1,300,000 Métro, trams 125,700,000 97 13%
Bordeaux 1,200,000 Light rail 105,500,000 88 13%
Lille 1,200,000 Métro, trams 108,500,000 90 17%

 

Note that New York, with a 31% mode share, has not much more rail ridership per capita than French metro areas with mode shares in the teens, and is a quarter below Lyon, whose mode share is only 20%. This is not an artifact of transfers: just as the subway dominates ridership in New York, so does the metro dominate Lyon, Toulouse, and Lille, and so does the tram dominate Bordeaux. If anything, it’s Stuttgart, the only European city on this list with comparable ridership per unit of mode share to the US, that should have the most overcounting due to transfers.

Also note that French rail ridership nosedives in the summer, when people go on their 5-week vacations, and I presume that this equally happens in Germany and Austria. The ratio of annual to weekday ridership in France where it is available is fairly low, not because weekend ridership is weak, but because the weekday chosen to represent daily ridership is never in the summer vacation season.

Why?

Off-peak public transportation in the United States is quite bad. In New York, 10-minute frequency on most lettered routes is the norm. In Washington, the off-peak frequency is 12 minutes. In Boston, it varies by line; on the Red Line each branch is supposed to come every 12-13 minutes off-peak, but in practice trains don’t run reliably and often leave the terminal bunched, alternating between 3- and 10-minute gaps.

Moreover, commuter trains are so useless except for peak-hour commutes to city center that they might as well not exist. Hourly gaps and even worse are routine, and even the busiest New York commuter lines have at best half-hourly off-peak frequency. These lines are only about 15% of rail ridership in New York and Boston and 6% of rail ridership in Washington, but they contribute a decent volume of commuters who drive for all non-work purposes.

In Berlin, the off-peak frequency on the U-Bahn is a train every 5 minutes most of the day on weekdays. On Sundays it drops to a train every 8 minutes, and in the evening it drops to a train every 10 minutes far too early, leading to overcrowding on the first train after the cut in frequency around 9 pm. The S-Bahn trunks run frequently all day, but the branches in the suburbs only get 10-minute frequency, and the Ring has a 2-hour midday period with 10-minute gaps. The suburban areas with only S-Bahn service get comparable service to neighborhoods on New York subway branches, while closer-in areas get better service. No wonder people use it for more than just work – the train is useful for shopping and socializing at all hours of the day.

Why?

The people who manage public transportation in the United States do not have the same profile as most riders. They work traditional hours, that is 9 to 5 on weekdays only, at an office located in city center. Many senior managers do not use their own system. That NYCT President Andy Byford does not own a car or know how to drive and takes the subway and buses to events is unusual for such a senior person, and early media reports noted that some managers looked askance at his not driving.

Growing segments of the American middle class commute by public transportation. In Boston and Washington, transit commuters slightly outearn solo drivers, and in New York they do not but it is close. But those segments have different travel behavior from public-sector planners. For example, lawyers work long hours and depend on the subway at 8 or 9 pm, and programmers work shifted hours and both show up to and leave work hours after the traditional times. But public transportation agencies still work 9 to 5, and thus the middle-class transit-using behavior they are most familiar with is that of the denizen of the segregated suburb, who drives to all destinations but city center.

In such an environment, off-peak service is treated as a luxury. When there is a deficit, agencies cut there first, leading to frequency-ridership spirals in which lower frequency deters riders, justifying further cuts in service until little is left. In New York, there are guidelines for frequency that explicitly state it is to be adjusted based on ridership at the most crowded point of the route, without regard for whether cuts depress ridership further. There is a minimum acceptable frequency in New York, but it is set at 10 minutes on weekdays and 12 on weekends. For a similar reason, the planners tend to split buses between local and limited routes if each can support 10-12 minute headways, at which point the buses are not useful for short trips.

In contrast, in Germany and France, there is a mixture of drivers and public transportation users among managers. German planning stresses consistent schedules throughout the day, so the midday off-peak often gets the same frequency as the peak. French planning does vary frequency, but maintains a higher base frequency even late into the night. The Paris Métro runs every 5 to 7 minutes at 11 pm. The idea of running a big city metro line every 12 minutes is unthinkable.

On Envying Canada

In England and Wales, 15.9% of workers get to work on public transport, and in France, 14.9% do. In Canada, the figure is close: 12.4%, and this is without a London or Paris to run up the score in. Vancouver is a metro region of 2.5 million people and 1.2 million workers, comparable in size to the metropolitan counties in England and to the metro area of Lyon; at 20.4%, it has a higher public transport modal share than all of them, though it is barely higher than Lyon with its 19.9% share. Calgary, Ottawa, Edmonton, and Winnipeg are likewise collectively respectable by the standards of similar-size French regions, such as the departments of Bouches-du-Rhône (Marseille), Alpes-Maritimes (Nice), Gironde (Bordeaux), Haute-Garonne (Toulouse), and Bas-Rhin (Strasbourg).

As a result, Jarrett Walker likes telling American cities and transit agencies to stop envying Europe and start envying Canada instead. Canada is nearby, speaks the same language, and has similar street layout, all of which contribute to its familiarity to Americans. If Europe has the exotic mystique of the foreign, let alone East Asia, Canada is familiar enough to Americans that the noticeable differences are a cultural uncanny valley.

And yet, I am of two minds on this. The most consistent transit revival in Canada has been in Vancouver, whose modal share went from 14.3% in 1996 to 20.4% in 2016 – and the 2016 census was taken before the Evergreen extension of the Millennium Line opened. TransLink has certainly been doing a lot of good things to get to this point. And yet, there’s a serious risk to Canadian public transport in the future: construction costs have exploded, going from Continental European 15 years ago to American today.

The five legs of good transit

I was asked earlier today what a good political agenda for public transportation would be. I gave four answers, like the four legs of a chair, and later realized that I missed a fifth point.

  1. Fuel taxes and other traffic suppression measures (such as Singapore and Israel’s car taxes). Petrol costs about €1.40/liter in Germany and France; diesel is cheaper but being phased out because of its outsize impact on pollution.
  2. Investment in new urban and intercity lines, such as the Madrid Metro expansion program since the 1990s or Grand Paris Express. This is measured in kilometers and not euros, so lower construction costs generally translate to more investment, hence Madrid’s huge metro network.
  3. Interagency cooperation within metropolitan regions and on intercity rail lines where appropriate. This includes fare integration, schedule integration, and timetable-infrastructure integration.
  4. Urban upzoning, including both residential densification in urban neighborhoods and commercialization in and around city center.
  5. Street space reallocation from cars toward pedestrians, bikes, and buses.

We can rate how Canada (by which I really mean Vancouver) does on this rubric:

  1. The fuel tax in Canada is much lower than in Europe, contributing to high driving rates. In Toronto, gasoline currently costs $1.19/liter, which is about €0.85/l. But Vancouver fuel taxes are higher, raising the price to about $1.53/l, around €1.06/l.
  2. Canadian construction costs are so high that investment in new lines is limited. Vancouver has been procrastinating building the Broadway subway to UBC until costs rose to the point that the budget is only enough to build the line halfway there.
  3. Vancouver and Toronto both have good bus-rapid transit integration, but there is no integration with commuter rail; Montreal even severed a key commuter line to build a private driverless rapid transit line. In Vancouver, bus and SkyTrain fares have decoupled due to political fallout from the botched smartcard implementation.
  4. Vancouver is arguably the YIMBYest Western city, building around 10 housing units per 1,000 people every year in the last few years. Toronto’s housing construction rate is lower but still respectable by European standards, let alone American ones.
  5. There are bike lanes but not on the major streets. If there are bus lanes, I didn’t see any of them when I lived in Vancouver, and I traveled a lot in the city as well as the suburbs.

Vancouver’s transit past and future

Looking at the above legs of what makes for good public transport, there is only one thing about Canada that truly shines: urban redevelopment. Toronto, a metro area of 6 million people, has two subway mainlines, and Montreal, with 4 million people, has 2.5. Vancouver has 1.5 lines – its three SkyTrain mainlines are one-tailed. By the same calculation, Berlin has 6.5 U- and 3 S-Bahn mainlines, and Madrid has 2 Cercanías lines and 7 metro lines. Moreover, high construction costs and political resistance from various GO Transit interests make it difficult for Canadian cities to add more rapid transit.

To the extent Vancouver has a sizable SkyTrain network, it’s that it was able to build elevated and cut-and-cover lines in the past. This is no longer possible for future expansion, except possibly toward Langley. The merchant lawsuits over the Canada Line’s construction impacts have ensured that the Broadway subway will be bored. Furthermore, the region’s politics make it impossible to just build Broadway all the way to the end: Surrey has insisted on some construction within its municipal area, so the region has had to pair half the Broadway subway with a SkyTrain extension to the Langley sprawl.

Put in other words, the growth in Vancouver transit ridership is not so much about building more of a network, but about adding housing and jobs around the network that has been around since the 1980s. The ridership on the Millennium and Canada Lines is growing but remains far below that on the Expo Line. There is potential for further increase in ridership as the neighborhoods along the Canada Line have finally been rezoned, but even that will hit a limit pretty quickly – the Canada Line was built with low capacity, and the Millennium Line doesn’t enter Downtown and will only serve near-Downtown job centers.

Potemkin bus networks

When Jarrett tells American cities to envy Canada, he generally talks about the urban bus networks. Toronto and Vancouver have strong bus grids, with buses coming at worst every 8 minutes during the daytime off-peak. Both cities have grids of major streets, as is normal for so many North American cities, and copying the apparent features of these grids is attractive to American transit managers.

And yet, trying to just set up a bus grid in your average American city yields Potemkin buses. Vancouver and Toronto have bus grids that rely on connections to rapid transit lines. In both cities, transit usage is disproportionately about commutes either to or from a city core defined by a 5 kilometer radius from city hall. Moreover, the growth in public transport commuting in both cities since 1996 has been almost exclusively about such commutes, and not about everywhere-to-everywhere commutes from outside this radius. Within this radius, public transportation is dominated by rail, not buses.

The buses in Toronto and Vancouver have several key roles to play. First, as noted above, they connect to rapid transit nodes or to SeaBus in North Vancouver. Second, they connect to job centers that exist because of rapid transit, for example Metrotown at the eastern end of Vancouver’s 49. And third, there is the sui generis case of UBC. All of these roles create strong ridership, supporting high enough frequency that people make untimed transfers.

But even then, there are problems common to all North American buses. The stop spacing is too tight – 200 meters rather than 400-500, with frequency-splitting rapid buses on a handful of very strong routes like 4th Avenue and Broadway. There is no all-door boarding except on a handful of specially-branded B-line buses. There are no bus lanes.

One American city has similar characteristics to Toronto and Vancouver when it comes to buses: Chicago. Elsewhere, just copying the bus grid of Vancouver will yield nothing, because ultimately nobody is going to connect between two mixed-traffic buses that run every 15 minutes, untimed, if they can afford any better. In Chicago, the situation is different, but what the city most needs is integration between Metra and CTA services, which requires looking at European rather than Canadian models.

Is Canada hopeless?

I don’t know. The meteoric rise in Canadian subway construction costs in the last 15 years has ensured expansion will soon grind to a halt. Much of this rise comes from reforms that the Anglosphere has convinced itself improve outcomes, like design-build and reliance on outside consultants; in that sense, the US hasn’t been copying Canada, but instead Canada has been copying the US and getting American results.

That said, two positive aspects are notable. The first is very high housing and commercial growth in the most desirable cities, if not in their most exclusive neighborhoods. Vancouver probably has another 10-20 years before its developable housing reserves near existing SkyTrain run out and it is forced to figure out how to affordably expand the network. Nowhere in Europe is housing growth as fast as in Metro Vancouver; among the cities for which I have data, only Stockholm comes close, growing at 7-8 net units per 1,000 people annually.

Moreover, with Downtown Vancouver increasingly built out, Vancouver seems to be successfully expanding the CBD outward: Central Broadway already has many jobs and will most likely have further commercial growth as the Millennium Line is extended there. Thus, employers that don’t fit into the Downtown Vancouver peninsula should find a home close enough for SkyTrain, rather than hopping to suburban office parks as in the US. Right now, the central blob of 100 km^2 – a metric I use purely because of limitations on French and Canadian data granularity – has a little more than 30% of area jobs in Vancouver, comparable to Paris, Lyon, New York, Boston, and San Francisco, and ahead of other American cities.

The second aspect is that Canadians are collectively a somewhat more internationally curious nation than Americans. They are more American than European, but the experience of living in a different country from the United States makes it easier for them to absorb foreign knowledge. The reaction to my and Jonathan English’s August article about Canadian costs has been sympathetic, with serious people with some power in Toronto contacting Jonathan to figure out how Canada can improve. The reaction I have received within the United States runs the gamut – some agencies are genuinely helpful and realize that they’ll be better off if we can come up with a recipe for reducing costs, others prefer to obstruct and stonewall.

My perception of Canadian politics is that even right-populists like Doug Ford are more serious about this than most American electeds. In that sense, Ford is much like Boris Johnson, who could move to Massachusetts to be viceroy and far improve governance in both Britain and Massachusetts. My suspicion is that this is linked to Canada’s relatively transit-oriented past and present: broad swaths of the Ontarian middle class ride trains, as is the case in Outer London and the suburbs of Paris. A large bloc of present-day swing voters who use public transport is a good political guarantee of positive attention to public transport in the future. American cities don’t have that – there are no competitive partisan elections anywhere with some semblance of public transportation.

These two points of hope are solid but still run against powerful currents. Toronto really is botching the RER project because of insider obstruction and timidity, and without a strong RER project there is no way to extend public transportation to the suburbs. Vancouver is incapable of concentrating resources where they do the most good. And all Canadian cities have seen an explosion in costs. Canadians increasingly understand the cost problem, but it remains to be seen whether they can fix it.

The Greta Effect

Bloomberg is reporting that Germany and Sweden are seeing a trend of reduced domestic air travel and greater rail usage. In Germany, intercontinental air traffic is up 2% year-over-year and international European traffic is down 2%, but domestic traffic has crashed in the last few months and is down 12% now. In Sweden, domestic air traffic is down 11%.

The Greta effect

Greta Thunberg famously crossed the Atlantic by sailboat to avoid personally contributing to greenhouse gas emissions. But she’s fairly practical about alternatives and said right out that she travels in such conditions to highlight how difficult complete decarbonization is. She is also very insistent on the fact that while changes in behavior are nice, collective political action is still needed.

Moreover, the young (as in, younger than me) Greens I meet in Germany are themselves practical as well. The more committed might take a train to France or Italy, but there’s not much interest in back-to-the-land 1960s communes, degrowth, or political revolution in the sense of the socialists and anarchists. Nor have I seen anti-nuclear sentiments recently – the one anti-nuclear sign I saw at the September 20th climate march, which had 100,000 people in attendance, was held by a pensioner and someone who looked 40, whereas the median age at the rally looked like 20.

It’s relatively easy to change travel behavior to avoid domestic flying in Germany as well as Sweden. Domestic rail travel pain in Germany means hourly Hamburg-Munich and Berlin-Stuttgart trains take 5:40 each. International rail travel pain means Berlin-Paris trains take 8:11 with a short transfer that I don’t trust DB or SNCF to meet. Domestic trains only get this long if many transfers are needed, in which case the main competition to the train is the car rather than the airplane, or if one needs to travel between Umeå (population 123,000) and central or southern Sweden. It’s thus likely that the shift in travel pattern reflects a change in consumer desires to avoid polluting – other explanations, such as the grounding of the 737 MAX, would equally affect domestic and European air travel.

Upcoming carbon taxation

Germany has been planning climate legislation for years, but the September 20th protest created a lot of pressure on the government to enact an aggressive package. A carbon tax will begin at €25/t-CO2 in 2021 and rise to €55/t by 2025, where the original plan was to only go up to €35/t. Sweden has had a carbon tax going back to 1991; starting in 2014, the Löfven cabinet has hiked the tax on industry to match the tax on transportation, both currently at €114/t. The effects on the German economy are to be seen, but in Sweden, economic growth has been healthy throughout this period, ahead of any not-newly-industrialized developed country save Australia (although the differences near the top are small).

In addition to the German carbon tax package, the EU is planning to levy a carbon tax on jet fuel for internal flights; so far, international emissions, including international aviation and shipping, are not subject to carbon tax. A leaked report suggests the EU is considering a tax of €330 per 1,000 liters of jet fuel, which corresponds to a hefty €130/t-CO2, the high figure coming from the fact that a ton of CO2 emitted at high altitude causes more global warming than one emitted at ground level. A very fuel-efficient plane like the A320neo consumes 2.25 liters per 100 seat-km on a 1,200 km flight, raising fares on a full flight by €9.06, which is not a game changer but is noticeable at low-cost carrier rates.

Planning for busier trains

The upshot is that demand for flights in Europe is likely to go down, shifting toward rail. The article linked above about the Greta effect says that DB expects its intercity rail traffic to double to 260 million passengers a year by 2040. The article makes no mention of which further investments in intercity rail DB is assuming, but a virtuous cycle is likely: higher ridership justifies more investment, and faster and more convenient trains attract higher ridership.

Of note, the weakness of international rail in Europe points to international connections as an investment priority. In Sweden, trains from Stockholm are fast toward Gothenburg and Malmö, averaging almost 140 km/h, and there are unfunded plans for high-speed rail connecting the three largest cities. However, Stockholm-Oslo trains are quite slow (about 6 hours for what looks like 500 km), even though Oslo is bigger than Gothenburg and Malmö and there are extensive economic and cultural connections between the Nordic countries. The Greens have called for Stockholm-Oslo high-speed rail, and the government should work with Norway on establishing such a line.

In Germany, the situation is different. London and Paris are vast cities, and Paris is within reasonable high-speed rail distance of most of Germany, with good connections on the French side and poor ones on the German one. Trains between Paris and Frankfurt take about 3:48, of which 1:47 is between Paris and Saarbrücken on the German side of the border, a distance of 380 km, and then 2:00 is between Saarbrücken and Frankfurt, a distance of about 200 km by rail and 160 by air. In Belgium, the existing high-speed line east of Brussels is compromised to the point of being slower between Brussels and Liège or Aachen than legacy lines like Stockholm-Gothenburg or London-Manchester.

The reason the map of the high-speed rail I think Germany should build is heavy on international connections is mostly that Europe is gradually building thicker international economic and social connections. However, a future with more expensive air travel and a consumer taste for greener ways of travel does not change the basic picture, and makes it more urgent.

(Map legend: blue is existing or under-construction lines, red is lines that are either in planning or not even in planning but should be built.)

Speed and capacity

DB’s forecast for 260 million annual rail travelers argues in favor of building more capacity. However, in no way does this conflict with building a dedicated high-speed rail network for Germany. On the contrary, the bypasses providing relief to congested lines are already planned to be high-speed: this was the case for the Tokaido Shinkansen and LGV Sud-Est decades ago, and this is now the case for HS2 and the planned Frankfurt-Mannheim express connection.

A largely dedicated network for high-speed passenger rail, with freight using the legacy lines, improves intercity rail reliability, allowing average speeds to rise to be closer to their theoretical technical maximums. Average speeds of 250 km/h on a few lines are plausible, as on Paris-Strasbourg or Madrid-Barcelona. Moreover, through-tunnels enabling intercity trains to run through Frankfurt and possibly Munich without reversing direction facilitate planning high-speed rail as a separate system. Timed connections with regional trains remain important, but critical trunks like Frankfurt-Cologne and Berlin-Hanover can run very frequently.

The schedule I tried writing for the above map in which domestic city pairs mostly run every half hour all day, interlining on a few trunks, assumes ridership of about 250 million. This is not the same as DB’s forecast of 260 million: this counts only high-speed rail riders, and assumes the average trip is 350 km long. To get from DB’s forecast to 87.5 billion p-km per year requires the virtuous cycle of higher ridership and more investment to work over time, but this is plausible given high levels of investment.

Green convenience

When Greta talks about systemic solutions, she understands that it’s important to make it easier to live a comfortable life without greenhouse gas emissions and harder to live one with high emissions. There are many aspects to green convenience: carbon-free electricity (largely achieved in Sweden but not in Germany), pedestrian- and bike-friendly streets, urban and periurban public transport, intercity and freight rail, passive solar design, urban density, carbon-free industrial power generation.

In every case, it’s important to seize upon any social, economic, or political trend that facilitates the green option. If people want to live in big central cities, then governments should make it easy to build housing there so that more people can enjoy the low-carbon wealth of Munich or Stockholm rather than live in cheap declining rural areas and drive. If people support solar power, then governments should leverage its political popularity and subsidize it to decarbonize electricity.

In the case of intercity transportation, a shift in taste toward intercity rail is a cause for celebration. Europe is full of intercity trunk lines ranging from ones that scream “build me now” no matter what (HS2, completing Berlin-Munich, etc.) to speculative ones. Any positive shift toward rail justifies adding ever more marginal intercity rail lines to the network. Perhaps if the network I mapped was justified before the Greta effect, after the Greta effect the most marginal parts of the network (like Stuttgart-Würzburg) are on more solid footing, while unmapped marginal lines like Munich-Prague or even Bremen-Oldenburg-Groningen become plausible.

But celebration does not mean idleness. Climate change is a systemic issue. The state must plan ahead, using the shift toward rail to plan further investments now so that they open in the 2020s and early 30s. This way, the rail network will meet near- and medium-term growth in demand, while stimulating long-term growth, to be satisfied through future investment, paid by taxes on the richer Germany of the 2030s. Good transit activists should take a page from Greta’s refusal to treat good news as grounds for letting up, and demand intensive investment in Europe’s rail network to ensure that green travel will be more convenient, featuring higher speeds rather than more sitting on luggage in the corridors of full trains.

The Brooklyn Bus Redesign is Out!

Marron just published my and Eric Goldwyn’s Brooklyn bus redesign proposal (with many thanks to Juliet Eldred for doing the graphics and design). The substance isn’t really changed from what we discussed last year. The delay in publication has had a few causes, of which I believe the biggest is that I completely missed that the links to many of the references in the lit review were dead and thus could not be typeset.

Instead of retyping an old blog post, I want to emphasize a few things that have come up in the last year. Some are specific to New York, others more general within the US. The idea of a bus redesign, introduced to the American discourse by Jarrett at the beginning of this decade, has gotten steadily more popular, and New York is beginning its own process, starting with the Bronx; in that context, it’s worthwhile pointing out specifics that Eric and I have learned from the Brooklyn process.

The redesign is a process, not a one-and-done program

Cities change. The point of a bus redesign is to let the bus network reflect the city of today and not that of when bus routes were set, typically when the streetcars were removed in the postwar era. The upshot is that the city can expect to change in the future, which means further bus redesigns may be necessary.

Instead of letting bus networks drift away from serving the city as is and doing a big redesign once in a generation, cities should change buses on an ongoing basis. American transit agencies are learning the principles of bus redesign this decade. They can and should use these principles for forward planning, tweaking bus routes as needed. Any of the following changes can trigger small changes in bus service:

  • New development
  • Shifts in commuting patterns even without new development
  • Changes in traffic patterns
  • Changes in the urban rail network
  • Long-term changes in driver labor, maintenance, etc.
  • Changes in bus technology, such as ride quality, dispatching, or pollution levels

In New York, the biggest ongoing change is probably the urban rail network. There are no subway extensions planned for Brooklyn, but there is expansion of subway accessibility, which changes the optimal bus network since some buses, like the B25 and B63, have no reason to exist if the subway lines they parallel are made accessible. There has been extensive activism about priorities here. To its credit, the MTA is accelerating accessibility retrofits, even though construction costs are extremely high.

New York’s current redesign process is flawed

Eric and I have heard negative feedback from various people involved in the process. Some are planners. One is a community activist, enough of a railfan and busfan not to NIMBY changes for the sake of NIMBYism, but nonetheless disaffected with how the Bronx redesign went.

As far as I can tell, the problem with the current process is that it’s too timid. In the Bronx, this timidity is understandable. The borough’s bus network is mostly good enough. The most important change in the Bronx is to speed up the buses through off-board fare collection, stop consolidation, bus lanes on main streets, and conditional signal priority, and plug the extra speed into higher frequency.

The MTA treats it as part of a separate process – select bus service (“SBS”) – and even though planning these two aspects separately is workable, the MTA does not understand that they are related and that speedups provide crucial resources for higher frequency. The problem here is with operating cost estimation. Like the other American agencies where I’ve asked, the MTA assumes bus costs scale with service-km, and thus higher speeds don’t change frequency. In reality, bus costs, dominated by driver wages, scale with service-hours. Higher speeds can be plugged one-to-one into higher frequency. In Brooklyn, only 30% of the benefits we estimate come from changing the network, and the other 70% come from speeding up the buses.

But Brooklyn is not the Bronx. The Bronx is largely good enough, in ways Brooklyn isn’t. Brooklyn is not terrible, but the bus network has too many circuitous or duplicative routes. Eric and I have consolidated about 530 km of bus route down to 350, without any of the coverage vs. ridership tradeoffs common to areas with less isotropic population density than Brooklyn. The MTA needs to be bolder in Brooklyn, and even bolder than that in Queens, if the redesign is to succeed.

The 14th Street bus lane

Eric and I encountered some political resistance to the idea of mass installation of bus lanes. Local interests listen to people with local connections, who are usually drivers. Transit riders are disproportionately riding to city center jobs, and have citywide rather than local political identities. When I went to an Open New York meeting, people began with a round of introductions in which people say their names and where they live, and the about 20 attendees represented maybe 15 different city neighborhoods. The upshot is that like Open New York’s mission of building more housing, the mission of diverting scarce street space from drivers to bus riders is best done on a citywide rather than street-by-street basis.

There is some hope of such a transformation happening. The bus lane on 14th Street survived a nuisance lawsuit, and ridership rose 17% almost immediately after it opened. The success is stark enough that a citywide increase in installation is plausible. City council speaker Corey Johnson promised to install 48 km of bus lane per year were he to be elected mayor, which is too passive but could do some good on the busiest routes.