Public Transportation in the Southeastern Margin of Brooklyn

Geographic Long Island’s north and south shores consist of series of coves, creeks, peninsulas, and barrier islands. Brooklyn and Queens, lying on the same island, are the same, and owing to the density of New York, those peninsulas are fully urbanized. In Southeastern Brooklyn, moreover, those peninsulas are residential and commercial rather than industrial, with extensive mid-20th century development. Going northeast along the water, those are the neighborhoods of Manhattan Beach, Gerritsen Beach, Mill Basin, Bergen Beach, Canarsie, Starrett City, and Spring Creek. The connections between them are weak, with no bridges over the creeks, and this affects their urbanism. What kind of public transportation solution is appropriate?

The current situation

The neighborhoods in the southeastern margin of Brooklyn and the southern margin of Queens (like Howard Beach) are disconnected from one another by creeks and bays; transportation arteries, all of which are currently streets rather than subway lines, go north and northwest toward city center. At the outermost margin, those neighborhoods are connected by car along the Shore Parkway, but there is no access by any other mode of transportation, and retrofitting such access would be difficult as the land use near the parkway is parkland and some auto-oriented malls with little to no opportunity for sprawl repair. The outermost street that connects these neighborhoods to one another is Flatlands, hosting the B6 and B82 buses, and if a connection onward to Howard Beach is desired, then one must go one major street farther from the water to Linden, hosting the B15.

For the purposes of this post, the study area will be in Brooklyn, bounded by Linden, the Triboro/IBX corridor, and Utica:

This is on net a bedroom community. In 2019, it had 85,427 employed residents and 39,382 jobs. Very few people both live and work in this area – only 4,005. This is an even smaller proportion than is typical in the city, where 8% of employed city residents work in the same community board they live in – the study zone is slightly smaller than Brooklyn Community Board 18, but CB 18 writ large also has a lower than average share of in-board workers.

In contrast with the limited extent of in-zone work travel, nearly all employed zone residents, 76,534, work in the city as opposed to its suburbs (and 31,685 of the zone’s 39,382 jobs are held by city residents). Where they work looks like where city workers work in general, since the transportation system other than the Shore Parkway is so radial:

Within the zone, the southwestern areas, that is Mill Basin and Bergen Beach, are vaguely near Utica Avenue, hosting the B46 and hopefully in the future a subway line, first as an extension of the 4 train and later as an independent trunk line.

To the northeast, Canarsie, Starrett City, and Spring Creek are all far from the subway, and connect to it by dedicated buses to an outer subway station – see more details on the borough’s bus map. Canarsie is connected to the L subway station named after it by the B42, a short but high-productivity bus route, and to the 3 and 4 trains at Utica by the B17, also a high-productivity route. Starrett City does not have such strong dedicated buses: it is the outer terminus of the circumferential B82 (which is very strong), but its dedicated radial route, the B83 to Broadway Junction, is meandering and has slightly below-average ridership for its length. Spring Creek is the worst: it is a commercial rather than residential area, anchored by the Gateway Center mall, but the mall is served by buses entering it from the south and not the north, including the B83, the B84 to New Lots on the 3 (a half-hourly bus with practically no ridership), the rather weak B13 to Crescent Street and Ridgewood, and the Q8 to Jamaica.

The implications for bus design

The paucity of east-west throughfares in this area deeply impacts how bus redesign in Brooklyn ought to be done, and this proved important when Eric and I wrote our bus redesign proposal.

First, there are so few crossings between Brooklyn and Queens that the routes crossing between the two boroughs are constrained and can be handled separately. This means that it’s plausible to design separate bus networks for Brooklyn and Queens. In 2018 it was unclear whether they’d be designed separately or together; the MTA has since done them separately, which is the correct decision. The difficulty of crossings argues in favor of separation, and so does the difference in density pattern between the two boroughs: Brooklyn has fairly isotropic density thanks to high-density construction in Coney Island, which argues in favor of high uniform frequency borough-wide, whereas Queens grades to lower density toward the east, which argues in favor of more and less frequent routes depending on neighborhood details.

Second, the situation in Starrett City is unacceptable. This is an extremely poor, transit-dependent neighborhood, and right now its bus connections to the rest of the world are lacking. The B82 is a strong bus route but many rush hour buses only run from the L train west; at Starrett City, the frequency is a local bus every 10-12 minutes and another SBS bus every 10-12 minutes, never overlying to produce high base frequency. The B83 meanders and has low ridership accordingly; it should be combined with the B20 to produce a straight bus route going direct on Pennsylvania Avenue between Starrett City and Broadway Junction, offering neighborhood residents a more convenient connection to the subway.

Third, the situation in Spring Creek is unacceptable as well. Gateway Center is a recent development, dating only to 2002, long after the last major revision of Brooklyn buses. The bus network grew haphazardly to serve it, and does so from the wrong direction, forcing riders into a circuitous route. Only residents of Starrett City have any direct route to the mall, but whereas Starrett City has 5,724 employed residents (south of Flatlands), and Spring Creek has 4,980 workers, only 26 people commute from Starrett City to Spring Creek. It’s far more important to connect Spring Creek with the rest of the city, which means buses entering it from the north, not the south. Our bus redesign proposal does that with two routes: a B6/B82 extension making this and not Starrett City the eastern anchor, and a completely redone B13 going directly north from the mall to New Lots and thence hitting Euclid Avenue on the A/C and Crescent Street on the J/Z.

What about rail expansion?

New York should be looking at subway expansion, and not just Second Avenue Subway. Is subway expansion a good solution for the travel needs of this study zone?

For our purposes, we should start with the map of the existing subway system; the colors indicate deinterlining, but otherwise the system is exactly as it is today, save for a one-stop extension of the Eastern Parkway Line from New Lots to the existing railyard.

Starrett City does not lie on or near any obvious subway expansion; any rail there has to be a tram. But Canarsie is where any L extension would go – in fact, the Canarsie Line used to go there until it was curtailed to its current terminus in 1917, as the trains ran at-grade and grade-separating them in order to run third rail was considered impractically expensive. Likewise, extending the Eastern Parkway Line through the yard to Gateway Center is a natural expansion, running on Elton Street.

Both potential extensions should be considered on a cost per rider basis. In both cases, a big question is whether they can be built elevated – neither Rockaway Parkway nor Elton is an especially wide street most of the way, about 24 or 27 meters wide with 20-meter narrows. The Gateway extension would be around 1.3 km and the Canarsie one 1.8 km to Seaview Avenue or 2.3 km to the waterfront. These should cost around $250 million and $500 million respectively underground, and somewhat less elevated – I’m tempted to say elevated extensions are half as expensive, but this far out of city center, the underground premium should be lower, especially if cut-and-cover construction is viable, which it should be; let’s call it two-thirds as expensive above-ground.

Is there enough ridership to justify such expansion?

Let’s start with Canarsie, which has 28,515 employed residents between Flatlands and the water. Those workers mostly don’t work along the L, which manages to miss all of the city’s main job centers, but the L does have good connections to lines connecting to Downtown Brooklyn (A/C), Lower Manhattan (A/C again), and Midtown (4/5/6, N/Q/R/W, F/M, A/C/E). Moreover, the density within the neighborhood is uniform, and so many of the 28,515 are not really near where the subway would go – Rockaway/Flatlands, Rockaway/Avenue L, Rockaway/Seaview, and perhaps Belt Parkway for the waterfront. Within 500 meters of Rockaway/L and Rockaway/Seaview there are only 9,602 employed residents, but then it can be expected that nearly all would use the subway.

The B42 an B17 provide a lower limit to the potential ridership of a subway extension. The subway would literally replace the B42 and its roughly 4,000 weekday riders; nearly all of the 10,000 riders of the B17 would likely switch as well. What’s more, those buses were seeing decreases in ridership even before corona due to traffic and higher wages inducing people to switch away from buses – and in 2011, despite high unemployment, those two routes combined to 18,000 weekday riders.

If that’s the market, then $500 million/18,000 weekday riders is great and should be built.

Let’s look at Gateway now. Spring Creek has 4,980 workers, but first of all, only 3,513 live in the city. Their incomes are very low – of the 3,513, only 1,030, or 29%, earned as much as $40,000/year in 2019 – which makes even circuitous mass transit more competitive with cars. There’s a notable concentration of Spring Creek workers among people living vaguely near the 3/4 trains in Brooklyn, which may be explained by the bus connections; fortunately, there’s also a concentration among people living near the proposed IBX route in both Brooklyn and Queens.

The area is the opposite of a bedroom community, unlike the other areas within the study zone – only 1,114 employed people live in it. Going one block north of Flatlands boosts this to 1,923, but a block north of Flatlands it’s plausible to walk to a station at Linden at the existing railyard. 51% of the 1,114 and 54% of the 1,923 earn at least $40,000 a year. Beyond that, it’s hard to see where neighborhood residents work – nearly 40% work in the public sector and OnTheMap’s limitations are such that many of those are deemed to be working at Brooklyn Borough Hall regardless of their actual commute destination.

There’s non-work travel to such a big shopping center, but there are grounds to discount it. It’s grown around the Shore Parkway, and it’s likely that every shopper in the area who can afford a car drives in; in Germany, with generally good off-peak frequency and colocation of retail at train stations, the modal split for public transit is lower for shopping trips than for commutes to work or school. Such trips can boost a Gateway Center subway extension but they’re likely secondary, at least in the medium run.

The work travel to the mall is thankfully on the margin of good enough to justify a subway at $50,000/daily trip, itself a marginal cost. Much depends on IBX, which would help deliver passengers to nearby subway nodes, permitting such radial extensions to get more ridership.

Adversarial Legalism and Accessibility

New York State just announced that per the result of a legal settlement, it is committing to make 95% of the subway accessible… by 2055. Every decade, 80-90 stations will be made accessible, out of 472. Area advocates for disability rights are elated; in addition to those cited in the press release or in the New York Times article covering the news, Effective Transit Alliance colleague Jessica Murray speaks of it as a great win and notes that, “The courts are the only true enforcement mechanism of the Americans with Disabilities Act.” But to me, it’s an example not of the success of the use of the courts for civil rights purposes, in what is called adversarial legalism, but rather its failure. The timeline is a travesty and the system of setting the government against itself with the courts as the ultimate arbiter must be viewed as a dead-end and replaced with stronger administration.

The starting point for what is wrong is that 2055 is, frankly, a disgrace. By the standards of most other old urban metro systems, it is a generation behind. In Berlin, where the U-Bahn opened in 1902, two years before the New York City Subway did, there has been media criticism of BVG for missing its 2022 deadline for full accessibility; 80% of the system is accessible, and BVG says that it will reach 100% in 2024. Madrid is slower, planning only for 82% by 2028, with full accessibility possible in the 2030s. Barcelona is 93% accessible and is in the process of retrofitting its remaining stations. Milan has onerous restrictions such that only one wheelchair user may board each train, but the majority of stations have elevators, and 76% have elevators or stairlifts. In Tokyo, Toei is entirely accessible, and so is nearly the entirety of Tokyo Metro. Even London is 40% accessible, somewhat ahead of New York. Only Paris stands as a less accessible major world metro system.

The primary reason for this is costs. The current program to make 81 stations accessible by 2025 is $5.2 billion. This is $64 million per station, and nearly all are single-line stations requiring three elevators, one between the street and the outside of fare control and one from just inside fare control to each of two side platforms. Berlin usually only requires one elevator as it has island platforms and no fare barriers, but sometimes it needs two at stations with side platforms, and the costs look like 1.5-2 million € per elevator. Madrid the cost per elevator is slightly higher, 3.2 million €. New York, in contrast, spends $20 million, so that a single station in New York is comparable in scope to the entirety of the remainder of the Berlin U-Bahn.

And this is what adversarial legalism can’t fix. The courts can compel the MTA to install elevators, but have no way of ensuring the MTA do so efficiently. They can look at capital plans and decree that a certain proportion be spent on accessibility; seeing $50 billion five-year capital plans, they can say, okay, you need to spend 5-10% of that on subway accessibility. But if the MTA says that a station costs $64 million to retrofit and therefore there is no room in the budget to do it by 2030, the courts have to defer.

This, in turn, is a severe misjudgment of what the purpose of civil rights legislation is. Civil rights laws giving individuals and classes the right to sue the government already presuppose that the government may be racist, sexist, or ableist. This is why they confer individual and group rights to sue under Title VI (racial equality in transportation and other facilities), Title IX (gender equality in education), and the ADA. If the intention was to defer to the judgment of government agencies, no such laws would be necessary.

And yet, the nature of adversarial legalism is that on factual details, courts are forced to defer to government agencies. If the MTA says it costs $64 million to retrofit a station, the courts do not have the power to dismiss managers and hire people who can do it for $10 million. If the MTA says it has friction with utilities, the courts cannot compel the utilities to stop being secretive and share the map of underground infrastructure in the city or to stop being obstructive and start cooperating with the MTA’s contractors when they need to do street work to root an elevator. Judges are competent in legal analysis and incompetent in planning or engineering, and this is the result.

Worse, the adversarial process encourages obstructive behavior. The response to any request from the public or the media soon becomes “make me”; former Capital Construction head and current MTA head Janno Lieber said “file a Freedom of Information request” to a journalist who asked what 400 questions federal regulators asked regarding congestion pricing. Nothing goes forward this way, unless accessibility in 33 years counts, and it shouldn’t.

How Washington Should Spend $10 Billion

The planned $10 billion expansion of Washington Union Station is a waste of money, but this does not mean that money appropriated for public transportation in the National Capital Region is a waste. The region has real transportation needs that should be addressed through urban rail expansion – just not through a rebuild of the intercity rail station. Those needs include local and regional travel, to be addressed through investment in both the Metro and the commuter rail networks. It is fortunate that when I probed on Twitter, there was broad if imperfect agreement among area advocates about what to do.

A $10 billion budget should be spent predominantly on new Metro Rail lines, carefully chosen to satisfy multiple goals at once: physical expansion of the reach of the system, additional core capacity, and deinterlining to improve reliability and increase the capacity of existing lines. For the purposes of the question I posed to area advocates, I set the expansion budget at $7.5 billion, good for 30 km at average global prices, leaving the rest for commuter rail improvements.

What to do about commuter rail

Washington does not have a large legacy commuter rail network, unlike New York, Chicago, Boston, or Philadelphia. It is not as old as those cities, and its conception as the southern end of an East Coast region stretching up to Boston is postwar, by which point investment in passenger rail was largely relegated to the past. Nonetheless, it does have some lines, three to the north as the MARC system and two to the south as the VRE system. They should be upgraded to better commuter rail standards.

Union Station already has the infrastructure for through-running. The junction between the through-tunnel and the terminal tracks is flat, and almost all intercity trains terminate and most will indefinitely no matter how much investment there is in high-speed rail to points south. This requires delicate scheduling, which is good up to about 18 trains per hour in each direction, either six through- and 12 terminating or the other way around. Running half-hourly all-day service on each of the lines, with some additional urban overlay in Virginia and extra service on the Penn Line to Baltimore, should not be too difficult.

Thus, the main spending items on the agenda are not new tracks, but electrification and high platforms. MARC runs diesel trains even under catenary on the Northeast Corridor, which problem requires no additional electrification to fix, but its other two lines are unelectrified, and VRE has no electrification infrastructure. Those lines total 327 route-km of required wiring, with extensive single-tracking reducing per-km cost; this should be around $600 million. But note that they all carry significant freight traffic, and additional accommodations may be necessary.

As far as platforms go, there are nearly 50 stations requiring high platforms (I think 49 but I may have miscounted). At Boston costs it should be $1 billion or a bit more, but that’s for long trains, and MARC trains are not so long, and a system based on shorter trains at higher frequency would be somewhat cheaper. Infill stations are probably unnecessary – there are Metro Rail lines along the inner sections of most of the lines providing the urban rail layer.

Metro Rail expansion

The most pressing problem WMATA’s trains have is poor reliability. Two changes in the late 2000s and 2010s made the system worse: the 2009 elimination of automatic (though not driverless) operations worsened ride quality and reducing capacity, and the 2014 opening of the Silver Line introduced too much interlining reducing both reliability and capacity. WMATA is aware of the first problem and is working to restore ATO; the Silver Line’s problems should be fixed through judicious use of deinterlining. Deinterlining by itself only requires a short extension of the Yellow Line to separate the lines, but it can be bundled with further expansion.

Consensus among area advocates is that there should be separate tunnels for the Yellow and Blue Lines and a new trunk line under Columbia Pike, which three lines total 21 km. Additional lines can consist of another trunk line going northeast from Union Station between the Brunswick and Camden Lines or an extension of the Columbia Pike line from Bailey’s Crossroads, the present outer limit of high density, to Annandale, which would require extension transit-oriented development along the line.

A full-size version can be found here; note that the lines at Union Station are moved around to get rid of the Red Line’s awkward U-shape. The northeast extension option is colored red but should be a Blue Line extension, but the Red Line taking over H Street and going to Largo.

No New Washington Union Station, Please

A new presentation dropped for Amtrak’s plans to rebuild Union Station. It is mostly pictorial, but even the pictures suggest that this is a very low-value project, one with little to no transportation value and limited development value. The price tag is now $10 billion (it was $7 billion 10 years ago; the increase is somewhat more than cumulative inflation), but even if two zeros are cut from the budget it’s not necessarily worth it.

What are the features of good train stations?

A train station is interface between passengers and trains. Everything about their construction must serve this purpose. This includes the following features:

  • Platforms that can effectively connect to the trains (Union Station has a mix of high and low platforms; all platforms used by Northeast Corridor trains must be raised).
  • Minimum distance from platform to street or to urban transit.
  • Some concessions and seats for travelers, all in an open area.
  • Ticketing machines.
  • An information booth with maps of the area and station facilities.
  • Nothing more.

In particular, lavish waiting halls not only waste of money but also often have negative transport value, as they either force passenger to walk longer between street and platform or steer them to take an option that involves a longer walk; the new Moynihan Train Hall in New York is an example of the latter failure. Berlin Hauptbahnhof, a rare example of a major urban station built recently in a rich country, has extensive shopping, but it’s all designed around fast street-platform and S-Bahn-intercity connections.

What are the features of Washington Union Station expansion?

The presentation highlights the following features:

  • A new concourse beneath the platforms.
  • A new concourse on H Street with a prominent headhouse, with bus and streetcar connections.
  • An enclosed bus facility.
  • Underground parking.
  • Future air rights development.

All of the above are wasteful. Connections to H Street can be handled through direct egress points from the platforms to the street, and passengers can get between H Street and the main historic station via those egress points and the platforms themselves. The platforms are key circulation spaces at a train station and using them for passenger movements is normal; I can see an argument against that if the platforms are unusually narrow or crowded, as is the case in New York, but in Washington there is no such excuse.

Nor is Union Station a major node for city buses. Washington’s surface transit network serves the station, but it’s not a major bus node – only a handful of buses terminate there and they don’t run frequently – and even if it were, a surface bus loop akin to what Ostbahnhof has in Berlin would have sufficed. Thus, the bus infrastructure should be descoped, and buses should keep using the streets.

So, none of the transit connections have any value. Parking, moreover, has negative value, as it encourages access to the area by car, displacing transit trips. Union Station already has a Metro connection as well as some surface transit. Better rail operations would also improve commuter rail access for intercity rail riders. Unfortunately, the plan does not improve those operations, nor is there any plan for much needed capital investment to go alongside better mainline rail operations, such as Virginia electrification and high platforms.

What about the air rights?

They are a poor use of money. Building towers on top of active railyards is more difficult and more expensive than building them on firma. Hudson Yards projects in New York came in at around $12,000 per square meter in hard costs, twice the cost of Manhattan skyscrapers on firma except those associated with the World Trade Center, which were unusually costly.

Nor is the location just north of the historic Union Station so desirable that developers would voluntarily pay the railyard premium to be there. The commercial center of Washington is well to the west of the site, comprising Metro Center and Farragut. More office towers around Union Station would be nice for rebalancing and for generating demand for future mainline rail improvements, but the place for them is on firma around the existing station and not on top of the approach tracks.

What should be done?

The plan should be rejected in its entirety and no further funding should be committed to it. Good transit activists should demand that spending on public transportation and intercity rail go to those purposes and not toward building unnecessary train halls. Moreover, it is unlikely the managers at Amtrak who pushed for it and who still are the client for the project understand modern rail operations, nor is it likely that they will ever learn. With neither need nor use for the project, it should be canceled and the people involved in its management and supervision laid off.

How Many Tracks Do Train Stations Need?

A brief discussion on Reddit about my post criticizing Penn Station expansion plans led me to write a very long comment, which I’d like to hoist to a full post explaining how big an urban train station needs to be to serve regional and intercity rail traffic. The main principles are,

  • Good operations can substitute for station size, and it’s always cheaper to get the system to be more reliable than to build more tracks in city center.
  • Through-running reduces the required station footprint, and this is one of the reasons it is popular for urban commuter rail systems.
  • The simpler and more local the system is, the fewer tracks are needed: an urban commuter rail system running on captive tracks with no sharing tracks with other traffic and with limited branching an get away with smaller stations than an intercity rail station featuring trains from hundreds of kilometers away in any direction.

The formula for minimum headways

On subways, where usually the rush hour crunches are the worst, trains in large cities run extremely frequently, brushing up against the physical limitation of the tracks. The limit is dictated by the brick wall rule, which states that the signal system must at any point assume that the train ahead can turn into a brick wall and stop moving and the current train must be able to brake in time before it reaches it. Cars, for that matter, follow the same rule, but their emergency braking rate is much faster, so on a freeway they can follow two seconds apart. A metro train in theory could do the same with headways of 15 seconds, but in practice there are stations on the tracks and dealing with them requires a different formula.

With metro-style stations, without extra tracks, the governing formula is,

\mbox{headway } = \mbox{stopping time } + \mbox{dwell time } + \mbox{platform clearing time }

Platform clearing time is how long it takes the train to clear its own length; the idea of the formula is that per the brick wall rule, the train we’re on needs to begin braking to enter the next station only after the train ahead of ours has cleared the station.

But all of this is in theory. In practice, there are uncertainties. The uncertainties are almost never in the stopping or platform clearing time, and even the dwell time is controllable. Rather, the schedule itself is uncertain: our train can be a minute late, which for our purpose as passengers may be unimportant, but for the scheduler and dispatcher on a congested line means that all the trains behind ours have to also be delayed by a minute.

What this means that more space is required between train slots to make schedules recoverable. Moreover, the more complex the line’s operations are, the more space is needed. On a metro train running on captive tracks, if all trains are delayed by a minute, it’s really not a big deal even to the control tower; all the trains substitute for one another, so the recovery can be done at the terminal. On a mainline train running on a national network in which our segment can host trains to Budapest, Vienna, Prague, Leipzig, Munich, Zurich, Stuttgart, Frankfurt, and Paris, trains cannot substitute for one another – and, moreover, a train can be easily delayed 15 minutes and need a later slot. Empty-looking space in the track timetable is unavoidable – if the schedule can’t survive contact with the passengers, it’s not a schedule but crayon.

How to improve operations

In one word: reliability.

In two words: more reliability.

Because the main limit to rail frequency on congested track comes from the variation in the schedule, the best way to increase capacity is to reduce the variation in the schedule. This, in turn, has two aspects: reducing the likelihood of a delay, and reducing the ability of a delay to propagate.

Reducing delays

The central insight about delays is that they may occur anywhere on the line, roughly in proportion to either trip time or ridership. This means that on a branched mainline railway network, delays almost never originate at the city center train station or its approaches, not because that part of the system is uniquely reliable, but because the train might spend five minutes there out of a one-hour trip. The upshot is that to make a congested central segment more reliable, it is necessary to invest in reliability on the entire network, most of which consists of branch segments that by themselves do not have capacity crunches.

The biggest required investments for this are electrification and level boarding. Both have many benefits other than schedule reliability, and are underrated in Europe and even more underrated in the United States.

Electrification is the subject of a TransitMatters report from last year. As far as reliability is concerned, the LIRR and Metro-North’s diesel locomotives average about 20 times the mechanical failure rate of electric multiple units (source, PDF-pp. 36 and 151). It is bad enough that Germany is keeping some outer regional rail branches in the exurbs of Berlin and Munich unwired; that New York has not fully electrified is unconscionable.

Level boarding is comparable in its importance. It not only reduces dwell time, but also reduces variability in dwell time. With about a meter of vertical gap between platform and train floor, Mansfield has four-minute rush hour dwell times; this is the busiest suburban Boston commuter rail station at rush hour, but it’s still just about 2,000 weekday boardings, whereas RER and S-Bahn stations with 10 time the traffic hold to a 30-second standard. This also interacts positively with accessibility: it permits passengers in wheelchairs to board unaided, which both improves accessibility and ensures that a wheelchair user doesn’t delay the entire train by a minute. It is fortunate that the LIRR and (with one peripheral exception) Metro-North are entirely high-platform, and unfortunate that New Jersey Transit is not.

Reducing delay propagation

Even with reliable mechanical and civil engineering, delays are inevitable. The real innovations in Switzerland giving it Europe’s most reliable and highest-use railway network are not about preventing delays from happening (it is fully electrified but a laggard on level boarding). They’re about ensuring delays do not propagate across the network. This is especially notable as the network relies on timed connections and overtakes, both of which require schedule discipline. Achieving such discipline requires the following operations and capital treatments:

  • Uniform timetable padding of about 7%, applied throughout the line roughly on a one minute in 15 basis.
  • Clear, non-discriminatory rules about train priority, including a rule that a train that’s more than 30 minutes loses all priority and may not delay other trains at junctions or on shared tracks.
  • A rigid clockface schedule or Takt, where the problem sections (overtakes, meets, etc.) are predictable and can receive investment. With the Takt system, even urban commuter lines can be left partly single-track, as long as the timetable is such that trains in opposite directions meet away from the bottleneck.
  • Data-oriented planning that focuses on tracing the sources of major delays and feeding the information to capital planning so that problem sections can, again, receive capital investment.
  • Especial concern for railway junctions, which are to be grade-separated or consistently scheduled around. In sensitive cases where traffic is heavy and grade separation is too expensive, Switzerland builds pocket tracks at-grade, so that a late train can wait for a slot without delaying cross-traffic.

So, how big do train stations need to be?

A multi-station urban commuter rail trunk can get away with metro-style operations, with a single station track per approach track. However, the limiting factor to capacity will be station dwell times. In cases with an unusually busy city center station, or on a highly-interlinked regional or intercity network, this may force compromises on capacity.

In contrast, with good operations, a train station with through-running should never need more than two station tracks per approach track. Moreover, the two station tracks that each approach track splits into should serve the same platform, so that if there is an unplanned rescheduling of the train, passengers should be able to use the usual platform at least. Berlin Hauptbahnhof’s deep tracks are organized this way, and so is the under-construction Stuttgart 21.

Why two? First, because it is the maximum number that can serve the same platform; if they serve different platforms, it may require lengthening dwell times during unscheduled diversions to deal with passenger confusion. And second, because every additional platform track permits, in theory, an increase in the dwell time equal to the minimum headway. The minimum headway in practice is going to be about 120 seconds; at rush hour Paris pushes 32 trains per hour on the shared RER B and D trunk, which is not quite mainline but is extensively branched, but the reliability is legendarily poor. With a two-minute headway, the two-platform track system permits a straightforward 2.5-minute dwell time, which is more than any regional railway needs; the Zurich S-Bahn has 60-second dwells at Hauptbahnhof, and the Paris RER’s single-level trains keep to about 60 seconds at rush hour in city center as well.

All of this is more complicated at a terminal. In theory the required number of tracks is the minimum turn time divided by the headway, but in practice the turn time has a variance. Tokyo has been able to push station footprint to a minimum, with two tracks at Tokyo Station on the Chuo Line (with 28 peak trains per hour) and, before the through-line opened, four tracks on the Tokaido Main Line (with 24). But elsewhere the results are less optimistic; Paris is limited to 16-18 trains per hour at the four-track RER E terminal at Saint-Lazare.

At Paris’s levels of efficiency, which are well below global best practices, an unexpanded Penn Station without through-running would still need two permanent tracks for Amtrak, leaving 19 tracks for commuter traffic. With the Gateway tunnel built, there would be four two-track approaches, two from each direction. The approaches that share tracks with Amtrak (North River Tunnels, southern pair of East River Tunnels) would get four tracks each, enough to terminate around 18 trains per hour at rush hour, and the approaches that don’t would get five, enough for maybe 20 or 22. The worst bottleneck in the system, the New Jersey approach, would be improved from today’s 21 trains per hour to 38-40.

A Penn Station with through-running does not have the 38-40 trains per hour limit. Rather, the approach tracks would become the primary bottleneck, and it would take an expansion to eight approach tracks on each side for the station itself to be at all a limit.

Watch Our Webinar on Construction Costs Tomorrow

The Italy case, done by Marco Chitti, is up on the website. I encourage people to read the entire report on how Italy has set things up in the last 20-30 years so as to have one of the lowest-cost urban rail infrastructure programs in the world. The Turkey case, by Elif Ensari, will be up shortly.

This is leading to a webinar, to be done tomorrow at 16:00 my time, 10:00 New York time, in which Marco and Elif will present their cases to the general public. I encourage people to register; you’ll be able to ask us questions and we’ll answer in chat or on video. But if you can’t make it, it will be recorded.

Intercity Rail Frequency and the Perils of Market Segmentation

SNCF loves market segmentation. Run by airline execs, the company loves to create different trains for different classes of people. Not only do individual trains have opaque pricing run on the basis of yield management, in which similar seats on the same train at the same time of day and day of week may have different fares, but also there are separately-branded trains for separate fare classes, the higher-fare InOui and the lower-fare OuiGo. On international trains, SNCF takes it to the limit and thus Eurostar and Thalys charge premium fares (both about twice as high as domestic TGVs per passenger-km) and don’t through-ticket with domestic TGVs. This has gotten so bad that in Belgium, some advocates have proposed a lower-priced service on the legacy Paris-Brussels line, which would have to be subsidized owing to the high cost of low-speed intercity rail service.

But why is market segmentation on rail so bad? The answer has to do with frequency and cost structures that differ from those of airlines. Both ensure that the deadweight loss from market segmentation exceed any gains that could be made from extracting consumer surplus.

The issue of frequency

A segmented market like that of domestic TGVs reduces frequency on each segment. To maintain segmentation, SNCF has to make the segments as difficult to substitute for each other as possible. OuiGo serves Marne-la-Vallée instead of Gare de Lyon and forcing passengers onto a 20-minute RER connection, or even longer if they’re arriving in Paris and the wave of 1,000 TGV riders creates long lines at the ticketing machines; on other LGVs it serves the traditional Parisian station and thus the segments are more substitutable.

The situation of Eurostar and Thalys reduces frequency as well: the high fares discourage ridership and send much of it to intercity buses or suppress travel. Fewer riders, or fewer riders per segment as in the case of domestic TGVs, lead to fewer trains. What’s the impact of this on ridership?

The literature on high-speed rail ridership elasticities has some frequency estimates. In Couto’s thesis (PDF-p. 225), it is stated that passenger rail ridership has an elasticity of 0.53 with respective to overall service provision. There are also multiple papers estimating the elasticity with respect to travel time: in Cascetta-Coppola the elasticity ranges from -1.6 to -2.2, in Börjesson it is -1.12, and in a Civity report it is stated based on other work that it is -0.8 to -2. The lowest values in Börjesson are associated with the premium-fare AVE, while the range for the original TGV, priced at the same level as the slower trains it replaced, is -1.3 to -1.6. The upshot is that halving frequency through market segmentation reduces ridership by a factor of 2^0.53 = 1.44, which is far more than the benefit yield management is claimed to have, which is a 4% increase in revenue per SNCF’s American proposals from 2009.

Why are trains different?

Planes and buses happily use yield management. High-speed trains do not, except for those run by SNCF or RENFE – and ridership in France isn’t really higher than in fixed-fare Northern Europe or East Asia while ridership in Spain is much lower. Why the difference?

The reason has to do with the ratio of waiting time to trip time. Thalys connects Paris and Brussels in 1.5 hours, every half hour at rush hour and every 2 hours midday. At rush hour, frequency is sort of noticeable; off-peak, it dominates travel time. This is nothing like planes – even short-distance trips involve hours of access, waiting, and egress time, and therefore trips are not usually spontaneous, and day trips are rare except for business travelers.

Buses, finally, are so small that a market like New York-Philadelphia supports multiple competitors each running frequently, and passenger behavior is such that different companies are substitutable, so that the effective frequency is multiple buses per hour.

Cost structure and bad incentives

It’s typical to price high-speed rail higher than legacy rail, even when otherwise there is no yield management. This is bad practice. The operating costs of high-speed rail are lower than those of slow trains. The crew is paid per hour; electricity costs are in theory higher at higher speed but in practice greenfield high-speed lines are constant 300 km/h cruises whereas legacy lines have many acceleration and deceleration cycles; high-speed trainsets cost much more than conventional ones (by a factor of about 2 in Europe) but also depreciate by the hour and not by the km and therefore are somewhat cheaper per seat-km.

This is comparable to the bad practice, common in the United States and in developing and newly-industrialized countries, of pricing urban rail higher than a bus. The metro is nicer for consumers than a bus, but it also has far lower operating costs and therefore a wise transit agency will avoid incentivizing passengers to take buses and instead use integrated fares. The same is true for slow and fast trains: the solution proposed by the Belgian advocates is to incentivize passengers to take a high-cost, low-price train over a low-cost, high-price one, and therefore is no solution at all.

Moreover, the cost structure of trains is different from that of planes. Planes don’t pay much for fixed infrastructure; in effect, every plane trip costs money, and then the challenge is to fill all the seats. High-speed railways instead pay a lot for infrastructure, while their above-the-rails costs are a few cents per passenger-km (€0.06/seat-km on the TGV, including trainset costs and a lot of labor inefficiency). Their challenge is how to fill the tracks with trains, not how to fill the trains with passengers. This is why the fixed clockface frequency common in Germany, Switzerland, Austria, and the Netherlands is so powerful: the off-peak trains are less full, but that’s fine, as the marginal operating cost of an off-peak train is low.

Just lower the fares

Bear in mind that frequency is not exogenous – it is set based on demand. This means that anything that affects ridership has its impact magnified by the frequency-ridership spiral. An exogenous shock, such as improvement in trip time or fare reduction, is magnified through the spiral, by a factor of 1/(1-0.53) = 2.13. In other words, every elasticity estimated in isolation must be multiplied by a factor of about 2.

And once this is understood, suddenly the optima for service look very different from what Thalys has settled on. The optimum is to charge fares to pay infrastructure costs but not much more – especially if you’re SNCF and the railway workers’ union will extract all further profit through strikes, as it did 10 years ago. And this means making sure that except at very busy times, known in advance, Paris-Brussels tickets should be 30€, not 50-100€.

The Northeastern United States Wants to Set Tens of Billions on Fire Again

The prospect of federal funds from the Bipartisan Infrastructure Bill is getting every agency salivating with desires for outside money for both useful and useless priorities. Northeastern mainline rail, unfortunately, tilts heavily toward the useless, per a deep dive into documents by New York-area activists, for example here and here.

Amtrak is already hiring project management for Penn Station redevelopment. This is a project with no transportation value whatsoever: this is not the Gateway tunnels, which stand to double capacity across the Hudson, but rather a rebuild of Penn Station to add more tracks, which are not necessary. Amtrak’s current claim is that the cost just for renovating the existing station is $6.5 billion and that of adding tracks is $10.5 billion; the latter project has ballooned from seven tracks to 9-12 tracks, to be built on two levels.

This is complete overkill. New train stations in big cities are uncommon, but they do exist, and where tracks are tunneled, the standard is two platform tracks per approach tracks. This is how Berlin Hauptbahnhof’s deep section goes: the North-South Main Line is four tracks, and the station has eight, on four platforms. Stuttgart 21 is planned in the same way. In the best case, each of the approach track splits into two tracks and the two tracks serve the same platform. Penn Station has 21 tracks and, with the maximal post-Gateway scenario, six approach tracks on each side; therefore, extra tracks are not needed. What’s more, bundling 12 platform tracks into a project that adds just two approach tracks is pointless.

This is a combined $17 billion that Amtrak wants to spend with no benefit whatsoever; this budget by itself could build high-speed rail from Boston to Washington.

Or at least it could if any of the railroads on the Northeast Corridor were both interested and expert in high-speed rail construction. Connecticut is planning on $8-10 billion just to do track repairs aiming at cutting 25-30 minutes from the New York-New Haven trip times; as I wrote last year when these plans were first released, the reconstruction required to cut around 40 minutes and also upgrade the branches is similar in scope to ongoing renovations of Germany’s oldest and longest high-speed line, which cost 640M€ as a once in a generation project.

In addition to spending about an order of magnitude too much on a smaller project, Connecticut also thinks the New Haven Line needs a dedicated freight track. The extent of freight traffic on the line is unclear, since the consultant report‘s stated numbers are self-contradictory and look like a typo, but it looks like there are 11 trains on the line every day. With some constraints, this traffic fits in the evening off-peak without the need for nighttime operations. With no constraints, it fits on a single track at night, and because the corridor has four tracks, it’s possible to isolate one local track for freight while maintenance is done (with a track renewal machine, which US passenger railroads do not use) on the two tracks not adjacent to it. The cost of the extra freight track and the other order-of-magnitude-too-costly state of good repair elements, including about 100% extra for procurement extras (force account, contingency, etc.), is $300 million for 5.4 km.

I would counsel the federal government not to fund any of this. The costs are too high, the benefits are at best minimal and at worst worse than nothing, and the agencies in question have shown time and time again that they are incurious of best practices. There is no path forward with those agencies and their leadership staying in place; removal of senior management at the state DOTs, agencies, and Amtrak and their replacement with people with experience of executing successful mainline rail projects is necessary. Those people, moreover, are mid-level European and Asian engineers working as civil servants, and not consultants or political appointees. The role of the top political layer is to insulate those engineers from pressure by anti-modern interest groups such as petty local politicians and traditional railroaders who for whatever reasons could not just be removed.

If federal agencies are interested in building something useful with the tens of billions of BIL money, they should instead demand the same results seen in countries where the main language is not English, and staff up permanent civil service run by people with experience in those countries. Following best industry practices, $17 billion is enough to renovate the parts of the Northeast Corridor that require renovation and bypass those that require greenfield bypasses; even without Gateway, Amtrak can squeeze a 16-car train every 15 minutes, providing 4,400 seats into Penn Station in an hour, compared with around 1,700 today – and Gateway itself is doable for low single-digit billions given better planning and engineering.

German Rail Traffic Surges

DB announced today that it had 500,000 riders across the two days of last weekend. This is a record weekend traffic; May is so far 5% above 2019 levels, representing full recovery from corona. This is especially notable because of Germany’s upcoming 9-euro ticket: as a measure to curb high fuel price from the Russian war in Ukraine, during the months of June, July, and August, Germany is both slashing fuel taxes by 0.30€/liter and instituting a national 9€/month public transport ticket valid not just in one’s city of domicile but everywhere. In practice, rail riders respond by planning domestic rail trips for the upcoming three months; intercity trains are not covered by the 9€ monthly pass, but city transit in destination cities is, so Berliners I know are planning to travel to other parts of Germany during the window when local and regional transit is free, displacing trips that might be undertaken in May.

This is excellent news, with just one problem: Germany has not invested in its rail network enough to deal with the surge in traffic. Current traffic is already reaching projections made in the 2010s for 2030, when most of the Deutschlandtakt is supposed to go into effect, with higher speed and higher capacity than the network has today. Travel websites are already warning of capacity crunches in the upcoming three months of effectively free regional travel (chaining regional trains between cities is possible and those are covered by the 9€ monthly pass). Investment in capacity is urgent.

Sadly, such investment is still lagging. Germany’s intercity rail network rarely builds complete high-speed lines between major cities. The longest all-high-speed connection is between Cologne and Frankfurt, 180 km apart. Longer connections always have significant slow sections: Hamburg-Hanover remains slow due to local NIMBY opposition to a high-speed line, Munich’s lines to both Ingolstadt and Augsburg are slow, Berlin’s line toward Leipzig is upgraded to 200 km/h but not to full high-speed standards.

Moreover, plans to build high-speed rail in Germany remain compromised in two ways. First, they still avoid building completely high-speed lines between major cities. For example, the line from Hanover to the Rhine-Ruhr is slow, leading to plans for a high-speed line between Hanover and Bielefeld, and potentially also from Bielefeld to Hamm; but Hamm is a city of 180,000 people at the eastern margin of the Ruhr, 30 km from Dortmund and 60 from Essen. And second, the design standards are often too slow as well – Hanover-Bielefeld, a distance that the newest Velaro Novo trains could cover in about 28 minutes, is planned to be 31, compromising the half-hourly and hourly connections in the D-Takt. Both of these compromises create a network that 15 years from now is planned to have substantially lower average speeds than those achieved by France 20 years ago and by Spain 10 years ago.

But this isn’t just speed, but also capacity. An incomplete high-speed rail network overloads the remaining shared sections. A complete one removes fast trains from the legacy network except in legacy rail terminals where there are many tracks and average speeds are never high anyway; Berlin, for example, has four north-south tracks feeding Hauptbahnhof with just six trains per hour per direction. In China, very high throughput of both passenger rail (more p-km per route-km than anywhere in Europe) and freight rail (more ton-km per route-km than the United States) through the removal of intercity trains from the legacy network to the high-speed one, whose lines are called passenger-dedicated lines.

So to deal with the traffic surge, Germany needs to make sure it invests in intercity rail capacity immediately. This means all of the following items:

  • Building all the currently discussed high-speed lines, like Frankfurt-Mannheim, Ulm-Augsburg (Stuttgart-Ulm is already under construction), and Hanover-Bielefeld.
  • Completing the network by building high-speed lines even where average speeds today are respectable, like Berlin-Halle/Leipzig and Munich-Ingolstadt, and making sure they are built as close to city center as possible, that is to Dortmund and not just Hamm, to Frankfurt and not just Hanau, etc.
  • Purchasing 300 km/h trains and not just 250 km/h ones; the trains cost more but the travel time reduction is noticeable and certain key connections work out for a higher-speed D-Takt only at 300, not 250.
  • Designing high-speed lines for the exclusive use of passenger trains, rather than mixed lines with gentler freight-friendly grades and more tunnels. Germany has far more high-speed tunneling than France, not because its geography is more rugged, but because it builds mixed lines.
  • Accelerating construction and reducing costs through removal of NIMBY veto points. Groups should have only two months to object, as in Spain; current practice is that groups have two months to say that they will object but do not need to say what the grounds for those objections are, and subsequently they have all the time they need to come up with excuses.

Systemic Investments in the New York City Subway

Subway investments can include expansion of the map of lines, for example Second Avenue Subway; proposals for such extensions are affectionately called crayon, a term from London Reconnections that hopped the Pond. But they can also include improvements that are not visible as lines on a map, and yet are visible to passengers in the form of better service: faster, more reliable, more accessible, and more frequent.

Yesterday I asked on Twitter what subway investments people think New York should get, and people mostly gave their crayons. Most people gave the same list of core lines – Second Avenue Subway Phase 2, an extension of the 2 and 5 on Nostrand, an extension of the 4 on Utica, an extension of the N and W to LaGuardia, the ongoing Interborough Express proposal, and an extension of Second Avenue Subway along 125th – but beyond that there’s wide divergence and a lot of people argue over the merits of various extensions. But then an anonymous account that began last year and has 21 followers and yet has proven extremely fluent in the New York transit advocacy conversation, named N_LaGuardia, asked a more interesting question: what non-crayon systemic investments do people think the subway needs?

On the latter question, there seems to be wide agreement among area technical advocates, and as far as I can tell the main advocacy organizations agree on most points. To the extent people gave differing answers in N_LaGuardia’s thread, it was about not thinking of everything at once, or running into the Twitter character limit.

It is unfortunate that many of these features requiring capital construction run into the usual New York problem of excessive construction costs. The same institutional mechanisms that make the region incapable of building much additional extension of the system also frustrate systemwide upgrades to station infrastructure and signaling.

Accessibility

New York has one of the world’s least accessible major metro systems, alongside London and (even worse) Paris. In contrast, Berlin, of similar age, is two-thirds accessible and planned to reach 100% soon, and the same is true of Madrid; Seoul is newer but was not built accessible and retrofits are nearly complete, with the few remaining gaps generating much outrage by people with disabilities.

Unfortunately, like most other forms of capital construction in New York, accessibility retrofits are unusually costly. The elevator retrofits from the last capital plan were $40 million per station, and the next batch is in theory $50 million, with the public-facing estimates saying $70 million with contingency; the range in the European cities with extensive accessibility (that is, not London or Paris) is entirely single-digit million. Nonetheless, this is understood to be a priority in New York and must be accelerated to improve the quality of universal design in the system.

Platform screen doors

The issue of platform screen doors (PSDs) or platform edge doors (PEDs) became salient earlier this year due to a much-publicized homicide by pushing a passenger onto a train, and the MTA eventually agreed to pilot PSDs at three stations. The benefits of PSDs are numerous, including,

  • Safety – there are tens of accident and suicide deaths every year from falling onto tracks, in addition to the aforementioned homicide.
  • Greater accessibility – people with balance problems have less to worry about from falling onto the track.
  • Capacity – PSDs take up platform space but they permit passengers to stand right next to them, and the overall effect is to reduce platform overcrowding at busy times.
  • Air cooling – at subway stations with full-height PSDs (which are rare in retrofits but I’m told exist in Seoul), it’s easier to install air conditioning for summer cooling.

The main difficulty is that PSDs require trains to stop at precise locations, to within about a meter, which requires signaling improvements (see below). Moreover, in New York, trains do not yet have consistent door placement, and the lettered lines even have different numbers of doors sometimes (4 per car but the cars can be 60′ or 75′ long) – and the heavily interlined system is such that it’s hard to segregate lines into captive fleets.

But the biggest difficulty, as with accessibility, is again the costs. In the wake of public agitation for PSDs earlier this year, the MTA released as 2019 study saying only 128 stations could be retrofitted with PSDs, at a cost of $7 billion each, or $55 million per station; in Paris, PSDs are installed on Métro lines as they are being automated, at a cost of (per Wikipedia) 4M€ per station of about half the platform length as in New York.

Signaling improvements

New York relies on ancient signaling for the subway. This leads to multiple problems: maintenance is difficult as the international suppliers no longer make the required spare parts; the signals are designed around the performance specs of generations-old trains and reduce capacity on more modern trains; the signals are confusing to drivers and therefore trains run slower than they can.

To modernize them, New York is going straight to the most advanced system available: CBTC, or communications-based train control, also known as moving-block signaling. This is already done on the L and 7 trains and is under installation on other lines, which are not isolated from the rest of the system. CBTC permits much higher peak capacity in London; in New York, unfortunately, this effect has been weaker because of other constraints, including weak electrical substation capacity and bumper tracks at the terminals of both the L and the 7.

Moreover, in New York, the L train’s performance was derated when CBTC was installed, to reduce brake wear. The effect of such computer control should be the opposite, as computers drive more precisely than humans: in Paris, the automation of Line 1 led to a speed increase of 15-20%, and CBTC even without automation has the same precision level as full automation.

As before, costs form a major barrier. I can’t give the most recent analogs, because such projects tend to bundle a lot of extras, such as new trainsets and PSDs in Paris. In Nuremberg, the first city in the world to permanently convert a preexisting metro system to driverless operations, the cost of just the driverless system is said to have been 110M€ in the late 2000s, for what I believe is 13 km of U2 (U3 was built with driverless operations in mind, and then U2, from which it branches, was converted). It is said that automating U1 should cost 100M€ for 19.5 km, but this project is not happening due to stiff competition for federal funds and therefore its real cost is uncertain. In contrast, Reinvent Albany quotes $636 million for the 7 train in New York, of which $202 million must be excluded as rolling stock conversion; the Flushing Line is 16 km long, so this is still $27 million/km and not the $7-12 million/km of Nuremberg.

Maintenance regime

The maintenance regime in New York involves heavy slowdowns and capacity restrictions. Trains run 24/7 without any breaks for regular maintenance. Instead, maintenance is done one track at a time during off-peak periods, with flagging rules that slow down trains on adjacent tracks and have gotten more onerous over the last 10-20 years; only recently have planners begun to use temporary barriers to reduce the burden of flagging.

The result of this system is threefold. First, track maintenance productivity is extremely low – the train on an adjacent track slows down as it passes but the work stops as it passes as well. Second, speeds are unreliable off-peak and the timetable is in perpetual firefighting mode. And third, parts of the system are claimed to be incapable of running more than about 16 trains per hour off-peak, which means that if there is any branching, the branches are limited to 8, which is not enough frequency on a major urban metro system.

It takes a small amount of capital spending to increase efficiency of maintenance, through procuring more advanced machinery, installing barriers between tracks, and installing crossovers at appropriate locations. But it takes a large degree of operations and management reform to get there, which is necessary for reducing the high operating costs of the subway.

Deinterlining

New York has the most complicated interlining of any global metro network. Only four lines – the 1, 6, 7, and L – run by themselves without any track sharing with other lines. The 2, 3, 4, and 5 share tracks with one another. Then the lettered trains other than the L all share tracks on various segments, without any further segregation. Only some commuter rail networks are more complex than this – and even Tokyo has greater degree of segregation between different trunk lines, despite extensive through-service to commuter rail. The New York way guarantees more direct service on more origin-destination pairs, but at low frequency and with poor speed and reliability.

London, the second most interlined system, has long wanted to reduce interlining to increase capacity. The Northern line traditionally had just one southern segment reverse-branching to two central trunks, combining and splitting into two northern branches. When CBTC opened, the busier of the central trunks got 26 peak trains per hour; the more recent Battersea extension removed the interlining to the south, permitting boosting capacity up to 32 tph, and full deinterlining to the north would boost it to 36 tph, as on the most captive Underground lines.

In New York, it is desirable to remove all reverse-branching. At DeKalb Avenue in Downtown Brooklyn, the interlocking switches the four express (bridge) tracks from an arrangement of the B and D on one track pair and the N and Q on the other to the B and Q on one track pair and the D and N on the other; the process is so complex that every train is delayed two minutes just from the operation of the switches. Everywhere within the system, interlining creates too much dependency between the different trains, so that delays on one line propagate to the others, reducing reliability, speed, and capacity.

Some of the problem is, as usual, about high costs. Rogers Avenue Junction controls the branching of the 2, 3, 4, and 5 trains in Brooklyn, transitioning from the 2 and 3 sharing one track pair and the 4 and 5 sharing another to the 3 and 4 running on dedicated tracks and the 2 and 5 sharing tracks. For a brief segment, the 2, 3 and 5 trains all share tracks. This devastates capacity on both trunk lines, which rank first and third citywide in peak crowding as of the eve of the opening of Second Avenue Subway. There are already internal designs for rebuilding the junction to avoid this problem – at a cost of $300 million.

But some of the problem is also about operating paradigms. New York must move away from the scheduling ideas of the 1920s and 30s and understand that independently-operated lines with dedicated fleets and timetables, with passengers making transfers as appropriate, are more robust and overall better for most riders. DeKalb can be deinterlined with no capital spending at all, and so can Columbus Circle. It’s Rogers and Queens Plaza where spending is ideal (but even then, not strictly required if some operational compromises are made), and the 142nd Street Junction in Harlem where an extensive rebuild is obligatory in order to permit splitting the 2 from the 5 in the Bronx permanently.

Labor changes

Staffing levels in New York are very high. Trains have conductors and not just drivers; this is not globally unheard of (Toronto and some lines in Tokyo still have conductors) but it’s rare. With good enough signaling, a retrofit even for full automation is possible, as in Nuremberg, Paris, and Singapore. Maintenance work is likewise unproductive, not because people don’t work hard, but because they work inefficiently.

Improving this situation involves changes on both sides of the ledger – staffing and service. Conductors have to be cut for efficiency and not all of them can be absorbed by other roles, and the same is true of some station facilities and maintenance functions. In contrast, the low productivity of drivers in New York – they spend around 550 hours a year driving a revenue train whereas Berlin’s drivers, who get 6 weeks of annual paid vacation, scratch 900 – is the result of poor off-peak frequency, and must be resolved through increases in off-peak service that increase efficiency without layoffs.

Ultimate goal: six-minute service

I wrote two years ago about what it would take to ensure every public transit service in New York runs every six minutes off-peak, calling it a six-minute city.

Riders Alliance argues for the same goal, with the hashtag #6minuteservice; I do not know if they were basing this on what I’d written or if it’s convergent evolution. But it’s a good design goal for timetabling, with implications for labor efficiency, maintenance efficiency, the schedule paradigm, and the bus system.

No tradeoffs

It is fortunate that the agenda of systemwide improvements does not exhibit significant tradeoffs in investment. Other parts of the transit agenda do not need to suffer to implement those improvements. On the contrary, they tend to interact positively: accessibility and PSDs can be combined (and federal law is written in such a way that PSDs void the grandfather clause permitting the subway to keep most of its stations inaccessible), faster and more reliable trains can be run more frequently off-peak, better service means higher ridership and therefore higher demand for extensions. Only the issue of labor exhibits a clear set of losers from the changes, and those can be compensated in a one-time deal.

Moreover, the budget for such an agenda is reasonable, if New York can keep its construction costs under control. At the per-elevator costs of Berlin or Madrid, New York could make its entire network wheelchair-accessible for around $3.5-4 billion. Parisian PSDs, pro-rated to the greater size of New York trains, would be around $10 million a station, or $5 billion systemwide. Full automation at German costs would be maybe $6 billion with triple- and quad-track lines pro-rated. The entire slate of changes required for full deinterlining, including a pocket track for the 3 train at 135th Street, a rebuild of the 36th Street station in Queens, and a connection between Queensboro Plaza and Queens Plaza, should be measured in the hundreds of millions, not billions.

The overall program still goes into double-digit billions; it requires a big push. But this big push is worth two to three years’ worth of current New York City Transit capital spending. A New York that can do this can also add 50-100 km to its subway network and vice versa, all while holding down operating costs to typical first-world levels. For the most part, the planners already know what needs to be done; the hard part is getting construction costs to reasonable levels so that they can do it on the current budget.