Category: Labor

Recession and Efficiency

Question. In what ways can a recession be useful for forcing inefficient public-sector agencies to lay off redundant workers and reduce bloat?

Answer. None.

Every recession, going at least back to the Great Depression, you get economists and others who are certain that high unemployment can discipline firms into greater productivity. Back in the 1930s, this was Joseph Schumpeter saying that there was no need to fear a depression because it was good, like “a cold douche.” Liquidating unproductive firms and forcing the rest to get leaner was supposed to improve economy-wide efficiency. Today, you can find people arguing the same for inefficient public-sector agencies strapped by budget cuts.

It doesn’t happen. Productivity decreases in bad economic times; labor-saving productivity improvements happen when wages are high, not when sales are low. Cash-strapped firms do not have the ability to invest for the long run – they just sell portions of themselves and shrink to be easier to manage, to limit the loss.

In public-sector public transportation, this really is the same. The best time for converting a metro line to driverless operation is when unemployment is 3%, not when it’s 15%. When unemployment is 3%, it’s possible to place workers in the private sector, which means they’ll work well through the transition. This goes doubly so when the productivity improvement lets one person do a job that previously took three rather than eliminating the job entirely: workers can go on strike if they’re unhappy, and transit as an industry is very amenable to unionization, to the point that unions have succeeded in organizing the tech shuttles in Silicon Valley in an otherwise union-hostile setting. (Of note, American public-sector anti-union successes have mostly been about screwing young workers, who are already the least empowered within the union, rather than doing anything to 20-year veterans who are about to retire with a full pension.)

The issue here is that very, very few workers are redundant on a next-day basis, even in severely overstaffed agencies. New York can eliminate subway conductors but requires some planning in advance to do so, for example to move mirrors around and place CCTV cameras to enable drivers to see the platform and close the doors. American commuter rail agencies can eliminate rail conductors, in what is as close to next-day redundancy as I can think of, but even that requires hiring fare inspectors for proof of payment checks and often also buying ticketing machines at outlying stations where previously passengers bought tickets directly on the train.

More often, eliminating a large amount of waste requires spending a bit more money in the short run. It can be on capital, like more ticketing machines. It can be on labor, like more dispatchers to make the buses run more regularly to reduce delays and bus driver overtime. But it’s usually not something that can be done by the Chainsaw Al school of management. It takes time, and in a lot of cases, the cooperation of the workforce is necessary.

Time and time again, we see transit managers who think in terms of just cutting avoid making long-term investments to improve efficiency. We see hiring freezes, wage freezes, reticence to engage in any long-term hiring and planning even in temporary recessions, and hostility to electrification even among American governors who propose to spend billions of dollars on parking more trains in city center between the morning and afternoon peaks. Even below the top political level, managers who develop a siege mentality never think in terms of long-term improvement. That’s not what will get them ahead; avoiding short-term controversy will, and they adapt to bad practices readily.

The workers adapt, too. If they expect sudden layoffs, their morale will tank and so will their productivity doing anything but the most routinized work. Maintenance workers will skip things – nobody will notice until it’s too late. Cleaners will slack, and if the message sent from the top is that it’s time to retrench, it will be hard to argue for aggressive standards for cleanliness. Even absent unionization, productivity will flounder, and there will not be much room to replace truly lazy workers if there is a hiring slowdown.

So what works for increasing efficiency? The answer is growth. Kopicki-Thompson’s report on best practices for rail privatization has a chapter about the history of the breakup of Japan National Railways in the 1980s, which makes the connection between growth and efficiency clear. Between 1980 and the breakup of JNR into seven constituent JRs in 1987, the company laid off two-thirds of its workforce, after complex negotiations with the unions, some of which were militant socialists. Japanese work culture is that a man is expected to work for the same firm for his entire working life, from age 22 for a university graduate to retirement at 65; JNR had to place these workers in the private sector for a mid-career layoff. This could happen because Japan’s economic growth in that era was famously high, to the point that Americans soon bought business books about how to think like a Japanese manager.

It is best to instead use weak periods to plan for the long term. If there’s stimulus spending, take it and go build things. Even if there isn’t, remember that the recession won’t last forever and plan in advance. Part of the plan should be knowing which workers are supernumerary and making a plan to place them at private-sector jobs as soon as they become available. But don’t expect to be able to send masses of pink slips in a recession; that must be saved for when jobs elsewhere in the economy are plentiful.

What Does Private Affluence, Public Squalor Mean?

I’d like to compare three cities: Paris, New York, Boston. They’re about equally wealthy, and I’ve lived years in two and spent a lot of time in the third. Americans dismiss New York and Boston too often as Not Real America, but they’re both excellent examples of how the US differs from Europe.

Private affluence and squalor at home

Visit the home of a middle-class person in the city. (I mean “middle-class” in the European sense of “reasonably educated professional,” not the American one of “not homeless.”) If you’re used to a certain suburban American standard of normality then the New York apartment will look small to you, but the one in Boston will not, and a few years seeing how Europeans live will disabuse you of any notion that New York apartments are small.

Parisian apartments are tiny. I had 40 square meters near Nation, but the citywide average is 31 per person; in New York, it’s 50 if I understand the Census Factfinder correctly. There are studios in Paris well below 20 m^2 – even Stockholm tends to stick to micro-units in the 20-25 m^2 area. There is something called studettes going down to 9 m^2 in the most extreme cases, many inherited from servant attic units built in the Second Empire and Belle Epoque. In New York it’s more or less prohibited by regulation, with the attendant high rents, but the regulations are about bedrooms, not unit size, hence the common experience of living 3 or 4 people to a large apartment, one that in Continental Europe is largely restricted to lower-income cities like Lisbon or Berlin.

In the 1950s, when John Galbraith coined the expression private affluence and public squalor, the American home had amenities unheard of in Europe, like universal ownership of appliances. This is not as stark a distinction today. Europeans have televisions and fast Internet connections for cheaper prices than in the US. But Europeans don’t have driers or air conditioning and don’t have dishwashers as commonly as Americans. I don’t want to exaggerate the difference in housing quality – for one, insulation is a lot better in Paris (and Berlin) than in New York and Boston, so the experience of living on the 3rd floor facing a city street is a lot noisier west of the Pond than east of it. For another difference, American air conditioning is window units in all but the highest-end apartments, which would have central air in Europe too. But the difference exists, and is noticeable.

Public affluence and squalor on the street

Let’s leave the inside of our houses now. How does the public sphere look?

The recent reporting of New York as trash city can make people think that this is literally about the street. To some extent, this is – but it’s not just about trash. For one, the street lighting is better in Paris, and better in Manhattan than in Cambridge, in what I think is an artifact of high density and not just wealth. For two, I don’t remember having to dodge puddles in the rain in Paris; in New York and Boston it’s a common occurrence whenever there’s heavier rain than a drizzle. For three, in the snow, Cambridge becomes mostly impassable to pedestrians, and while Paris does not get serious enough snow for shoveling to ever be a big issue, Stockholm does and the sidewalks in Central Stockholm are shoveled just fine.

The importance of Paris’s wealth and density is that Berlin is not this nice. The street lighting in Berlin is not great by Parisian standards (or, as I recall, by Stockholm ones?). Walking around Bernauer Strasse (let alone Neukölln, one of inner Berlin’s poorest neighborhoods), one never gets the feeling the area is as well-off as Nation, which is itself lower middle-class by Parisian standards. I’m saying this knowing the comparative income levels of Berlin and Paris, and perhaps it’s unfair, but from what I’ve seen, it’s fairly easy to compare France and Germany, their relative levels of public and private affluence are similar.

Public services

Most Americans know, on some level, that various public services are better in Western Europe. Life expectancy in France is higher than in the US by 3-4.5 years depending on source, and life expectancy in Germany is higher by 2-3 years. New York and Massachusetts are wealthy states and outlive the rest of the country by a margin, but they’re still not French, let alone Parisian.

Public health is there in various statistics, but the same is true of transportation. This is not even just public transportation – my recollection of the handful of times I’ve found myself in a taxi in Paris is that it’s a much more pleasant experience than the potholed American streets I’ve taken taxis or ridden with other people on. But it’s much more glaring in public transit than on roads, because public transit inherently requires more public competence. Parisians do not think the RER is particularly good, but it’s a marvel compared with any American commuter rail network, and involves a level of interagency coordination in fares, schedules, and services that is unheard of in the United States.

Worse, public transit in the United States has the reputation of a social service. In metro New York the incomes of transit and car commuters are very close, and in metro Boston transit commuters slightly outearn car commuters, but in both areas, anything that is not a segregated suburban middle-class commuter line is treated as a social service, run by managers who do not use their own system and do not consider use cases beyond their own 9-to-5 work travel.

Squalor and incompetence

Squalor and incompetence feed each other. This does not mean poverty is a moral failing or a result of weakness or stupidity. But it does mean that someone who is denied access to good work will, over a lifetime, learn to do lower-value things and, even if the job denial at 18 was entirely random or a matter of discrimination, be worse at high-value jobs by 50. I don’t think it’s a coincidence that countries with more income mobility and less persistent poverty – for examples, Canada, Australia, and the Nordic countries – do not determine people’s careers by how they did at 18 at the university admissions the way the US, UK, and France do. Talented Canadians who get worse grades in high school because of obstructive teachers will have opportunities to shine at 23 that their French or American counterparts, denied the ability to go to the most prestigious universities, will simply not get.

I bring this up because the US has a cycle of public squalor. Public-sector wages are uncompetitive, so workers are either nerds with particular personal or social interest in the field (sanitation, public transit, etc.), or people who couldn’t get better private-sector work – and this is particularly acute at the management level, especially senior management, since the best managers can leak to the private sector and get better pay there. Weak civil service in turns reduces the political will to pay civil servants high salaries, especially among politicians, who encounter senior managers much more often than they do hard-working train drivers, sanitation workers, and individual teachers.

There’s perhaps an analog of private affluence and public squalor, in which Americans are individually diligent and collectively lazy. Some of this has to be political: ambitious politicians get ahead by doing nothing and packaging it as bravery. I can name multiple national Republicans who became nationally famous by saying no to spending, and not a single Democrat who became nationally famous by successfully pushing through a major government program, such statewide universal health care or a green transition. But it’s not just politicians and their political appointees – there’s punch-clock behavior and agency turf battles below that level.

Is there a solution?

Unambiguously, yes. It’s not evident from just reading about the history of the Anglosphere, since Britain took forever to develop its civil service and thus assumes the process would be equally long in South Korea or Finland (“first 500 years are hardest“). It requires political will, and often a good model – I suspect Finland was able to develop good government so quickly because it consciously imitated Swedish governance. It doesn’t even require setting everything on fire first – South Korea and Taiwan engaged in land reform but did not kill the entire middle class the way some communist countries did.

The good news is that most public-sector workers in the US are not incompetent political appointees. The people I talk to in New York and Boston are sharp and informed and often difficult to keep up with because of how much they understand that I don’t, and for the most part I get the impression that they don’t think their colleagues are morons. The competence level on average decreases as one goes upward, partly because of negative selection of management, but it’s possible and desirable to internally promote people and raise wages to retain talent.

Fundamentally, the US needs to let go of the idea that the public is inferior to the private. But this isn’t just about what’s in Americans’ heads. They need to treat the public commons well, and I don’t just mean building monuments that look nice now and will rust in 10 years. I mean investing in public services, and paying the people who provide them competitively. Public squalor is a choice the US makes every day that it can stop making.

What is the Anglosphere, Anyway?

As I’m putting more and more urban rail lines and their construction costs into one table, I have to notice trends. One that I’ve talked about for many years is that construction costs in the Anglosphere are higher than in the rest of the developed world, not just in world leader New York but also in other American cities as well as in Britain, Canada, Singapore, and so on. For years I identified this with common law, which I no longer do. Instead, I want to expand on this by asking what exactly the Anglosphere even means.

The features of the Anglosphere

Within the developed world, a subset of countries consists of the Anglosphere. The core is Britain, the US, Canada, Australia, and New Zealand, but Ireland has to be on the list too, as should Singapore and to varying extents Israel and Hong Kong. Which features separate them from the remainder of the first world:

  • For the most part, they use English as their usual language – but Israel, Hong Kong, and Quebec do not, and Singapore only does as a public language while maintaining Chinese, Malay, and Tamil as home languages.
  • They use English common law – but Quebec uses a French-derived code for civil law.
  • They have extensive right to trial by jury – but Israel and Singapore have no juries.
  • They use single-member districts in elections – but Singapore and Hong Kong are undemocratic, Israel and New Zealand use proportional representation, Ireland uses single transferable vote, and Australia’s single-member districts use instant runoff (cf. France’s single-member districts with runoffs).
  • They have higher economic inequality than other developed countries, lower taxes and government spending, and weaker unions – but there are some exceptions (e.g. Canada and Australia are less unequal than Italy, and South Korea and Japan have lower taxes than most of the Anglosphere), and moreover the ranges within both the Anglosphere and the rest of the developed world are quite wide.
  • They make extensive use of privatization and public-private partnerships for infrastructure and services – but Stockholm contracts out its urban rail whereas no major American city does, and France built one of its recent high-speed lines, the one to Bordeaux, as a PPP.
  • The smaller countries see the US, the UK, or both as inspirations for what modern prosperity looks like – but Israel compares itself with both the US and Western Europe (especially Germany), Singapore’s cultural cringe extends toward both the US/UK and bigger East Asian countries, and Hong Kong is torn between Western and Chinese models.

Every distinguishing feature of the Anglosphere can be made to correlate with high construction costs, but that tells us little, because it could be that this is just a spurious relationship, the real cause being something else about the Anglosphere. When making a claim about what makes the US, UK, and Canada so expensive to build in, it’s useful to test it against special cases – that is, countries that are part of the Anglosphere in general but fail that specific criterion.

The legal system

With respect to common law, Quebec is the ideal testing ground. Montreal and Toronto share more social and economic features than do other pairs of major cities with their respective languages. A large Toronto premium over Montreal would suggest that remaining differences, such as the legal code or maybe the peculiarities of Quebec politics, matter to construction costs.

But what we see is the opposite. In the 2000s, Toronto and Montreal both built subway extensions at pretty reasonable costs. Since then, costs have risen in both cities in tandem, placing the planned Blue Line extension in Montreal and the planned Ontario Line and Scarborough replacement in Toronto among the most expensive non-New York subways. So it’s likely that common vs. civil law makes no great difference to costs.

Electoral politics

By the same token as with the use of common versus civil law, we can look at the electoral system. Israel and New Zealand use fully proportional elections, and Israel has national lists, without any local empowerment. Both countries have cheap recent electrification projects, but when it comes to tunneling, both Tel Aviv and Auckland are on the expensive side.

Conversely, France has single-member districts with runoffs; the lack of a spoiler effect weakens political parties, but they’re still stronger than in the US, and in practice independent candidates mostly run explicitly as left or right. Any reasonable mechanism for why single-member districts should raise construction costs should apply regardless of whether these districts are elected by plurality or with runoffs (and besides which, Melbourne has extreme costs and Sydney fairly high ones). And yet, French costs are decidedly average: Grand Paris Express is the median world subway by construction costs, and other Metro extensions in Paris and other French cities are somewhat cheaper.

Unions and inequality

The political factor – the Anglosphere’s socioeconomic policy is generally to the right of that of Continental European countries – has its own special cases too. The American left and center-left has in particular seized upon the importance of health care to construction costs, since the US has high health care costs and employers, especially in the public sector, are expected to pay most of the costs of workers’ health insurance. But the UK and Canada both have largely public systems that the American left uses as inspiration for its single-payer health care plans, and the UK also has very good cost control; and yet both countries have very high infrastructure construction costs. Singapore, whose health care system is private and unequal but also low-cost, has very expensive subway construction as well.

We can similarly look at inequality in general, or at union power. The correlation between inequality and national construction costs should be fairly high, if only because the Anglosphere has high inequality as well as high construction costs. However, per Branko Milanovic’s data for after-tax-and-transfers inequality, Canada, Britain, and Australia all have slightly lower inequality than Spain, and are comparable to Greece and Italy.

Unions can affect construction costs in either direction. The American center-right and right complain that the power of public-sector unions warps public incentives and forces high construction and operating costs, citing union hostility to productivity improvements that include layoffs, or such regulations as prevailing wage laws. However, the most unionized countries in the developed world are in Scandinavia, where costs are low. The OECD has union density figures by country, and the big cleave is Scandinavia versus the rest. The Anglosphere is on the weaker side.

Perhaps the correlation must then go the other way? That is, weak unions increase costs, for example by creating a siege mentality among those workers who do have stable union jobs (including rail workers, as the industry’s economic and political situation is friendly to unionization)? But the data does not support that, either. Spain’s union density is barely higher than the US’s and much lower than Britain’s, and Greece’s is comparable to Britain’s. The available data strongly suggests that union power has no effect on construction costs, positive or negative.

Could it be privatization?

Privatization and the reliance on PPPs is the least clean of the Anglosphere’s special features – that is, it is not always used throughout the countries I identify with the Anglosphere, and conversely it may be used elsewhere, even in countries with generally left-wing economic policy like Sweden. Nonetheless, among the political, legal, social, and economic factors, it is the only one I cannot rule out.

The issue is not precisely contracting out something, as Stockholm is doing with urban rail. Rather, it is more specifically privatizing the planning aspects of the state, such as engineering. Spain relies heavily on in-house engineering and design, while the US and UK, and by imitation the rest of the Anglosphere, prefer private consultants. To the extent I have cost comparisons within the same city or country with different levels of privatization, they’re suggestive that it matters: the publicly-funded LGV Est Phase 2 cost €19 million per kilometer (with a tunnel covering 4% of the route), the PPP LGV Sud-Europe-Atlantique cost €23 million per kilometer (with no tunnels), the two lines opening within a year of each other. This is not an enormous cost difference, but accounting for the tunnel makes the cost noticeable, perhaps a factor of 1.5.

Conclusion

Overrelying on a single case is not particularly robust. In light of the similarities between costs of different lines in the same city, and even those of different cities in the same country, the N for a quantitative comparison is not large – my data table currently has 38 unique countries, and even accounting for a few misses for which I haven’t included data yet, like Israel, the number is not much larger than 40. It is not responsible to use multivariable regressions or other advanced statistical techniques in such a situation.

In that case, looking at one or two cases provides a powerful sanity check. As far as I can tell, the Anglosphere’s tendency toward privatization and using consultants, often reinforced by different English-speaking countries learning one another’s practices, could be a serious cost raiser. However, the other special features of the Anglosphere – common law, winner-take-all elections leading to two-party systems, and weak unions and welfare states – are unlikely to have a significant effect.

Meme Weeding: Unions and Construction Costs

Lately I’ve seen some very aggressive people on social media assert that high American transit construction and operating costs are the fault of unions, and thus, the solution is to break the unions using the usual techniques of subterfuge and breaking implicit promises. A while back, maybe a year ago, I even saw someone argue that gadgetbahn (monorails, PRT, Hyperloop, etc.) is specifically a solution to union agreements covering traditional transit but not things that are marketed as new things. This is an incorrect analysis of the problem, and like many other incorrect analyses, the solutions that would follow were this analysis correct are in fact counterproductive.

American costs are high even without unions

The majority of American transit construction occurs in parts of the country with relatively strong unions. This is for historical reasons: American cities with large prewar cores are both more unionized and more densely populated than newer Sunbelt cities. Thus, a table with cities and their subway construction costs, such as what one might get cobbling together my posts, will show very high costs mostly in cities with American unions.

However, American cities with weak unions build transit too, it’s just unlikely to come with subway tunnels. We can look at above-ground urban rail construction costs in a variety of American states with right-to-work laws. There is one recent above-ground metro line in a right-to-work state, the Washington Silver Line in Virginia, and another proposal, an extension of MARTA. Let’s compare their costs with those of other mostly at-grade urban rail lines in unionized West Coast states:

We can go lower than this range by looking at street-running light rail lines, which are popular in such Sunbelt cities as Dallas, Houston, Phoenix, and Charlotte, but then we can compare them with light rail lines in Minneapolis, which has no right-to-work laws.

Let’s also look at commuter rail. Dallas’s Cotton Belt Line, a diesel line in a disused freight right-of-way, is projected to cost $1.1 billion for 42 km. The cost, $26 million per km, is within the normal European range for greenfield high-speed rail without tunnels, and more than an order of magnitude higher than some German examples from Hans-Joachim Zierke’s site. In Massachusetts, the plans for South Coast Rail cost around $3 billion for 77.6 km before some recent modifications cutting both cost and length, about $40 million per km; this would have included electrification and right-of-way construction through an environmentally sensitive area, since bypassed to cut costs.

Finally, what of operating costs? There, the Sunbelt is unambiguously cheaper than the Northeast, Chicago, and California – but only by virtue of lower market wages. The cost ranges for both sets of states are wide. In Chicago and San Francisco, the operating costs of rapid transit are not much higher than $5/car-km per the NTD, which is normal or if anything below average by first-world standards. Light rail looks more expensive to operate in old unionized cities, but only because Boston, Philadelphia, and San Francisco’s light rail lines are subway-surface lines with low average speeds, which are more expensive to run than the faster greenfield light rail lines built elsewhere in North America. The lowest operating costs on recently-built light rail lines in the US are in Salt Lake City, San Diego, and Denver, and among those only the first is in a right-to-work state.

Non-labor problems in American transit

I urge everyone to look at the above lists of American transit lines and their costs again, because it showcases something important: high American costs are not a uniform problem, but rather afflict some areas more than others. Commuter rail construction costs are the worst, casually going over European levels by a full order of magnitude or even more. Subway operating costs are the best, ranging from no premium at all in some cities (Chicago) to a factor-of-2 premium in others (New York). Light rail construction costs are in the middle. The variety of cost premiums suggests that there are other problems in play than just labor, which should hit everything to about the same extent.

When I’m asked to explain high American construction costs, I usually cite the following explanations:

  1. Poor contracting practices, which include selection of bidders based exclusively on cost, micromanagement making companies reluctant to do business with New York public works, and design-build contracts removing public oversight and encouraging private-sector micromanagement.
  2. Poor project management: Boston’s Green Line Extension is now budgeted at about $1 billion for 7.6 km, but this is on the heels of an aborted attempt from earlier this decade, driving up total money spent beyond $2 billion.
  3. Indifference to foreign practices: Americans at all levels, including transit agencies, shadow agencies like the Regional Plan Association, and government bodies do not know or care how things work in other countries, with the partial exception of Canada and the UK, which have very high costs as well. The area where there has been the greatest postwar innovation in non-English-speaking countries, namely commuter rail, is the one where the US is the farthest behind when it comes to cost control. Explanation #1 can be folded into this as well, since the insistences on cost + technical score bid selection and on separation of design and construction are Spanish innovations, uncommon and obscure in the English-speaking world.
  4. Overbuilding: extra infrastructure required by agency turf battles, extra construction impact required by same, and mined stations. Other than the mined stations, the general theme is poor coordination between different agencies, which once again is especially bad when commuter rail is involved for historical reasons, and which in addition to raising costs also leads to lower project benefits.

Labor is a factor, but evidently, the intransigent BART unions coexist with low operating costs, as do the Chicago L unions. American unions are indifferent to productivity more than actively hostile to it, and in some cases, i.e. bus reforms in New York, they’re even in favor of treatments that would encourage more people to ride public transit.

But union rules force transit agencies to overstaff, right?

In the Northeast, there are unambiguous examples of overstaffing. Brian Rosenthal’s article for the New York Times found horror stories, and upon followup, frequent commenter and Manhattan Institute fellow Connor Harris has found more systematic cases, comparing the ~25 people it takes to staff a tunnel-boring machine in New York with the 12 required in Germany. The unions themselves have pushed back against this narrative, but it appears to be a known problem in the infrastructure construction industry.

So what gives? In Texas, the unions are too weak to insist on any overstaffing. Texas is not New York or even California. Without knowing the details of what goes on in Texas, my suspicion is that there is an informal national standard emerging out of mid-20th century practices in the cities that were big then. I see this when it comes to decisions about construction techniques: features that came out of the machinations of interwar New York, like the full-length subway mezzanine, spread nationwide, raising the cost of digging station caverns. I would not be surprised to discover something similar when it comes to staffing. Obvious economies like running driver-only train are already widespread nearly everywhere in the US, New York being the exception. Less obvious economies concerning maintenance regimes are harder to implement without very detailed knowledge, which small upstart Sunbelt transit agencies are unlikely to have, and if they invite consultants or other experts, they will learn to work in the same manner as the big American transit agencies.

The reality that the entirety of the American transit industry is used to doing things a certain way means that there needs to be a public discussion about staffing levels. There are jobs that look superfluous but are in fact crucial, and jobs that are the opposite. The cloak-and-dagger mentality of anti-union consultants does not work in this context at all. Experimentation is impossible on a safety-critical system, and nothing should be changed without double- and triple-checking that it works smoothly.

Anti-union explanations are harmful, not neutral

While union overstaffing does drive up tunneling costs in the United States, there are many other factors in play, which must be solved by other means than union-busting. By itself, this would make union-busting either neutral or somewhat positive. However, in reality, the politics of union-busting wreck government effectiveness in ways that make the overall cost problem worse.

The people who try to tell me the problem is all about the unions are not, as one might expect, Manhattan Institute hacks. Connor himself knows better, and Nicole Gelinas has been making narrow arguments about pension cuts rather than calling for sweeping changes to leave unions in the dust. Rather, the loudest anti-union voices are people who either are in tech or would like to be, and like using the word “disruption” in every sentence. The Manhattan Institute is pretty open about its goals of union-busting and race-baiting; in contrast, the people who tell me gadgetbahn is necessary to avoid union agreements insist on never being public about anything.

The rub is that it’s not possible to solve the coordination problem of public transit agencies without some sort of public process. Adding gadgetbahn to the mix creates the same result as the XKCD strip about 14 competing standards. The more the people building it insist that they’re disruptive synergistic innovators inventing the future with skin in the game, the less likely they are to build something that’s likely to be backward-compatible with anything or cohere to form a usable network.

Nor is it possible to assimilate good industry practices by cloak and dagger politics. The universe of industry practices is vast and the universe of good practices isn’t much smaller. The only way forward is via an open academic or quasi-academic process of publication, open data, peer review, and replication. A single consultancy is unlikely to have all the answers, although with enough study it could disseminate considerable knowledge.

There needs to be widespread public understanding that the United States is behind and needs to import reforms to improve its transportation network. This can happen in parallel with a process that weakens unions or for that matter with a process that strengthens them, but in practice the subterfuge of managers looking for union-busting opportunities makes it difficult to attack all cost drivers at once. Whatever happens with conventional left-right politics, there is no room for people who reduce the entirety or even the majority of America’s transit cost problem to labor.

Celebrate Birthdays, not Holidays

To the transportation user, holidays are nothing but pain. Synchronized travel leads to traffic jams and very high rail and air fares, and synchronized shopping by car leads to parking pain. American commercial parking minimums are designed around the few busiest days of the year (source, endnote #8), timed for the Christmas rush. In France, synchronized travel at the beginning and end of school holidays is so bad that each region begins and ends its winter and spring breaks on different dates. There’s so much travel pain, and associated waste in designing transportation around it, that it’s worth asking why even bother.

The travel pain is even worse than mere congestion. When I visited London in early July, Eurostar broke in both directions. This was not a pair of random delays. French holiday travel is synchronized even though there are two months of summer break and only about one month of paid vacation net of the other holidays: traditionally people from all over the country and the world visit Paris in July, and then Parisians visit other places in August.

With slow boarding at the stations courtesy of security theater and manual ticket checks with just two access points per train, it takes longer than usual to board the trains when they are full. With full trains throughout the day, the delays cascaded, so by afternoon the trains were hours off schedule. Eurostar let passengers on trains on practically a first-come, first-served basis: people with tickets on a train got to ride the next available train. I had a ticket on an 11:39 train, and got to ride the train that was nominally the 11:13 (there were a few available seats) but departed at 12:58, and my nominally-11:39 train departed even later.

Eurostar’s inability to deal with crowds that occur annually, at a time when revenue is highest, is pure incompetence. But even if that particular problem is resolved, the more fundamental problem of unnecessary swings in travel volumes remains. On domestic TGVs it’s seen in wild price swings. Today is the 8th. In two weeks, a one-way TGV ticket from Paris to Marseille costs 72-74 on Thursday the 22nd or Friday the 23rd (Friday is the traditional peak weekend travel date and increasingly Thursday joins it) and about 62 on Saturday the 24th. But next month, on the 23rd, I see tickets for about 150, and even the low-comfort OuiGo option, which usually has 10 tickets (from the suburbs, not Paris proper), shoots up to 100; even with these prices, most trains are sold out already.

In some cultures, common holidays serve a religious or otherwise traditional purpose of bringing the extended family together. This is the case for Chinese New Year, which causes overcrowding on the mainline rail network at the beginning and end of the holiday as urban workers visit their families back home, often in faraway interior provinces. The same tradition of extended families occurs on Passover, but Israel has little travel pain, as it is so small that Seder travel is the same as any other afternoon rush hour.

However, there is no religious or social value to synchronized school holidays, nor is there such value to Western holidays. Western Christian civilization has centered nuclear families over extended families for around a millennium. In modern-day American culture, people seem to spend far more time complaining about the racist uncle than saying anything positive about catching up with relatives.

Christmas has religious significance, but much of the way it is celebrated in rich countries today is recent. The emphasis on shopping is not traditional, for one. The travel peak is probably unavoidable, since Christmas and New Year’s are at a perfect distance from each other for a week-long voyage, but everything else is avoidable. A source working for a bookstore in Florida, located strategically on the highway between Disneyland and the coast, told me of two prominent peaks. In the summer there would be a broad peak, consisting mostly of European tourists with their long paid vacations. But then there would be a much sharper peak for the holiday season between Thanksgiving and Christmas, in which the store would fill every cashier stall and pressure employees, many of whom temps working seasonally, to work overtime and get customers through as quickly as possible.

Some holidays have political significance, such as various national days, but those do not have to create travel peaks or shopping peaks. Bastille Day doesn’t.

Finally, while it’s accepted in Western countries today that summer is the nicest season to travel, this was not always the case, and even today there are some exceptions. The Riviera’s peak season used to be winter, as the English rich fled England’s dreary winters to the beaches; Promenade des Anglais in Nice is named after 19th century winter vacationers. When I lived in Stockholm, I was more excited to visit the Riviera in the winter, fleeing 3 pm sunsets, than in the summer. Today, Japan has a peak for the cherry blossom in the spring, while in New England (and again in Japan) there is a tradition of leaf peeping in the fall.

Instead of centering synchronized holidays, it’s better for states to spread travel as well as shopping behavior throughout the year as much as possible. Different people have different preferences for seasonality, and this is fine.

For bigger shopping seasons, the best thing to do is to emphasize birthdays. Instead of trying to fix major holidays, the way Lincoln did for Thanksgiving, it’s better to encourage people to make their biggest trips and biggest shopping around birthdays, anniversaries, saint days in Catholic countries, and idiosyncratic or subculturally significant days (such as conventions for various kinds of geeks). There are already well-placed traditions of birthday and anniversary gifts. In academia it’s also normal to extend conference trips into longer vacations, when they don’t conflict with teaching schedules.

The impact on labor is reduced seasonality, and far less peak stress. With less seasonal employment, the natural rate of unemployment may also end up slightly lower. The impact on transportation is a large reduction in travel peaks, which would make it easier to run consistent scheduled service year-round, and to maintain car travel and parking capacity at its average day level rather than building parking lots that go unused 364 days out of every year.

Our Brooklyn Bus Redesign

Eric Goldwyn and I spent about six months working on a Brooklyn bus redesign. I mentioned some aspects of it before here, on social media, and in blog comments, but not the overall shape. Eric and I gave a pair of presentations about our plan, one two days ago at the MTA in front of senior MTA planners and NYC DOT people and one today at TransitCenter in front of activists and mid-level MTA planners. We have a still-unreleased writeup explaining everything we’re doing with references to both public reports from various cities and peer-reviewed literature. Here I’m going to condense the 8,000-word writeup into a blog post length, going over the main points, including of course the proposed map.

The map, in brief

The depicted version is 1.1. You can see a lower-resolution version 1.0 on Streetsblog, albeit with a different color code (the map we made for the presentation, reproduced on Streetsblog, uses red for the highest-frequency routes and blue for the lowest-frequency ones whereas the Google Earth version linked above is the opposite). It has 353 route-km, down from about 550 today, not including Grand and Metropolitan Avenues, which are Queens bus routes, shown on the map for completeness’s sake, without stopping pattern.

Some tails are cut due to low ridership or duplication of rail:

  • The B25 on Fulton goes.
  • The B37 on Third Avenue is consolidated into the B63 on Fifth.
  • The B45 and B65 are merged into one compromise route.
  • The B15 is cut east of the Long-Term Parking JFK AirTrain station (where service is free); ideally it would be cut east of City Line with passengers taking the subway to the AirTrain (as was the case in version 1.0), but I do not expect Port Authority to integrate AirTrain fares with the subway.
  • The B41 is cut north of Parkside Avenue, at the transfer to the B/Q.
  • Instead of two routes in Bed-Stuy between Nostrand (i.e. B44) and Malcolm X (i.e. B46), today’s B15 and B43, there’s just one route.
  • The B57 segment on Court and Smith Streets in South Brooklyn goes, as the subway serves the area in several directions.
  • The B39 over the Williamsburg Bridge goes.
  • The B32 and B62, providing north-south service through Williamsburg up to Long Island City, are merged into one compromise route.
  • The East New York bus network is circuitous (buses go to Gateway Center the long way around) and is straightened here.
  • In version 1.0, the B26 on Halsey was cut west of Franklin with a forced transfer to the subway, but the short distance to Downtown Brooklyn argues in favor of continuing to at least Flatbush.

Overall, this is a cut from 54 routes (including the separately-managed MTA Bus routes B100 and B103) to 37. The smaller network is far more frequent. The minimum frequency is,

  • Every 6 minutes between 6 am and 10 pm every day.
  • Every 10 minutes between 5 and 6 am and between 10 pm and midnight.
  • Every 30 minutes between midnight and 5 am; every 20 minutes with timed transfers to the subway is aspirational, but the subway doesn’t run reliably on a timetable overnight for such a system to be viable. The 30-minute night network could potentially involve mini-pulses in Downtown Brooklyn and smaller hubs (like East New York and Bay Ridge).

Routes depicted in red on the Google Maps link, or in blue on the map in the Streetsblog link, have exactly the minimum frequency. Routes depicted in green have higher frequency at the peak; routes depicted in blue on Google Maps or red on Streetsblog have higher frequency peak and off-peak. Higher frequency than the minimum is depicted as “Utica [2/4]” (buses on Utica run every 2 minutes peak, 4 off-peak) or “Avenue U [5/6]” (buses on Avenue U run every 5 minutes peak, 6 off-peak). Peak means 7-9 am and 5-7 pm on weekdays, in both directions; the morning peak is a little earlier and the afternoon peak a little later than the subway peak, but as buses are still mostly subway feeders, an earlier morning peak and a later afternoon peak are justifiable.

Speedup treatments

Pruning the network is not the only or even most important part of bus reform. Buses have to be sped up to be useful for people except as last-resort transit. In interviews about unrelated topics, people have volunteered to me that they do not take trips they used to take due to the degradation in bus speed and reliability. New York City Transit bus ridership peaked in 2002; the fare hike in 2003 led to a small dip in ridership that the mid-2000s oil crisis didn’t quite erase, and then in the recession and subsequent recovery bus ridership crashed. In Manhattan it’s 30% below the 2007 level; in Brooklyn it’s 20% below the 2007 level, with buses extending the subway or letting people connect to a better line (like the B41 and B35) particularly hit.

The current average speed in Brooklyn is about 11 km/h. Excluding limited-stop buses, it’s 10.8. We’re proposing to increase it to 15, even though the redesign is pruning buses in faster areas more than in slower ones. This is using four speedup treatments.

Prepayment

Today, New York prefers to treat off-board fare collection as a special product available only on select buses (i.e. SBS). This should be changed to citywide prepayment, with all-door boarding. German-speaking cities do it; so does San Francisco. Data from San Francisco and from the TRB (PDF-p. 20) suggests a gain of about 2.5-3 seconds per passenger boarding, counting both boarding and alighting time. At Brooklyn’s bus ridership level, this suggests a saving of around 400-450 revenue-hours, or about 4% of total service-hours. This is not a big change, but it helps stabilize the schedule by slowing down the mechanism by which buses bunch.

How to get passengers to pay if not on-board remains an open question; there are several approaches. The Zurich model involves placing a ticket-vending machine (TVM) at every bus stop. While New York severely pays for TVMs on SBS (the RPA says $75,000 per stop), an ATM costs $3,000, so installing the required infrastructure need not cost a lot. But more commonly, passengers can board freely if they have transfers or unlimited monthlies and pay the driver (potentially after the bus has begun moving) otherwise.

Of note, the bus drivers are particularly interested in prepayment. Eric and I explained the issue in a CityLab article a few months back: the drivers are worried about being assaulted by riders who don’t want to pay.

Stop consolidation

About 60% of the time saving in our plan relative to current practices comes from stop consolidation. I discussed the issue here, and our forthcoming report has references to many studies in the literature optimizing stop spacing for minimum door-to-door travel time. With each deleted stop saving 20-30 seconds (say 25 seconds on average), our proposed stop consolidation, from an average of 220 meters to 490 excluding long tails (i.e. the B15’s long nonstop segment toward JFK) saves around a minute per km, cutting travel time from 5.5 minutes per km to 4.5.

Conceptually, stop spacing should be longer when trips are longer, or when relative density is less uniform. New York City Transit bus trips are short, as many are subway extenders, but relative density is extremely spiky, as a large number of people get off at a few dominant stops at the subway connection points. If the on/off density on a route is uniform, then lengthening the stop spacing means passengers have to walk longer at both ends; but if passengers are guaranteed a connection at one end (because of transfer points with the subway or other buses) then they only have to walk longer at the other end. Based on this principle, Utica and Nostrand get particularly long stop spacing. Conversely, routes with extremely short trips, like the Mermaid route inherited from the B74, have shorter stop spacing.

To improve network legibility, we have tried as far as possible to have buses stop on consistent streets. For example, south of Fulton Street (where it’s awkwardly between Nostrand and Franklin), Bedford Avenue gets a stop on every intersecting bus, including east-west routes but also the diagonal B41.

Every bus stop should have shelter. In Central Florida, North Florida, and London, this costs $10,000 per stop, give or take. Our 707-stop plan (700 in version 1.0) would cost $14 million at this cost. Even at Santa Ana’s higher cost of $35,000, it’s $50 million. NIMBYs who oppose stop consolidation argue that having many stops is necessary for people with disabilities, but people with disabilities would benefit from benches and shelter, without needing to stand for 15 minutes waiting for bunched buses.

Bus lanes

Every bus in an area with congestion should get dedicated lanes. SBS implementations so far, imperfect as they are, have saved around 30 seconds per km in traffic. Physically-separated median lanes should do better; the MTA and NYCDOT have so far avoided them on the theory that local and limited bus routes should coexist on the same route and limiteds should pass locals, but in reality, a single stopping pattern is better, and then there are no drawbacks to physical separation.

On wide streets, this is not a problem. On narrow ones, it is. The real headache is Nostrand, about 25 meters wide building to building, enough for just four lanes. The correct thing to do is a moving lane and a bus lane in each direction, with merchants told to park on side streets. If parking is unavoidable, then a contraflow bus lane, with parking on one side, is also feasible, but less safe for pedestrians (Boulevard Saint-Michel has this configuration and has to remind pedestrians crossing the street to look left).

Two-way buses are essential whenever streets are widely separated, as on avenues, in Brooklyn as well as Manhattan. Nostrand is just more important than Rogers and New York Avenue, where northbound B44s go today; today’s configuration forces east-west buses to make too many stops (the B35 limited makes 4 stops in a kilometer).

Signal priority

Buses should get priority at intersections and not just on the street. The studies we’ve seen find a 4-7% gain, bus only on individual bus routes, not gridded networks. In our proposed trip times we are not assuming any speedup from signal priority, just better timekeeping as more delayed buses get priority to stabilize the schedule. This is a counter-bunching mechanism more than a straight speedup.

A process, not an immutable product

Jarrett Walker’s bus network redesigns tend to come as complete products, changed rapidly from radial low-frequency networks. What we’re proposing is a longer process. Nova Xarxa began implementation in 2012 and is wrapping up now, installing a few routes at a time by cannibalizing parallel routes. The map we’re showing is what we estimate would be a good fit for 2022-3. Beyond that, more subway stops are going to be wheelchair-accessible, making it easier to prune more subway-parallel buses (like the B63).

Gradual implementation means starting from the easier parts of the network. East New York’s current network is so circuitous that straightening it should not be too controversial. Our proposed redesign there is also better at connecting to the 2, 3, 4, and 5 trains and not just the L, which should prove valuable during the L shutdown. In Southern Brooklyn, we are proposing more service, but this could be paired with stop consolidation. Central Brooklyn and Bed-Stuy require the most street redesigns and the most robust frequency network-wide (as they are already transfer-based grids, and nobody transfers at 12-15 minute off-peak frequency) and could be done later; the B25 itself should probably not be eliminated until Broadway Junction is made accessible on the A and C lines.

We are not even wedded to the map as a proposal for 2022. Some variations are always possible, as already seen in the differences between versions 1.0 and 1.1. The biggest addition we can think of is adding a second north-south route through Bed-Stuy: the existing one would be moved from Marcus Garvey to Throop (hitting the subway better), while the B17 could be extended up Troy and Lewis.

Overall, Brooklyn has 10,800 service-hours today. Our redesign uses just 10,000, with a 1% gain in efficiency from location relative to bus depots on top of that. There is room for service increases, or restoration of marginal routes required for political reasons, or slowdowns imposed by political unwillingness to install bus lanes.

Win-lose

In a modern developed country, it’s rare to find win-win situations. The US is blessed with these in transit (i.e. it’s so inefficient at construction it might as well be third-world), but not in urban bus networks. Stop consolidation is a net benefit to the average user of the route, but a few people would still see longer trips, e.g. those living at the exact midpoint between two widely-spaced stops. Route consolidation (as in Ocean Hill) is the same thing.

There are sociopolitical groups that would win out: labor would see higher ridership, reducing the pressure to cut jobs; regular commuters (who generally have low transfer penalties) would see faster trips; people with disabilities that make it difficult for them to stand (as is true of some people with chronic pain) would be able to sit at bus stops and wouldn’t need to sit for long. In contrast, small business owners would sometimes lose the ability to park in front of their stores, and occasional users who usually drive would see longer perceived trips because of stiff transfer penalties.

This is equally true on the level of neighborhoods. Southern Brooklyn generally gains, and Borough Park in general gains an extra north-south route (though this is canceled out by high transfer and access penalty among Haredis: in Israel they just won’t walk longer to better service). East New York sees much more direct routes. Flatbush and East Flatbush don’t see much change in network structure but do gain off-peak frequency. Red Hook gains a direct connection to Manhattan. But then Bed-Stuy loses north-south routes, South Brooklyn’s buses are completely gutted, and Williamsburg loses north-south routes.

A political system based on citywide (or nationwide) ideological groups could find the will to build the network we’re proposing or something like it. Could a system based on local representation, treating retirees and small business owners as a vanguard class, deliver the same? We will see in the next year or two.

Why Free Trade in Rolling Stock is Good

Classical economics asserts that if two countries freely trade, then both gain relative to a baseline in which they don’t trade. The classical theory of comparative advantage hinges on reciprocal free trade. But more recently, economists have begun to push for entirely domestic support for free trade, arguing that reducing trade barriers is good even without reciprocation. The arguments involve corruption and misallocation of capital coming from protectionism. Whatever criticism there may be of this neoliberal conception of trade, rolling stock appears to be an example in which this conception is right.

I have previously criticized informal French protectionism in high-prestige procurement for blowing up Parisian rolling stock costs by a factor of almost 2. In Paris, my example of what could be done with the money Ile-de-France Mobilités is wasting on rolling stock was infrastructure construction, justified by the city’s very low construction costs relative to ridership (if not relative to route-length). But there’s an even better set of examples of high costs in the United States, justified on labor grounds and yet involving wastes of money disproportionate to the number of jobs created.

Last month, The American Prospect published an article about a union push to have more US rolling stock made in America, by unionized workers. The TAP article talks about a light rail vehicle order in Los Angeles for $890 million, for what the article says is 175 cars and what manufacturer Kinki Sharyo and other industry sources say is 235 cars, built at a dedicated factory in the Los Angeles exurbs. The purpose of the article is to advocate for more protectionism for the sake of American union members, so it details the wages the workers are making (about $20 an hour, up from $11 for unskilled jobs elsewhere) but does not delve into comparative costs. It’s worth asking if the costs are competitive, and the answer is that they are not.

The cost of LACMTA’s Kinki Sharyo order is $3.8 million per car; these cars are 27 meters long, so this translates to $140,000 per meter of train length. In contrast, the average cost in Europe appears to be just under $100,000 per meter, across a variety of cities and models:

The shortest trains on this list (the Citadis Compact orders, at 22-24 meters) are in the middle of the pack, so it’s unlikely there’s any nonlinearity in cost; moreover, the Compact is slightly shorter than the Kinki Sharyo trains, so no extrapolation is required, only interpolation.

The LACMTA order follows another premium-priced light rail order in the same state: as I wrote in the Bay City Beacon last year, Muni Metro’s Siemens LRV order cost about $4 million per 23-meter car, about $170,000 per meter of train length. The trains are being built at a new plant in Sacramento.

The United States has federal Buy America laws, requiring federally-funded contracts to buy domestic products provided they cost no more than 25% more than equivalent imports. However, there is no in-state purchase requirement. Owing to large New York City Subway orders, some vendors have long-established plants near New York (Kawasaki and Alstom are in-state, Bombardier is in Vermont). However, under informal pressure from activists within California to provide good local jobs, LACMTA asked bidders to open local factories. Moreover, Siemens most likely placed its plant in Sacramento rather than in lower-cost states in order to curry favor with state-funded orders.

We even see the same problem in Massachusetts, where CRRC opened a plant in Springfield for an MBTA Red and Orange Line car order. The order itself does not come at a premium – according to Metro Report the base order is about $100,000 per meter of train length and the option is $115,000, and the range of per-meter costs for subway trains is the same as that for LRVs – but it’s possibly a loss leader to help establish CRRC as a player in the American market. Even before Trump’s election, Congress investigated the order, which beat the competitors by a large margin; the competing bids were about $135,000 per meter for the base order. It says a lot about Massachusetts’ broken procurement that it takes a loss leader just to get costs down to their international levels. Nonetheless, the US premium does appear to be smaller for large subway orders than for small and medium-size LRV orders, since the extra costs of siting and setting up a factory are spread across more units.

The explicit goal of local content requirements is to create jobs. This is usually justified in terms of inequality and bleak prospects for unskilled workers. However, there is no cost-benefit calculation involved in this. According to TAP, the LACMTA order is creating 250 jobs manufacturing the trains; it doesn’t say how long they will last, but the duration of the contract is about 6 years. But the premium, about $300 million, works out to $1.2 million per job, a large multiple of total compensation to the workers. The Springfield plant has 200 jobs paying $50,000-60,000 per year, lasting 7 years across more than just the Boston contract; pro-rating to the Boston contract’s share of orders from the plant, the jobs will last around 5 years. Adding back the premium charged by the competing vendors raises the cost to $1 million per job, again a multiple of total working-class compensation.

There are two reasons why labor protectionism costs so much compared with its direct impact on working-class hiring. The first is leakage: much of the premium goes to management, including factory design and construction, or is just wasted on inefficiency (CRRC is opening a second American plant, in Chicago, instead of building everything at one plant). Some of the money goes to foreign consultants with the vendor and some stays domestic, but the domestic leakage goes to sitework and not to direct hiring.

The second reason is corruption and degradation of institutions. When the goal of public procurement is not just to buy the best product in terms of cost and quality, lobbyists make demands, like local hiring, that corrupt the process. A city that signals that the only things that matter are cost and quality will attract vendors who make the best bids in terms of cost and quality; a city that signals that the process depends on local political needs will attract vendors who make bids in order to satisfy local political actors, who as a rule don’t give a damn about good transit. Thus American agencies buy trains at a premium well beyond Buy America’s 25% limit, just because they think of cost and quality as just two of several political priorities and not as the sole legitimate bases of choosing a bidder.

The United States leads the world in higher education costs. The unsubsidized cost of a college degree at a good public university is about $100,000; at CUNY, which provides a good quality of degrees even if it’s so underfunded that classrooms aren’t supplied with chalk, it’s about $75,000. Stipends at the level of a good graduate program add another $30,000 or so per year. For around $200,000 per person, California could send low-income workers to college and pay for their living expenses for the duration of the degree, whereupon they will be able to get unsubsidized jobs paying much more than $20 per hour. For workers who can’t go to college, trade school is another option, offering decently-paying jobs for much lower cost since they take much less time. There is no need to lade the transit capital budget with what should be state or federal retraining grants; given the massive difference in cost, even the loss of matching funds (i.e. other people’s money) can leave the state or the city better off.

The problem is that there is no political incentive to think in such terms. Part of it is the corruption of institutions, as I mentioned already: labor groups see an opportunity to create jobs from a budget that from a local perspective is other people’s money. Another part is political prestige: romantics like old jobs (farmer, builder, truck driver, coal miner, baker, factory worker), which have had enough time to percolate into the national psyche, and since these jobs are old, they’re likely to be at the low end of the value-added ladder.

Absent very strong rules forbidding protectionism in procurement, this corruption will continue: evidently, Paris insists on buying expensive bespoke trains and somehow manages to get them manufactured within France, even though EU rules against interstate dumping are much stronger than US rules. Rules at the highest level are required to discourage such behavior (although Paris might still waste money on bespoke trains, just ones that can be made in Poland). Congress can and should stop funding any local or state agency that takes in-state content into account in procurement; the US is one democratic country, not fifty mercantile fiefdoms, and should use its status as a superstate with a large internal market to universalize good governance.

Do Rich and Poor People Work in Different Neighborhoods?

There are workplaces where most employees are high-income, for example office towers (or office parks) hosting tech firms, law firms, or banks. There are workplaces where most employees are working-class, for example factories, warehouses, and farms. Does this lead to a difference in commuting patterns by class? I fired up OnTheMap two days ago and investigated. This is American data, so it stratifies workers by income, education, industry, or race rather than by job class. I generated maps for New York and saw the following:

There are three income classes available, and I looked at the bottom and top ones, but the middle one, still skewed toward the working class, looks the same as the bottom class. The biggest observation is that Midtown is dominant regardless of income, but is more dominant for middle-class workers (more than $40,000 a year) than for low-income ones (up to $15,000, or for that matter $15,000-40,000).

The colors are relative, and the deepest shade of blue represents much more density for middle-class workers, even taking into account the fact that they outnumber under-$15,000 workers almost four to one. Among the lowest-income workers we see more work on Queens Boulevard and in Williamsburg, Flushing, and the Hub, but these remain tertiary workplaces at most. The only place outside Midtown, Lower Manhattan, or Downtown Brooklyn (which includes all city workers in Brooklyn due to how the tool works, so it looks denser than it is) that has even the third out of five colors for low-income workers is Columbia, where the low-income job density is one-third that of Midtown, and where there is also a concentration of middle-class workers.

The same pattern – job centers are basically the same, but there’s more concentration within the CBD for the rich – also appears if we look at individual neighborhoods. Here is the Upper East Side versus East Harlem:

I chose these two neighborhoods to compare because they exhibit very large differences in average income and are on the same subway line. Potentially there could be a difference between where East Siders and West Siders work due to the difficulty of crosstown commuting, so I thought it would be best to compare different socioeconomic classes of people on the same line. With the East Side-only restriction, we see two Uptown job centers eclipse Columbia: Weill-Cornell Medical Center in Lenox Hill at the southeast corner of the Upper East Side, and Mount Sinai Hospital at the northwest corner.

One place where there is a bigger difference is the definition of Midtown. Looking at the general job distribution I’d always defined Midtown to range between 34th and 59th Street. However, there are noticeable differences by income:

For the middle class, Midtown ranges from 34th to 57th Street and peaks around 47th. For the lowest-income workers, it ranges from 28th to 49th and peaks in the high 30s. My best explanation for this is that Midtown South and Union Square are more retail hubs than office hubs, featuring department stores and shopping centers, where the rich spend money rather than earning it.

In a deindustrialized country like the US or France, the working class no longer works in manufacturing or logistics. There are a lot of truck drivers today – 3.5 million in the US – but in 1920 the American railroad industry peaked at 2.1 million employees (source, PDF-p. 15), nine times today’s total, in a country with one third the population it has today and much less mobility. Manufacturing has plummeted as a share of employment, and is decreasing even in industrial exporters like Germany and Sweden. Instead, most poor people work at places that also employ many high-skill, high-income workers, such as hospitals and universities, or at places where they serve high-income consumption, such as retail and airports.

Since the working class works right next to the middle class, the nature of bosses’ demands of workers has also changed. Low-skill works now involves far more emotional labor; in Singapore, which makes the modern-day boss-worker relationships more explicit than the Anglosphere proper, there are signs all over the airport reminding workers to smile more. Nobody cares if auto workers smile, but they’re no longer a large fraction of the working class.

With the working class employed right next to the middle class, there is also less difference in commuting. For the most part, the same transportation services that serve middle-class jobs also serve working-class jobs and vice versa. This remains true even across racially segregated communities. The patterns of white New York employment are similar to those of middle-class New York employment, and those of black, Hispanic, and Asian employment are similar to those of the working class, with small differences (Asians are somewhat more concentrated in Flushing, and blacks in Downtown Brooklyn, reflecting the fact that blacks are overrepresented in public employment in the US and all city workers in Brooklyn are counted at Court Square).

This is true provided that opportunities for transportation are available without class segregation. This is not the situation in New York today. Commuter rail actually serves working-class jobs better than middle-class jobs, since Penn Station is closer to the department stores of 34th Street than to the office towers in the 50s. However, it’s priced for the middle class, forcing the working class to take slower buses and subway trains.

When I posted the above maps on Twitter, Stephen Smith chimed in saying that, look, the poor are less likely to work in the CBD than the middle class, so everywhere-to-everywhere public transportation is especially useful for them. While Stephen’s conclusion is correct, it is not supported by this specific data. In the $40,000 and up category, 57% of city jobs are in Manhattan south of 60th Street, compared with 37% in the $15,000-40,000 and under-$15,000 categories. It’s a noticeable difference, but not an enormous one. The reason Stephen is correct about how rides crosstown transit is different: people who can afford cars are very likely to drive if the transit option is not good (which it isn’t today), whereas people who can’t are stuck riding slow crosstown buses; in contrast, for CBD-bound commutes, the subway and commuter rail work reasonably well (especially at rush hour) and driving is awful.

Instead of trying to look specifically at low-income and middle- and high-income job centers, it’s better to just plan transit based on general commute patterns, and let anyone take any train or bus. This doesn’t mean business as usual, since it requires transitioning to full fare integration. Nor does this mean ignoring residential segregation by income, which in some cases can lead to transit segregation even in the face of fare integration (for example, the crosstown buses between the Upper East Side and Upper West Side have mostly white, mostly middle-class riders). Finally, this doesn’t mean relying on middle-class transit use patterns as a universal use case, since the middle class drives in the off-hours or to off-CBD locations; it means that relying on middle-class transportation needs could be reasonable. It just means that the rich and poor have substantially the same destinations.

An even bigger implication relates to questions of redevelopment. There have been periodic complaints from the left about gentrification of jobs, in which working-class job sites are turned over to high-end office and retail complexes. For example, Canary Wharf used to be the West India Docks. In New York, Jane Jacobs’ last piece of writing before she died was a criticism of Greenpoint rezoning, in which she specifically talked up the importance of keeping industrial jobs for the working class. But since the big deindustrialization wave, developments brought about by urban renewal, gentrification, and industrial redevelopment have not had any bias against providing employment for the poor. It’s not the factory jobs that the unionized working class still culturally defines itself by, but it’s industries that are hungry for low-skill work, and in many cases are serious target of unionization drives (such as universities).

Buses in Brooklyn: Frequency is Freedom, but 15 Minutes isn’t Frequency

I’ve recently started working part-time on a project for the Marron Institute at NYU about bus restructuring in Brooklyn; at the end of this summer, I expect to release a proposal for service upgrades and a new map. I’m working on this with Marron scholar Eric Goldwyn, who is funded by the TWU, which is worried that ridership collapse may lead to service cuts and job losses, but I’m funded directly by Marron and not by the union.

Some of what’s likely to appear in the final report should be familiar to regular readers of this blog, or of Human Transit, or of the work TransitCenter has been doing. As I wrote in Curbed earlier this year, bus operating costs in New York are unusually high because the buses are slow, as the main operating costs of buses scale with service-hours and not service-km. Thus, it’s important to speed up the buses, which allows either providing higher frequency at the same cost or the same frequency at lower cost. A bus speedup should include systemwide off-board fare collection and all-door boarding (common in the German-speaking world but also in San Francisco), wider stop spacing, dedicated lanes wherever there is room, and signal priority at intersections; the TWU is an enthusiastic proponent of off-board fare collection, for reasons of driver safety rather than bus speed.

While bus speedups are critical, their impact is not as Earth-shattering as it might appear on paper. New York’s SBS routes have all of the above features except signal priority, and do save considerable time, but are still slow city buses at the end of the day. Brooklyn has two SBS routes: the B44 on Nostrand, averaging 15 km/h (local B44: 11.3), and the B46 on Utica, averaging 13.7 (local B46 on the shared stretch: 10.8). Their speed premiums over the local routes are toward the high end citywide, but are still 30%, not the 200% speed premium the subway enjoys. Moreover, the speed premium over non-SBS limited routes is 15-20%; put another way, between a third and a half of the speed premium comes purely from skipping some stops.

I mentioned in my last post that I met Carlos Daganzo at Berkeley. Daganzo was responsible for the Barcelona bus redesign, Nova Xarxa; you can read some details on Human Transit and follow links to the papers from there. The guiding principles, based on my conversation with Daganzo and on reading his papers on the subject, are,

  • Barcelona has high, relatively uniform density of people and jobs, so there’s no need for buses to hit one CBD. Brooklyn has about the same average residential density as Barcelona, but has a prominent CBD at one corner, but as this CBD is amply served by the subway, it’s fine for buses to form a mesh within the subway’s gaps.
  • Nova Xarxa involved widening the stop spacing in Barcelona from less than 200 meters to three stops per km, or a stop every 300-350 meters; Daganzo recommends even wider stop spacing.
  • While Barcelona’s street network is strictly gridded, the buses don’t run straight along the grid, but rather detour to serve key destinations such as metro stops. This is an important consideration for Brooklyn, where there are several distinct grids, and where subway stops don’t always serve the same cross street, unlike in Manhattan, where crosstown routes on most two-way streets are assured to intersect every north-south subway line.
  • The percentage of transfers skyrocketed after the network was implemented, standing at 26% at the end of 2015, with the model predicting eventual growth to 44%, up from 11% before the redesign.
  • The network was simplified to have 28 trunk routes, the least frequent running every 8 minutes off-peak.

The high off-peak frequency in Barcelona is a notable departure from Jarrett Walker’s American network redesigns; the evidence in Houston appears mixed – ridership is about flat, compared with declines elsewhere in the country – but the percentage of transfers does not seem to have risen. Jarrett says in his book that having a bus come every 10 minutes means “almost show-up-and-go frequency” with no need to look at schedules, but his work in Houston and more recently in San Jose involves routes running every 15 minutes.

Moreover, unreliable traffic in these car-dominated cities, in which giving buses dedicated lanes is politically too difficult, means that the buses can’t reliably run on a schedule, so the buses do not run on a clockface schedule, instead aiming to maintain relatively even headways. (In contrast, in Vancouver, a less congested street network, with priority for all traffic on the east-west main streets on the West Side, ensures that the buses on Broadway and 4th Avenue do run on a fixed schedule, and the 4th Avenue buses have a 12-minute takt that I still remember four years after having left the city.)

I’ve talked about the importance of radial networks in my posts about scale-variant transit. I specifically mentioned the problem with the 15-minute standard as too loose; given a choice between an untimed 15-minute network and a timed 30-minute network, the latter may well be more flexible. However, if the buses come every 5 minutes, the situation changes profoundly. Daganzo’s ridership models have no transfer penalty or waiting penalty, since the buses come so frequently. The models the MTA uses in New York have a linear penalty, with passengers perceiving waiting or transferring time on the subway as equivalent to 1.75 times in-motion time; bus waiting is likely to be worse, since bus stops are exposed to the elements, but if the average wait time is 2.5 minutes then even with a hefty penalty it’s secondary to in-vehicle travel time (about 18 minutes on the average unlinked bus trip in New York).

Unfortunately, that high frequently does not exist on even a single bus line in Brooklyn. Here is a table I created from NYCT ridership figures and timetables, listing peak, reverse-peak, and midday frequencies. Five routes have better than 10-minute midday frequency: the B12, the B6 and B35 limited buses, and the B44 and B46 SBSes, running every 7, 7.5, 8, 8, and 6 minutes respectively. In addition, the B41 limited and B103 have a bus every 9 and 7.5 minutes respectively on their trunks, but the B41 branches on its outer end with 18-minute frequencies per branch and the B103 short-turns half the buses. Another 14 routes run every 10 minutes off-peak, counting locals and limiteds separately.

The problem comes from the split into local and limited runs on the busiest buses. The mixture of stopping patterns makes it impossible to have even headways; at the limited stops, the expected headway in the worst case is that of the more frequent of the two routes, often about 10 minutes. The average ridership-weighted speed of Brooklyn buses is 10.75 km/h. An able-bodied passenger walking at 6 km/h with a 10-minute head start over a bus can walk 2.25 km before being overtaken, which can easily grow to 3 km taking into account walking time to and from bus stops. To prevent such situations, it’s important to run buses much more frequently than every 10 minutes, with consistent stopping patterns.

This does not mean that NYCT should stop running limited buses. On the contrary: it should stop running locals. The SBS stop spacing, every 800 meters on the B44 and B46, is too wide, missing some crossing buses such as the B100 (see map). However, the spacing on the B35 limited is every 400 meters, enough to hit crossing buses even when they run on one-way pairs on widely-spaced avenues. The question of how much time is saved by skipping a stop is difficult – not only do different Brooklyn buses give different answers, all lower than in Manhattan, but also the B35 gives different answers in different directions. A time cost of 30 seconds per stop appears like a good placeholder, but is at the higher end for Brooklyn.

The question of how many stops to add to SBS on the B44 and B46 has several potential answers, at the tight end going down to 400 meters between stops. At 400 meters between stops, the B44 would average 13 km/h and the B46 12 km/h. At the wide end, the B44 and B46 would gain stops at major intersections: on the B44 this means Avenue Z, R, J, Beverly, Eastern Parkway, Dean, Halsey, and Myrtle, for an average interstation of 570 meters and an average speed of 14 km/h, and on the B46 this means Avenue U, Fillmore, St. John’s, and Dean, for an average interstation of 610 meters an average speed of 13 km/h. Consolidating all buses into the same stopping pattern permits about a bus every 2.5 minutes peak and every 4 minutes off-peak on both routes.

On the other routes, consolidating local and limited routes required tradeoffs and cannibalizing some peak frequency to serve the off-peak. While it may seem dangerous to limit peak capacity, there are two big banks that can be used to boost off-peak frequency: time savings from faster trips, and greater regularity from consolidating stop patterns. The B82 is an extremely peaky route, running 7 limited and 10 local buses at the peak and just 6 buses (all local) for a four-hour midday period; but there is a prolonged afternoon shoulder starting shortly after noon with another 6 limited buses. Some peak buses have to be more crowded than others just because of schedule irregularity coming from having two distinct stop patterns. Consolidating to about 15 buses per hour peak and 10 off-peak, cannibalizing some frequency from the peak and some from the shoulders, should be about neutral on service-hours without any additional increase in speed.

The sixth post on this blog, in 2011, linked to frequent maps of Brooklyn, Manhattan, and Bronx buses, using a 10-minute standard. There has been some movement in the top buses since 2011 – for one, the B41 route, once in the top 10 citywide, has crashed and is now 16th – but not so much that the old map is obsolete. A good place to start would be to get the top routes from a 10-minute standard to a 6-minute standard or better, using speed increases, rationalization of the edges of the network, and cannibalization of weak or subway-duplicating buses to boost frequency.

Reforming Pensions

I don’t usually write about labor issues or pensions specifically, but an interview I got with a clerical union representative a few months ago made me think about pensions and vesting. I’ve come to believe that, to improve labor productivity at US public agencies (including transit, but not just), it would be useful to reform pensions, keeping their current levels and defined-benefit nature, but changing them to vest annually. That is, a year of working for a public agency at salary X should entitle a worker to a retirement annuity equal to a fraction of X, depending on age and years of experience (the fraction should be higher at lower age, representing more time the pension fund has had to gain interest).

In contrast, state governments in the US today have a long-term vesting model. I talked to Tim Lasker, president of the local Office and Professional Employees International Union, representing MBTA clerical workers. I intended to ask about salary competitiveness and retention, but Lasker told me that the pension system represents a “golden handcuffs.” People who are on the job for 25 years have fully-vested pensions, but people who leave earlier leave a chunk of money on the table by going. As a result, people with 15 or so years of experience don’t leave.

Jamal Johnson, a labor relations analyst working for the state government of Pennsylvania, said that in Pennsylvania pensions take up to 30 years to fully vest, and take 10 years to even partially vest, so workers who leave earlier get nothing.

The result is that there isn’t much turnover among employees with defined-benefit pensions. This is not a good thing. Lasker told me there is a lot of burnout, and a lot of people who just show up to work but aren’t productive, and are just punching the clock every day until they vest. They’re not lazy, and probably would quit in frustration and leave to a place where they could be more productive if it didn’t come at an enormous cost. Among the people who don’t have defined-benefit pensions, such as assistant secretaries and M.B.A. hires, there is much more turnover – too much, per Lasker, with people typically staying 1-2 years.

In the private sector, the best practice seems to be letting stock options vest after a number of years, as in the tech industry. But this is in an environment with performance bonuses – the idea is that giving workers shares in the company that only vest in a few years will incentivize them to work toward the company’s bottom line. The pensions are defined-contributions, which means the company and employee set aside money for a savings account that the government undertaxes, rather than providing a real pension.

Calls for pension reform in the public sector have tried to look to private-sector models, hence calls on the right (e.g. by Nicole Gelinas) to give public employees tax-deferred defined-contribution pseudo-pensions rather than actual pensions. Unless the point is to surreptitiously cut pension obligations, there is little point in this. The difference between a defined-contribution and a defined-benefit pension is ultimately who bears the risk of the worker living longer than expected. Under defined-contribution, it’s the worker, who then has to save much more money to avoid being penniless at 90. Under defined-benefit, it’s the company, which can average the amount across a large number of employees. In effect, defined-benefit pensions work as free life insurance.

The problem with the defined-benefit model today is purely that it assumes people work for the same agency their entire life, and thus pensions take decades to vest. This might have made sense in the middle of the 20th century, but it doesn’t today. People burn out, at which point it’s mutually beneficial for both sides to have them look for a new job and for the agency to look for a new worker. With burned out employees, the effect of the golden handcuffs on loyalty is not positive: people who are just punching in and out have no reason to be especially loyal to an employer that they hate. And the effect on morale is destructive: Lasker did not tell me this, but I suspect that with so much resentment among middle management, new hires are inducted into a culture in which good work is not valued. Lasker blamed mismanagement, and it is likely that this mismanagement percolates down the food chain.

There’s also limited risk of revolving door with transit agencies. In regulatory agencies, limiting employee exchange with the private sector is desirable, because otherwise workers have an incentive to shirk their duties in exchange for later high-paying jobs at the private companies they’re supposed to regulate. Tax collection agencies, safety agencies (including the FRA), and antitrust regulators are all at risk of regulatory capture. But transit agencies exhibit little such risk, since they do operations in-house. Capital programs are more vulnerable, but there, the people who are most affected by the revolving door are at the very top, and they’re not relying on a union pension. So the biggest risk coming from encouraging turnover at other public agencies is limited when it comes to transit agencies.

With this in mind, it’s useful to come up with a model in which pensions work like defined-contribution pseudo-pensions – that is, a sum of money the employer gives the worker that’s earmarked for a tax-deferred savings account. However, to reduce the aforementioned risk of running out of money in old age, it should be defined-benefit. I’m not aware of an existing model that achieves this, but it doesn’t mean such a scheme is impossible: the numerical parameters of this scheme (retirement age, rate of return, etc.) are already set in union agreements. All that’s required is to break down the pension into fractional amounts, accumulated every year of work, and cut the overall levels slightly so as to account for people who leave before their money is vested.

The big drawback of this plan is that there’s no real political appetite in the United States for any benefit-neutral pension reform. The unions might be interested, but without small cuts to offset people who leave early, a small additional increase in spending is required; the effect on productivity should be more than high enough to justify it, but the current zeitgeist in rich American cities treats pensions as outdated for ideological reasons. These same reformers who, as a rule, are outsiders to the union and think in terms of defined-contribution pensions, aren’t especially interested in making defined-benefit pensions work. If they think in terms of attracting and retaining talent, they think in terms of higher base wages.