Category: Regional Rail

American Commuter Rail and Job Access

Uday Schultz, a.k.a. A320LGA, has been poking around frequency and job access in New York and Boston. The Boston tables are especially enlightening because the commuter rail corridors are clearly distinguished from the subway corridors, and then it is possible to see which mode provides good access and which doesn’t:

Jobs accessible within 45 minutes at rush hour, departing in the period 07:30-08:30

Commuter rail lines are in thin black lines, subway and light rail lines are in thick white lines. Buses are not shown but are included in people’s transportation modes. Departure time is treated as fixed – passengers have five randomly selected departure times in the period between 7:30 and 8:30, and access and waiting times are added to in-vehicle travel time. Better job access is in blue, grading through green and yellow into red where job access is the poorest.

Observe that the subway lines are surrounded by much greener census tracts than places farther out. In particular, the tracts around the Red Line, which heads from Downtown Boston to the south-southeast, and the tracts around the Orange Line, heading south-southwest, are a lot greener than areas in between the two lines. The point where the Red Lin appears to branch is an orange census tract, but that area has no station, and where the stations are, the tracts are a lot greener, underscoring the importance of the subway for job access. The Red Line then crosses into Cambridge, where the tracts are green-blue thanks to the concentration of jobs in that area, but again, the northwestern tail of the line is visibly green, while the northern end of the Orange Line is still yellow while farther-out regions are red.

Unfortunately, commuter rail mostly does not have the same effect, even at rush hour, when frequency is more reasonable than off-peak. There is some yellow around Readville, the rail junction station in the far south of the depicted area, where peak frequency is around 20-25 minutes, before dropping to worse than hourly midday, but by and large the commuter lines do not generate noticeably greener areas around their stations. The difference between the Red Line and the Fitchburg Line to the Northwest is the starkest, but it is not the only place. Where we do see more green around train stations, such as the tail of the Needham Line southwest of the end of the Orange Line, it’s often bus service connecting to the subway or express buses to Downtown Boston, rather than commuter rail service.

The Fairmount Line

The worst case seen on the map is that of the Fairmount Line, extending south of Downtown Boston between the Red and Orange Lines, terminating at Readville. It has poor service both peak and off-peak; when the MBTA recently announced that it would move to an all-day clockface schedule to improve off-peak headways, it gave the Fairmount Line 45-minute frequency all day, which is neither viable for urban trips nor clockface.

On the map, we can see how there is visible yellow and green on the Orange and Red Lines, but not so much along the Fairmount Line. Even at rush hour, job access there is not on a par with what the more frequent subway provides. Nor is the Fairmount Line good for providing access to the jobs most typical of the needs of the working-class neighborhoods it passes through:

Jobs <$40,000/year accessible within 45 minutes at rush hour, departing in the period 07:30-08:30; the color scheme is relative

The color scheme is relative, so blue is better than red, but the absolute numbers differ. With this restriction, Cambridge is still green-blue – it is full of middle-class jobs but also working-class ones. And the Fairmount Line remains noticeably redder than both the Red and Orange Lines, because the frequency is so low that passengers wait too long for the trip to remain under the 45-minute line.

Captive riders are not captive to your line

American transit planners like to differentiate between choice riders, who can drive if public transportation isn’t good enough, and captive riders, who can’t. It’s a bad distinction and Jarrett Walker for example has been criticizing it for at least 11 years. Regardless, captive riders who have no alternative to public transportation do have an alternative to one specific line. If the Fairmount Line is bad, they will ride buses and have hour-long commutes, or walk long distances to the subway for same. As a result, the ridership of the Fairmount Line is very weak.

Between the idea of captive riders and the idea that commuter rail is only for the suburban middle class and isn’t really public transit, it’s not surprising why the people who manage the MBTA underserve the line. They hesitate to expand commuter rail beyond its suburban commuter niche, to the point of thinking 45-minute frequencies are good service. Nor do they think in terms of alternatives – captive riders are not supposed to have them, so the idea that they can just ride something else is not usually part of how American transit planners do business analysis.

With such hesitation, they rely on government-by-pilot-program to test new ideas. But all pilots are doomed to failure when the Orange Line runs every 6 minutes and the Red Line’s Ashmont branch every 9. Small increases in service do not lead to high ridership, because riders can still more easily ride a bus or the subway, and this will not change until Fairmount Line frequency is raised to near-urban levels, at worst every 20 minutes, more likely every 7.5 or every 10. Until this happens, commutes in Mattapan and the western parts of Dorchester will remain very long and job access will be poor.

High-Speed Rail and Connecting Transit

Noah Smith is skeptical about high-speed rail in the United States. He makes a bunch of different arguments against it, but I want to zoom in on the first, the issue of connecting transit, which Noah is far from the first person to bring up. It’s a genuine drawback of rail planning in the United States, but it’s very easy to overrate its importance. Connecting transit is useful, as is the related issue of city centralization, but its effect, serious as it is, is only on already marginal high-speed routes, like Atlanta-Memphis or Dallas-Kansas City. Los Angeles suffers from lacking connecting transit, but it’s also so big that nothing it connects to is marginal. Finally, high-speed rail and urban centralization are not in competition, but rather are complements, as in the history of the TGV.

Connections and centralization

Modal choice is about door-to-door trip times. This is why a large majority of people take a train that takes three hours over a plane that takes one: hardly anyone lives near the airport or has an airport as their ultimate destination. In practice, people are much likelier to be living near and traveling to a destination near a city center station.

The importance of connections then is that connecting urban transit extends the range of the train station. I didn’t live at Gare de Lyon or Gare de l’Est, but I could take the Métro there and it was a short trip, much shorter and more reliable than taking the RER to the airport, which made it easier for me to ride the TGV. With reliable connections, I showed up at Gare de l’Est four minutes before a train to Saarbrücken was due to depart, printed my ticket on-site, and walked leisurely to the platform, boarding still with two minutes to spare.

Regional rail has the same effect, at longer range. It’s not as convenient as urban rail, but it feeds the main intercity rail station and is timetabled, so if the system is punctual, passengers can time themselves to the main train station. In Switzerland the connections are even timed, enabling people who travel from smaller cities like St. Gallen to points west to transfer at Zurich Hauptbahnhof within a short window. However, this is completely absent from France: the regional trains are unreliable, and Paris has through-running on the RER but no single central station that can collect connections from secondary centers like Meaux or Versailles.

Finally, centralization is important because the reach of an urban transportation system is measured in units of time and not distance. Even racists who are afraid of taking the trains in Paris and rely exclusively on cars can take a cab from a train station to their ultimate destination and be there shortly. The average speed of the Métro is low, around 25 km/h, but Paris’s density and centralization mean that it’s enough to connect from the main TGV stations to where one lives or works.

But the US doesn’t have that, right?

What Noah gets wrong is that the US has connecting transit as in Paris in a number of big cities, and nearly every even semi-plausible high-speed line connects to at least one such city. Here’s Noah on New York:

The best thing about using the Shinkansen in Japan is that you can get to and from the high-speed rail station using a dense, convenient network of local trains. In America there is no such network. Thus, when I imagine taking the train from SF to L.A., I imagine taking a scooter or an Uber to and from the train station. In L.A., which is so spread out that I probably won’t stay in a small area, I imagine I’d rent a car. That’s a very different experience from using the Shinkansen in Japan. And in NYC, it would mean dealing with the nightmare that is Penn Station — a thoroughly stressful and inconvenient experience.

Let’s discuss New York now; Los Angeles deserves a separate section in this post. Noah lived on Long Island for years; he could connect to any intercity train by taking the LIRR to Penn Station and changing there. It’s this connection that he describes as a nightmare. But the question is, a nightmare compared to what? It’s clearly far less convenient than the timed Swiss connections, or even untimed connections between the Berlin S-Bahn and intercity trains. But the LIRR is a timetabled train, and while delays happen, they’re measured in minutes, not tens of minutes. Passengers can time themselves to arrive 10 minutes before the intercity train departs, even today.

All of this gets easier if a minimally competent agency is in charge and track numbers are scheduled in advance and printed on the ticket as they are here or in Japan. Penn Station is crowded, but it’s not a stampede crush and people who know their commuter train arrives on track 19 and the intercity train leaves on track 14, as written in the ticket, can make the connection in 3 minutes.

The secondary transit cities of the US are dicier. Their modal splits are all in the teens; San Francisco (excluding Silicon Valley) is the highest, with 17.5%. In that way, they’re comparable to Lyon, Marseille, Nice, Bordeaux, Toulouse, Strasbourg, and Lille. However, the way non-New York transit systems work in the US is, the system is usually semi-decent at ferrying people to and from city center, it’s just not strong for other destinations. In Boston, for example, people could transfer to the subway at South Station or Back Bay and cover a decent chunk of urban destinations. It’s nowhere nearly as good as the options for Paris or Berlin, but it’s not the same as not having any connecting transit.

Destination centralization

The connecting transit critique of high-speed rail in the American discourse goes back at least to the Obama era; Richard Mlynarik used it to argue against what he views as inflated California HSR ridership expectations, and everyone who commented on transit blogs in 2008-9 had to address the critique in one way or another. In 2012, I posted about the issue of destination centralization, that is, that destinations are more centralized than origins, especially at long distance. For example, at the time Manhattan had 22% of New York metro jobs, but 36% of jobs involving out-of-county commuting – and the longer the trip, the likelier one’s destination is to be in Manhattan.

The data I looked at was the distribution of five-star hotels, which are incredibly centralized. Depending on data sources, 50 out of 56 such hotels in metro New York were in Manhattan, or perhaps 36 in 37. In Boston, either all are in Downtown or Back Bay, or all but one are and the one is in Cambridge, a few Red Line stops from South Station. In Philadelphia, they’re in Center City.

In New York, there are clusters of lower-priced hotels outside Manhattan. The biggest such clusters are in strategic locations in Queens, Brooklyn, or North Jersey with maximally convenient access to Manhattan, where tourists and business travelers cluster. Some hotels serve suburban office parks, such as the various Central Jersey hotels I would go to gaming conventions at, but they’re smaller and lower-end.

In the Bay Area, Richard argued in favor of the primacy of San Francisco over San Jose by citing broader data on interregional travel. San Francisco, per his dataset, absolutely dominated. More recent data can be seen here, measuring tourism revenue rather than visitor numbers, but San Francisco with 900,000 people is about comparable to Santa Clara, Alameda, and San Mateo Counties combined with their 4.4 million people. There is also a comparison of international arrivals to San Jose and San Francisco – there are several times as many of the latter; I cannot find domestic arrival numbers for San Jose that might compare with San Francisco’s 26 million visitors in 2019.

The upshot is that high-speed rail does not need to connect two strongly-centered cities to be comparable in ridership to existing lines in Europe and East Asia. It only needs to connect one. People may need to drive to a park-and-ride or take a taxi to the train station, but if their destination is New York or any of the secondary transit cities of the US, it is likely to be fairly close to the train station, even if most employment isn’t.

The Los Angeles exception

Noah is on stronger grounds when he criticizes Los Angeles. Even Los Angeles has 1.5 subway lines connecting to Union Station, soon to be augmented with the Regional Connector, but the city is weakly-centered, and a car or taxi connection to one’s ultimate destination is likely. Moreover, the destinations within Los Angeles are not centered on Downtown; for example, high-end hotels are the most likely to be found on the Westside.

However, there are two saving graces for trains to Los Angeles. The first is that Los Angeles’s transit ridership is so low because the city’s job geography is so decentralized that the network is bad at connecting local origins with local destinations. If it is guaranteed that one of the two points connected is Union Station, the city’s network is still bad for its size, but becomes usable. The under-construction Westside subway will open later this decade, providing decent (if not good) connectivity from the train station to high-end destinations in that part of the region.

The second and more important saving grace is that Los Angeles is huge. The absence of connecting transit is a serious malus for intercity rail, but people can still take a taxi, and that may add half an hour to the trip and a cab fare, but we know what adding half an hour to a three-hour train trip does and it’s a 1.5th-order effect. A 1.5th-order effect can turn a line that is projected to get a marginal 2.5% return on investment into one with a below-cost-of-capital 1.5% return. It cannot do this to lines serving Los Angeles, none of which are economically marginal, thanks to Los Angeles’s size. On my map, the only line connecting to Los Angeles that a straight gravity model doesn’t love at first sight is Los Angeles-Las Vegas, and this is a connection we know overperforms the model because of the unique tourism draw of Las Vegas.

On the same map, the other connection that everyone (including myself until I ran the number) is skeptical of, Atlanta-Florida, has the same issue as Los Angeles-Las Vegas: it connects to a very strong tourism region, and the train station would serve the biggest tourist attractions. (This is also true in the case of Los Angeles, where Anaheim is still supposed to get a station within a short shuttle distance to Disneyland.) So my model thinks it’s only 2.5% ROI, but the strong tourism volume is such that I am confident the model remains correct even with the malus for weak job centralization in both Atlanta and the cities of Florida.

High-Speed Rail and Connecting Transit

Noah makes a broader point portraying intercity and regional public transport in opposition:

Building high-speed rail without having a usable network of local trains instinctively feels like putting the cart before the horse. If I had a choice between being able to train around San Francisco conveniently, or quickly get between SF and San Jose, I’d choose either of those over being able to take a Shinkansen-style train to L.A. or Seattle. The lack of local trains and fast commuter rail simply limits my travel options much more than the lack of high-speed rail. A local train network without HSR is great; HSR lines without local trains seem like something that’s at best slightly better than what we have now.

And yes, I realize that money earmarked for “high-speed rail” sometimes goes to create faster commuter rail, and that’s good. But that doesn’t answer the question of what these maps are for.

Noah is pooh-poohing the connection between intercity and regional transit as “the money sometimes goes to create faster commuter rail,” but he’s underestimating what this means, in two ways.

First, on the Northeast Corridor specifically, any improvement to intercity transit automatically improves commuter rail. The reason is that the most cost-effective speed treatments there are shared. By far the cheapest minutes saved on the corridor come from speeding up the station throats by installing more modern turnouts and removing speed limits that exist due to agency inertia rather than the state of the physical infrastructure. Trains can save two minutes between South Station and Back Bay alone on a high seven to low eight figures budget for rebuilding the interlocking. These improvements speed up commuter rail and intercity rail equally.

Moreover, in higher speed zones, it’s necessary to invest in organization before concrete and schedule trains with timed overtakes. But this too improves the quality of regional rail. Boston-Providence trains need to be electrified and run faster to get out of intercity trains’ way more easily; even with trains holding twice for an overtake, this speeds up Providence-Boston travel by 15 minutes even while adding station stops. New York-New Haven trains had better run faster on both short- and long-distance connections – and the difference between improving intercity rail this way and in a way that is indifferent to integration with regional rail is the difference between doing it for $15 billion and doing it for $150 billion.

And second, in cities that are not traditional transit cities, high-speed rail is a really good catalyst for expanding a central business district around the station. The best example for this is Lyon. Lyon built a dedicated central business district at Part-Dieu, the Metro, and the LGV Sud-Est simultaneously. This was not sequenced as local transit first, then high-speed rail. Rather, the selection of the site for a high-speed rail station, within the city but just outside its traditional center, was simultaneous with the construction of the new business district and of an urban rail system serving it.

This is particularly useful for cities that, by virtue of size (Dallas) or location (Cleveland) could be high-speed rail hubs but do not have strong city centers. In Cleveland, demand for housing in the city is extremely weak, to the point that houses sell for well below construction costs, and demand for city center office space is likewise weak; but a train that gets to Chicago in 2 hours and to New York in about 3:15 can make the area immediately around the station more desirable. In Dallas this is more complicated because it would be the system’s primary city, but a location with convenient rail access to Houston is likely to become more desirable for office space as well. This is not in competition with local transit – it complements it, by giving existing light rail lines and potential commuter rail lines a meatier city center to connect suburban areas with.

Public Transport and Scale

Noah asks what the proposal maps are for. The answer is, they are proposals for improvement in passenger rail. There is a real issue of scale and details, which is why those maps don’t depict literally every connection. For that, there are smaller-scale maps, in the same way there is the TransitMatters proposal for Regional Rail in the Boston area, or maps I’ve made for timed connections in New England and Upstate New York between intercity and regional trains. At lower-altitude zoom there’s also the issue of local connections to buses.

A roadmap like Google Maps or a national planning map, shown at such zoom that the entirety of a continental superstate like the United States is in the field of view, will only include the highest level of the transportation hierarchy. In the case of roads, that’s the Interstates, and the map may well omit spurs and loops. At lower altitude, more roads are visible, until eventually at city scale all streets are depicted.

The same is true of public transit – and high-speed rail is ideally planned as public transit at intercity scale. A continental-scale proposal will depict high-speed rail because it depicts all cities at once and therefore what matters at this level is how to get between regions. A state map or regional map such as for New England will depict all regional connections, and a local map will depict bus connections around each train station. At no point are these in competition for resources – good integrated planning means they all work together, so that improvements in regional rail also enable better bus connections, and improvements in intercity rail enable better regional connections.

Is all of this absolutely necessary? No. France manages to make certain connections work without it, and when I try to model this as a door-to-door trip, it’s a factor of 1.5-2 question, not an order of magnitude question. But a factor of 1.5 question is still serious, and it’s one that resolves itself with good public transit planning, rather than with not building high-speed rail at all.

Queens Buses and Regional Rail

Queens needs a bus redesign, thankfully already in the works; it also needs better LIRR service that city residents can use as if it’s an express subway. A key part of bus redesign is having buses and trains work together, so that buses feed trains where possible rather than competing with them. The proposed Queens redesign incorporates subway transfers but not LIRR transfers since the LIRR is infrequent and charges premium fares. This raises the question – how does the optimal bus network for Queens change in the presence of better city service on the LIRR? And conversely, how can the LIRR be designed to be of better use to Queens bus riders?

It turns out that the answer to both questions is “very little.” The best Queens bus network in a city where the LIRR lines through Queens run every 5-10 minutes all day is largely the same as the best network in a city where the LIRR remains an exclusive suburb-to-Manhattan mode. Similarly, bus connections change little when it comes to infill stations on the LIRR for better city service. This is not a general fact of bus redesigns and regional rail – the reason for this pattern has to do with the importance of Flushing and Jamaica. Nor does it mean that regional rail is irrelevant to buses in Queens – it just means that the benefits of rerouting buses to serve additional LIRR stations are too small compared with the drawbacks.

Flushing and Jamaica

This is the present-day subway infrastructure:

This is a deinterlined map, but the infrastructure in Queens is the same

The 7 train terminates in Flushing; the E (drawn in F-orange above) and J/Z terminate in Jamaica, while the F terminates in Jamaica as well slightly farther east. As a result, the proposed Queens redesign has many buses from farther east diverting to one of these two neighborhood centers in order to connect with the subway better.

The LIRR changes the rail network situation. The Port Washington Branch, probably the easiest to turn into frequent S-Bahn service, parallels the 7 but continues past Flushing into the suburbs, with closely-spaced stations in the city from Flushing east. The Main Line likewise runs parallel to the Queens Boulevard Line and then continues east past Jamaica with additional stations in Eastern Queens, with branches for the Montauk Line and the Atlantic Line (Far Rockaway and Long Beach Branches).

The ideal bus grid is isotropic. An extension of train service in the radial direction makes it easier to run a bus grid, because buses could just go north-south on major streets: Main, Kissena-Parsons, 149th, 162nd-164th, Utopia, 188th, Francis Lewis, Bell-Springfield. In contrast, the planned redesign diverts the 164th route to Jamaica to connect to the subway, and treats 149th as a pure Flushing feeder. Moreover, the east-west buses in Northeast Queens all divert to serve Flushing.

However, in practice, all of these kinks are necessary regardless of what happens to the LIRR. Queens destinations are not isotropic. Flushing and Jamaica are both important business districts. Jamaica also has transit connections that can’t be provided at an existing or infill LIRR Main Line station, namely the JFK AirTrain and the multi-line LIRR transfer.

Southeast Queens

I can think of one broad exception to the rule that the optimal bus redesign for Queens is insensitive to what happens to the LIRR: the radial lines going from Jamaica to the southeast. These include the Merrick Boulevard routes, today the Q4, Q5, and N4, or QT18 and QT40-42 in the redesign; and the Guy Brewer Boulevard routes, today the Q111 and Q113-4 and in the redesign the QT13, QT19, QT43, and QT45. As of 2019, each of the two avenues carries slightly fewer than 20,000 riders per weekday.

Those buses are likely to lose traffic if LIRR service on the Montauk and Atlantic Lines improves. Long-range traffic is far faster by train; I expect people to walk long distances to an LIRR station, a kilometer or even more, for a direct, subway-fare trip to Manhattan coming every 10 minutes. Even lines that require people to change at Jamaica should wipe out most bus ridership, since the transfer at Jamaica is designed to be pleasant (cross-platform, usually timed).

In their stead, buses should run orthogonally to the train. Linden should get a single bus route, which in the redesign proposal is the QT7, losing the Linden-Jamaica QT40 in the process and instead running the QT7 more frequently. Farmers, running north-south crossing the Main, Montauk, and Atlantic Lines, should get higher frequency, on what is today the Q3 and in the redesign the QT68; in both cases it diverts to Jamaica rather than continuing north to Bayside and Whitestone, but as explained above, this is a necessary consequence of the job concentration in Jamaica.

LIRR infill

Integrated design of buses and trains means not just moving the buses to serve the trains, but also choosing train station locations for the best bus transfers. One example of this is in the Bronx: Penn Station Access plans should include one more infill station, built at Pelham Parkway to connect to the Bx12. By the same token, we can ask how bus-rail connections impact LIRR planning.

The answer is that, just as they only lightly impact bus route design, they do not impact LIRR station siting. Ideally, LIRR stations should be sited at major streets in order to connect with buses better. However, this is to a large extent already the case, and places where moving a station or building infill is valuable are sporadic:

  • On the Port Washington Branch, there is no station at Francis Lewis. It may be valuable to build one, or alternatively to close Auburndale and replace it with two stations, one right at Francis Lewis and one at Utopia.
  • On the Main Line, Queens Village is already at Springfield, Hollis is already at 188th/Farmers, and an infill station at Merrick is valuable regardless of what happens with the buses. A Francis Lewis station is plausible, but is so close to both Hollis and Queens Village that I don’t think it’s necessarily a good idea.
  • The Montauk Line is not penetrated by many crossing arterials. Linden already has a station, St. Albans. Then to the south there is an awkward succession of three intersections within 850 meters: Farmers, Merrick, Springfield. The least bad option is probably to build an infill stop in the middle at Merrick, with the shopping center as an anchor, and with ramps leading to Farmers and Springfield.
  • The Atlantic Line has the Locus Manor stop at Farmers, and Rosedale at Francis Lewis. Laurelton may be moved a bit west to hit Springfield better, and in addition, 1-2 infill stations are valuable, one at Linden and possibly also one at Baisley. But the Linden infill, like the Merrick infill, is fully justified regardless of bus transfers

Conclusion

In Queens, the importance of Flushing and Jamaica works to permit mostly separate planning of bus and regional rail service, except to some extent in Southeast Queens. This is not true in most other places, especially not elsewhere in New York. It follows from the fact that without city-usable LIRR service, buses have to divert to Flushing and Jamaica to feed the subway, whereas with city-usable LIRR service, buses still have to divert to Flushing and Jamaica because they are important business and cultural centers.

This is useful, because transit is a complex system, so anytime it’s possible to break it into mostly independently-planned components, it gets more tractable. If the bus redesign doesn’t require dealing with Long Island NIMBYs and traditional railroaders, and if turning the LIRR into a useful S-Bahn doesn’t require simultaneously redrawing the Queens bus map, then both processes become easier. A redesigned Queens bus map already comes pre-optimized for future LIRR improvements with mostly cosmetic changes, and this is good for the process of transit modernization.

New York Regional Rail (not S-Bahn)

The discussion of regional rail in New York usually focuses on through-running, with neat S-Bahn-/RERstyle maps showing how lines run. But it’s also instructive to look at longer-range lines, under the rubric of RegionalBahn in Germany or Transilien in Paris. I’ve argued against segregating long- and short-range commuter trains in New York, on the grounds that its infrastructure layout is different from that of Berlin or Paris.

However, it is still necessary to conceptually plan longer-range regional rail in the New York region – that is, how to serve destinations that are too far to be really considered suburbs. I think that those lines should through-run, which makes the planning somewhat different from a standard intercity integrated timed transfer network, but the choice of where to go to, what frequency to push for, and so on is still important. This post should be seen as a pre-map version of what I drew for Upstate New York and New England, but for the Tri-State Region and satellites in Pennsylvania. It should also be seen as a companion to any high-speed rail proposal, albeit unmapped because I am still uncertain about some visible aspects.

Scope

The scope of this post is anywhere one should be able to get to from New York without resorting to high-speed rail. This covers the combined statistical area and its penumbra. In practice, this post will focus on areas that are off the Northeast Corridor than on areas that are on it. On the Northeast Corridor, I’ve talked about low-speed solutions toward New Haven putting it slightly more than an hour away from New York; instead of repeating myself, it’s better to discuss other destinations.

So what are the satellite regions around New York, excluding the city’s own suburbs? Let’s make a list:

  • Eastern Long Island far enough to be outside the commute zone, like the Hamptons
  • The Jersey Shore, likewise focusing on what’s too far for commuting, like Toms River
  • Trenton
  • Allentown and the Lehigh Valley
  • The Delaware Water Gap Region and possibly Scranton
  • The Mid-Hudson Valley on both sides of the river, i.e. Newburgh and Poughkeepsie
  • Historic city centers in Connecticut: Danbury, Waterbury, Bridgeport, New Haven

For the most part, they already have commuter rail service. But travel demand is usually not very commuter-oriented. Some of those lines have service that accommodates this fact, like express LIRR service to the Hamptons at popular weekend getaway times. Others don’t. Newburgh, Allentown, Toms River and Delaware Water Gap have no service at all, though Delaware Water Gap is on the under-construction Lackawanna Cutoff.

The need for electrification

All trains touching New York must be fully electric. This means spending not a lot of money on completing wiring the LIRR, Metro-North, and New Jersey Transit, and ensuring further extensions are electrified as well. Diesel trains are slow and unreliable: the LIRR’s mean distance between failures is around 20,000-30,000 km on the diesel and dual-mode locomotives and well into the 6 figures on the EMUs. New Jersey Transit’s diesels also tend to only serve Hoboken, which forces an additional transfer; NJT’s new dual-mode locomotives are extremely costly and low-performance.

This kind of completionism is especially valuable because of fleet uniformity. Boston is reticent about electrification because it likes having a fleet it can maintain all at one place, and it requires some additional resources to expand a railyard that can accommodate future electrification. In New York this works in reverse: a large majority of the network is electrified, and getting rid of the diesel tails increases efficiency through scale.

The issue of express service

All of the tails in question are far from New York, generally 100 or more km, and close to 200 km for Montauk. This introduces tension between the need to run intense local service to areas 15 km from Manhattan and the need to maintain adequate speed at longer range. The solution is always to prioritize shorter-range service and make regional rail the most express pattern that can fit within the through-running paradigm. This works well where there are four tracks allowing long-range express service, as on the Northeast Corridor and the Empire Corridor, including tie-ins like Danbury and Waterbury.

Elsewhere, this is compromised. EMUs can still beat present-day diesel trip times, but the average speeds of the 30-30-30 plan for Connecticut are not realistic. This is a tradeoff; it is possible to run express trains to the Hamptons on the Babylon Branch, but it imposes a real cost on frequency to dense suburbs and should therefore be avoided. If there’s room for timed overtakes then they are welcome, but if there’s not, then these regional trains should really run as S-Bahn trains that just keep going farther out.

This has precedent on busy lines. Trains in the exurbs of Tokyo tend to run at the same speed as an ordinary rapid train, for example on the Chuo Line; there is the occasional higher-speed liner, but usually the trains to Otsuki, Takasaki, Odawara, etc. are just ordinary rapids, averaging maybe 50 km/h. In New York the average speed would be higher because there are still fewer stops even with the infill I’m proposing, which fits since there is more sprawl in New York.

Onward connections

Some of the outer ends in question should also get service that doesn’t go to New York. There is an existing line between Danbury and Brewster that can be used for revenue moves. Allentown lies on a decent SEPTA Regional Rail extension, albeit not on a good one, as the route is curvy. If there are internal bus systems, for example in Waterbury, then whenever possible they should pulse with the train, and it goes without saying trains that do not serve New York should be timed with trains that do.

This for the most part should run on a half-hourly clockface schedule. This means that on an S-Bahn network where even individual branches run every 10-15 minutes, there should be a rule saying every train in 2 or 3, depending on base frequency, continues onward to a distant destination. This is a combination of Northern European planning (timed connections) and Japanese planning (treating long-range regional rail in a megacity as a commuter train that goes further than normal).

The Hempstead Line

This is a writeup I prepared for modernization of the Hempstead Branch of the LIRR in the same style as our ongoing Regional Rail line by line appendices for Boston at TransitMatters, see e.g. here for the Worcester Line. This will be followed up in a few days by a discussion of the writing process and what it means for the advocacy sphere.

Regional rail for New York: the Hempstead Line

New York has one of the most expansive commuter rail networks in the world. Unfortunately, its ridership underperforms such peer megacities as London, Paris, Tokyo, Osaka, and Seoul. Even Berlin has almost twice as much ridership on its suburban rail network, called S-Bahn, as the combined total of the Long Island Railroad, Metro-North, and New Jersey Transit. This is a draft proposal of one component of how to modernize New York’s commuter rail network.

The core of modernization is to expand the market for commuter rail beyond its present-day core of 9-to-5 suburban commuters who live in the suburbs and work in Manhattan. This group already commutes by public transportation at high rates, but drives everywhere except to Manhattan. To go beyond this group requires expanding off-peak service to the point of making the commuter railroads like longer-range, higher-speed Queens Boulevard express trains, with supportive fares and local transit connections.

The LIRR Hempstead Line is a good test case for beginning with such a program. It is fortunate that on this line the capital and operating costs of modernization are low, and service would be immediately useful within the city as well as dense inner suburbs. With better service, the line would still remain useful to 9-to-5 commuters – in fact it would become more useful through higher speed and more flexibility for office workers who sometimes stay at the office until late. But in addition, people could take it for ordinary transit trips, including work trips to job centers in Queens or on Long Island, school trips, or social gatherings with friends in the region.

The Hempstead Line

The Hempstead Line consists of the present-day LIRR Hempstead Branch and a branch to be constructed to East Garden City. The Hempstead Branch today is 34 km between Penn Station and Hempstead, of which 24 km lie within New York City and 10 lie within Long Island.

Most trains on the branch today do not serve Penn Station because of the line’s low ridership, but instead divert to the Atlantic Branch to Downtown Brooklyn, and Manhattan-bound passengers change at Jamaica to any of the branches that run through to Midtown. Current frequency is an hourly train off-peak, and a train every 15-20 minutes for a one-hour peak. Peak trains do not all run local, but rather one morning peak train runs express from Bellerose to Penn Station.

Ridership is weak, in fact weaker than on any other line except West Hempstead and the diesel tails of Oyster Bay, Greenport, and Montauk. In the 2014 station counts, the sum of boardings at all stations was 7,000 a weekday, and the busiest stations were Floral Park with 1,500 and Hempstead with 1,200. But commute volumes from the suburbs served by the Hempstead Branch to the city are healthy, about 7,500 to Manhattan and another 10,500 to the rest of the city, many near LIRR stations in Brooklyn and Queens. Moreover, 13,500 city residents work in those suburbs, and they disproportionately live near the LIRR, but very few ride the train. Finally, the majority of the line’s length is within the city, but premium fares and low frequency make it uncompetitive with the subway, and therefore ridership is weak.

Despite the weak ridership, the line is a good early test case for commuter rail modernization in New York. Most of it lies in the city, paralleling the overcrowded Queens Boulevard Line of the subway. As explained below, there is also a healthy suburban job market, which not only attracts many city reverse-commuters today, but is likely to attract more if public transportation options are better.

Destinations

The stations of the Hempstead Line already have destinations that people can walk to, so that if service is improved as in the following outline, people can ride the LIRR there. These include the following:

  • JFK, accessible via Jamaica Station.
  • Adelphi University, midway between Garden City and Nassau Boulevard, walkable to both.
  • York University, fairly close to Jamaica and very close to a proposed Merrick Boulevard infill station.
  • Primary and secondary schools near stations within the city, where students often have long commutes.
  • Penn Station as an intercity station – passengers from Queens and Long Island traveling to Boston, Philadelphia, and Washington would benefit from faster and more frequent trains.
  • Many jobs near stations in Queens and on Long Island as described below.

Jobs

Within a kilometer of all stations except Penn Station, there is a total of 182,000 jobs in Queens and 50,000 on Long Island. The spine of the Main Line through Queens closely parallels the overcrowded Queens Boulevard express tracks, and in the postwar era was proposed for a Queens Super-Express subway line. But on Long Island, too, it serves the edge city cluster of Garden City and the city center of Hempstead. All of those jobs should generate healthy amounts of reverse-peak ridership and ridership terminating short of Manhattan.

StationJobs within 1 km
Penn Station522904
Queensboro Plaza (@ QB)62266
Sunnyside Jct (@ 43th)23655 (with QBP: 78219)
Woodside14409 (with Sunnyside: 36469)
Triboro Jct (@ 51st Ave)14339 (Elmhurst Hospital)
Forest Hills21926
Kew Gardens17855
Jamaica19794
Merrick Blvd17020 (with Jamaica: 29260)
Hollis2918
Queens Village4758
Bellerose3014 (with QV: 7735)
Floral Park5389 (with Bellerose: 6776)
Stewart Manor3203
Nassau Blvd859
Garden City9643
Country Life Press5404 (with GC: 10865)
Hempstead10896 (with CLP: 15823)
East Garden City (@Oak)12461
Nassau Center (@Endo)6352 (with EGC: 17904)

Required infrastructure investment

The LIRR has fairly high quality of infrastructure. Every single station has high platforms, permitting level boarding to trains with doors optimized for high-throughput stations. Most of the system is electrified with third rail, including the entirety of the Hempstead Branch. High-frequency regional rail can run on this system without any investment. However, to maximize utility and reliability, some small capital projects are required.

Queens Interlocking separation

Queens Interlocking separates the Hempstead Line from the Main Line. Today, the junction is flat: two two-track lines join together to form a four-track line, but trains have to cross opposing traffic at-grade. The LIRR schedules trains around this bottleneck, but it makes the timetable more fragile, especially at rush hour, when trains run so frequently that there are not enough slots for recovering from delays.

The solution is to grade-separate the junction. The project should also be bundled with converting Floral Park to an express station with four tracks and two island platforms; local trains should divert to the shorter Hempstead Line and all express trains should continue on the longer Main Line to Hicksville and points east. Finding cost figures for comparable projects is difficult, but Harold Interlocking was more complex and cost $250 million to grade-separate, even with a large premium for New York City projects.

Turnout modification

Trains switch from one track to another at a junction using a device called a switch or turnout. There are two standards for turnouts: the American standard, dating to the 1890s, in which the switch is simpler to construct but involves an abrupt change in azimuth, called a secant switch; and the German standard from 1925, adopted nearly globally, in which the switch tapers to a thin blade to form what is called a tangential switch.

Passengers on a train that goes on a secant turnout are thrown sideways. To maintain adequate safety, trains are required to traverse such switches very slowly, at a speed comparable to 50 mm of cant deficiency on the curve of the switch. In contrast, German and French turnout standards permit 100 mm on their tangential switches; the double cant deficiency allows a nominal 40% increase in speed on a switch of given number (such as an American #10 vs. a German 1:10 or a French 0.1, all measuring the same frog angle). The real speed increase is usually larger because the train sways less, which creates more space in constrained train station throats.

With modern turnouts, Penn Station’s throat, currently limited to 10 15 mph (16 24 km/h), could be sped up to around 50 km/h, saving every train around 2 minutes just in the last few hundred meters into the station. Installation typically can be done in a few weekends, at a cost of around $200,000 per physical switch, which corresponds to high single-digit millions for a station as large as Penn. Amtrak has even taken to installing tangential switches on some portions of the Northeast Corridor, though not at the stations; unfortunately, instead of building these switches locally at local costs, it pays about $1.5 million per unit, even though in Germany and elsewhere in Europe installation costs are similar to those of American secant switches.

Speed

In addition to modifying the physical switches as outlined above, the LIRR should pursue speedups through better use of the rolling stock and better timetabling. In fact, the trains currently running are capable of 0.9 m/s^2 acceleration, but are derated to 0.45 without justification, which increases the time cost of every stop by about 30 seconds. In addition, LIRR timetables are padded about 20% over the technical running time, even taking into account the slow Penn Station throat and the derating. A more appropriate padding factor is 7%, practiced throughout Europe even on very busy mainlines, such as the Zurich station throat, where traffic is comparable to that of the rush hour LIRR.

To get to 7%, it is necessary to design the infrastructure so that delays do not propagate. Grade-separating Queens Interlocking is one key component, but another is better timetabling. Complex timetables require more schedule padding, because each train has a unique identity, and so if it is late, other trains on the line cannot easily substitute for it. In contrast, subway-style service with little branching is the easiest to schedule, because passengers do not distinguish different trains; not for nothing, the 7 and L trains, which run without sharing tracks with other lines, tend to be the most punctual and were the first two to implement CBTC signaling.

In the case of the LIRR, achieving this schedule requires setting things up so that all Hempstead Line trains run local on the Main Line to Penn Station, and all trains from Hicksville and points east run express to Grand Central. Atlantic and Babylon Branch trains can run to Atlantic Terminal, or to the local tracks to Penn, depending on capacity; Babylon can presumably run to Penn while the Far Rockaway and Long Beach Lines, already separated from the rest of the system, can run to Downtown Brooklyn.

Infill stations

Within the city, commuter rail station spacing is sparse. The reason is that the frequency and fares are uncompetitive. Historically, the LIRR had tight spacing in the city, with nine more stations on the Main Line within city limits, but it closed most of them in the 1920s and 30s as the subway opened to Queens. The subway offered very high frequency for a 5-cent fare compared with the LIRR’s 20-to-30-cent fares. Today, the fares remain unequal, but this can be changed, as can the off-peak frequency. In that case, it becomes useful to open some additional infill stops.

The cost of an infill station is unclear. There is a wide range; Boston and Philadelphia both open infill stations with high platforms for about $15-25 million each, and the European range is lower. Urban infill stations in constrained locations like Sunnyside can be more expensive, but not by more than a factor of 2. In the past, LIRR and Metro-North infill stops, such as those for Penn Station Access, have gone up to the three figures, and it is critical to prevent such costs from recurring.

Queensboro Plaza

This station is already part of the Sunnyside Yards master plan, by the name Sunnyside, and is supposed to begin construction immediately after the completion of the East Side Access project. This proposal gives it a different name only because there is another station called Sunnyside (see below).

Located at the intersection of the Main Line with Queens Boulevard, this would be a local station for trains heading toward Penn Station. It is close to the Queensboro Plaza development, which has the tallest building in the city outside Manhattan and more jobs than anywhere in the Outer Boroughs save perhaps Downtown Brooklyn. Within a kilometer of the station there are more than 60,000 jobs already, and this is before planned redevelopment of Sunnyside Yards.

Sunnyside Junction

The opening of East Side Access and Penn Station Access will create a zone through Sunnyside Yards where trains will run in parallel. LIRR trains will run toward either Penn Station or Grand Central, and Metro-North trains will run toward Penn Station.

It is valuable to build an express station to permit passengers to transfer. This way, passengers from the Penn Station Access stations in the Bronx could connect to Grand Central, and passengers from farther out on the New Haven Line who wish to go to Penn Station Grand Central could board a train to either destination, improving the effective frequency. Likewise, LIRR passengers could change to a different destination across the platform at Sunnyside, improving their effective frequency.

The area is good for a train station by itself as well. It has 24,000 jobs within a kilometer, more than any other on the line except Penn Station and Queensboro Plaza. There is extensive overlap with the 1 km radius of Queensboro Plaza, but even without the overlap, there are 16,000 jobs, almost as many as within 1 km of Jamaica, and this number will rise with planned redevelopment of the Yards.

Triboro Junction

This station is at 51st Avenue, for future transfers to the planned Triboro RX orbital. Population and job density here are not high by city standards: the 14,000 jobs include 5,000 at Elmhurst Hospital on Broadway, which is at the periphery of the 1 km radius and is poorly connected to the railroads on the street network. The value of the station is largely as a transfer for passengers from Astoria and Brooklyn.

Merrick Blvd

About 1.5 km east of Jamaica, Merrick Boulevard catches the eastern end of the Jamaica business district. It also connects to one of Eastern Queens’ primary bus corridors, and passengers connecting from the buses to Manhattan would benefit from being able to transfer outside the road traffic congestion around Jamaica Station.

The East Garden City extension

The Hempstead Branch was historically part of the Central Railroad of Long Island. To the west, it continued to Flushing, which segment was abandoned in 1879 as the LIRR consolidated its lines. To the east, it continued through Garden City and what is now Levittown and ran to Babylon on a segment the LIRR still uses sporadically as the Central Branch. The right-of-way between Garden City and Bethpage remains intact, and it is recommended that it be reactivated at least as far as East Garden City, with an East Garden City station at Oak Street and a Nassau Center station at Endo Boulevard. This is for two reasons.

Jobs

Long Island is unusually job-poor for a mature American suburb. This comes partly from the lack of historic town centers like Stamford or Bridgeport on the New Haven Line or White Plains and Sleepy Hollow in Westchester. More recently, it is also a legacy of Robert Moses, who believed in strict separation of urban jobs from suburban residences and constructed the parkway system to feed city jobs. As a result of both trends, Long Island has limited job sprawl.

However, East Garden City specifically is one of two exceptions, together with Mineola: it has a cluster with 18,000 jobs within 1 km of either of the two recommended stations. Reopening the branch to East Garden City would encourage reverse-commuting by train.

Demand balance

Opening a second branch on the Hempstead Line helps balance demand in two separate ways. First, the population and job densities in Queens are a multiple of those of Long Island and always will be, and therefore the frequency of trains that Queens would need, perhaps a local train every 5 minutes all day, would grossly overserve Hempstead. At the distance of Hempstead or East Garden City, only a train every 10-15 minutes (in a pinch, even every 20) is needed, and so having two branches merging for city service is desirable.

And second, having frequent Hempstead Line local service forces all of the trains on the outer tracks of the Main Line in Queens to run local, just as the subway has consistent local and express tracks. The LIRR gets away with mixing different patterns on the same track because local frequency is very low; at high frequency, it would need to run like the subway. Because passengers from outer suburbs should get express trains, it is valuable to build as much infrastructure as possible to help feed the local tracks, which would be the less busy line at rush hour.

Train access and integration

Today, the LIRR primarily interfaces with cars. LIRR capital spending goes to park-and-rides, and it is expected that riders should drive to the most convenient park-and-ride, even on a different branch from the one nearest to their home. This paradigm only fills trains at rush hour to Manhattan, and is not compatible with integrated public transportation. In working-class suburbs like Hempstead, many take cheaper, slower buses. Instead, the system should aim for total integration at all levels, to extend the city and its relative convenience of travel without the car into suburbia.

Fare integration

Fares must be mode-neutral. This means that, just as within the city the fares on the buses and subways are the same, everywhere else in the region a ticket should be valid on all modes within a specified zone. Within the city, all trains and buses should charge the same fares, with free intermodal transfers.

Such a change would entice city residents to switch from the overcrowded E and F trains to the LIRR, which is by subway standards empty: the average Manhattan-bound morning rush hour LIRR train has only 85% of its seats occupied. In fact, if every E or F rider switches to the LIRR, which of course will not happen as they don’t serve exactly the same areas, then the LIRR’s crowding level, measured in standees per m^2 of train area, will be lower than that of the E and F today.

In the suburbs, the fares can be higher than in the city, in line with the higher operating costs over longer distances. But the fares must likewise be mode-neutral, with free transfers. For example, within western Nassau County, fares could be set at 1.5 times subway fare, which means that all public transit access between the city and Hempstead would cost $190 monthly or $4.00 one-way, by any mode: NICE bus, the LIRR, or a bus-train combo.

This would be a change from today’s situation, where premium-price trains only attract middle-class riders, while the working class rides buses. In fact, the class segregation today is such that in the morning rush hour, trains run full to Manhattan and empty outbound and NICE buses, which carry working-class reverse-commuters, are the opposite. Thus, half of each class’s capacity is wasted.

Bus redesign and bus access

Instead of competing with the trains, buses should complement them, just as they do within the city with the subway. This means that the NICE system should be designed along the following lines:

  • More service perpendicular to the LIRR, less parallel to it.
  • Bus nodes at LIRR stations, enabling passengers to connect.
  • Timed transfers: at each node the buses should arrive and depart on the same schedule, for example on the hour every 20 minutes, to allow passengers to change with minimal hassle. This includes timed transfers with the trains if they run every 15 minutes or worse, but if they run more frequently, passengers can make untimed connections as they do in the city.

Bike access

Urban and suburban rail stations should include bike parking. Bikes take far less space than cars, and thus bike park-and-ride stations in the Netherlands can go up to thousands of stalls while still maintaining a walkable urban characteristic.

In many countries, including the United States on the West Coast, systems encourage riders to bring their bikes with them on the train. However, in New York it’s preferably to adopt the Dutch system, in which bikes are not allowed on trains, and instead stations offer ample bike parking. This is for two reasons. First, New York is so large and has such a rush hour capacity crunch that conserving capacity on board each train is important. And second, cultures that bring bikes on trains, such as Northern California, arise where people take trains to destinations that are not walkable from the station; but in New York, passengers already connect to the subway for the last mile from Penn Station to their workplaces, and thus bikes are not necessary.

Train scheduling

Trains should run intensively, with as little distinction between the peak and off-peak as is practical. At most, the ratio between peak and off-peak service should be 2:1. Already, the LIRR’s high ratio, 4:1 on the Hempstead Branch, means that trains accumulate at West Side Yard at the end of the morning peak. The costs of raising off-peak service to match peak service are fairly low to begin with, but they are especially low when the alternative is to expand a yard in Midtown Manhattan, paying Midtown Manhattan real estate prices.

For an early timetable in which the Babylon Branch provides extra frequency in the city, the following frequencies are possible:

SegmentPeakOff-peak
Penn Station-Garden City5 minutes10 minutes
Garden City-Hempstead10 minutes20 minutes
Garden City-Nassau Center10 minutes20 minutes

A more extensive service, with all LIRR South Side diverting to a separate line from the Main Line, perhaps the Atlantic Branch to Downtown Brooklyn, requires an increase in off-peak urban service:

SegmentPeakOff-peak
Penn Station-Garden City5 minutes5 minutes
Garden City-Hempstead10 minutes10 minutes
Garden City-Nassau Center10 minutes10 minutes

Further increases in peak service may be warranted for capacity reasons if there is more redevelopment than currently planned or legal by city and suburban zoning codes.

Travel times

With rerating the LIRR equipment to its full acceleration rate, a fix to the Penn Station throat, and standard European schedule padding, the following timetable is feasible:

StationTime (current)Time (future, M7)Time (Euro-EMU)
Penn Station00:0000:0000:00
Queensboro Plaza00:0400:04
Sunnyside Jct00:0600:06
Woodside00:1000:0900:09
Triboro Jct00:1200:11
Forest Hills00:1500:1500:13
Kew Gardens00:1700:1700:15
Jamaica00:2200:1900:17
Merrick Blvd00:2100:19
Hollis00:2900:2400:21
Queens Village00:3100:2600:23
Bellerose00:3500:2800:25
Floral Park00:3800:3000:27
Stewart Manor00:4100:3200:29
Nassau Blvd00:4400:3400:31
Garden City00:4600:3600:33
Country Life Press00:4900:3800:35
Hempstead00:5200:4000:37
East Garden City00:3800:35
Nassau Center00:4000:37

Providing peak service every 10 minutes to each of Hempstead and Nassau Center requires 20 trainsets, regardless of whether they are existing LIRR equipment or faster, lighter European trainsets.

Austerity is Inefficient

Working on an emergency timetable for regional rail has made it clear how an environment of austerity requires tradeoffs that reduce efficiency. I already talked about how the Swiss electronics before concrete slogan is not about not spending money but about spending a fixed amount of money intelligently; but now I have a concrete example for how optimizing organization runs into difficulties when there is no investment in either electronics or concrete. It’s still possible to create value out of such a system, but there will be seams, and fixing the seams requires some money.

Boston regional rail

The background to the Boston regional rail schedule is that corona destroyed ridership. In December of 2020, the counts showed ridership was down by about an order of magnitude over pre-crisis levels. American commuter rail is largely a vehicle for suburban white-collar commuters who work in city center 9 to 5; the busiest line in the Boston area, the Providence Line, ran 4 trains per hour at rush hour in the peak direction but had 2- and 2.5-hour service gaps in the reverse-peak and in midday and on weekends. Right now, the system is on a reduced emergency timetable, generally with 2-hour intervals, and the trains are empty.

But as Americans get vaccinated there are plans to restore some service. How much service is to run is up in the air, as is how it’s to be structured. Those plans may include flattening the peak and going to a clockface schedule, aiming to start moving the system away from traditional peak-focused timetables toward all-day service, albeit not at amazing frequency due to budget limits.

The plan I’ve been involved with is to figure out how to give most lines hourly service; a few low-ridership lines may be pruned, and the innermost lines, like Fairmount, get extra service, getting more frequency than they had before. The reasoning is that the frequency that counts as freedom is inversely proportional to trip length – shorter trips need more frequency and shorter headways, so even in an environment of austerity, the Fairmount Line should get a train every 15 or 20 minutes.

Optimization

In an environment of austerity, every resource counts. We were discussing individual trains, trying to figure out what the best use for the 30th, the 35th, the 40th trainset to run in regular service is. In all cases, the point is to maximize the time a train spends moving and minimize the time it spends collecting dust at a terminal. However, this leads to conflict among the following competing constraints:

  • At outer terminals like Worcester and Lowell, it is desirable that the train should have a timed transfer with the local buses.
  • At the inner terminals, that is South and North Stations, it is desirable that all trains arrive and depart around the same time (“pulse“), to facilitate diagonal transfers, such as from Fitchburg to Salem or from Worcester to Brockton.
  • Some lines have long single-track segments; the most frustrating is the Worcester Line, which is in theory double-track the entire way but in practice single-track through Newton, where only the nominally-westbound track has platforms.
  • The lines should run hourly, so ideally the one-way trip time should be 50 minutes or possibly 80 minutes, with a 10-minute turnaround.

Unfortunately, it is not possible to satisfy all constraints at once. In an environment with some avenues for investment, it’s possible to double-track single-track bottlenecks, as the MBTA is already planning to do for Newton in the medium run. It’s also possible to speed up lines on the “run as fast as necessary” principle to ensure the trips between knots take an integer or half-integer multiple of the headway; in our higher-investment regional rail plan for Worcester, this is the case, and all transfers and overtakes are tight. However, in a no-investment environment, something has to give. The Worcester Line is 90 minutes end-to-end all-local, and the single-track section is between around 15 and 30 minutes out of South Station, which means it is not possible to conveniently pulse either at South Station with the other commuter lines or at Worcester with the buses. But thankfully, the length of the single-track segment between the crossovers is just barely enough to allow bidirectional local service every 30 minutes.

Discussion

No-investment and low-investment plans are great for highlighting what the most pressing investment needs are. In general Boston needs electrification and high platforms everywhere, as do all other North American commuter lines; it is unfortunate that not a single system has both everywhere, as SEPTA is the only all-electric system and the LIRR (and sort of Metro-North) is the only all-high-platform system. However, more specifically, there are valuable targets for early investment, based on where the seams in the system are.

In the case of integrated timetabling, it’s really useful to be able to make strategic investments, including sometimes in concrete. They should always be based on a publicly-communicated target timetable, in which all the operational constraints are optimized and resolved for the maximum benefit of passengers. For example, in the TransitMatters Regional Rail plan, the timed transfers at the Boston end are dealt with by increasing frequency on the trunk lines to every 15 minutes, at which point the average untimed transfer is about as good as a timed hourly transfer in a 10-minute turnaround; this is based on expected ridership growth as higher frequency and the increase in speed from electrification and high platforms both reduce door-to-door trip times.

The upshot is that austerity is not good for efficiency. Cutting to grow is difficult, because there are always little seams that require money to fix, even at agencies where overall spending is too high rather than too low. Sometimes the timetables are such that a speedup really is needed: Switzerland’s maxim on speed is to run as fast as necessary, not as fast as trains ran 50 years ago with no further improvement. This in turn requires investment – investment that regularly happens when public transportation is run well enough to command public trust.

Pulses (Hoisted from Comments)

Robert Jackel asked me an excellent question in comments: what is a pulse? I’ve talked about timed transfers a lot in the last almost 10 years of this blog, but I never wrote a precise definition. This is a critical tool for every public transportation operation with more than one line, making sure that trains and buses connect with as short a transfer window as possible given other constraints. Moreover, pulse-oriented thinking is to plan capital investment and operations to avoid constraints that make transfers inconvenient.

When are pulses needed?

Passengers perceive the disutility of a minute spent transferring to be more than that of a minute spent on a moving vehicle. This is called the transfer penalty and is usually expressed as a factor, which varies greatly within the literature. In a post from 2011 I quoted a since-linkrotted thesis with pointers to Boston and Houston’s numbers, and in a more recent post I found some additional literature in a larger variety of places, mostly in the US but also the Netherlands. The number 2 is somewhere in the middle, so let’s go with this.

Observe that the transfer penalty measured in minutes and not in a factor is, naturally, larger when service runs less frequently. With a factor of 2, it is on average equal to the headway, which is why it is likely the number is 2 – it represents actual time in the worst case scenario. The upshot is that the value of an untimed transfer is higher the higher the frequency is.

I used the principle of untimed transfers and frequency to explain why small subway networks do not look like small bus networks – they have fewer, more frequent lines. Subway lines that run every 3-4 minutes do not need transfer timing, because the time cost of an untimed transfer is small compared to the likely overall trip time, which is typically in the 15-30 minute range. But the lower the frequency, the more important it is to time transfers. Thus, for example, Berlin times the U6/U7 transfer at Mehringdamm in the evening, when trains run every 10 minutes, but does not do so consistently in the daytime, when they run every 5.

But note: while the value of an untimed transfer is higher at higher frequency, the value of a timed transfer is the same – it is zero-penalty or close to it no matter what. So really, the relative value of timing the transfer decreases as frequency increases. But at the same time, if frequency is higher, then more passengers are riding your service, which justifies more investment to try to time the transfer. The German-speaking planning tradition is the most concerned with transfer timing, and here, it is done commonly at 10 minutes, occasionally at 5 minutes, and never that I know of at higher frequency.

Easy mode: one central station

If all your buses and trains serve one transit center, then a pulse means that they all run at the same frequency, and all meet at the center at the same time. This doesn’t usually happen on urban rail networks – a multi-line urban rail system exists in a high-ridership, high-frequency context, in which the value of serving a mesh of city center lines is high, and the cost of bringing every subway tunnel to one location is high. Instead, this happens on buses and on legacy regional rail networks.

The pulse can be done at any frequency, but probably the most common is hourly. This is routine in small American towns with last-resort bus networks serving people too poor or disabled to drive. Two and a half years ago a few of us on Transit Twitter did a redesign-by-Twitter of the Sioux City bus network, which has ten bus routes running hourly, all pulsing in city center with timed connections. A similar network often underlies the night buses of a larger city that, in the daytime, has a more complete public transport network, such as Vancouver.

Even here, planners should keep two delicate points in mind. First, on buses in mixed traffic, there is an upper limit to the frequency that can be timetabled reliably. The limit depends on details of the street network – Jarrett Walker is skeptical that timetabling buses that run every 15 minutes is feasible in a typical American city, but Vancouver, with no freeways within a city and a rich arterial grid, manages to do so every 12 minutes on 4th Avenue. A half-hourly pulse is definitely possible, and even Jarrett writes those into his bus redesigns sometimes; a 20-minute pulse is probably feasible as well even in a typical American city. The current practice of hourly service is not good, and, as I point out in the Sioux City post, involves slow, meandering bus routes.

The second point is that once the takt is chosen, say half an hour, the length of each roundtrip had better be an integer multiple of the takt, including a minimal turnaround time. If a train needs 5 minutes to turn, and runs half-hourly, then good times for a one-way trip from city center are 10, 25, 40, 55 minutes; if there is no turnaround at city center, for example if there is through-running, then half as many turnarounds are needed. This means that short- and long-term planning should emphasize creating routes with good trip times. On a bus, this means straightening meanders as needed, and either extending the outer end or cutting it short. On a train, this means speedup treatments to run as fast as necessary, or, if the train has a lot of spare time, opening additional infill stops.

The issue of branching

Branches and pulses don’t mix well. The ideal way to run a system with a trunk and branches is to space the branches evenly. The Berlin S-Bahn runs every 3-4 minute on the Stadtbahn trunk and on the North-South Tunnel, mixing services that run every 10 and 20 minutes at roughly even intervals. In such an environment, timed transfers in city center are impossible. This is of course not a problem given Stadtbahn headways, but becomes serious if frequency is sparser. A one-trunk, two-branch regional rail system’s planners may be tempted to run each branch every half hour and interpolate the schedules to create a 15-minute headway on the trunk, but if there’s a half-hourly pulse, then only one branch can participate in it.

This is visible when one compares S-Bahn and RegionalBahn systems. High-frequency S-Bahn systems don’t use timed transfers in city center, because there is no need. I can get from Jannowitzbrücke to Ostkreuz without consulting a schedule, and I would get to the Ring without consulting a schedule either, so there is no need to time the crossing at Ostkreuz. There may be sporadic transfer timing for individual branches, such as between the S9 branch of the Stadtbahn, which diverts southeast without serving Ostkreuz, and the Ring, but S9 runs every 20 minutes, and this is not a pulse, only a single-direction timed connection.

In contrast, RegionalBahn systems, running at longer ranges and lower frequencies, often tend toward timed transfers throughout. The tradeoff is that they don’t overlie to create high-frequency trunks. In some cases, trains on a shared trunk may even platoon, so that all can make the same timed transfer, if high trunk frequency is not desired; this is how intercity trains are run on the Olten-Bern line, with four trains to a platoon every 30 minutes.

Medium mode: dendritic networks

A harder case than the single pulse is the dendritic network. This means that there is a central pulse point, and also secondary pulse points each acting as a local center. All cases I am aware of involve a mainline rail network, which could be S-Bahn rather than RegionalBahn, and then bus connections at suburban stations.

Already, this involves more complex planning. The reason is that the bus pulse at a suburban station must be timed with trains in both directions. Even if planners only care about connections between the suburban buses and trains toward city center, the pulse has to time with inbound trains for passengers riding from the suburban buses to the city and with outbound trains for passengers riding from the city to the buses. This, in turn, means that the trains in both directions must arrive at the station at approximately the same time. A few minutes of leeway are acceptable, since the buses turn at city center so the connection always has a few minutes of slack, but only a few minutes out of what is often a half-hourly takt.

Trains that run on a takt only meet every interval equal to half the takt. Thus, if trains run half-hourly, they can only have suburban pulses every 15 minutes of travel. This requires planners to set up suburban pulses at the correct interval, and speed up or sometimes slow down the trains if the time between suburban nodes. Here is an example I’ve worked on for a Boston-Worcester commuter train, with pulses in both Framingham and Worcester.

Hard mode: meshes

The next step beyond the dendritic network is the multi-node network whose graph is not simply connected. In such a network, every node must have a timed transfer, which imposes considerable planning constraints. Optimizing such a network is an active topic of research in operations and transportation in European academia.

Positive examples for such networks come from Switzerland. Large capital investments are unavoidable, because there’s always going to be some line that’s slower than it needs to be. The key here is that, as with dendritic networks, nodes must be located at consistent intervals, equal to multiples of half the headway, and usually the entire headway. To make multiple timed transfers, trains must usually be sped up. This is why pulse-based integrated timed transfer networks require considerable planning resources: planning for rolling stock, infrastructure, and the timetable must be integrated (“the magic triangle”) to provide maximum convenience for passengers connecting from anywhere to anywhere.

Density and Rail Transport (Hoisted from Social Media)

I wrote a long thread about regional rail and population density, and I’d like to explain more and give more context. The upshot is that higher population density makes it easier to run a rail network, but the effects are most visible for regional rail, rather than either urban rail or high-speed intercity rail. This is visible in Europe when one compares the networks in high-density Germany and low-density Sweden, and has implications elsewhere, for example in North America. I stress that high-speed rail is not primarily affected by background density, but only by the populations of cities within a certain range, and thus France, which has one of Western Europe’s lowest densities, manages to have high per-capita ridership on the TGV. However, the density of a regional mesh comes from background density, which is absent in such countries as France, Sweden, and Spain.

What is density?

Population density is population divided by area. This post is concerned with overall density at the level of an entire country or region, rather than the more granular level of the built-up urban area of a single city. What this means is that density is in large part a measurement of how close cities are to one another. In a high-density area like western Germany, Northern Italy south of the Alps, England, or the Low Countries, cities are spaced very close together, and thus people live at densities surpassing 300/km^2. In contrast, low-density areas have isolated cities, like Sweden, Australia, Canada, or the Western United States.

For example, take Stockholm. The region has about 2.5 million people, and has a strong urban and suburban rail network. However, there just aren’t a lot of cities near Stockholm. The nearest million-plus metro areas are Oslo, Gothenburg, and Helsinki, all about 400 km away, none much bigger than 1 million; the nearest 2 million-plus metro area is Copenhagen, 520 km away. The region I use as an example of German polycentrism, Rhine-Neckar, is about the same size as Stockholm, and has a good deal more suburban sprawl and car usage. The nearest million-plus region to Mannheim is Karlsruhe, 55 km away; it is a separate metropolitan area even though the Rhine-Neckar S-Bahn does have an hourly train to Karlsruhe. Frankfurt is 70 km away. A 400 km radius from Mannheim covers nearly the entirety of Germany, Switzerland, and the Low Countries; it reaches into Ile-de-France and into suburbs that share a border with Amsterdam. A 520 km radius covers Paris, Berlin, Hamburg, Milan, and Prague, and reaches close to Vienna.

Density and regional rail

Kaiserslautern is a town of 100,000 people, served by the Rhine-Neckar S-Bahn every half hour even though it is not normally seen as part of the Rhine-Neckar region. It has, in addition to the east-west S-Bahn, independent regional lines reaching north and south. When I visited two years ago, I saw these lines pulse while waiting for my delayed TGV back home to Paris.

This is viable because there are towns ringing Kaiserslautern, close enough that a low-speed regional train could connect them, with their own town centers such that there is a structure of density around their train stations. This in turn exists because the overall population density in Germany is high, even in Rhineland-Pfalz, which at 206/km^2 is slightly below the German average. The alternative structure to that of Germany would have fewer, larger cities – but that structure lends itself well to regional rail too, just with fewer, thicker lines running more frequently. If those smaller towns around Kaiserslautern did not exist but people instead lived in and right around Kaiserslautern, then it would be a city of about 400,000, and likewise Mainz might have 500,000 and the built-up area of Mannheim would have more people in Mannheim itself and in Ludwigshafen, and then there would be enough demand for a regional train every 10-20 minutes and not just every half hour.

I bring up Sweden as a low-density contrast, precisely because Sweden has generally well-run public transport. Stockholm County’s per capita rail ridership is higher than that of any metropolitan area of Germany except maybe Berlin and Munich. Regional rail ridership in and around Stockholm is rising thanks to the opening of Citybanan. Moreover, peripheral regions follow good practices like integrated intermodal ticketing and timed transfers. And yet, the accretion of a mesh of regional lines doesn’t really exist in Sweden. When I visited Växjö, which is not on the main intercity line out of Stockholm, I had a timed connection at Alvesta, but the timetable there and at Växjö looked sporadic. Växjö itself is on a spur for the network, but poking around the Krösatågen system it doesn’t look like an integrated timed transfer system, or if it is then Alvesta is not a knot. I was told in the replies on Twitter that Norrbotten/Västerbotten has an integrated network, but it runs every 2 hours and one doesn’t really string regional rail lines together to form longer lines the way one does in Germany.

Integrated regional networks

The integrated timed transfer concept, perfected in Switzerland, is ideal for regional and intercity networks that form meshes, and those in turn require high population density. With these meshes, regional rail networks overlap, underlaying an intercity network: already one can get between Frankfurt and Stuttgart purely on lines that are branded as S-Bahn, S-Bahn-like, or Stadtbahn, and if one includes RegionalBahn lines without such branding, the network is nationally connected. Even in Bavaria, a state with lower density than the German average, nearly all lines have at least hourly service, and those form a connected network.

It’s perhaps not surprising that Italy, which has high density especially when one excludes unpopulated alpine areas, is adopting German norms for its regional rail. As in Germany, this originates in urban networks, in Italy’s case that of Milan, but Trenord operates trains throughout Lombardy, most of whose population is not the built-up area of Milan, and even lines that don’t touch Milan run hourly, like Brescia-Parma. Italy is not unusual within Southern Europe in looking up to Germany; it’s only unusual in having enough population density for such a network..

Once the network is in place, it is obligatory to run it as an integrated timed transfer system. Otherwise, the connections take too long, and people choose to drive. This in turn means setting up knots at regular intervals, every 30 minutes for a mixed hourly and half-hourly system, and investing in infrastructure to shorten trip times so that major cities can be knots.

The concept of the knot is not just about regional service – high-speed rail can make use of knots as well. Germany has some low-hanging fruit from better operations and under-construction lines that would enable regularly spaced knots such as Frankfurt, then Mannheim, then Stuttgart, and far to the north Hanover and then Bielefeld. The difference is that Germany’s ideal high-speed rail network has around 20 knots and its existing regional rail network has about as many in Hesse alone. Nor can regional rail networks expect to get away with just building strong lines and spamming frequency on those, as the Shinkansen does – regional rail uses legacy alignments to work, generating value even out of lines that can only support an hourly train, whereas high-speed lines need more than that to be profitable.

Globally, the lowest-hanging fruit for such a system is in the Northeastern United States, followed by China and India. Population density in the Northeast is high, and cities have intact cores near their historic train stations. There is no excuse not to have a network of regional lines running at a minimum every 30 minutes from Portland down to Northern Virginia and inland to Albany and Harrisburg.

A few modifications to the basic Swiss system are needed to take into account the fact that the Northeast Corridor, run at high speeds, would fill a train every 5 minutes all day, and the core regional lines through New York could as well. But regional rail is not a country bumpkin mode of transportation; it works fine within 100 km of Frankfurt or Milan, and should work equally well near New York. If anything, a giant city nearby makes it easier to support high frequency – in addition to internal travel within the regional system, there are people interested in traveling to the metropole helping fill trains.

What about low-density places?

Low-density places absolutely can support good rail transport. But it doesn’t look like the German mesh. Two important features differ:

  1. It is not possible to cobble together a passable intercity rail network from regional express lines and upgrade it incrementally. Intercity lines run almost exclusively intercity traffic. This tilts countries toward the use of high-speed rail, including not just France but also Spain and now Sweden. This does not mean high-density countries can’t or shouldn’t build high-speed rail – they do successfully in Asia, Italy has a decent network, Britain has high-speed rail plans, and Germany is slowly building a good network. It just means that high-density countries can get away with avoiding building high-speed rail for longer.
  2. The connections between regional and intercity lines are simpler. Different regions’ suburban networks do not connect, and can be planned separately, for example by state-level authorities in Australia or provincial ones in Canada. These networks are dendritic: intercity lines connect to regional lines, and regional lines branch as they leave city center. Lines that do not enter the primary city center are usually weaker, since it’s unlikely that there are enough strong secondary centers at the right places that a line could serve them well without passing through the primary center.

In extreme cases, no long-distance rail is viable at all. Australia is a borderline case for Brisbane-Sydney-Melbourne high-speed rail – I think it’s viable but only based on projections of future population and economic growth. But Perth and Adelaide are lost causes. In the United States, railfans draw nationally-connected proposals, but in the Interior West the cities are simply too far apart, and there is no chance for a train to usefully serve Denver or Salt Lake City unless cars are banned. Connecting California and the Pacific Northwest would be on the edge of viable if the topography were flat, but it isn’t and therefore such a connection, too, is a waste of money in the economic conditions of the early 21st century.

Note that even then, cities can have suburban rail networks – Perth and Adelaide both have these, and their modal splits are about on a par with those of secondary French cities like Nice and Bordeaux or secondary American transit cities like Boston and Chicago. Denver is building up a light rail and a commuter rail network and one day these networks may even get ridership. The difference between the case of Perth or Denver and that of a German city is that Perth and Denver can rest assured their regional rail alignments will never be needed for intercity rail.

In less extreme cases, intercity trains are viable, and can still run together with regional trains on the same tracks. California is one such example. Its population density and topography is such that planning regional rail around the Bay Area and in Los Angeles can be kept separate, and the only place where intercity and regional trains could work together as in Germany is the Los Angeles-San Diego corridor. Blended planning with timed overtakes is still recommended on the Peninsula, but it’s telling that at no point have Bay Area-based reformers proposed a knot system for the region.

Those less extreme low-density cases are the norm, in a way. They include the Midwestern and Southern US, the Quebec-Ontario corridor, the Nordic countries, France, nearly all of Eastern Europe, and Southern Europe apart from Italy; this is most of the developed world already. In all of those places, regional rail is viable, as is intercity rail, but they connect in a dendritic and not meshlike way. Many of the innovations of Germany and its penumbra, such as the takt and the integrated intermodal plan, remain viable, and are used successfully in Sweden. But the exact form of regional rail one sees in Germany would not port.

The Need to Remove Bad Management

I’ve talked a lot recently about bad management as a root cause of poor infrastructure, especially on Twitter. The idea, channeled through Richard Mlynarik, is that the main barrier to good US infrastructure construction, or at least one of the main barriers, is personal incompetence on behalf of decisionmakers. Those decisionmakers can be elected officials, with levels of authority ranging from governors down to individual city council members; political appointees of said officials; quasi-elected power brokers who sit on boards and are seen as representative of some local interest group; public-sector planners; or consultants, usually ones who are viewed as an extension of the public sector and may be run by retired civil servants who get a private-sector salary and a public-sector pension. In this post I’d like to zoom in on the managers more than on the politicians, not because the politicians are not culpable, but because in some cases the managers are too. Moreover, I believe removal of managers with a track record of failure is a must for progress.

The issue of solipsism

Spending any time around people who manage poorly-run agencies is frustrating. I interview people who are involved in successful infrastructure projects, and then I interview ones who are involved in failed ones, and then people in the latter group are divided into two parts. Some speak of the failure interestingly; this can involve a blame game, typically against senior management or politics, but doesn’t have to, for example when Eric and I spoke to cost estimators about unit costs and labor-capital ratios. But some do not – and at least in my experience, the worst cases involve people who don’t acknowledge that something is wrong at all.

I connect this with solipsism, because this failure to acknowledge is paired with severe incuriosity about the rest of the world. A Boston-area official who I otherwise respect told me that it is not possible to electrify the commuter rail system cheaply, because it is 120 years old and requires other investments, as if the German, Austrian, etc. lines that we use as comparison cases aren’t equally old. The same person then said that it is not possible to do maintenance in 4-hour overnight windows, again something that happens all the time in Europe, and therefore there must be periodic weekend service changes.

A year and a half ago I covered a meeting that was videotaped, in which New Haven-area activists pressed $200,000/year managers at Metro-North and Connecticut Department of Transportation about their commuter rail investments. Those managers spoke with perfect confidence about things they had no clue about, saying it’s not possible that European railroads buy multiple-units for $2.5 million per car, which they do; one asserted the US was unique in having wheelchair accessibility laws (!), and had no idea that FRA reform as of a year before the meeting permitted lightly-modified European trains to run on US track.

The worst phrase I keep hearing: apples to apples. The idea is that projects can’t really be compared, because such comparisons are apples to oranges, not apples to apples; if some American project is more expensive, it must be that the comparison is improper and the European or Asian project undercounted something. The idea that, to the contrary, sometimes it’s the American project that is easier, seems beyond nearly everyone who I’ve talked to. For example, most recent and under-construction American subways are under wide, straight streets with plenty of space for the construction of cut-and-cover station boxes, and therefore they should be cheaper than subways built in the constrained center of Barcelona or Stockholm or Milan, not more expensive.

What people are used to

In Massachusetts, to the extent there is any curiosity about rest-of-world practice, it comes because TransitMatters keeps pushing the issue. Even then, there is reticence to electrify, which is why the state budget for regional rail upgrades in the next few years only includes money for completing the electrification of sidings and platform tracks on the already-electrified Providence Line and for short segments including the Fairmount Line, Stoughton Branch, and inner part of the Newburyport and Rockport Lines. In contrast, high platforms, which are an ongoing project in Boston, are easier to accept, and thus the budget includes more widespread money for it, even if it falls short of full high-level platforms at every station in the system.

In contrast, where high platform projects are not so common, railroaders find excuses to avoid them. New Jersey Transit seems uninterested in replacing all the low platforms on its system with high platforms, even though the budget for such an operation is a fraction of that of the Gateway tunnel, which the state committed $2.5 billion to in addition to New York money and requested federal funding. The railroad even went as far as buying new EMUs that are compatible not with the newest FRA regulations, which are similar to UIC ones used in Europe, but with the old ones; like Metro-North’s management, it’s likely NJ Transit’s had no idea that the regulations even changed.

The issue of what people are used to is critical. When you give someone authority over other people and pay them $200,000 a year, you’re signaling to them, “never change.” Such a position can reward ambition, but not the ambition of the curious grinder, but that of the manager who makes other people do their work. People in such a position who do not know what “electronics before concrete” means now never will learn, not will they even value the insights of people who have learned. The org chart is clear: the zoomer who’s read papers about Swiss railroad planning works for the boomer who hasn’t, and if the boomer is uncomfortable with change, the zoomer can either suck it up or learn to code and quit for the private sector.

You can remove obstructionist managers

From time to time, a powerful person who refuses to use their power except in the pettiest ways accidentally does something good. Usually this doesn’t repeat itself, despite the concrete evidence that it is possible to do things thought too politically difficult. For example, LIRR head Helena Williams channeled Long Island NIMBYism and opposed Metro-North’s Penn Station Access on agency turf grounds – it would intrude on what Long Islanders think is their space in the tunnels to Penn Station. But PSA was a priority for Governor Andrew Cuomo, so Cuomo fired Williams, and LIRR opposition vanished.

This same principle can be done at scale. Managers who refuse to learn from successful examples, which in capital construction regardless of mode and in operations of mainline rail are never American and rarely in English-speaking countries, can and should be replaced. Traditional railroaders who say things are impossible that happen all the time in countries they look down on can be fired; people from those same countries will move to New York for a New York salary.

This gets more important the more complex a project gets. It is possible, for example, to build high-speed rail between Boston and Washington for a cost in the teens of billions and not tens, let alone hundreds, but not a single person involved in any of the present effort can do that, because it’s a project with many moving parts and if you trust a railroad manager who says “you can’t have timed overtakes,” you’ll end up overbuilding unnecessary tunnels. In this case, managers with a track record of looking for excuses why things are impossible instead of learning from places that do those things are toxic to the project, and even kicking them up is toxic, because their subordinates will learn to act like that too. The squeaky wheel has to be removed and thrown into the garbage dumpster.

And thankfully, squeaky wheels that get thrown into the dumpster stop squeaking. All of this is possible, it just requires elected officials who have the ambition to take risks to effect tangible change rather than play petty office politics every day. Cuomo is the latter kind of politician, but he proved to everyone that a more competent leader could replace solipsists with curious learners and excusemongers with experts.

High Costs are not About Scarcity

I sometimes see a claim in comments here or on social media that the reason American costs are so high is that scarcity makes it hard to be efficient. This can be a statement about government practice: the US government supposedly doesn’t support transit enough. Sometimes it’s about priorities, as in the common refrain that the federal government should subsidize operations and not just capital construction. Sometimes it’s about ideology – the idea that there’s a right-wing attempt to defund transit so there’s siege mentality. I treat these three distinct claims as part of the same, because all of them really say the same thing: give American transit agencies more money without strings attached, and they’ll get better. All of these claims are incorrect, and in fact high costs cannot be solved by giving more money – more money to agencies that waste money now will be wasted in the future.

The easiest way to see that theories of political precarity or underresourcing are wrong is to try to see how agencies would react if they were beset mostly by scarcity as their defenders suggest. For example, the federal government subsidizes capital expansion and not operations, and political transit advocates in the United States have long called for operating funds. So, if transit agencies invested rationally based on this restrictions, what would they do? We can look at this, and see that this differs greatly from how they actually invest.

The political theory of right-wing underresourcing is similarly amenable to evaluation using the same method. Big cities are mostly reliant not on federal money but state and local money, so it’s useful to see how different cities react to different threat levels of budget cuts. It’s also useful to look historically at what happened in response to cuts, for example in the Reagan era, and spending increases, for example in the stimulus in the early Obama era and again now.

How to respond to scarcity

A public transit agency without regular funding would use the prospects of big projects to get other people’s money (OPM) to build longstanding priorities. This is not hypothetical: the OPM effect is real, and for example people have told Eric and me that Somerville used the original Green Line Extension to push for local amenities, including signature stations and a bike lane called the Community Path. In New York, the MTA has used projects that are sold to the public as accessibility benefits to remodel stations, putting what it cares about (cleaning up stations) on the budget of something it does not (accessibility).

The question is not whether this effect is real, but rather, whether agencies are behaving rationally, using OPM to build useful things that can be justified as related to the project that is being funded. And the answer to this question is negative.

For every big federally-funded project, one can look at plausible tie-ins that can be bundled into it that enhance service, which the Somerville Community Path would not. At least the ongoing examples we’ve been looking at are not so bundled. Consider the following misses:

Green Line Extension

GLX could include improvements to the Green Line, and to some extent does – it bundles a new railyard. However, there are plenty of operational benefits on the Green Line that are somewhere on the MBTA’s wishlist that are not part of the project. Most important is level boarding: all vehicles have a step up from the platform, because the doors open outward and would strike the platform if there were wheelchair-accessible boarding. The new vehicles are different and permit level boarding, but GLX is not bundling full level boarding at all preexisting stations.

East Side Access and Gateway

East Side Access and Gateway are two enormous commuter rail projects, and are the world’s two most expensive tunnels per kilometer. They are tellingly not bundled with any capital improvements that would boost reliability and throughput: completion of electrification on the LIRR and NJ Transit, high platforms on NJ Transit, grade separations of key junctions between suburban branches.

The issue of operating expenses

More broadly, American transit agencies do not try to optimize their rail capital spending around the fact that federal funding will subsidize capital expansion but not operations. Electrification is a good deal even for an agency that has to fund everything from one source, cutting lifecycle costs of rolling stock acquisition and maintenance in half; for an agency that gets its rolling stock and wire from OPM but has to fund maintenance by itself, it’s an amazing investment with no downside. And yet, American commuter rail agencies do not prioritize it. Nor do they prioritize high platforms – they invest in them but in bits and pieces. This is especially egregious at SEPTA, which is allowed by labor agreement to remove the conductors from its trains, but to do so needs to upgrade all platforms to level boarding, as the rolling stock has manually-operated trap doors at low-platform stations.

Agencies operating urban rail do not really invest based on operating cost minimization either. An agency that could get capital funding from OPM but not operating funding could transition to driverless trains; American agencies do not do so, even in states with weak unions and anti-union governments, like Georgia and Florida. New York specifically is beset by unusually high operating expenses, due to very high maintenance levels, two-person crews, and inefficient crew scheduling. If the MTA has ever tried to ask for capital funding to make crew scheduling more efficient, I have not seen it; the biggest change is operational, namely running more off-peak service to reduce shift splitting, but it’s conceivable that some railyards may need to be expanded to position crews better.

Finally, buses. American transit agencies mostly run buses – the vast majority of US public transport service is buses, even if ridership splits fairly evenly between buses and trains. The impact of federal aid for capital but not operations is noticeable in agency decisions to upgrade a bus route to rail perhaps prematurely in some medium-size cities. It’s also visible in bus replacement schedules: buses are replaced every 12 years because that’s what the Federal Transit Administration will fund, whereas in Canada, which has the same bus market and regulations but usually no federal funding for either capital or operations, buses are made to last slightly longer, around 15 years.

It’s hard to tell if American transit agencies are being perfectly rational with bus investment, because a large majority of bus operating expenses are the driver’s wage, which is generally near market rate. That said, the next largest category is maintenance, and there, it is possible to be efficient. Some agencies do it right, like the Chicago Transit Authority, which replaces 1/12 of its fleet every year to have long-term maintenance stability, with exactly 1/12 of the fleet up for mid-life refurbishment each year. Others do it wrong – the MTA buys buses in bunches, leading to higher operating expenses, even though it has a rolling capital plan and can self-fund this system in years when federal funds are not forthcoming.

Right-wing budget cuts

Roughly the entirety of the center-right policy sphere in the United States is hostile to public transportation. The most moderate and least partisan elements of it identify as libertarian, like Cato and Reason, but mainstream American libertarianism is funded by the Koch Brothers and tends toward climate change denial and opposition to public transportation even where its natural constituency of non-left-wing urbane voters is fairly liberal on this issue. The Manhattan Institute is the biggest exception that I’m aware of – it thinks the MTA needs to cut pension payments and weaken the unions but isn’t hostile to the existence of public transportation. In that environment, there is a siege mentality among transit agencies, which associate any criticism on efficiency grounds as part of a right-wing strategy to discredit the idea of government.

Or is there?

California does not have a Republican Party to speak of. The Democrats have legislative 2/3 majorities, and Senate elections, using a two-round system, have two Democrats facing each other in the runoff rather than a Democrat and a Republican. In San Francisco, conservatism is so fringe that the few conservatives who remain back the moderate faction of city politics, whose most notable members are gay rights activist and magnet for alt-right criticism Scott Wiener, (until his death) public housing tenant organizer Ed Lee, and (currently) Mayor London Breed, who is building homeless shelters in San Francisco over NIMBY objections. The biggest organized voices in the Bay Area criticizing the government on efficiency grounds and asserting that the private sector is better come from the tech industry, and usually the people from that industry who get involved with politics are pro-immigration climate change hawks. Nobody is besieging the government in the Bay Area. Nor is anybody besieging public transit in particular – it is popular enough to routinely win the required 2/3 majority for tax hikes in referendums.

In New York, this is almost as true. The Democrats have a legislative 2/3 majority as of the election that just concluded, there does not appear to be a serious Republican candidate for either mayor or governor right now, and the Manhattan Institute recognizes its position and, on local issues of governance, essentially plays the loyal opposition. The last Republican governor, George Pataki, backed East Side Access, trading it for Second Avenue Subway Phase 1, which State Assembly Speaker Sheldon Silver favored.

One might expect that the broad political consensus that more public transportation is good in New York and the Bay Area would enable long-term investment. But it hasn’t. The MTA has had five-year capital plans for decades, and has known it was going to expand with Second Avenue Subway since the 1990s. BART has regularly gotten money for expansion, and Caltrain has rebuilt nearly all of its platforms in the last generation without any attempt at level boarding.

How a competent agency responds to scarcity

American transit agencies’ extravagant capital spending is not in any way a rational response to any kind of precarity, economic or political. So what is? The answer is, the sum total of investment decisions made in most low-cost countries fits the bill well.

Swiss planning maxims come out of a political environment without a left-wing majority; plans for high-speed rail in the 1980s ran into opposition on cost grounds, and the Zurich U-Bahn plans had lost two separate referendums. The kind of planning Switzerland has engaged in in the last 30 years to become Europe’s strongest rail network came precisely because it had to be efficient to retain public trust to get funds. The Canton of Zurich has to that end had to come up with a formula to divide subsidies between different municipalities with different ideas of how much public services they want, and S-Bahn investment has always been about providing the best passenger experience at the lowest cost.

Elsewhere in Europe, one sees the same emphasis on efficiency in the Nordic countries. Scandinavia as a whole has a reputation for left-wing politics, because of its midcentury social democratic dominance and strong welfare states. But as a region it also practices hardline monetary austerity, to the point that even left-led governments in Sweden and Finland wanted to slow down EU stimulus plans during the early stages of the corona crisis. There is a great deal of public trust in the state there, but it is downstream of efficiency and not upstream of it – high-cost lines get savaged in the press, which engages in pan-Nordic comparisons to assure that people get value for money.

Nor is there unanimous consensus in favor of public transportation anywhere in Europe that I know of, save Paris and London. Center-right parties support cars and oppose rail in Germany and around it. Much of the Swedish right loathes Greta Thunberg, and the center-right diverted all proceeds from Stockholm’s congestion charge to highway construction. The British right has used the expression “war on the motorist” even more than the American right has the expression “war on cars.” The Swiss People’s Party is in government as part of the grand coalition, has been the largest party for more than 20 years, and consistently opposes rail and supports roads, which is why the Lötschberg Base Tunnel’s second track is only 1/3 complete.

Most European transit agencies have responded effectively to political precarity and budget crunches. They invest to minimize future operating expenses, and make long-term plans as far as political winds permit them to. American transit agencies don’t do any of this. They’re allergic to mainline rail electrification, sluggish about high platforms, indifferent to labor-saving signaling projects, hostile to accessibility upgrades unless sued, and uncreative about long-term operating expenses. They’re not precarious – they’re just incompetent.