Category: Regional Rail

When Transit Serves the Poor Better Than the Rich

In major transit cities, rich areas have better access to public transportation than poor areas – in fact, what makes them valuable is precisely the easy access to high-paying jobs. Even in cities with bad transit, this is often the case: the transit systems of cities with mode shares in the 10-15% area, like Boston and Chicago, tend to be good at serving city center and little else, and city center workers tend to be richer because professional work tends to cluster whereas low-skill work tends to disperse.

However, there are exceptions to this rule. One, the French Riviera, occurs in a city region with a transit mode share of 13%, comparable to that of American city regions where transit commuters outearn solo drivers. Two more cities are would-be exceptions, for opposite reasons: Providence has no public transit to speak of, but if it invested in creating a transit network, the natural corridors would serve the poor better than the rich; and Vancouver currently has better SkyTrain service in working-class areas than in richer ones, but its current investment is in middle-class areas, and moreover its extensive transit-oriented development has been middle-class as well.

Moreover, all three cities have patterns that generalize. The situation in the Riviera arises because of the classed nature of work there, and generalizes to other places with extensive tourism. That in Providence arises because of the city’s industrial history, and may generalize to other deindustrialized small cities with underutilized legacy rail networks. In Vancouver, part of this situation is because easy rail corridors were more readily available in poorer areas for an essentially random reason, but another part is extensive transit-oriented development concentrating working-class jobs near train stations.

The Riviera: the casinos are walkable, the tech jobs aren’t

Before I go any further, I’d like to stress something important: my observation of the Riviera is largely based on qualitative observations. I don’t know of INSEE data comparable to the Census Bureau’s Means of Transportation to Work by Selected Characteristics table, which could allow me to test the theory that transit ridership in the Riviera skews poor. All I am going by is what I have seen riding trains and occasionally buses as well as what I know of the distribution of jobs.

What I’ve seen is that transit use in the Riviera skews working class. Middle-class Parisians sometimes drive and sometimes take the trains. In contrast, the rich people who I’ve met in the Riviera have as far as I can tell never set foot on the TER. This is despite the fact that the TER is competitive with driving on the area’s main arterial road, the Moyenne Corniche, and is even competitive with the A8 freeway over short distances because the A8 has difficult access time to the relevant exits. Not for nothing, train stations in rich areas have very little ridership: per SNCF’s ridership data, stations in rich areas like Cap d’Ail and Cap Martin-Roquebrune have around 60,000 boardings plus alightings per year, so around 100 weekday boardings, whereas in working- and lower-middle-class Menton the annual total is 1.4 million, or around 2,300 weekday boardings.

The train stations, too, signal poverty. They’re not neglected, but what I’ve seen of them reminded me of working-class suburbs of Paris like Boissy much more than middle-class ones like Bures-sur-Yvette. I was even warned off of spending too much time near Nice’s train station by people echoing local middle-class prejudices. The buses look even poorer: the main east-west bus on the Moyenne Corniche is full of migrant workers.

A key clue for what is happening can be found when selecting a destination station at the fare machines in Menton. As far as I remember, the first option given is not Nice, but Monaco. SNCF’s data table doesn’t include ridership for Monaco, but Wikipedia claims 5.5 million a year without citation, and SNCF’s own blurb claims more than 6 million. Either figure is narrowly behind Nice’s 6.9 million for second in the Riviera and well ahead of third-place Cannes’s 3.2 million – and Nice also has some intercity traffic.

While Monaco’s residents are rich, its commuters are not. There are no corporate jobs in Monaco, because its tax haven status does not extend to corporations with substantial sales outside the city-state, only to local businesses like restaurants and stores. The commuters work low-pay service jobs at hotels and casinos, which they access by train, or perhaps on foot if they live in Beausoleil, as many a domestic service worker in Monaco does.

In contrast, the mass of middle-class jobs cluster in a purpose-built edge city in Antibes, called Sophia-Antipolis. While Antibes itself has a decent transit mode share for residents (10.5%, cf. Menton’s 14.8% and Nice’s 25.4%), and its train station gets 1.6 million annual boardings and alightings, the edge city is unwalkable and far from the train. There’s some traffic in the Riviera, but not enough that middle-class people, who can afford cars, clamor for transit alternatives to their suburban jobs.

The main lesson here is that while the jobs most likely to cluster are usually middle-class city center jobs, working-class tourism jobs cluster as well in regions that have plenty of them. Tourism in the Riviera is the most intense in Monaco specifically and in other coastal cities generally, which encourages travel along the linear corridor, where rail shines. It’s usually hard to see, because for the most part the top tourist destinations are enormous like London, Paris, and New York, but in specialized tourist regions the separation is clearer.

Already we see some evidence of this in Las Vegas, where working-class jobs cluster along the Strip. The city has a monorail, serving the hotels and casinos rather than city center. Were it interested in improving public transportation, it could build an elevated railroad on the Strip itself for better service.

Orlando is another potential example. I named it as a specific example of a region that would be difficult to retrofit for public transit earlier this year, but Disney World remains a major clustering of working-class jobs as well as some middle-class leisure travel. The problem there is that Disney World is far from the train and, unlike the Riviera, does not lie on any line with other potential ridership draws; nonetheless, a train connecting the Orlando CBD, the airport, and Disney World could get some traffic.

Finally, picturesque mountain resorts that happen to lie near rail could see working-class travel on the train to their tourism jobs. Many of these resorts are where they are specifically because a legacy rail trunk happened to be there and the railroad developed the area to generate demand for its services; this is the case for Jasper, Lake Louise, and Banff, all on the Alberta side of the Continental Divide. Aspen is not on a railroad, but is on a road where buses carry working-class commuters displaced by the town’s high housing costs.

Providence: once upon a time, there were factories near the railroad

When I lived in Providence seven years ago, I discussed transit improvements with local urbanists who I met through Greater City: Providence. We talked about improvements to both bus and rail; we had little appetite for the proposed city center streetcar, which has since been downgraded to a proposed frequent bus, and instead talked about improvements to the busiest buses as well as rail service along the main spine of the Northeast Corridor.

The improvements to the busiest buses were already under discussion by the state, including signal priority on key routes and investment in queue jump lanes and shelter amenities. The two routes that were by far the state’s busiest, the 99 on North Main and 11 on Broad, were permanently combined to a single through-running service branded as the R bus, for rapid, with limited-stop service. These routes serve very poor parts of the built-up area, including Pawtucket on the 99 and South Providence on the 11. This is a consequence of the fact that transit in Rhode Island is so bad that only the poor use it, and thus the preexisting busy routes serve poor areas; the best physical bus infrastructure is a bus tunnel to College Hill, the richest neighborhood in the city, but ridership there is weak and therefore the routes were never high priorities for further investment.

The improvements to rail never went beyond blogging; we didn’t have the pull of Boston’s TransitMatters, which itself is better at proposing small improvements than big ones that go up against political obstruction. What we called for was frequent local rail within the urban area: Peter Brassard wrote up the initial proposal, and I added some refinements. The Northeast Corridor, where the service would run, is primarily an intercity rail corridor, but there is room for four tracks in the right-of-way, and while there is freight traffic, it runs at the same approximate speed of a local passenger train.

As we discussed this proposal, Greater City’s Jef Nickerson noted something: what the train would do if implemented is produce better transit service in working-class areas than in more comfortable ones. Unlike the situation with the buses, this was not an intentional process. We would like Rhode Island to improve rail service using an existing right-of-way, which happens to serve Central Falls, Pawtucket, Olneyville, Hartford, Cranston, and Warwick, and miss the East Side and the middle-class suburbs. We realized that the city and inner-suburbs like Pawtucket are poorer than the proper suburbs, but that the train would serve Olneyville but not the East Side seemed like a coincidence.

But is it really a coincidence? Providence developed from east to west. The city was initially founded on the western side of what is now the East Side, sloping down to the river. What is now Downcity was only the second part of the city to develop. It became the center of the city because, as the Northeast Corridor was constructed, it was not possible to provide through-service via the hilly historic core of the city, only via the flatter areas that are now Downcity. A tunnel across College Hill opened in 1908, but by then the city’s basic urban geography was set: the university and port jobs on the East Side, industrial jobs to the west near the rail mainline.

The industrial jobs are long gone now. New England was the first part of America to industrialize and the first to deindustrialize, the mills moving to lower-wage Southern states already in the middle of the 20th century. In very large cities, declining industrial jobs can be replaced with urban renewal serving the middle class: the West India Docks became Canary Wharf, the freight railyards of Gare de Lyon became Bercy, the industrial Manhattan and Brooklyn waterfronts became sites for condos with nice views. In Providence-size cities, no such urban renewal is possible: there is no large mass of middle-class people clamoring to live or work in Olneyville, so the neighborhood became impoverished.

While factories may seem like attractive targets for transit commuting, they’re so clustered, in reality they have not been walkable ever since electrification made open-plan single-story factories viable. Factories are land-intensive and have been since around the 1910s. Moreover, whereas hotels and retail have a reason to locate in walkable areas for their consumption amenities – tourists like walking around the city – factories do not, and if anything depress an area’s desirability through noise and pollution. Working industrial districts are not attractive for transit, but post-industrial ones are, even if they are not gentrified the way so much of London, Paris, and New York have.

A large number of cities share Providence’s history as a medium-size post-industrial city. Nearly every English city except London qualifies, as do the cities of the American Northeast and Midwest below the size class of Boston and Philadelphia. Moreover, all of these cities have undergone extensive middle-class flight, with the racial dimension of white flight in the US but even without it in Britain; thus, the relatively dense neighborhoods, where transit service is more viable, are disproportionately poor. However, the feasibility of mainline rail service to post-industrial neighborhoods is uneven, and depends on local idiosyncrasies.

One positive example I’m more familiar with that’s a lot like Providence is in New Haven. Its best potential local rail route, the Farmington Canal Trail, serves lower middle-class areas like Hamden, and fortunately parallels the busiest bus route, the D-Dixwell. While Hamden is not poor, such service would still lead to the inversion we discussed for Providence, since the rich live in thoroughly auto-oriented suburbs or within walking distance of Yale. The main drawbacks are that it would require replacing an active trail with rail service, and that either street running or brief tunneling would be needed in the final few hundred meters in Downtown New Haven.

Vancouver: easy corridors and TOD for the working class

With a modal share of 21%, Vancouver is in a somewhat higher class of transit quality than the Riviera, Boston, or Chicago. However, it remains a far cry from the numbers beginning with a 3, 4, and 5 seen in New York and in European and Asian transit cities. As with the Riviera, I am somewhat speculating from my own observations, lacking a table that clearly states transit usage by socioeconomic class. However, two factors make me believe that transit in Vancouver serves the working class better than it does the middle class.

The first factor is the corridors served by SkyTrain. The first to be built, the Expo Line, runs in a preexisting interurban right-of-way, with minor greenfield elevated and underground construction; even the downtown tunnel is repurposed from a disused mainline rail branch. It passes through a mixture of working-class and lower middle-class neighborhoods on its way to Surrey, which is working-class and very negatively stereotyped. The second, the Millennium Line, branches east, to lower middle-class suburbs, running on a greenfield el. The third, the Canada Line, is a partially tunneled, partially elevated route through the middle-class West Side to working-class Richmond. Only the fourth line to be built, the Evergreen extension of the Millennium Line, finally serves a comfortable area, as will the next line, the Broadway extension of the Millennium Line deeper into the West Side.

The second factor is the job distribution within Metro Vancouver. Usually, we see concentration of professional jobs in city centers and dispersal of working-class jobs among many stores. In the Riviera this relationship between job concentration and income is only inverted because the working-class jobs are disproportionately in tourism while the professional ones are in an edge city. In Vancouver I don’t believe there is any such inversion, but there is leveling: jobs of either type are concentrated in transit-rich areas. This leveling is the result of extensive commercial transit-oriented development, most notably Metrotown, which has many office jobs on top of Canada’s third largest shopping mall.

The first factor is idiosyncratic. The easy corridors happened to serve poorer areas, on a line from East Vancouver to Surrey. The rich live in North Vancouver, which has a ferry and doesn’t have enough population density for a SkyTrain tunnel; on the West Side, which is separated from downtown by False Creek and was thus late to get a rail connection; and in Port Moody and Coquitlam, which were only connected to SkyTrain recently via the Evergreen extension.

The second factor is more systemic. While American and European cities rarely have big urban shopping malls, Canadian cities are full of them. The Metropolis at Metrotown has 27 million annual visitors, not far behind the 37 million of the Forum des Halles, at the center of a metro area five times the size of Metro Vancouver – and the Metropolis has more than twice the total commercial floor area. In this, Canada is similar to Israel and Singapore, which like Canada have harsh climates, only hot instead of cold. Moreover, Vancouver has encouraged this centralization through TOD: Burnaby built Metrotown from scratch in the 1980s, simultaneously with the Expo Line.

It is difficult to engage in concerted residential TOD for the working class, since it requires extensive housing subsidies. Vancouver’s residential TOD near SkyTrain stations is thoroughly middle-class. However, concerted commercial TOD is easier: hospitals, universities, and shopping centers all employ armies of unskilled workers (the first two also employing many professional ones), the first two while satisfying general social goals for health care and education provision and the last while making the owners a profit on the open market.

Moreover, Vancouver’s TOD within downtown, too, has made it easier to provide transit service for the working and lower middle classes. Where constraints on office towers lead to high office rents, only the most critical jobs are in city centers, and those are typically high-end ones; in the US, it’s common for big corporations to site their top jobs in the center of New York or Chicago or another large city but outsource lower-end office jobs to cheaper cities. In Vancouver, as elsewhere in Canada, extensive downtown commercialization means that even semi-skilled office jobs like tech support can stay in the center rather than at suburban office parks.


Based on my own observations, I believe the Riviera provides better public transportation for the working class than for the middle class, and to some extent so does Vancouver. Providence provides uniformly poor transit service, but its lowest-hanging fruit are in working-class urban neighborhoods.

The reasons vary, but the unifying theme is that, in the Riviera and Vancouver, there is none of the typical big-city pattern in which the rich work in walkable city centers more than the poor (e.g. in New York). In Vancouver it’s the result of commercial TOD as well as a Canadian culture of urban shopping centers; in the Riviera it’s the result of unique dependence on tourism. In Providence the situation is not about job concentration but about residential concentration: lower-income neighborhoods are likelier to arise near rail because historically that’s where industry arose, and all that remains is for Providence to actually run local passenger trains on the mainline.

It is not possible to replicate culture. If your city does not have the tourism dependence of Monaco, or the shopping mall culture of Vancouver, or the post-industrial history of Providence, there’s little it can do to encourage better urban geography for working-class transit use. At best, can build up more office space in the center, as Vancouver did, and hope that this encourages firms to locate their entire operations there rather than splitting them between a high-end head office and lower-end outlying ones. Fortunately, there exist many cities that do have the special factors of the Riviera, Vancouver, or Providence. In such cities, transit planners should make note of how they can use existing urban geography to help improve transit service for the population that most depends on it.

Urban Transit Vs. Commuter Transit

The Geary corridor in San Francisco is a neat model for transit ridership. The Golden Gate Park separates the Richmond District from the Sunset District, so the four east-west buses serving the Richmond – the 38 on Geary itself and the closely parallel 1 California, 31 Balboa, and 5 Fulton – are easy to analyze, without confounding factors coming from polycentric traffic. Altogether, the four routes in all their variations have 114,000 riders per weekday. The 38 and 1 both run frequently – the 1 runs every 5-6 minutes in the weekday off-peak, and the 38 runs every 5 minutes on the rapid and every 8 on the inner local.

I was curious about the connection between development and travel demand, so I went to OnTheMap to check commute volumes. I drew a greater SF CBD outline east of Van Ness and north of the freeway onramp and creek; it has 420,000 jobs (in contrast, a smaller definition of the CBD has only 220,000). Then I looked at how many people commute to that area from due west, defined as the box bounded by Van Ness, Pacific, the parks, and Fell. The answer is 28,000. Another 3,000 commute in the opposite direction.

Put another way: the urban transit system of San Francisco carries about twice as many passengers on the lines connecting the Richmond and Japantown with city center as actually make that commute: 114,000/2*(28,000 + 3,000) is 1.84. This represents an implausible 184% mode share, in a part of the city where a good number of people own and drive cars, and where some in the innermost areas could walk to work. What’s happening is that when the transit system is usable, people take it for more than just their commute trips.

The obvious contrast is with peak-only commuter rail. In trying to estimate the potential ridership of future Boston regional rail, I’ve heavily relied on commute volumes. They’re easier to estimate than overall trip volumes, and I couldn’t fully get out of the mindset of using commuter rail to serve commuters, just in a wider variety of times of day and to a wider variety of destinations.

In Boston, I drew a greater CBD that goes as far south as Ruggles and as far west as Kendall; it has a total of 370,000 jobs. Of those, about 190,000 come from areas served by commuter rail and not the subway or bus trunks, including the southernmost city neighborhoods like Mattapan and Hyde Park, the commuter rail-adjacent parts of Newton, and outer suburbs far from the urban transit system. But MBTA commuter rail ridership is only about 120,000 per weekday. This corresponds to a mode share of 32%.

I tried to calculate mode shares for the MBTA seven years ago, but that post only looked at the town level and excluded commuter rail-served city neighborhoods and the commuter rail-adjacent parts of Newton, which contribute a significant fraction of the total commute volume. Moreover, the post included suburban transit serving the same zones, such as ferries and some express buses; combined, the mode share of these as well as commuter rail ranged from 36% to 50% depending on which suburban wedge we are talking about (36% is the Lowell Line’s shed, 50% is the Providence Line’s shed). Overall, I believe 32% is consistent with that post.

Part of the difference between 32% and 184% is about the tightness of economic integration within a city versus a wider region. The VA Hospital in San Francisco is located in the Outer Richmond; people traveling there for their health care needs use the bus for this non-commuter trip. On a regional level, this never happens – people drive to suburban hospitals or maybe take a suburban bus if they are really poor.

That said, hospital trips alone cannot make such a large difference. There are errand trips that could occur on a wider scale if suburban transit were better. Cities are full of specialty stores that people may travel to over long distances.

For example, take gaming. In Vancouver I happened to live within walking distance of the area gaming store, but during game nights people would come over from Richmond; moreover, the gaming bar was in East Vancouver, and I’d go there for some social events. In Providence I’d go to Pawtucket to the regional gaming store. In the Bay Area, the store I know about is in Berkeley, right on top of the Downtown Berkeley BART station, and I imagine some people take BART there from the rest of the region.

None of this can happen if the region is set up in a way that transit is only useful for commute trips. If the trains only come every hour off-peak, they’re unlikely to get this ridership except in extreme cases. If the station placement is designed around car travel, as is the case for all American commuter lines and some suburban rapid transit (including the tails of BART), then people will just drive all the way unless there’s peak congestion. Only very good urban transit can get this non-work ridership.

FRA Reform is Here!

Six and a half years ago, the Federal Railroad Administration announced that it was going to revise its passenger train regulations. The old regulations required trains to be unusually heavy, wrecking the performance of nearly every piece of passenger rolling stock running in the United States. Even Canada was affected, as Transport Canada’s regulations mirrored those south of the border. The revision process came about for two reasons: first, the attempt to apply the old rules to the Acela trains created trains widely acknowledged to be lemons and hangar queens (only 16 out of 20 can operate at any given time; on the TGV the maximum uptime is 98%), and second, Caltrain commissioned studies that got it an FRA waiver, which showed that FRA regulations had practically no justification in terms of safety.

The new rules were supposed to be out in 2015, then 2016, then 2017. Then they got stuck in presidential administration turnover, in which, according to multiple second-hand sources, the incoming Republican administration did not know what to do with a new set of regulations that was judged to have negative cost to the industry as it would allow more and lower-cost equipment to run on US tracks. After this limbo, the new rules have finally been published.

What’s in the new regulations?

The document spells out the main point on pp. 13-20. The new rules are similar to the relevant Euronorm. There are still small changes to the seats, glazing, and emergency lighting, but not to the structure of the equipment. This means that unmodified European products will remain illegal on American tracks, unlike the situation in Canada, where the O-Train runs unmodified German trains using strict time separation from freight. However, trains manufactured for the needs of the American market using the same construction techniques already employed at the factories in France, Germany, Switzerland, and Sweden should not be a problem.

In contrast, the new rules are ignoring Japan. The FRA’s excuse is that high-speed trains in Japan run on completely dedicated tracks, without sharing them with slower trains. This is not completely true – the Mini-Shinkansen trains are built to the same standards as the Shinkansen, just slightly narrower to comply with the narrower clearances on the legacy lines, and then run through to legacy lines at lower speed. Moreover, the mainline legacy network in Japan is extremely safe, more so than the Western European mainline network.

On pp. 33-35, the document describes a commenter who most likely has read either my writings on FRA regulations or those of other people who made the same points in 2011-2, who asked for rules making it possible to import off-the-shelf equipment. The FRA response – that there is no true off-the-shelf equipment because trains are always made for a specific buyer – worries me. The response is strictly speaking true: with a handful of exceptions for piggybacks, including the O-Train, orders are always tailored to the buyer. However, in reality, this tailoring involves changes within certain parameters, such as train width, that differ greatly within Europe. Changes to parts that are uniform within Europe, such as the roofing, may lead to unforeseen complications. I don’t think the cost will be significant, but I can’t rule it out either, and I think the FRA should have been warier about this possibility.

The final worry is that the FRA states the cost of a high-speed train is $50 million, in the context of modification costs; these are stated to be $300,000 for a $50 million European high-speed trainset and $4.7 million for a Japanese one. The problem: European high-speed trainsets do not cost $50 million. They cost about $40 million. Japanese sets cost around $50 million, but that’s for a 16-car 400-meter trainsets, whereas European high-speed trainsets are almost always about 200 meters long, no matter how many cars they’re divided into. If the FRA is baking in cost premiums due to protectionism or bespoke orders, this is going to swamp the benefits of Euronorm-like regulations.

But cost concerns aside, the changes in the buff strength rules are an unmitigated good. The old rules require trainsets to resist 360-945 metric tons of force without deformation (360 for trains going up to 200 km/h, 945 beyond 200 km/h), which raises their mass by several tons per cars – and lightweight frames require even more extra mass. The new ones are based on crumple zones using a system called crash energy management (CEM), in which the train is allowed to deform as long as the deformation does not compromise the driver’s cab or the passenger-occupied interior, and this should not require extra train mass.

How does it affect procurement?

So far, the new rules, though telegraphed years in advance, have not affected procurement. With the exception of Caltrain, commuter railroads all over the country have kept ordering rolling stock compliant with the old rules. Even reformers have not paid much attention. In correspondence with Boston-area North-South Rail Link advocates I’ve had to keep insisting that schedules for an electrified MBTA must be done with modern single-level EMUs in mind rather than with Metro-North’s existing fleet, which weighs about 65 metric tons per car, more than 50% more than a FLIRT per unit of train length.

It’s too late for the LIRR to redo the M9, demanding it be as lightweight as it can be. However, New Jersey Transit’s MultiLevel III is still in the early stages, and the railroad should scrap everything and require alternate compliance in order to keep train mass (and procurement cost) under control.

Moreover, the MBTA needs new trains. If electrification happens, it will be because the existing fleet is so unreliable that it becomes attractive to buy a few EMUs to cover the Providence Line so that at least the worst-performing diesels can be retired. Under no circumstance should these trains be anything like Metro-North’s behemoths. The trains must be high-performance and as close as possible to unmodified 160 km/h single-level regional rail rolling stock, such as the DBAG Class 423, the Coradia Continental, the Talent II, or, yes, the FLIRT.

Metra is already finding itself in a bind. It enjoys its antediluvian gallery cars, splitting the difference between one and two decks in a way that combines the worst of both worlds; first-world manufacturers have moved on, and now Metra reportedly has difficulty finding anyone that will make new gallery cars. Instead, it too should aim at buying lightly modified European trains. These should be single-level and not bilevel, because bilevels take longer to unload, and Chicago’s CBD-dominant system is such that nearly all passengers would get off at one station, Millennium Station at the eastern edge of the Loop, where there are seven terminating tracks and (I believe) four approach tracks.

Ultimately, on electrified lines, the new rules permit trains that are around two thirds as heavy as the existing EMUs and have about the same power output. Substantial improvements in train speed are possible just from getting new equipment, even without taking into account procurement costs, maintenance costs, and electricity consumption. Despite its flaws, the new FRA regulation is positive for the industry and it’s imperative that passenger railroads adapt and buy better rolling stock.

The American Way of Building Rapid Transit

I’ve sporadically discussed how some countries or regions have traditions of how to build rapid transit. For example, in a City Metric article last year I made an off-hand comment about how communist bloc metros, from Europe to North Korea, have widely-spaced stops just like Moscow, while French metros and French-influenced Montreal Metro have short stop spacing just like Paris. I intend to write some posts covering different traditions, starting from one I’ve barely discussed as such: the American one. There are commonalities to how different American cities that build subways choose to do so, usually with notable New York influences, and these in turn affect how American transit activists think about trains.

For the most part, the American tradition of rapid transit should be viewed as one more set of standards, with some aspects that are worth emulating and others that are not. Most of the problems I’ve harped on are a matter of implementation more than a matter of standards. That said, that something is the local tradition does not immediately mean it works, even if on the whole the tradition is not bad. Some of the traditions discussed below definitely increase construction costs or reduce system effectiveness.

The situation in New York

A large majority of American rapid transit ridership, about two thirds, is in New York. The city’s shadow is so long that the systems built in the postwar era, like the Washington Metro and BART, were designed with New York as a reference, whether consciously or not. Only the Boston subway and Chicago L are old enough to avoid its influence – but then their elevated system design still has strong parallels in New York, whether due to direct influence or a common zeitgeist at the end of the 19th century. Thus, the first stop on the train of thought of the American rapid transit tradition must be New York practice.

New York has nine subway main lines. Five are north-south through Manhattan and four-track, three are east-west and two-track, and one avoids Manhattan entirely. Nearly all construction was done cut-and-cover between 1900 and 1940, forcing lines to hew to the street network. As New York has wide, straight streets, a trait shared with practically all American cities, this was not a problem, unlike in London, where carving right-of-way for the Underground was so difficult that every line from the third onward was built deep-bore.

With four tracks on most of the Manhattan trunks, there is local and express service. This allows trains to go around obstacles more easily, increasing redundancy. It’s in this context that New York’s 24/7 service makes sense: there is no absolute need for nighttime maintenance windows in which no train runs. This approach works less well on the two-track lines, and the L, the only one that’s two-track the entire way, has occasional work orders with very low train frequency because of single-tracking.

Outside the core of the city as it was understood during construction, lines run elevated. The standard New York el is an all-steel structure, which reduces construction costs – the First Subway’s subway : el cost ratio was 4:1, whereas today the average is about 2.5:1 even though tunneling uses the more expensive boring technique – at the cost of creating a boombox so noisy that it’s impossible to have a conversation under the tracks while a train is passing. Moreover, splitting the difference between two and four tracks, the standard el has three tracks, which allows peak-direction express service (on the 2/5, 6, and 7) or more space for trains to get around obstacles (on the 1, 4, and N/W).

Because the els are so noisy, the city stopped building them in the 1920s. The lines built in the 1930s were all underground, with the exception of one viaduct over an industrial shipping channel.

Moreover, from the 1930s onward, stations got bigger, with full-length mezzanines (the older stations had no or short mezzanines). Track standards increased, leading to an impressive and expensive array of flying junctions, contrasting with the flat junctions that characterize some older construction like the Chicago L or some foreign examples like much of the London Underground.

Finally, while New York has nine separate subway colors, its number of named lines is far greater. The system comprises several tens of segments called lines, and each route combines different lines, with complex branching and recombination. The infrastructure was never built for discrete lines with transfers between them, but rather for everywhere-to-everywhere one-seat rides, and service choices today reinforce this, with several outer lines reverse-branching to an East Side and a West Side Manhattan trunk.

The desire for 24/7 service

I know of five urban rail networks with 24/7 service. One is the Copenhagen Metro, which is driverless and built with twin bores, making it easy for service to single-track at night for maintenance. The other four are American: the New York City Subway, PATH, PATCO, and the Chicago L. Moreover, the LIRR runs 24/7, which no other commuter rail system I know of does, even ones where an individual outlying station has comparable ridership to the entire LIRR.

The other systems have somewhat of a 24/7 envy. I’ve heard lay users and activists in Washington and the Bay Area complain that the Washington and BART shut down overnight; BART itself feels it has to justify itself to the users on this question. Right now, BART’s decision to temporarily add an hour to the nighttime shutdown window to speed up maintenance is controversial. People are complaining that service is being cut despite increases in funding. In Washington, the more professional activists understand why 24/7 service is unviable, but like BART feel like they have to explain themselves.

Local and express trains

New York is full of four-track mainlines, running both local and express trains. Chicago and Philadelphia have them as well on one line each. The other rapid transit networks in the US don’t, but like 24/7 service desire it. Washington has enough complaints about it that regular reader and Patreon supporter DW Rowlands had to write an article for Greater Greater Washington explaining why it would not be all that useful.

BART is the more interesting case. In any discussion of BART extensions, people bring up the fact that BART can’t skip stops – never mind that its stop spacing is extremely wide owing to its function as suburban rail. The average speed on BART is 57 km/h per the National Transit Database; the RER A, which is the express service here, averages around 50. At BART’s speed, the single longest express segment in New York not crossing water, the A/D between 125th and 59th Streets, would take 7 minutes; in fact it takes about 9. If anything, BART errs in having too few stations in Oakland and San Francisco.

On new-build systems, four tracks are understandable and desirable, provided the construction method is cut-and-cover, as it was in early-20th century America. The earliest subway lines built in New York had little cost premium over London and Paris even though the tunnels were twice as wide for twice as many tracks. However, cut-and-cover is no longer used in developed countries owing to its heavy impact on merchants and residents along the way; already during WW2, Chicago dug the tunnels for the Red and Blue Lines of the L using deep boring. A city that bores tunnels will find that four-track tunnels cost twice as much as two-track tunnels, so it might as well built two separate lines for better coverage.

The shadow of steel els

New York, Boston, Philadelphia, and Chicago all built all-steel els. While cheaper, these structures are so noisy that by the 1930s they became untenable even in far-out neighborhoods, like on the Queens Boulevard Line. New lines in New York were underground; existing els were removed, quickly in New York and more slowly in Boston.

The newer systems built in the US avoided els entirely. BART planned to build one in Berkeley, but community opposition led to a change to an underground alignment; unlike subsequent examples of NIMBYism, Berkeley was willing to pay the cost difference. When tunnels are infeasible due to cost, American rail networks prefer at-grade rights-of-way, especially freeway medians. Rail rights-of-way are popular where available, such as on the realigned Orange Line in Boston, but freeway medians are common where rail alignments don’t exist.

The next generation of American urban rail systems, unable to tunnel in city center, turned to light rail in order to keep things at-grade. Across the border, in Canada, Vancouver built els to cover gaps in the right-of-way that turned into the Expo Line, and then built concrete els on the Millennium Line and outer Canada Line to reinforce the system. These brutalist structures are imposing, but I’ve had conversations under the viaducts in Richmond, just as I have in Paris under the mixed concrete and steel structures or in Sunnyside next to New York’s one concrete el.


New York did not invent reverse-branching. London has had it since the 1860s, when most South London railways ran separate trains to the City (at Cannon Street, London Bridge, or Blackfriars) or the West End (at Victoria or Charing Cross), and multiple North London railways ran trains to their traditional terminals or to the North London Railway for service to Broad Street. Paris has had it since even earlier: the railways operating out of Gare Saint-Lazare and Gare Montparnasse merged in 1851 and treated the two stations as reverse-branches allowing cities farther west to access both the Right Bank and the Left Bank. In both cities, this situation makes it harder to run coherent regional rail – in London the railways are spending considerable resources on disentangling the lines to increase frequency to South London’s many branches, and in Paris the fact that Montparnasse and Saint-Lazare serve similar destinations frustrated plans to connect the two stations with an RER tunnel.

Where New York innovated is in copying this practice on rapid transit, starting with the Dual Contracts era. In Brooklyn, existing as well as new outlying lines could be routed to any number of new crossings to Manhattan; in the Bronx and Eastern Brooklyn, a desire to give branches service to both the West Side and East Side led to reverse-branching even on the numbered lines, which were built from scratch and did not involve older suburban railroads.

Reverse-branching spread across the United States. Boston had it until it removed the Atlantic Avenue El, and even today, railfans occasionally talk about reverse-branching the Red Line along Massachusetts Avenue to Back Bay and Roxbury. Chicago occasionally has it depending on the arrangement of trains on the North Side; today, the Purple and Brown Lines share tracks at rush hour but then go in opposite directions on the Loop. The Broad Street Line in Philadelphia reverse-branches to Chinatown. The Washington Metro has reverse-branches in Virginia, limiting train frequency due to asymmetry at the merge points. BART designed itself to force a three-way wye in Oakland pointing toward San Francisco, Berkeley and Downtown Oakland, and East Oakland on which every pair of destinations has a direct train, or else East Oakland residents would have to change trains to access their own city center – and current plans for a second trans-Bay tube add further reverse-branches instead of using the extra capacity as an opportunity to fix the Oakland junction.

Outside the United States, I know of four reverse-branches on rapid transit that is not historically regional rail: the Delhi Green Line, the Namboku and Mita Lines in Tokyo, the Yurakucho and Fukutoshin Lines also in Tokyo, and the Northern line’s two trunks in London. Of those, the last one is slowly being disentangled: its southern end will be two separate lines once the Battersea extension opens, and its northern end will, severing the line in two, once upgrades to pedestrian circulation are completed at the branch point. Historically Toronto had a three-way wye on the subway, like BART, but it caused so many problems it was discontinued in favor of running two separate lines.

Regional rail

The most prominent feature of American rail networks is not what they do, but what they lack. American (and Canadian, and Chinese) regional rail networks remain unmodernized, run for the exclusive benefit of upper middle-class suburban office workers at the primary CBD. Details differ between cities, but even when management is theoretically part of the same agency as the rapid transit network, as in Boston, New York, and Philadelphia, in practice the commuter railroads are autonomous. There is no hint of fare integration or schedule integration.

This fact influences network design more than anything else, even the low quality of steel els. Service to any destination beyond the dense urban core, which is small outside a handful of relatively dense cities, requires building new rail from scratch. This favors low-cost, low-capacity light rail, often in freeway medians. Smaller cities, unable to afford enough light rail to convince entire counties to tax themselves to build transit, downgrade service one step further and build bus rapid transit, typically treated as a weird hybrid of Latin American busways and European bus lanes.

Does any of this work?

In one word, no. The American tradition of rapid transit clearly doesn’t work – just look at the weak ridership even in old cities like Boston and Philadelphia, whose mode shares compare with medium-size urban regions in the French sunbelt like the Riviera or Toulouse.

Or, more precisely, it doesn’t work in early-21st century America. In the rare occasion an American city manages to round up funding to build a new subway line, I would recommend looking abroad for models of both construction methods and network design. For example, as BART keeps working on designing the second tube, I would strongly advise against new branches on the East Bay – instead, one of the two tubes (old and new) should permanently serve East Oakland, with a new Downtown Oakland transfer station, and the other should serve Berkeley and Concord.

Moreover, the United States owes it to itself to aggressively modernize its mainline passenger rail network. It’s too important to let Amtrak, the LIRR, Metro-North, Metra, and other dinosaurs do what they’ve always done. Toronto’s modernization of GO Transit, named the Toronto RER after the Western world’s premier regional rail network, had wide support among transit planners, but the engineers at GO itself were against it, and Metrolinx had to drag them into the 21st century.

Where the American tradition does work is in contexts that the United States has long left behind. Booming third-world cities direly need rapid transit, and while American construction costs are not to be emulated, the concept of opening up major throughfares, laying four tracks, and covering the system is sound. The mix of underground construction in city center and elevated construction farther out (using concrete structure, not louder steel ones) is sound as well, and is already seeing use in China and India. This is especially useful in cities that have little to no legacy regional rail, in which category India and China do not qualify, but most of the rest of the third world does.

Globalization makes for grand shuffles like this one. Experts in the United States should go to Nigeria, Bangladesh, Pakistan, Colombia, Kenya, Tanzania, Angola, and the Philippines and advise people in these countries’ major cities about how to emulate rapid transit designs from early-20th century America. But in their home country these same experts should instead step aside and let people with experience in the traditions of Japan, South Korea, and the various distinct countries of Western and Central Europe make decisions.

Transit-Oriented Suburbs

I did a Patreon poll last month with three options, all about development and transit: CBDs and job concentration in middle-income cities (e.g. auto-oriented Bangkok and Istanbul don’t have transit-oriented Shanghai’s CBD formation), dense auto-oriented city neighborhoods (e.g. North Tel Aviv), and transit-oriented low-density suburbia. This is the winning option.

In every (or almost every) city region, there’s a clear pattern to land use and transportation: the neighborhoods closer to the center have higher population density and lower car use than the ones farther away. Moreover, across city regions, there is such a strong negative correlation between weighted density and auto use that exceptions like Los Angeles are notable. That said, the extent of the dropoff in transit use as one moves outward into suburbia is not the same everywhere, and in particular there are suburbs with high transit use. This post will discuss which urban and transportation policies are likely to lead such suburbs to form, in lieu of the more typical auto-oriented suburbs.

What is a suburb?

Definitions of suburbia differ across regions. Here in Paris, anything outside the city’s 1860 limits is the suburbs. The stereotypical banlieue is in history, urban form, and distance from the center a regular city neighborhood that just happens to be outside the city proper for political reasons. It is hardly more appropriate to call any part of Seine-Saint-Denis a suburb than it is to call Cambridge, Massachusetts a suburb of Boston.

So if Seine-Saint-Denis is not a suburb, what is? When I think of suburbia, my prototype is postwar American white flight suburbs, but stripped of their socioeconomic context. The relevant characteristics are,

  • Suburbs developed at a time when mass motorization was widespread. In the US, this means from around 1920 onward in the middle class and slightly later in the working class; in the rest of the developed world, the boundary ranges from the 1920s to the 1960s depending on how late they developed. Note that many stereotypical suburbs were founded earlier, going back even to the 19th century, but grew in the period in question. Brookline is famous for refusing annexation to Boston in 1873, but its fastest development happened between 1910 and 1930, straddling the 1920 limit – and indeed in other respects it’s borderline between a rich suburb and rich urban neighborhood as well.
  • Suburbs have low population density, typical of single-family housing. Aulnay-sous-Bois, at 5,100 people per km^2, is too dense, but not by a large margin. Beverly Hills, which has mansions, has 2,300, and Levittown, New York, probably the single best-known prototype of a suburb, has 2,900. The urban typology can mix in apartments, but the headline density can’t be dominated by apartments, even missing middle.
  • Suburbs are predominantly residential. They can have distinguished town centers, but as broad regions, they have to have a significant number of commuters working in the city. This rules out low-density central cities like Houston and Dallas (although their individual neighborhoods would qualify as suburbs!). It also rules out Silicon Valley as a region, which represents job sprawl more than residential sprawl.

The three criteria above make no mention of whether the area is included in the central city. Most of Staten Island qualifies as suburban despite being part of New York, but Newark fails all three criteria, and Seine-Saint-Denis and most of Hudson County fail the first two.

Where are suburbs transit-oriented?

I do not know of any place where suburban transit usage is higher than city center transit usage. In theory, this suggests that the best place to look for transit-oriented suburbia is the cities with the highest transit mode shares, such as Tokyo, Singapore, and Hong Kong (or, in Europe, Paris). But in reality, Singapore and Hong Kong don’t have areas meeting the density definition of suburb, and Tokyo has few, mostly located away from its vast commuter rail network. Paris has more true suburbs, but like Tokyo’s, they are not what drives the region’s high rail ridership. All four cities are excellent examples of high-density suburban land use – that is, places that meet my first and third definitions of suburbia but fail the second.

Instead, it’s better to look at smaller, lower-density cities. Stockholm and Zurich are both good models here. Even the central cities are not very dense, at 5,100 and 4,700 people per km^2. Moreover, both are surrounded by large expanses of low-density, mostly postwar suburbia.

Winterthur, Zurich’s largest suburb, is a mix of early 20th century and postwar urban typology, but the other major cities in the canton mostly developed after WW2. At the time, Switzerland was already a very rich country, and car ownership was affordable to the middle class. The story of the Zurich S-Bahn is not one of maintaining mode share through a habit of riding transit, but of running frequent commuter rail to suburbs that did not develop around it from the 1950s to the 70s.

In Stockholm, there is a prominent density gradient as one leaves Central Stockholm. I lived in Roslagstull, at the northern end of Central Stockholm, where the density is 30,000 people per km^2 and the built-up form is the euroblock. Most of the rest of Central Stockholm is similar in urban form and not much less dense. But once one steps outside the city’s old prewar core, density nosedives. City districts to the west and south, like Bromma and Älvsjö, go down to 3,000 people per km^2 or even a little less. A coworker who used to live in Kista described the area as American-style suburban. Beyond these city districts lie the other municipalities, which together form a sizable majority of the county’s population. Of those, a few (Solna, Sundbyberg) are somewhat above the density cutoff, but most are far below it.

In both Zurich and Stockholm, the city is much more transit-oriented than the suburbs. Stockholm’s congestion pricing was a city initiative; the suburbs banded together to oppose it, and eventually forced a compromise in which congestion pricing remained in effect but the revenue would be deeded to urban freeways rather than to public transportation.

And yet, neither city has a big transit use gradient – at least, not so big as Paris, let alone London or New York. Stockholm is expecting 170,000 daily metro trips from its expansion program, which barely touches Central Stockholm. Existing T-bana ridership on the suburban tails is pretty high as well (source, PDF-p. 13), as is ridership on commuter rail, which, too, barely touches Central Stockholm.

The structure of density

In my previous post, I complained that Los Angeles’s density has no structure, and thus public transit ridership is very low and consists predominantly of people too poor to buy a car. The situation in Stockholm and Zurich is the reverse. Density has a clear structure: within each suburb, there is a town center near the commuter rail station.

The histories of Zurich and Stockholm are profoundly different. Each arrived in its structure from a different route. In Zurich, the suburbs come from historic town centers that existed long before cars, often long before industrialization. 20th-century urban sprawl arrived in the form of making these historic villages bigger and bigger until they became proper suburbs. The geography helps rail-oriented suburbanization as well: the ridge-and-valley topography is such that urban sprawl forms ribbons served by commuter rail lines, especially in the southerly direction.

Stockholm’s topography is nothing like Zurich’s. There are water boundaries limiting suburb-to-suburb travel, but the same is true of New York, and yet Long Island, New Jersey, and Westchester are thoroughly auto-oriented. Instead, the structure of density came about because of government planning. Sweden built public housing simultaneously with the Stockholm Metro, so the housing projects were sited near the train stations.

This does not mean that the suburbs of Zurich and Stockholm are actually high-density. Far from it: the housing projects in the Stockholm suburbs are surrounded by a lot of parking and greenery, and the suburbs have extensive single-family housing tracts. However, the density is arranged to grade down from the train station, and there are small clusters of walkable apartment buildings in a small radius around each station. In Zurich the same structure came about with private construction and topography.

To the extent this structure exists elsewhere, it leads to higher low-density transit ridership too, for example in London and the Northeastern United States. Various West Coast American transit bloggers, like Jarrett Walker and Let’s Go LA, keep plugging the West Coast grid over the Northeastern hierarchy of density. But this hierarchy of suburbs that formed around commuter rail to the CBD produces transit ridership that, while awful by Continental European standards, is very good by American ones. Many of the suburbs in question, such as in Westchester, have 15-20% of their commuters choose transit to get to work.

Getting to higher numbers means reinforcing the structure of density and the transit that works in the suburbs, that is, regional rail (or a metro network that goes far out, like the T-bana, if that’s an option). Stations must be surrounded by development rather than parking, and this development should facilitate a somewhat transit-oriented lifestyle, including retail and not just housing. Jobs should be accessible from as many directions as possible, forming CBDs rather than haphazard town centers accessible only by road. Only this way can suburbia be transit-oriented.

Meme Weeding: Los Angeles Density

If you’re the kind of total nerd that looks up tables on Wikipedia for fun, you may notice a peculiarity: the American built-up area with the highest population density is Los Angeles, followed by the Bay Area and New York. This is not what anyone experiences from even a slight familiarity with the two cities. Some people leave it at that and begin to make “well, actually Los Angeles is dense” arguments; this is especially common among supporters of cars and suburbs, like Randall O’Toole, perhaps because they advocate for positions the urbanist mainstream opposes and enjoy the ability to bring up an unintuitive fact. Others instead try to be more analytic about it and understand how Los Angeles’ higher headline density than New York coexists with its actual auto-centric form.

The answer that the urbanist Internet (blogs, then the Census Bureau, then Twitter) standardized on is that the built-up area of New York has some really low-density outer margins, where auto use is high, but the dense core is larger than that of Los Angeles. Here’s a log graph made by longtime Twitter follower Neil Patel:

New York’s 70th percentile of density (shown as 30 on the graph’s y-axis) is far denser than that of the comparison cities. The term the urbanist blogosphere defaulted to is “weighted density,” which is the average density of census tracts weighted by their population rather than area; see original post by the Austin Contrarian, in 2008.

But one problem remains: Los Angeles is by any metric still dense. Neil’s chart above shows its density curve Lorenz-dominating those of Chicago and Washington, both of which have far higher transit usage. Unfortunately, I haven’t seen too much analysis of why. Jarrett Walker talks about Los Angeles’s polycentrism, comparing it with Paris, and boosting it as a positive for public transit. The reality is the opposite, and it’s worth delving more into it to understand why whatever density Los Angeles has fails to make it have even rudimentary public transit.

Yes, Los Angeles is auto-oriented

The “well, actually Los Angeles is not autopia” line faces a sobering fact: Los Angeles has practically no transit ridership. In this section, I’m going to make some comparisons among American metropolitan statistical areas (MSAs); these exclude many suburbs, including the Inland Empire for Los Angeles and Silicon Valley for San Francisco, but Neil’s graph above excludes them as well, because of how the US defines urbanized areas. In the following table, income refers to median income among people driving alone or taking public transit, and all data is from the 2017 American Community Survey (ACS).

Place Workers Drive share Drive income Transit share Transit income
US 152,802,672 76.4% $38,689 5% $37,530
New York 9,821,147 50% $48,812 31% $44,978
San Francisco 2,371,803 57% $54,923 17.4% $62,500
Washington 3,320,895 66.4% $53,390 12.8% $60,420
Chicago 4,653,591 70% $41,817 12.2% $46,796
Los Angeles 6,434,177 75.4% $39,627 4.8% $21,153

The income numbers are not typos. In San Francisco, Washington, and Chicago, transit users outearn drivers. In New York the incomes are close, and US-wide they are almost even. But in Los Angeles, drivers outearn the few transit users almost 2:1. It’s not because Los Angeles has better transit in poor neighborhoods than in rich ones: this may have been true for a long while, but with the Expo Line open to Santa Monica, the Westside has bare bones coverage just like the rest of the city. Even with the coverage that exists, public transit in Los Angeles is so bad that people only use it if they are desperately poor.

When public transportation is a backstop service for the indigent, ridership doesn’t follow the same trends seen elsewhere. Transit ridership in Los Angeles rises and falls based on fares; new rail extensions, which have led to big gains in ridership in Seattle and Vancouver, are swamped by the impact of fare changes in Los Angeles. Gentrification, which in New York has steadily raised subway usage in hotspots like Williamsburg and which does the same in San Francisco, has instead (slightly) contributed to falling transit usage in Los Angeles (p. 53).

Job density and CBD job share

Los Angeles has high residential density by American standards – lower than in New York counted properly, but comparable to San Francisco, and higher than Chicago and Washington. However, job density tells a completely different story. New York, Chicago, San Francisco, and Washington all have prominent central business districts. Without a consistent definition of the CBD, I am drawing what look like the peak employment density sites from OnTheMap, all as of 2015:

Place CBD boundaries Area Jobs MSA share Density
New York 33rd, 3rd, 60th, 9th 3.85 825,476 8.4% 214,336
San Francisco Washington, Powell, 5th, Howard, Embarcadero 1.81 224,010 9.4% 123,558
Washington Rock Creek, P, Mass., 7th, Cons., 14th, H 3.26 240,505 7.2% 73,775
Chicago River, Congress, Michigan, Randolph, Columbus 1.61 368,910 7.9% 228,998
Los Angeles US 110, US 101, Alameda, 1st, Main, 7th 2.11 189,767 2.9% 89,937

The two main indicators to look for are the rightmost two columns: the percentage of jobs that are in the CBD, and the job density within the CBD. These indicators are highly not robust to changing the CBD’s definition, but expanding the definition moves them in opposite direction. Washington and San Francisco can be boosted to about 400,000 jobs each if the CBD is expanded to include near-CBD job centers such as Gallery Place, L’Enfant Plaza, SoMa, and Civic Center. Manhattan south of 60th has 1.9 million jobs in 22.2 km^2. Even in Chicago, where job density craters outside the Loop, the 9 km^2 bounded by Chicago, Halsted, and Roosevelt have 567,000 jobs. In making the tradeoff between job density and MSA share, I tried to use smaller CBD definitions, maximizing density at the expense of MSA share.

But even with this choice, the unusually low CBD share in Los Angeles is visible. This is what Jarrett and others mean when they say Los Angeles is polycentric: it is less dominated by its central business district than New York, Chicago, Washington, and San Francisco.

However, the comparisons between Los Angeles and Paris are wildly off-base. I am not including Paris in my above table, because INSEE only reports job numbers at the arrondissement level, and the city’s CBD straddles portions of the 1st, 2nd, 8th, and 9th arrondissements. Those four arrondissements total 405,189 jobs in 8.88 km^2, but in practice few of these jobs are in the outer quartiers, so a large majority of these jobs are in the central 4.64 km^2. The overall job density is then comparable to that of the Los Angeles CBD, but the similarity stops there: CBD employment is 7.1% of the total for Ile-de-France. If there is a US city that’s similar to Paris on the two CBD metrics of density and employment share, it’s Washington, not coincidentally the only big American city with a height-limited city center.

Secondary centers

In all of the American cities I’m comparing in this post except New York, the share of the population using public transit to get to work is not much higher than the share working in the CBD, especially if we add in near-CBD job centers served by public transit like Civic Center and L’Enfant Plaza (and all of the Manhattan core outside Midtown). This is not a coincidence. Outside a few distinguished locations with high job density, it’s easy enough to drive, and hard to take the train (if it even exists) except from one or two directions.

American cities are distinguished from European ones in that their non-CBD employment is likely to be in sprawling office parks and not in dense secondary centers. Paris is polycentric in the sense of having multiple actual centers: La Defense is the most conspicuous outside the CBD, but the city is full of smaller, lower-rise clusters: the Latin Quarter, Bercy, the Asian Quarter, Gare du Nord, the Marais. The 3rd, 4th, 5th, 6th, 7th, 10th, and 12th all have around 20,000-25,000 jobs per square kilometer, not much less than the Upper East Side (which has about 120,000 jobs between 60th and 96th Streets).

A polycentric city needs to have multiple actual centers. Does Los Angeles have such centers? Not really. Century City has 33,000 jobs in about 1.1 km^2. Here is the city’s second downtown, with a job density that only matches that of central Parisian neighborhoods that nobody would mistake with the CBD. The UCLA campus has around 15,000 jobs. Downtown Santa Monica has 24,000 in 2 km^2. El Segundo, which Let’s Go LA plugs as a good site for CBD formation, has 52,000 jobs in 5.2 km^2. Downtown Burbank has about 13,000 in 0.6 km^2. The dropoff in commercial development intensity from the primary CBD is steep in Los Angeles.

What Los Angeles has is not polycentric development. Paris is polycentric. New York is fairly polycentric, with the growth of near-CBD clusters like Long Island City, in addition to older ones like Downtown Brooklyn and Downtown Newark. Los Angeles is just weak-centered.

The structure of density

In his original posts about weighted density from 2008, Chris noted not just the overall weighted density of an American urban area but also the ratio of the weighted to standard density. This ratio is highest in New York, but after New York the highest ratios are in other old industrial cities like Boston and Chicago. This ratio is in stronger correlation with the public transit modal share than weighted density. Much of this fact is driven by the fact that Boston, Chicago, and Philadelphia have high-for-America transit usage and Los Angeles doesn’t, but it still suggests that there is something there regarding the structure of density.

In Chicago and Washington, the population density is low, but it follows a certain structure, with higher density in central areas and in distinguished zones near train stations. These structures are not identical. Chicago has fairly uniform density within each city neighborhood, and only sees this structure in the suburbs, which are oriented around commuter rail stations, where people take Metra to the city at rush hour (and drive for all other purposes). In contrast, in Washington commuter rail is barely a footnote, whereas Metro drives transit-oriented development in clusters like Arlington, Alexandria, Silver Spring, and Bethesda. In these islands of density, the transit-oriented lifestyle is at least semi-plausible.

Paris has fairly uniform density within the city, but it has strong TOD structure in the suburbs: high density within walking distance of RER stations, lower density elsewhere. Some RER stations are also surrounded by job clusters oriented toward the train station: La Defense is by far the biggest and best-known, but Cergy, Val d’Europe and Marne la Vallee, Issy, Noisy, and Saint-Denis are all walkable to job centers and not just housing. Within the city there is no obvious structure, but the density is so high and the Metro so ubiquitous that transit serves the secondary nodes well.

In Los Angeles, there is no structure to density. There are some missing middle and mid-rise neighborhoods, but few form contiguous blobs of high density that can be served by a rapid transit line. Koreatown is in a near-tie with Little Osaka for highest population density in the United States outside New York, but immediately to its west, on the Purple Line Extension, lie kilometers of single-family sprawl, and only farther west on Wilshire can one see any density (in contrast, behind Little Osaka on Geary lies continuous density all the way to the Richmond). With the exception of Century City, UCLA, and Santa Monica, the secondary centers don’t lie on any obvious existing or current transit line.

With no coherent structure, Los Angeles is stuck. Its dense areas are too far away from one another and from job centers to be a plausible urban zone where driving is not necessary for a respectable middle-class lifestyle. Buses are far too slow, and trains don’t exist except in a handful of neighborhoods. Worse, because the density is so haphazard, the rail extensions can’t get any ridership. The ridership projection for the Purple Line Extension is an embarrassing 78,000 per weekday for nearly 15 km and $8.2 billion. The construction cost is bad, but in a large, dense city should be offset by high ridership (as it is in London); but it isn’t, so the projected ridership per kilometer is on a par with some New York City Transit buses and the projected cost per rider is so high that it is usually reserved for airport connectors.

The way out

In a smaller, cheaper auto-centric city, like Nashville or Orlando, I would be entirely pessimistic. In Los Angeles there is exactly one way out: fix the urban design, and reinforce it with a strong rail network.

The fact that this solution exists does not mean it is politically easy. In particular, the region needs to get over two hangups, each of which is separately nearly insurmountable. The first is NIMBYism. Los Angeles is so expensive that if it abolishes its zoning code, or passes a TOD ordinance that comes close to it, it could see explosive growth in population, which would be concentrated on the Westside, creating a large zone of high density in which people could ride the trains. However, the Westside is rich and very NIMBY. Metro isn’t even trying to upzone there: the Purple Line Extension has a 3.2-km nonstop segment from Western to La Brea, since the single-family houses in between are too hard to replace with density. Redeveloping the golf courses that hem Century City so that it could grow to a real second downtown is attractive as well, but even the YIMBYs think it’s unrealistic.

The second obstacle is the hesitation about spending large amounts of money all at once. American politicians are risk-averse and treat all spending as risk, and this is true even of politicians who boldly proclaim themselves forward-thinking and progressive. Even when large amounts of money are at stake, their instincts are to spread them across so many competing goals that nothing gets funded properly. The amount of money Los Angeles voters have approved to spend on transportation would build many rapid transit lines, even without big decreases in construction costs, but instead the money is wasted on showcasing bus lanes (this is Metro’s official blog’s excuse for putting bus lanes on Vermont and not rapid transit) or fixing roads or the black hole of Metro operating costs.

But the fact that Los Angeles could be a transit city with drastic changes to its outlook on development and transportation investment priorities does not mean that it is a transit city now. Nor does it mean that the ongoing program of wasting money on low-ridership subway lines is likely to increase transit usage by the required amount. Los Angeles does not have public transportation today in the sense that the term is understood here or in New York or even in Chicago. It should consider itself lucky that it can have transit in the future if it implements politically painful changes, but until it does, it will remain the autopia everyone outside urbanism thinks it is.

Sunnyside Junction, Redux

Seven years ago, I wrote a pair of posts about Sunnyside Yards. The first recommends the construction of a transfer station through Sunnyside Yards, in order to facilitate transfers between Penn Station- and Grand Central-bound trains. The second recommends redeveloping the yards via a deck, creating high-density residential and commercial space on a deck on top of the yard. Recent news, both about an official plan to deck the yards and about leaks that Amazon is likely to move half of its second headquarters (HQ2) to Long Island City, make a Sunnyside Junction so much more urgent.

Here is how service would look:

The color scheme is inherited from my regional rail maps (see e.g. here) but for the purposes of this post, all it means is that green and blue correspond to the inner and outer tracks of the Park Avenue, purple is East Side Access, orange corresponds to LIRR trains going to the northern pair of East River Tunnels, and red corresponds to LIRR, Metro-North Penn Station Access, and Amtrak trains going to the southern pair of East River Tunnels. No track infrastructure is assumed except what’s already in service or funded (i.e. ESA and Penn Station Access), and only two infill stations are mapped: Astoria, which would be a strong location for a stop were fares integrated with the subway and frequency high, and Sunnyside Junction.

The infill stations that are not planned

An Astoria station was studied for PSA, but was dropped from consideration for two reasons. First, the location is legitimately constrained due to grades, though a station is still feasible. And second, under the operating assumptions of high fares and low off-peak frequency, few people would use it. It would be like Wakefield and Far Rockaway, two edge-of-city neighborhoods where commuter rail ridership is a footnote compared with slower but cheaper and more frequency subway service.

A Sunnyside Junction station was in contrast never considered. There are unfunded plan for an infill station to the west of the junction, served only by Penn Station-bound trains. Such a station would hit Long Island City’s job center well, but the walk from the platform to the office towers would still be on pedestrian-hostile roads, and if there’s political will to make that area more walkable, the city might as well just redevelop Sunnyside Yards (as already planned).

The reason there was never any plan for a station can be seen by zooming in on the area I drew as a station. It’s a railyard, without streets (yet). At today’s development pattern, nobody would use it as an O&D station, even if fares and schedules were integrated with the subway. The importance of the station is as a transfer point between Grand Central- and Penn Station-bound trains. The planned developments (both HQ2 and independent city plans) makes it more urgent, since the area is relatively far from the subway, but the main purpose of the station is a better transit network, rather than encouraging development.

The main benefit of the station is transfers between the LIRR and Metro-North. While nominally parts of the MTA, the two agencies are run as separate fiefs, both of which resisted an attempt at a merger. The LIRR opposed PSA on the grounds that it had a right to any empty slots in the East River Tunnels (of which there are around 8 per hour at the peak). Governor Cuomo intervened to protect PSA from Long Island’s opposition, but in such an environment, coordinated planning across the two railroads is unlikely, and the governor would not intervene to improve the details of the ESA and PSA projects.

Network improvements

East Side Access means that in a few years, LIRR trains will split between two Manhattan destinations. Conceptually, this is a reverse-branch: trains that run on the same route in the suburbs, such as the LIRR Main Line, would split into separate routes in the city core. In contrast, conventional branching has trains running together in the core and splitting farther out, e.g. to Oyster Bay, Port Jefferson, and Ronkonkoma. Reverse-branching is extremely common in New York on the subway, but is rare elsewhere, and leads to operational problems. London’s Northern line, one of the few examples of reverse-branching on an urban subway outside New York, is limited to 26 trains per hour through its busiest trunk at the peak, and long-term plans to segregate its two city trunks and eliminate reverse-branching would raise this to 36.

To ensure LIRR trains run with maximum efficiency, it’s necessary to prevent reverse-branching. This means that each trunk, such as the Main Line and the Hempstead Branch, should only ever go to one Manhattan terminal. Passengers who wish to go to the other Manhattan terminal should transfer cross-platform. Jamaica is very well-equipped for cross-platform transfers, but it’s at a branch point going to either Manhattan or Downtown Brooklyn, without a good Penn Station/Grand Central transfer. Without a good transfer, passengers would be stuck going to a terminal they may not work near, or else be forced into a long interchange. In London the reason the Northern line is not already segregated is that the branch point in the north, Camden Town, has constrained passageways, so eliminating reverse-branching requires spending money on improving circulation.

Unlike Camden Town, Sunnyside Junction is roomy enough for cross-platform transfers. The tracks should be set up in a way that LIRR trains going to East Side Access should interchange cross-platform with PSA and Port Washington Branch trains (which should go to Penn Station, not ESA), as they do not stop at Jamaica. Penn Station-bound LIRR trains not using the Port Washington Branch, colored orange on the map, should stop at Sunnyside too, but it’s less important to give them a cross-platform transfer.

This assignment would be good not just for LIRR passengers but also for PSA passengers. Unlike on the LIRR, on the New Haven Line, reverse-branching is unavoidable. However, passengers would still benefit from being able to get on a Penn Station-bound train and connecting to Grand Central at Sunnyside. Not least, passengers on the PSA infill stations in the city would have faster access to Grand Central than they have today via long walks or bus connections to the 6 train. But even in the suburbs, the interchange would provide higher effective frequency.

The connection with development

I don’t know to what extent decking Sunnyside Yards could attract Amazon. I wrote an article last year, which died in editing back-and-forth, lamenting that New York was unlikely to be the HQ2 site because there was no regional rail access to any of the plausible sites thanks to low frequency and no through-running. Long Island City’s sole regional rail access today consists of LIRR stations on a reverse-branch that does not even go into Manhattan (or Downtown Brooklyn) and only sees a few trains per day. It has better subway access and excellent airport access, though.

However, since Sunnyside Junction is so useful without any reference to new development, the plans for decking make it so much more urgent. Sunnyside Yards are in the open air today, and there is space for moving tracks and constructing the necessary platforms. The cost is likely to be in the nine figures because New York’s construction costs are high and American mainline rail construction costs are even higher, but it’s still a fraction of what it would take to do all of this under a deck.

Moreover, the yards are not easy to deck. Let’s Go LA discussed the problem of decking in 2014: columns for high-rise construction are optimally placed at intervals that don’t jive well with railyard clearances, and as a result, construction costs are a multiple of what they are on firma. Hudson Yards towers cost around $12,000/square meter to build, whereas non-WTC commercial skyscrapers in the city are $3,000-6,000 on firma. The connection with Sunnyside Junction is that preparing the site for the deck requires extensive reconfiguration of tracks and periodic shutdowns, so it’s most efficient to kill two birds with one stone and bundle the reconfiguration required for the station with that required for the deck.

In the other direction, the station would make the deck more economically feasible. The high construction costs of buildings on top of railyards makes decking unprofitable except in the most desirable areas. Even Hudson Yards, adjacent to Midtown Manhattan on top of a new subway station, is only treading water: the city had to give developers tax breaks to get them to build there. In Downtown Brooklyn, Atlantic Yards lost the developer money. Sunnyside Yards today are surrounded by auto shops, big box retail, and missing middle residential density, none of which screams “market rents are high enough to justify high construction costs.” A train station would at least offer very fast rail access to Midtown.

If the decking goes through despite unfavorable economics, making sure it’s bundled with a train station becomes urgent, then. Such a bundling would reduce the incremental cost of the station, which has substantial benefits for riders even independently of any development it might stimulate in Sunnyside.

How Transit and Green Tech Make Economic Geography More Local

The theme of winners and losers has been on my mind for the last few months, due to the politics of the Brooklyn bus redesign. In a rich country, practically every social or political decisions is win-lose, even if the winners greatly outnumber the losers. It’s possible to guarantee a soft landing to some of the losers, but sometime even the soft landing is disruptive, and it’s crucial that backers of social change be honest with themselves and with the public about this. Overall, a shift from an auto-oriented society to a transit-oriented one and from dirty energy to clean energy is positive and must be pursued everywhere, but it does have downsides. In short, it changes economic geography in ways that make certain regions (like Detroit or the Gulf Cooperation Council states) redundant; it reorients economies toward more local consumption, so oil, gas, and heavy industry jobs would not be replaced with similar manufacturing or mining clusters but with slightly more work everywhere else in the world.

Dirty production is exportable

The United States has the dirtiest economy among the large developed countries, so it’s convenient to look at average American behavior to see where the money that is spent on polluting products goes.

Nationally, about 15.9% of consumer spending is on transportation. The vast majority of that is on cars, 93.1% (that is, 14.7% of total consumer spending). The actual purchase of the car is 42% of transportation spending, or 6.7% of household spending. This goes to an industry that, while including local dealerships (for both new and used cars), mostly consists of auto plants, making cars in suburban Detroit or in low-wage Southern states and exporting them nationwide.

In addition to this 6% of consumer spending on cars, there’s fuel. Around 3% of American household spending is on fuel for cars. Overall US oil consumption in 2017 was 7.28 billion barrels, which at $52/barrel is 5% of household spending; the difference between 5 and 3 consists of oil consumed not by households. This is a total of about 2% of American GDP, which includes, in addition to household spending, capital goods and government purchases. This tranche of the American economy, too, is not local, but rather goes to the oil industry domestically (such as to Texas or Alaska) or internationally (such as to Alberta or Saudi Arabia).

Historically, when coal was more economically significant, it was exportable too. Money flowed from consumers, such as in New York and London, to producers in the Lackawanna Valley or Northeast England; today, it still flows to remaining mines, such as in Wyoming.

The same is true of much of the supply chain for carbon-intensive products. Heavy industry in general has very high carbon content for its economic value, which explains how the Soviet Union had high greenhouse gas emissions even with low car usage (15.7 metric tons per capita in the late 1980s) – it had heavy industry just as the capital bloc did, but lagged in relatively low-carbon consumer goods and services. The economic geography of steel, cement, and other dirty products is again concentrated in industrial areas. In the US, Pittsburgh is famous for its historical steel production, and in general heavy manufacturing clusters in the Midwestern parts of the Rust Belt and in transplants in specific Southern sites.

All of these production zones support local economies. The top executives may well live elsewhere – for example, David Koch lives in New York and Charles Koch in Wichita (whose economy is based on airplane manufacturing and agriculture, neither of which the Kochs are involved in). But the working managers live in city regions dedicated to servicing the industry, the way office workers in the oil industry tend to live in Houston or Calgary, and of course the line workers live near the plants and mines.

Clean alternatives are more local

The direct alternatives to oil, gas, and cars are renewable energy and public transportation. These, too, have some components that can be made centrally and exported, such as solar panel and rolling stock manufacturing. However, these components are a small fraction of total spending.

How small? Let’s look at New York City Transit. Its operating costs are about $9.1 billion a year as of 2016, counting both the subway and buses. Nearly all of this is wages, salaries, and benefits: $7.3 billion, compared with only $500 million for materials and supplies. This specifically excludes vehicle purchases, which in American transit accounting are lumped as capital costs. The total NYCT fleet is about 6,400 subway cars, which cost around $2.3 million each and last 40+ years, and 5,700 buses, which cost around $500,000 each and last 12 years, for a total depreciation charge of around $600 million a year combined.

Compare this with cars: New York has about 2 million registered cars, but at the same average car ownership rate as the rest of the US, 845 per 1,000 people, it would have 7.3 million cars. These 5.3 million extra cars would cost $36,500 each today, and last around 20 years, for a total annual depreciation charge of $9.7 billion.

Put another way, total spending on vehicles at NYCT is one sixteenth what it would take to raise the city’s car ownership rate to match the national average. Even lumping in materials and supplies that are not equipment, such as spare parts and fuel for buses, the total, $1.1 billion, is one ninth as high as buying New Yorkers cars so that they can behave like Americans outside the city, and that’s without counting the cost of fuel. In particular, there is no hope of maintaining auto plant employment by retraining auto workers to make trains, as Michael Moore proposed in 2009.

The vast majority of transit spending is then local: bus and train operations, maintenance, and local management. The same is true of capital spending, which goes to local workers, contractors, and consultants, and even when it is outsourced to international firms, the bulk of the value of the contract does not accrue to Dragados or Parsons Brinckerhoff.

Clean energy is similarly local. Solar panels can be manufactured centrally, but installing them on rooftops is done locally. Moreover, the elimination of carbon emissions coming from buildings has to come not just from cleaner electricity but also from reducing electricity consumption through passive solar construction. Retrofitting houses to be more energy-efficient is a labor-intensive task comprising local builders sealing gaps in the walls, windows, and ceilings.

Low-carbon economic production can be exported, but not necessarily from Detroit

A global shift away from greenhouse gas emissions does not mean just replacing cars and oil with transit and solar power. Transit is cheaper to operate than cars: in metro New York, 80.5% of personal transportation expenditure is still on cars, and the rest is (as in the rest of the country) partly on air travel and not transit fare, whereas work trip mode shares in the metropolitan statistical area are 56% car, 31% transit. With its relatively high (for North America) transit usage, metro New York has the lowest share of household spending going to transportation, just 11.4%. This missing consumption goes elsewhere. Where does it go?

The answer is low-carbon industries. Consuming less oil, steel, and concrete means not just consuming more local labor for making buildings more efficient and running public transit, but also shifting consumption to less carbon-intensive industries. This low-carbon consumption includes local purchases, for example going out to eat, or hiring a babysitter to look after the kids, neither of which involves any carbon emissions. But it also includes some goods that can be made centrally. What are they, and can they be made in the same areas that make cars and steel or drill for oil and gas?

The answer is no. First, in supply regions like the Athabascan Basin, Dammam, and the North Slope of Alaksa, there’s no real infrastructure for any economic production other than oil production. The infrastructure (in the case of North America) and the institutions (in the case of the Persian Gulf) are not suited for any kind of manufacturing. Second, in real cities geared around a single industry, like Detroit or Houston, there are still lingering problems with workforce quality, business culture, infrastructure, and other necessities for economic diversification.

Take the tech industry as an example. The industry itself is very low-carbon, in the sense that software is practically zero-carbon and even hardware has low carbon content relative to its market value. Some individual tech products are dirty, such as Uber, but the industry overall is clean. A high carbon tax is likely to lead to a consumption shift toward tech. And tech as an industry has little to look for in Detroit and Houston. Austin has booming tech employment, but Houston does not, despite having an extensive engineering sector courtesy of the oil industry as well as NASA. The business culture in the space industry (which is wedded to military contracting) is alien to that of tech and vice versa; the way workers are interviewed, hired, and promoted is completely different. I doubt the engineers oil and auto industries are any more amenable to career change to software.

On the level of line workers rather than engineers, the situation is even worse. A manufacturing worker in heavy industry can retrain to work in light industry, or in a non-exportable industry like construction, but light industry has little need for the massive factories that churn out cars and steel. And non-manufacturing exports like tech don’t employ armies of manufacturing workers.

In Germany the situation is better, in that Munich and Stuttgart may have little software, but they do have less dirty manufacturing in addition to their auto industries. It’s likely that if global demand for cars shifts to a global demand for trains then Munich will likely keep thriving – it’s the home of not just BMW and Man but also Siemens. However, the institutions and worker training that have turned southern Germany into an economically diverse powerhouse have not really replicated outside Germany. Ultimately, in a decarbonizing world, southern Germany will be the winner among many heavy industrial regions, most of which won’t do so well.

There’s no alternative to shrinkage in some cities

A shift away from fossil fuel and cars toward green energy and public transit does not have to be harsh. It can aim to give individual workers in those industries a relatively soft landing. However, two snags remain, and are unavoidable.

The first is that some line workers have deliberately chosen poor working conditions in exchange for high wages; the linked example is about oil rig workers in Alaska, but the same issue occurs in some unionized manufacturing and services, for example electricians get high wages but all suffer hearing loss by their 50s. It’s possible to retrain workers and find them work that’s at the same place on the average person’s indifference curve between pay and work conditions, but since those workers evidently chose higher-pay, more dangerous jobs, their personal preference is likely to weight money more than work conditions and thus they’re likely to be unhappy with any alternative.

The second and more important snag is the effect of retraining on entire regions. Areas that specialize to oil, gas, cars, and to some extent other heavy industry today are going to suffer economic decline, as the rest of the world shifts its consumption to either local goods (such as transit operations) or different economic sectors that have no reason to locate in these areas (such as software).

Nobody will be sad to see Saudi Arabia crash except people who are directly paid by its government. But the leaders of Texas and Michigan are not Mohammad bin Salman; nonetheless, it is necessary to proceed with decarbonization. It’s not really possible to guarantee the communities a soft landing. Governments all over the world have wasted vast amounts of money trying and failing to diversify from one sector (e.g. oil in the GCC states) or attract an industry in vogue (e.g. tech anywhere in the world). If engineering in Detroit and Houston can’t diversify on its own, there’s nothing the government can do to improve it, and thus these city regions are destined to become much smaller than they are today.

This is bound to have knock-on regional effects. Entire regions don’t die quietly. Firms specializing in professional services to the relevant industries (such as Halliburton) will have to retool. Small business owners who’ve dedicated their lives to selling food or insurance or hardware to Houstonians and suburban Detroit white flighters will need to leave, just as their counterparts in now-dead mining towns or in Detroit proper did. Some will succeed elsewhere, just as many people in New Orleans who were displaced by Katrina found success in Houston. But not all will. And it’s not possible to guarantee all of them a soft landing, because it’s not possible to guarantee that every new small business will succeed.

All policy, even very good policy, has human costs. There are ways to reduce these costs, through worker retraining and expansion of alternative employment (such as retrofitting older houses to be more energy-efficient). But there is no way to eliminate these costs. Some people who are comfortable today will be made precarious by any serious decarbonization program; put another way, these people’s entire livelihood depends on continuing to destroy the planet, and most of them are not executives at oil and gas companies. It does not mean that decarbonization should be abandoned or even that it should be pursued more hesitantly; but it does mean climate activists, including transit activists, have to be honest about how it affects people in and around polluting industries.

Rapid Transit on the LIRR

New York City Comptroller Scott Stringer announced a proposal to improve rapid transit in Queens and the Bronx by raising frequency and reducing fares on the in-city commuter rail stations. This has gotten some pushback from Transit Twitter, on the grounds that low fares without low staffing, i.e. getting rid of the conductors, would require excessive subsidies. I feel slightly bad about this, since the comptroller’s office reached out to me and I gave some advice; I did mention staffing reduction but not vociferously enough, whereas I did harp on fare integration and frequent local stops.

Whereas the comptroller’s report goes into why this would be useful (without mentioning staffing, which is a mistake), here I’d like to give more detail of what this means. Of note, I am not assuming any large-scale construction project, such as new tunnels across the Hudson, East Side Access, or even Penn Station Access. The only investment into civil infrastructure that I’m calling for is one flying junction, and the program can be implemented without it, just not with the reliability that I’m aiming at.

Black dots denote existing stations, gray dots denote infill.

The map includes only the lines that should be part of a Manhattan-bound rapid transit system initially. This excludes the South Shore LIRR lines, not because they’re unimportant (to the contrary), but because connecting them to Manhattan involves new flying junctions at Jamaica Station, built as part of East Side Access without any real concern for coherent service. Shoehorning these lines into the system is still possible (indeed, it is required until ESA opens and probably also until some Brooklyn-Lower Manhattan LIRR tunnel might open), but the scheduling gets more complex. These lines should be a further phase of this system, whereas I am depicting an initial operation.

The Port Washington Branch

On the Port Washington Branch, present-day frequency is 6 trains per hour at the peak, with a complex arrangement of express trains such that most stations have half-hour gaps, and a train every half hour off-peak making all stops. This should be changed to a pattern with a train every 10 minutes all day. If the single-track segment between Great Neck and Port Washington makes this not possible, then every other train should turn at Great Neck. On the schedule today the one-way trip time between Port Washington and Great Neck is 9 minutes, and this is with extensive padding and a throttled acceleration rate (the LIRR’s M7s can accelerate at 0.9 m/s^2 but are derated to 0.45 m/s^2). The technical travel time, not including station dwell time at Great Neck, which is double-track and has double-track approaches, is around 6 minutes without derating, and 6:50 with.

The current travel time from Port Washington to Penn Station is 47 minutes on an all-stop train, which permits six trainsets to comfortably provide 20-minute service; from Great Neck it’s 38 minutes, which permits five sets to provide 10-minute overlay service. Trains must be scheduled, not run on headway management, to have slots through the tunnels to Penn Station (shared with Amtrak under even my high-end proposals for regional rail tunnels), so the short-turns do not complicate scheduling.

With less padding and no derating, the travel time would be reduced to around 41 minutes end-to-end (so five trainsets provide end-to-end service) and 35 to Great Neck (allowing four trainsets to provide this service with some scheduling constraints or five very easily), even with the infill stops. Labor efficiency would be high, because even all-day headways would simplify crew scheduling greatly.

The Hempstead Branch

I proposed a sample schedule for the Hempstead Branch in 2015. Trains would take 41 minutes end to end; with my proposed infill stops, they would instead take 43. Few trains make the trip today, as off-peak Hempstead trains divert to Brooklyn, but of those that do, the trip time today is about 55 minutes.

Today’s frequency is 4 trains per hour at the peak and a train every hour off-peak. Two peak trains run express and do the trip in 48 minutes, worse than an all-stop train would with normal schedule contingency and no derating. As on the Port Washington Branch, I propose a train every 10 minutes all day, allowing ten trainsets to provide service. There is a single track segment between Garden City and Hempstead, but it is shorter than the Great Neck-Port Washington segment, making 10-minute service to the end feasible.

The reason I am proposing an increase in peak frequency on the Hempstead Branch but not the Port Washington Branch has to do with income demographics. The North Shore of Long Island is rich, and even the city neighborhoods on the Port Washington Branch beyond the 7 are upper middle class. There is still demand suppression there coming from high fares and low frequency, but evidently Bayside manages to be one of the busier LIRR stations; the equipment should be able to handle the increased peak ridership from better service.

In contrast, Hempstead is a working-class suburb, with a per capita income of $22,000 as of 2016 (in New York the same figure is $34,000, and in Great Neck it is $39,000). On the way it passes through very rich Garden City ($67,000/person), but Hempstead is a larger and denser town, and most city neighborhoods on the way are lower middle class. Fare integration, even with somewhat higher fares outside the city (which under this regime would also apply to Long Island buses), is likely to lead to ridership explosion even at rush hour, requiring more service.

My more speculative maps, for after East Side Access frees some capacity, even involve going to a train every five minutes, with half the trains going to Hempstead and half to East Garden City along a deactivated but intact branch. With such frequency, people from Forest Hills and points east would switch to the LIRR from the subway, helping relieve the overcrowded E trains. However, to avoid spending money on concrete (or scheduling around the flat junction between these two branches), starting with just Hempstead is fine.

To make this work, one investment into concrete is useful: grade-separating Queens Interlocking, between the Hempstead Branch and the Main Line. The Main Line should be able to run express (with a stop at the branch point at Floral Park) without conflicting with local trains on the Hempstead Branch. As peak traffic on the Main Line is close to saturating a double-track main, this would also facilitate a schedule in which Main Line trains get to use the express tracks through Queens while other lines, including the Hempstead Branch and the South Side Lines, use the local tracks.

What it would take

Providing the service I’m proposing would involve nine or ten trainsets on the Port Washington Branch and ten on the Hempstead Branch, if the trains are sped up. Some of the speedup involves running them at their design acceleration and some involves reducing schedule contingency by improving reliability. The reliability improvements in turn come from reducing conflicts; Amtrak conflicts are unavoidable, but hourly, involving trains that for all their faults are scheduled precisely and can be slotted to avoid delaying the LIRR. The one big-ticket item required is grade-separating Queens Interlocking, which, judging by the more complex Harold Interlocking flyover, is at actual New York costs a low nine-figure project.

Estimating operating costs is hard. On paper, LIRR service costs $10/car-km, but this includes conductors (whose wages and benefits are around $20/train-km, so maybe $2-$2.50/car-km), very low utilization of drivers (who add another $11/train-km), and high fixed costs. A driver-only operation with drivers doing four roundtrips per work day (totaling 6 hours and 40 minutes of driving and turnaround time) would spend $120 per end-to-end on the driver’s wages and benefits, $200 on electricity, essentially nothing on rolling stock procurement since nearly all the extra trips would be off-peak, and only a modicum on extra maintenance. Inducing around 150 riders per trip who would otherwise not have traveled would pay for the extra operating costs.

What it would and wouldn’t do

The most important thing to note is that this system is not going to be a second subway. This isn’t because of the inherent limitations of commuter rail, but because the alignment is not great in the inner part of the city. Penn Station is on the outskirts of Midtown Manhattan, which is why the LIRR is bothering building East Side Access in the first place. Stringer’s report talks about job centers outside Manhattan, but unfortunately, Queens’ single largest, Long Island City, has no through-LIRR station, and no chance of getting one since the Main Line is in a tunnel there. The best that can be done is Sunnyside Junction, which I do denote as an infill location.

Fortunately, Queens does have other job centers. Flushing has about 30,000 workers, Jamaica 16,000, Forest Hills 20,000 (for comparison, Long Island City has 50,000 and JFK 33,000). Sunnyside Yards are an attractive TOD target, and there may be some commercial development there, especially if there is a commuter rail station underneath (which station should be built anyway for operational reasons – it’s not purely development-oriented transit).

And, of course, most jobs remain in Manhattan. A kilometer’s walk from Penn Station gets you to about 400,000 Manhattan jobs. Hempstead and Port Washington are already less than an hour away by train – the difference is that today the train is expensive and doesn’t come frequently except for about two hours a day in each direction. The comptroller’s report errs in neglecting to talk about staffing reductions, but it’s right that running trains more often, making more stops, would make this service a very attractive proposition to a large number of commuters at all hours of day.

How to Design Rail Service to Connect to Buses Better

Usually, integrated transit planning means designing bus networks to feed rail trunks better. Buses are mobile: their routes can move based on long-term changes in the city’s physical and economic layout. Railroads in contrast have high installation costs. Between the relative ease of moving buses and the fact that there’s a hierarchy in which trains are more central than buses, buses normally should be feeding the trains. However, there are some cases in which the opposite happens: that is, cases in which it’s valuable to design rail infrastructure based on expected bus corridors. Moreover, in developed and middle-income countries these situations are getting more rather than less frequent, due to the increasing use of deep tunneling and large station complexes.

In nearly every circumstance, the hierarchy of bus and rail remains as it is; the exceptions (like Ottawa, at least until the light rail subway opens) are so rare as to be notable. What I posit is that in some situations, rail infrastructure should be designed better to allow buses to feed the trains more efficiently. This mostly affects station infrastructure, but there are also reasons to choose routes based on bus feeding.

Major bus corridors

Surface transit likes following major streets. Years ago, I blogged about this here and here. Major streets have two relevant features: they are wide, permitting buses (or streetcars) to run in generous dedicated lanes without having to deal with too much traffic; and they have continuous linear development, suitable for frequent bus stops (about every half kilometer).

These two features are likely to remain important for surface transit for the foreseeable future. The guidelines for good surface transit service depend on empirical parameters like the transfer penalty (in particular, grids are not the universal optimum for bus networks), but major corridors are relatively insensitive to them. The walk penalty can change the optimal bus stop spacing, but not in a way that changes the basic picture of corridor-based planning. Which streets have the most development is subject to change as city economic and social geography evolves, but which streets are the widest doesn’t. What’s more, a train station at a street intersection is likely to cement the cross-street’s value, making adverse future change less likely.

Note that we don’t have to be certain which major streets will host the most important buses in the future. We just need to know that major buses will follow major streets.

The conclusion is that good locations for rail infrastructure are major intersecting streets. On a commuter line, this means stations should ideally be placed at intersections with roads that can carry connecting buses. On a subway line, this means the same at a more local scale.

Stations and accessibility

When possible, train stations should locate at intersections with through-streets, to permit efficient transfers. This also carries over to station exits, an important consideration given the complexity of many recently-built stations in major rich and middle-income cities.

It goes without saying that a Manhattan subway line should have stations with exits at 72nd, 79th, 86th, 96th, etc. streets. Here, Second Avenue Subway does better than the Lexington Avenue Line, whose stations are chosen based on a 9-block stop spacing and miss the intersecting buses.

However, it’s equally important to make sure that the accessible exits are located at major streets as well. One bad example in New York is the Prospect Park B/Q station: it has two exits, one inaccessible on Flatbush Avenue and one accessible on Empire Boulevard. In theory both are major corridors, but Flatbush is far and away the more important ones, one of the busiest surface transit corridors in the city, while Empire competes for east-west buses with Kings County Hospital, the borough’s biggest job center outside Downtown Brooklyn. Eric Goldwyn’s and my Brooklyn bus redesign breaks the B41 bus on Flatbush and loops it and the Washington Avenue routes around the station complex to reach the accessible exit.

The Prospect Park case is one example of an almost-right decision. The full-time, accessible exit is close to Flatbush, but not quite there. Another example is Fields Corner: the eastern end of the platform is 80 meters from Dorchester Avenue, a major throughfare, and 180 meters from Adams Avenue, another major street, which unlike Dot Ave diverges from the direction the Red Line takes on its way south and is a useful feeder bus route.

Commuter rail and feeder buses

The station placement problem appears especially acute on mainline rail. This is not just an American problem: suburban RER stations are built without regard for major crossing roads (see, for example, the RER B airport branch and the RER A Marne-la-Vallee branch, both built in the 1970s). Railroads historically didn’t think much in terms of systemwide integration, but even when they were turned into modern rapid transit, questionable stop locations persisted; the Ashmont branch of the Red Line in Boston was taken over from mainline rail in the 1920s, but Fields Corner was not realigned to have exits at Dot and Adams.

Today, the importance of feeder buses is better-understood, at least by competent metropolitan transportation planners. This means that some stations need to be realigned, and in some places infill stops at major roads are desirable.

This is good for integration not just with buses but also with cars, the preferred station access mode for American commuter rail. The LIRR’s stations are poorly located within the Long Island road network; Patrick O’Hara argues that Hicksville is the second busiest suburban station (after Ronkonkoma) not because it preferentially gets express service on the Main Line, but because it has by far the best north-south access by road, as it has one arterial heading north and two heading south, while most stations miss the north-south arterials entirely.

Instead of through-access by bus (or by car), some stations have bus bays for terminating buses. This is acceptable, provided the headways are such that the entire local bus network can be configured to pulse at the train station. If trains arrive every half hour (or even every 20 minutes), then timed transfers are extremely valuable. In that case, allowing buses to stop at a bay with fast access to the platforms greatly extends the train station’s effective radius. However, this is of far less value on a dense network with multiple parallel lines, or on a railroad so busy that trains arrive every 10 minutes or less, such as the RER A branches or the trunks of the other RER lines.

Within New York, we see this mistake of ignoring local transit in commuter rail planning with Penn Station Access. The project is supposed to add four stations in the Bronx, but there will not be a station at Pelham Parkway, the eastern extension of Fordham Road carrying the city’s busiest bus, the Bx12. This is bad planning: the MTA should be encouraging people to connect between the bus and the future commuter train and site stations accordingly.

Street networks and route choice

On a grid, this principle is on the surface easy: rapid transit routes should follow the most important routes, with stops at cross streets. This is well understood in New York (where proposals for subway extensions generally follow busy bus routes, like Second Avenue, Nostrand, and Utica) and in Vancouver (where the next SkyTrain extension will follow Broadway).

However, there remains one subtlety: sometimes, the grid makes travel in one direction easier than in another. In Manhattan, north-south travel is easier than east-west travel, so in isolation, east-west subways connecting to north-south buses would work better. (In reality, Manhattan’s north-south orientation means north-south subways are indispensable, and once the subways exist, crossing subways should aim to connect to them first and to surface transit second.) In West Los Angeles, there is a multitude of east-west arterials and a paucity of north-south ones, which means that a north-south subway is of great value, connecting not just to the Expo Line and upcoming Wilshire subway but also other east-west arterials carrying major bus routes like Olympic.

Moreover, some cities don’t have intact grids at all. They have haphazard street networks, with some routes suitable for arterial buses and some not. This is less of an issue in mature cities, which may have such street networks but also have older subway lines for newer route to connect to, and more in newer cities, typically in the third world.

The tension is that very wide arterials are easier to build on, using elevated construction or cut-and-cover. If such a technique is feasible, then constructibility should trump connections to buses (especially since such cities are fast-changing, so there is less certainty over what the major future bus routes are). However, if deep boring is required, for examples because the arterials aren’t that wide, or the subway must cross underwater, or merchant opposition to cut-and-cover is too entrenched, then it’s useful to select routes that hit the arterials orthogonally, for the best surface transit connections.


In a working transit city, rail should be the primary mode of travel and buses should be designed to optimally feed the trains. However, this does not mean rail should be planned without regard to the buses. Train stations should be sited based not just on walk sheds and major destinations but also planned bus connections; on an urban rapid transit system, including S-Bahn trunks, this means crossing arterial streets, where buses typically run. Moreover, these stations’ exits should facilitate easy transfers between buses and trains, including for people with disabilities, who face more constrained mobility choices if they require elevator access. In some edge cases, it may even be prudent to select entire route construction priorities based on bus connections.

While choosing rail routes based on bus connections seems to only be a real issue in rare circumstances (such as the West LA street network), bus-dependent station siting is common. Commuter train services in general are bad at placing stations for optimal suburban bus connections, and may require extensive realignment and infill. On urban subways, station placement is important for both accessibility retrofits and new projects. Outside city centers, where dense subway networks can entirely replace surface transit, it’s critical to select station sites based on maximum connectivity to orthogonal surface lines.