Category: Studies

Surplus Extraction

Ever since reading Brooks-Liscow on the growth in American road construction costs since the 1960s, I’ve been interested in the surplus extraction theory of costs. The authors call their main theory citizen voice, in which local groups can use litigation to extract the social surplus generated by infrastructure construction. I’d like to go more deeply into what this theory is and what it implies.

What is surplus?

Normally, a competitive market has no surplus. The owner of a restaurant, the developer of a building in an unconstrained area like suburban Texas, the seller of cloth masks on Etsy, the freelance web developer – none of them is making a killing. People enter the market until profits are driven down to levels low enough to essentially be the owner-manager’s wage. Companies can only make a large profit if they operate at enormous scale, which takes a long time to develop – the profit margins on a single Walmart or Carrefour or Lidl are small, but the profit margins on 10,000 stores add up to a couple billion dollars a year.

Infrastructure is not a competitive market, for a number of different reasons:

  • The construction of transportation infrastructure has strong positive externalities, through enabling agglomeration. In a country with cars, the construction of public transportation also helps mitigate the negative externalities of cars.
  • Infrastructure is not meaningfully competitive. The largest city in the world, Tokyo, has around two competing rail operators per suburban region. In Tokyo, it’s a natural duopoly; in just about every smaller city, it’s a natural monopoly.
  • The barriers to entry are so steep that some kind of price regulation is obligatory. The result is extensive consumer surplus for riders who are not poor.
  • Government involvement means that regulations that make it easier or harder to build infrastructure have large impact, which can create or destroy social surplus.

The upshot is that at non-New York costs, infrastructure construction in New York generates enormous social surplus. I could break this down by component, but for brevity I won’t, and just cite what looks like the upper limit of what the publics in the United States and Europe are willing to pay for urban and regional rail: around $50,000 per projected weekday trip. Lines teetering on the edge of cancellation, like M18 in Paris, Second Avenue Subway Phase 2 in New York, and Crossrail 2 in London, all cluster around this figure.

If we take $50,000/rider as the lowest possible benefit-cost ratio that gets a project built, around 1.2-1.3 in countries that conduct such analyses, then Second Avenue Subway Phase 2, currently projected around $60,000/rider, is 1. But at the median global cost, which exists in France and Germany, it would cost $700 million, or $7,000/rider, for a benefit-cost ratio of 8.5. At costs that exist in Southern Europe, Scandinavia, Switzerland, and Korea, make it $400 million, or $4,000/rider, for a benefit-cost ratio of 15. That’s a big net profit for New York City Transit (or, it would be if its operating costs were not abnormally high too), and a huge net social surplus for New York. Every group that wants a piece of that surplus then has an incentive to make noise and raise costs.

How can surplus be extracted?

People who wish to seize public resources have a variety of methods with which to do so. Some are net transfers of surplus from society to one special interest, but most are net destruction of value in the sense that the loss of social surplus exceeds the gain to the special interest, usually by a large margin.

The technique for surplus extraction is usually the threat of a lawsuit, but in some cases it can be direct political lobbying. The actual lawsuit is almost never important – in the US and Germany, at least, the state usually wins these suits, and the impact of litigation is to delay and to deny political capital.

However, surplus can also vanish into the ether through poor planning. Consultants who are not under pressure to save money may well propose oversize infrastructure just because that’s what they are used to, or to avoid sharing right-of-way across railroads; this has led to unusual cost premiums in the United States for everything that touches mainline rail, whereas the subway and light rail premiums are, outside New York, bad but less onerous.

The demands made by special interests that extract surplus vary. They include any of the following:

  • Gratuitous tunneling instead of above-ground construction. This is usually a demand made of high-speed rail, but there are some gratuitous tunnels in suburban rail as well, for example Crossrail 2. The surplus here is that NIMBYs do not like to see trains from their houses; the emotional value of their views is naturally a fraction of that of the cost of tunneling.
  • Compromise alignments that either increase costs or reduce benefits. This is usually about avoiding specific places; Brooks-Liscow give an example of a Detroit highway swerving around a Jewish community center. But sometimes it can be the opposite – in fact, early US freeway builders expected that communities would lobby for highways near them, not far from them. Los Angeles County’s advocacy for a high-speed rail detour through Palmdale is one such example.
  • Extortion of community benefits to activists, for example demands for larger stations to act as neighborhood centers. A large degree of the cost explosion of the Green Line Extension in Boston came from the policy of accommodating local demands, leading to oversize stations. But such overbuilding can also occur absent extortion – the surplus can vanish into poor practices, representing incompetence rather than malice, as in the oversize viaducts of California High-Speed Rail.
  • Contracts to favored companies. This led to cost explosion in Italy in the 1970s and 80s, especially in Rome but also Milan; unlike the other items on this list, this is generally illegal, and costs in Italy came down after crackdowns on corruption in the 1990s. However, legal versions exist – sometimes the government is just used to doing business with a company with a poor track record, for example the “the devil we know” attitude in California toward Tutor Perini. The surplus in the latter case vanishes not quite into someone’s pockets but more into the state’s unwillingness to oversee contractors more tightly.
  • Labor demands. If the demands are purely about wages then the surplus is distributed without being destroyed. However, these demands are in all cases I know of also about other things. For example, the sandhogs in New York opposed the use of more efficient tunnel boring instead of more dangerous but more labor-intensive dynamite. Protectionism also leads to inferior equipment in addition to higher costs.

Who can extract surplus?

Surplus extraction works through informal mechanisms. The purpose of the nuisance lawsuit is not to win, but to extract a settlement. The threat is delay and loss of political favor for the project rather than outright cancellation. The NIMBY lawsuit in Silicon Valley against California High-Speed Rail was right on the technical merit – the Pacheco Pass route, which would pass through the richest suburbs was technically inferior to the Altamont Pass route, which wouldn’t – still lost; Pacheco was favored due to another kind of surplus extraction, namely Rod Diridon’s desire for shorter Los Angeles-San Jose trip times.

Because surplus extraction works through politics and not clear rules, it benefits those with the most political power. In this way, the rise in NIMBYism in the 1960s and 70s, for example the freeway revolts, contrasts with the contemporary free speech movement, which used formal lawsuits with the intent of winning to expand the boundaries of free speech in America.

The free speech movement celebrated protections for communist Berkeley professors and for pornographers; people with normative professions and normative political views were already protected. In contrast, NIMBYism was most powerful in already rich areas, like Jane Jacobs’ Greenwich Village, or Boston’s South End. Baltimore’s racially integrated freeway revolt was exceptional. New York built freeways through working-class neighborhoods easily, and only encountered political obstacles in the Village, which was by the 1950s gentrified (Jacobs was a journalist with some college education, married to an architect, and her father was a doctor), a new development that hadn’t happened in urban history before and thus the city elites had missed it. Moreover, Jacobs’ remedy of creating and empowering community boards has ensured that only powerful people and powerful communities could change city decisions.

Even more recent attempts to create equity have failed. Slowing down the state and empowering community is always bad for equity, because the community is where inegalitarian traditions live. Black leaders now can derail transit plans just as white leaders can; non-leaders have no voice in neighborhood politics, and it’s those non-leaders who work outside the neighborhood who rely on public transit.

Surplus extraction remains the domain of people with political and cultural cachet. One can fight redevelopment in San Francisco on behalf of a mural to Cesar Chavez; fighting it on behalf of pornographers is harder. Similarly, the unions that have been the best at extracting surplus are traditional ones, doing jobs that existed 100 years ago, at productivity levels that remain stuck in that era, mainly the trades.

Conclusion: saying no

Surplus extraction theory does not say it is impossible to reduce costs. Italy’s sharp fall in costs in the 1990s and Turkey’s gentle fall in the 2010s both suggest that cost reduction is possible. What it does say is that the role of the state is to safeguard surplus and keep it socialized, against demands from many special interests, which should be disempowered through legal changes making lawsuits harder and reducing the ability of consultants and unions to drive up costs.

In that sense, the role of the planner is to say no – and moreover, to say no to charismatic groups representing much-romanticized people. No, dear mother with children, we will not build you a noise wall just because you think 140 km/h electric trains will reduce your quality of life. No, dear tradesman much-profiled as a non-college white voter, we will not hire you for $110/hour when there exist people who will do your job better than you can at $35/hour. No, dear third-generation business owner, we will not listen to what you think about traffic as we replace parking spots with bus lanes. No, dear anti-gentrification activist, we will not pay you as an equity consultant, we will just build the subway in the city. No, dear white flight homeowner, we will not build you a tunnel just to avoid taking a few houses through eminent domain. No, dear deindustrialized city leader, we will not require companies to set up factories in your city at high cost when we can get cheaper imports. It’s never going to be no, dear criminal, or no, dear Nazi, because criminals and Nazis are not used to making such requests and having people listen.

It’s optimistic in a sense, because much cost control comes just from knowing that it’s possible and having the nerve to say no to people who are used to hearing yes. The engineering factors that lead to low costs are important, but first of all, it’s necessary to believe that they are feasible, over local objections.

More on Consultants and Design-Build

A few months ago, there appeared an article comparing construction costs for subways in the US and Europe. It has a little table, not PPP adjusted, with cases from elsewhere, but the bulk of the reporting covers differences between the US and Europe. It’s interesting and I urge everyone to read it – but read it critically. It has a long list of bullet points naming various differences, some already covered here, some new but still within reason.

One aspect that seems especially apt is this:

The construction cost [in the US] represents slightly more than 50% of the overall program cost, while soft costs and stakeholders’ commitments at 45% are significantly higher in comparison with other types of major projects or similar projects in other global regions.

Labor cost and construction schedule are the most important factors affecting the construction cost. Labor cost is often driven by labor union rules which vary significantly among states and cities. One of the highest labor costs of tunnel construction workers is the Sandhogs in New York which can be as high as $110/hr and on an overtime basis, it can reach over two to three times this value. Their rates are higher than other tunnel workers in the country and significantly higher than European or Asian workers rates. Also, the number of workers assigned in the tunnel in New York is significantly more than other parts of the country and as much as 4 times more than tunnel workers assigned to comparable projects in Europe. Tunneling being linear structures, the opportunities to accelerate the construction schedule in order to reduce overall labor cost are limited.

That said, I’d like to caution about fully accepting everything the article says. The key issue is that the authors’ experience is as consultants – they work for AECOM. This means that to at least some extent, their expertise is informed by their work as outside consultants, which means that they are the most familiar with projects that at some point invite consultants in.

This is important, because this may be an important difference between low- and medium-cost countries. I am not sure – I’m trying to investigate those differences more carefully, but this involves listening to German complaints about NIMBYism and trying to figure out how relevant it is that NIMBYs are far less empowered in Southern Europe, counting Turkey as part of that region since it acts much like a peripheral European country in construction. I don’t think that low-cost countries in Southern Europe use international consultants – Milan and Madrid at least don’t, and Istanbul used Italian consultants at one point but nowadays seems mostly to design things itself.

What’s more, AECOM’s experience is not just in countries that use AECOM’s advice regularly, but also in specific projects that bought its services. This is relevant to the claim that,

European owners spend less time and money on planning, studies, conceptual developments, and detailed design. Most projects are implemented using the Design-Build model with the detailed design provided by the contractor during construction to suit his means and methods; this results in efficiency and eliminates repeating of design work.

There’s the rub: design-build does exist in Continental Europe. Turkey uses it, and France is glancing in that direction. But it’s uncommon – Italy and Spain do not use this method, and France largely does not either and I think neither do Germany or the Nordic countries. Moreover, design-build in Turkey means there is extensive in-house oversight, much more so than in American or British design-build projects.

French design-build is even more tightly overseen, because its purpose is not to forgo public planning. Rather, France traditionally maintains the separation of public planning, private design, and private construction, in order to fight corruption and guarantee fair procurement. This separation leads to problems when projects require redesign in case they are very complex, and as a result, Grand Paris Express exists as a large public-sector planning agency to facilitate coordination between the design and construction teams. Technically this can be called design-build, but it has approximately nothing to do with American design-build projects that pay Skanska or Dragados a large sum of money to dig a subway and have extensive public regulations and red tape but little public engineering. The role of the public sector in American, British, and increasingly rest-of-Anglosphere eyes is to make sure companies follow capricious rules but not to actively build infrastructure or, perhaps, change the rules to be more favorable to swift action.

Regrettably, in the coda the authors buy into this mentality that the public sector cannot change the rules. They list various action items that can be undertaken to reduce costs, all of which are very good – those items include streamlining regulations, improving risk sharing mechanisms, and offloading some peripheral costs, among others, rather than expanding design-build. They’re missing a few things that we’re learning from the low-cost world – for example, Istanbul makes an effort to site stations in parks in order to be able to build them more easily and reduce their costs, which I believe is also true of Milan. But for the most part, the list of things that the US needs to do to have what France and Germany have cannot be too dissimilar to that produced by the authors.

But then the authors throw it all away and say it’s unlikely that the US could match European costs. They give a bare-bones explanation that boils down to saying “these recommendations won’t really be implemented.” I agree to some extent – it’s plausible, though not yet certain, that New York will need to union-bust the sandhogs and probably also the other trades, and these are politically powerful unions that know very well that they earn several times what their labor is worth and fight to preserve this. But, first of all, not every recommendation is that fraught; questions of risk sharing, public planning, and procurement do not lend themselves to political populism and remain unreformed mostly because the Northeastern US has timid, reactive governance.

And second, the authors say it’s unlikely the US could match European costs even if their recommendations are followed. They don’t explain why – there are few intangibles in the article, and they mostly seem peripheral to the main question, for example the fact that the US is an auto-oriented society. I can’t tell if it’s just uncertainty, which does not appear in the body of the piece, or if there’s more to it. It could just be a writing artifact and what they meant to say was that their recommendations could help New York match Parisian costs but they’re skeptical their recommendations are politically palatable to New York.

I emphasize the criticism, even though it’s generally a good overview, because all of the experts we talk to have biases. These could be consultant biases, or political biases (Turkey is far more polarized than any mature democracy), or engineering biases, or language biases. Even reading my blog is to some extent a bias – people who read me and think well of my analysis might well look for reasons in their own domain why design-build is bad, which means that to be certain I am correct in my prescription against it, we need to cleanroom this, for example by interviewing people who do not know me directly (or at all) and asking how engineering is done where they are.

Transportation Renaissance

Ada Palmer posts rarely, but when she does, it’s always worth reading. She alternates between writing about her science fiction and writing about academic history; her most recent post is the latter, covering the historiography of the Renaissance. She notes that the idea of a three-age system, in which great Ancient knowledge was lost in the Middle Ages and rediscovered in the Renaissance, was first promoted in the Renaissance itself, even if the word renaissance was only used starting in the 19th century, and traces why this idea was accepted then and why it’s remained popular since. In short: it provided political legitimacy to the coterie of thugs (“aristocracy”) who launched coups and counter-coups in the Italian states, who could hire historians to portray them as harbingers of a new era of revival of ancient glory.

This is a paragraph-long summary of a 13,000-word post that summarizes an in-progress book, so I’m glossing over a lot of detail and I recommend that people read the post if they want to talk about Renaissance historiography. I bring this up because this is relevant to transportation, and to some extent urbanism in general, in a number of ways.

The three-age schema

Ada notes that medieval Europeans divided the world into two ages: before and after Jesus. The Renaissance began a trend of a three-age system: Antiquity, a medieval dark age, and the Renaissance or modernity. She further traces the intellectual history of this not just in the Italian Renaissance but also in more recent times, going over the use of the language of renaissance in Johan Burkhardt’s work to argue for a new modernity replacing medieval superstition.

Stepping away from professional historians, I do not know to what extent the average educated Westerner thinks in terms of three ages. The answer is clearly “a great deal,” but I do not know to what extent it is universal. I was taught this schema uncritically in primary and middle school, but what I see in the online discourse is less consistent – for example, Paul Krugman’s writings on Malthusianism back a two-age model, before and after the beginning of the Industrial Revolution. But even with the caveat that economic historians don’t view things this way, the Nike swoosh model of Roman greatness, medieval decline, and modern resurgence still exercises enormous cultural influence.

The relevance of this is that people who propose a change to something often default to the three-age model, transplanted into a specific context. The emergent view of most American and European advocates for rail transport is that rail had a golden age from its invention until the middle of the 20th century, declined subsequently, and is supposed to enter a renaissance now. This is usually connected with urbanism, with a model of the growth of traditional cities, decline through suburban sprawl, and renaissance; variants depend on politics, but Strong Towns, myriads of consultants telling cities how to attract talent, most YIMBYs, and most of the left agree on this picture.

Revival of ancient learning

Renaissance Italy had a MIGA obsession. In an era of the Avignon Papacy and intensifying warfare between different factions and city-states, the appeal of Roman unity and peace is not hard to understand; it’s not as if 14th- and 15th-century Italians had better models. Here’s Ada again:

The solution Petrarch proposed to what he saw as the fallen state of “my Italy” was to reconstruct the education of the ancient Romans.  If the next generation of Florentine and, more broadly, Italian leaders grew up reading Cicero and Caesar, the Roman blood within them might become noble again, and they too might be more loyal to the people than to their families, love Truth more than power, and in short love their cities as the Romans loved Rome.  Such men would, he hoped, be brave and loyal in strengthening and defending their homelands.  Rome started as one city, and did not make itself master of the world without citizens willing to die for it.

“Petrarch says we can become as great as the ancients by studying their ways!  Let’s do it!”  Petrarch’s call went out and, with amazing speed, Italy listened.  Desperate, war-torn city states like Florence who hungered for stability poured money into assembling the libraries which might make the next generation more reliable.  Wealthy families who wanted their sons to be princely and charismatic like Caesar had them read what Caesar read.  Italy’s numerous tyrants and newly-risen, not-at-all-legitimate dukes and counts filled their courts and houses and public self-presentation with Roman objects and images, to equate themselves with the authority, stability, competence and legitimacy of the Emperors.  No one took this plan more to heart than Petrarch’s beloved Florentine republic, and, within it, the Medici, who crammed their palaces with classical and neoclassical art, and with the education of Lorenzo succeeded in producing a classically-educated scion who was more princely than princes.

This provided the template for every Western narrative of decline that I’m familiar with, and a good number of non-Western ones: we were great, we’ve gone into decline, we will reverse the decline by restoring our ancient values. It’s unavoidable in every narrative of American decline; it’s there in the Brexit conception of British nationalism; it’s there in cross-national narratives of the decline of the left since the 1970s. In non-Western countries, it was there in a lot of early colonial rebellions (the Indian Rebellion of 1857 tried to restore the Mughal Empire). Even Japan went through a restorationist phase in the wake of its forced opening, though it famously went in a very different direction once the Meiji restoration happened.

This schema is used at a subnational level extensively. Regions that view themselves as declining, like the American Rust Belt, Northern England, or East Germany, cling fiercely to distinctive local institutions. This includes extensive study of local history and local affairs. It’s unavoidable in, say, Belt Publishing. Sometimes, this history is studied critically; in the broad public, it usually isn’t. The number of times I’ve heard New Yorkers contrast how the First Subway was built in four years (and not, say, 40) with how long subways take today is beyond mortals’ ability to count.

With rail transport specifically, advocacy is usually bundled into railfan interests. This, as per the usual paradigm, dovetails into very deep, usually uncritical, study of the history of the technology back when it was supposedly great. Go on Railroad.net and you will see people talk about the minutiae of historical steam and diesel engines and also brush off every piece of knowledge that was not generated in American mainline railroading. Interest in rail technology as a solution for the future gets bundled into romanticism for steam locomotives and for the particulars of how private railroads chose to operate service in the early 20th century.

The Renaissance Man as the innovator

Finally, Ada’s insight about why the idea of the Renaissance was accepted so quickly matters when looking at modern technology. Here, the three-age model is less relevant. The same emphasis on the innovator bringing the company/city/nation/world into a golden age is produced by other models. The accelerating growth model of the technological singularity produces the same effect even without the need to learn history, and is therefore widely popular among rationalists.

In transportation, the best recent example of this is the idea of the Hyperloop. What it is, underlyingly, is a new technology for running rail service, like maglev but capable of running at higher speed. All aspects of rail service planning with the exception of propulsion remain mostly the same (mostly, because the higher speeds do have special implications, though I don’t think they’re any different from what one can extrapolate from existing high-speed rail). This means that what it takes to build Hyperloop is similar to what it takes to build ordinary rail plus more money. I think Hyperloop One and Virgin understand that, but Elon Musk does not.

The importance of history as legitimacy cannot be discounted here. Court historians were hired to write hagiographies, just as artists were hired to paint and sculpt the likenesses of the biggest thugs (“royalty”). This does not usually apply to modern academic history – historians have political biases but there are layers insulating high-prestige academic historians from donors. But it does apply to a lot of popular writing, especially business journalism. I forget where I’ve read – I think it was in the context of New York real estate – that 2010s journalism is alive and well in trade media, but writing critical investigative pieces about powerful players is not always expected or rewarded in publications that make money as internal trade papers.

The upshot is that analyzing history, whether general or specific, as an abrupt positive change serves to empower people who can claim that they are the new world, and that any and all criticism is just the old way of thinking. It’s a form of epistemic narrowing that blocks off knowledge those people don’t have or can’t easily control.

The Subway is Probably not Why New York is a Disaster Zone

New York is the capital of the coronavirus pandemic, with around 110,000 confirmed cases and 10,000 confirmed deaths citywide, and perhaps the same number across its suburbs. There must be many reasons why this is so; one possibility that people have raised is infection from crowded subways, so far without much evidence. Two days ago, MIT economist Jeffrey Harris wrote a paper claiming that the subways did in fact seed the Covid-19 epidemic in New York, but the paper cites no evidence. Sadly, some people have been citing the paper as a serious argument, which it isn’t; the purpose of this post is to explain what is wrong with the paper.

New York and other subways

In multiple other countries, one cannot see the transit cities in the virus infection rates. In Germany the rates in the largest cities are collectively the same as in the rest of the country. In South Korea, the infection is centered on Daegu; Seoul’s density and high transit usage are compatible with an infection rate of about 700 in a city of 9.5 million, about 1.5 orders of magnitude less per capita than in most Western countries and 2.5 orders of magnitude less than in New York. In Taipei, the MRT remains crowded, with weekday ridership in February and March down by 15-16%. In Italy, car usage is high outside a handful of very large cities like Milan, and Milan’s infection rate isn’t high by the standards of the rest of Lombardy.

However, rest-of-world evidence does not mean that the New York City Subway is safe. The Taipei MRT has mandatory mask usage and very frequent cleaning. German U- and S-Bahn networks are a lot dirtier than anything I’ve seen in Asia, but much cleaner than anything I’ve seen in New York, and also have much less peak crowding than New York. New York uniquely has turnstiles requiring pushing with one’s hands or bodies, and the only other city I know of with such fare barriers is Paris, whose infection rates are far below New York’s but still high by French standards.

So the question is not whether rapid transit systems are inherently unsafe for riders, which they are not. It’s whether New York, with all of its repeated failings killing tens of workers from exposure to the virus, has an unsafe rapid transit system. Nonetheless, the answer appears to be negative: no evidence exists that the subway is leading to higher infection rates, and the paper does not introduce any.

What’s in the paper?

A lot of rhetoric and a lot of lampshade hanging about the lack of natural experiments.

But when it comes to hard evidence, the paper makes two quantitative claims. The first is in figure 3: Manhattan had both the least increase in infections in the 3/13-4/7 period, equivalent to a doubling period of 20 days whereas the other boroughs ranged between 9.5 and 14, and also the largest decrease in subway entries in the 3/2-16 period, 65% whereas the other boroughs ranged between 33% and 56%.

The second is a series of maps showing per capita infection levels by zip code, similar to the one here. The paper also overlays a partial subway map and asserts that the map shows that there is correlation of infection rates along specific subway routes, for example the 7, as people spread the disease along the line.

I will address the second claim first, regarding line-level analysis, and then the first, regarding the borough-level difference-in-differences analysis; neither is even remotely correct.

Can you see the subway on an infection map?

Here is a static version of the infection map by zip code:

This is cases for 1,000 people – note that my post about Germany looks at rates per 10,000 people, so the range in New York is consistently about an order of magnitude worse than in Germany. The map shows high rates in Eastern Queens, the North Bronx, and Staten Island, hardly places with high public transportation ridership. The rates in Manhattan and the inner parts of Brooklyn are on the low side.

There are no ribbons of red matching any subway line – there are clumps and clusters, as in Southern Brooklyn in Orthodox Jewish neighborhoods, and in Central Queens around Corona and East Elmhurst. There is imperfect but noticeable correlation with income – working-class areas have higher infection rates, perhaps because they have higher rates at which people are required to still show up to work, where they can be infected. East Asian neighborhoods have lower rates, like Flushing and environs, or to some extent Sunset Park; Asians are infected at noticeably lower rates than others in New York and perhaps in the rest of the Western world, perhaps because they took news in China more seriously, began practicing social distancing earlier, and wear masks at higher rates. There are many correlates, none of which looks like it has anything to do with using the public transportation network.

What’s more, the paper is not making any quantitative argument why the graph shows correlation with subway usage. It shows the graph with some lines depicted, often misnamed, for example the Queens Boulevard Line is called Sixth Avenue Local, leading to a discussion about higher infection rates on local trains than on express trains where in fact the F runs express in Queens. But it does not engage in any analysis of rates of subway usage or changes therein, or in infection rates. The reader is supposed to eyeball the graph and immediately agree with the author’s conclusion, where there is no reason to do so.

Manhattan confounders

The claim about Manhattan is the only real quantitative claim in the paper. Unlike the zip code analysis, the borough analysis does make some statistical argument: Manhattan had larger reduction in subway usage than the rest of the city and also a slower infection rate. However, this argument relies on an N of 2. Among the other boroughs, there is no such correlation. The argument is then purely about Manhattan vs. the rest of the city. This is incorrect for so many reasons:

  1. Manhattan is the highest-income borough, with many people who can work from home. If they’re not getting infected, it could be from not commuting as much, but just as well from not getting the virus at work as much.
  2. The Manhattan subway stops are often job centers, so the decline in ridership there reflects a citywide decline. A Manhattanite who stops taking the subway is seen as two fewer turnstile entries in Manhattan, whereas a New Yorker from the rest of the city who does the same is likely to be seen as one fewer Outer Borough entry and one fewer Manhattan entry.
  3. Many Manhattanites left the city to shelter elsewhere, as seen in trash collection data.
  4. Manhattan’s per capita subway usage is probably higher than that of the rest of the city counting discretionary trips, so 65% off the usual ridership in Manhattan may still be higher per capita than 56% off in Brooklyn or 47% in Queens. (But this is false on the level of commuting, where Manhattan, the Bronx, and Brooklyn all have 60% mode share.)

Does the paper have any value?

No.

I have heard people on Twitter claim that correlation is not causation. This argument is too generous to the paper, which has not shown any correlation at all, since the only quantitative point it makes has an N of 2 and plenty of confounders.

For comparison, my analysis of metro construction costs has an effective N of about 40, since different subway  projects in the same country tend to have similar costs with few exceptions (such as New York’s extreme-even-for-America costs), and I consider 40 to be low enough that Eric Goldwyn and I must use qualitative methods and delve deep into several case studies before we can confidently draw conclusions. The paper instead draws strong conclusions, even including detailed ones like the point the paper tries to make about local trains being more dangerous than express trains, from an N of 2; it’s irresponsible.

But what about the workers?

A large and growing number of New York City Transit workers have succumbed to the virus. The current count is close to the citywide death toll, but transportation workers are by definition all healthy enough to be working, whereas citywide (and worldwide) the dead are disproportionately old or have comorbidities like heart disease. Echoing the union’s demands for better protection, Andy Byford had unkind words to say about Governor Andrew Cuomo’s appointees in charge of the system, MTA chair Pat Foye and acting NYCT chair Sarah Feinberg.

However, this is not the same as infection among passengers. The dead include workers who are in close proximity to passengers on crowded vehicles, such as bus drivers, but also ones who are not, such as train operators, maintenance workers, and cleaners. Train cleaners have to remove contaminated trash from the platforms and vehicles without any protective equipment; NYCT not only didn’t supply workers with protective equipment, but also prohibited them from wearing masks on the job even if they’d procured them privately. Contamination at work is not the same as contamination during travel.

So, should people avoid public transportation in New York?

Absolutely not.

If the best attempt to provide evidence that riding the subway is a health hazard in a pandemic is this paper, then that by itself is evidence that there is no health hazard. This is true even given New York City Transit’s current level of dirt, though perhaps not given its pre-crisis peak crowding level. Social distancing is reducing overall travel and this is good, not necessarily because travel is hazardous, but mostly because the destination is often a crowded place with plenty of opportunity for person-to-person infection.

In preparation for going back to normal, the current level of cleanliness is not acceptable. The state should make sure people have access to masks, even if they’re ordinary ones rather than N95 ones, and mandate their usage in crowded places including the subway once they are available. It should invest far more in cleaning public spaces, including the subway, to the highest standards seen in the rich countries of Asia. It should certainly do much more to protect the workers, who face more serious hazards than the riders. But it should not discourage people who are traveling from doing so by train.

Massachusetts Sandbags Rail Electrification

In the last year, Massachusetts has been studying something called the Rail Vision, listing several alternatives for commuter rail modernization. This has been independent of the North-South Rail Link study, and one of the options that the Rail Vision considered was full electrification. Unfortunately, the report released yesterday severely sandbags electrification, positing absurdly high costs. The state may well understand how bad its report is – at least as of the time of this writing, it’s been scrubbed from the public Internet, forcing me to rely on screencaps.

In short: the alternative that recommends full system electrification was sandbagged so as to cost $23 billion. This is for electrification, systems, and new equipment; the NSRL tunnel is not included. All itemized costs cost a large multiple of their international cost. The Americans in my feed are even starting to make concessions to extremely expensive projects like the Caltrain electrification, since the proposed MBTA electrification is even costlier than that.

But the telltale sign is not the cost of the wires, but rolling stock. The report asserts that running electrified service requires 1,450 cars’ worth of electric multiple units (“EMUs”), to be procured at a cost of $10 billion. More reasonable figures are 800 and $2 billion respectively.

Why 1,450 cars?

The all-electric option assumes that every line in the system will get a train every 15 minutes, peak and off-peak. What counts as a line is not clear, since some of the MBTA’s commuter lines have branches – for example, the Providence and Stoughton Lines share a trunk for 24 km, up to Canton Junction. However, we can make reasonable assumptions about which branches are far enough out; overall rolling stock needs are not too sensitive to these assumptions, as most lines are more straightforward.

The MBTA is capable of turning trains in 10 minutes today. In making schedules, I’ve mostly stuck to this assumption rather than trying to go for 5-minute turnarounds, which happen in Germany all the time (and on some non-mainline American subways); occasionally trains steal 1-2 minutes’ worth of turnaround time, if there’s a longer turn at the other end. Thus, if the one-way trip time is up to 50 minutes, then 8 trainsets provide 15-minute service.

To me, high-frequency regional rail for Boston means the following peak frequencies:

Providence/Stoughton: a train every 15 minutes on each branch. Service south of Providence is spun off to a Rhode Island state service, making more stops and running shorter trains as demand is weaker than commuter volumes to Boston. With this assumption, the Providence Line requires 7-8 trainsets. The Stoughton Line, with the South Coast Rail expansion to New Bedford and Fall River, each served every half hour, requires around 9-10. Say 18 sets total.

Worcester: the big question is whether to exploit the fast acceleration of EMUs to run all-local service or mix local and express trains on tracks in Newton that will never be quadrupled unless cars are banned. The all-local option has trains doing Boston-Worcester in just under an hour, so 9-10 trainsets are required. The mixed option, with a train every 15 minutes in each pattern, and local trains only going as far as Framingham, requires 14 sets, 8 express and 6 local.

Franklin/Fairmount: a train every 15 minutes on the Franklin Line, entering city center via the Fairmount Line, would do the trip in around 50 minutes. It may be prudent to run another train every 15 minutes on the Fairmount Line to Readville, a roughly 17-minute trip by EMU (current scheduled time with diesel locomotives: 30 minutes). Overall this is around 12 trainsets.

Old Colony Lines: there are three lines, serving very low-density suburbs. The only destinations that are interesting for more than tidal commuter rail are Plymouth, Brockton, Bridgewater State, and maybe an extension to Cape Cod. Each branch should get a train every 30 minutes, interlining to a train every 10 from Quincy Center to the north. About 10-12 trainsets are needed (2 more if there’s an hourly train out to Cape Cod); this is inefficient because with three branches, it’s not possible to have all of them depart South Station at :05 and :35 and arrive :25 and :55, so even if there’s a train every 15 minutes per branch, the requirement doesn’t double.

Fitchburg Line: a local train to Wachusett every 15 minutes would require around 12 sets (75 minutes one-way). The number may change a little if there’s an overlay providing service every 7.5 minutes to Brandeis, or if trains beyond South Acton only run every half hour.

Lowell Line: an EMU to Lowell would take about 27 minutes, depending on the stop pattern; 5 trainsets provide 15-minute frequency.

Haverhill Line: an EMU to Haverhill running the current route (not via the Wildcat Branch) would take about 40 minutes, so 7 trainsets provide a train every 15 minutes.

Eastern Lines: like the Old Colony Lines, this system has very low-density outer branches, with only one semi-reasonable outer anchor in Newburyport. Trains should run to Beverly every 10 minutes, and then one third should turn, one third should go to Rockport, and one third should go to Newburyport. With the same inherent inefficiency in running this service on a symmetric schedule as the Old Colony, around 10-12 sets are needed.

This is about 90 sets total. At eight cars per set, and with a spare ratio of 11%, the actual requirement is 800 cars, and not 1,450. The difference with the state’s assumption is likely that I’m assuming trains can run at the acceleration rates of modern EMUs; perhaps the state thinks that EMUs are as slow and unreliable as diesel locomotives, so a larger fleet is necessary to provide the same service.

Rolling stock costs

Reducing the cost of infrastructure is complicated, because it depends on local factors. But reducing the cost of industrial equipment is easy, since there are international vendors that make modular products. Factories all over Europe, Japan, and South Korea make this kind of equipment, and the European factories barely require any modifications to produce for the American market under current federal regulations.

It is not hard to go to Railway Gazette and search for recent orders for EMUs; names of trainsets include Talent, FLIRT, Mireo (cost information here) and Coradia. The linked Coradia order is for €96,500 per meter of train length, the other three orders are for about €70,000. A US-length (that is, 25 meters) car would cost around $2.5 million at this rate. 800 cars times $2.5 million equals $2 billion, not the $10 billion the MBTA claims.

Railway Gazette also discusses a maintenance contract: “Vy has awarded Stadler a contract worth nearly SFr100m for the maintenance in 2020-24 of more than 100 five-car Flirt EMUs.” These trains are 105 meters long; scaled to US car length, this means the annual maintenance cost of an EMU car is around $50,000, or $40 million for the entire fleet necessary for electrified service.

The actual net cost is even lower, since the MBTA needs to replace its rolling stock very soon anyway. If the choice is between 800 EMUs and a larger diesel fleet, the EMUs are cheaper; in effect, the rolling stock cost of electrification is then negative.

Why are they like this?

I struggle to find a problem with Boston’s transportation network that would not be alleviated if Massachusetts’ secretary of transportation Stephanie Pollack and her coterie of hacks, apparatchiks, and political appointees were all simultaneously fired.

There is a chain of command in the executive branch of the Massachusetts state government. Governor Charlie Baker decides that he does not want to embark on any big project, such as NSRL or rail electrification, perhaps because he is too incompetent to manage it successfully. He then intimates that such a project is unaffordable. Secretary Pollack responds by looking for reasons why the project is indeed unaffordable. Under pressure to deliver the required results, the planners make up outrageously high figures: they include fleet replacement in the electrified alternative but not in the unelectrified one (“incremental cost”), and then they lie about the costs by a factor of five.

Good transit activists can pressure the state, but the state has no interest in building good transit. The do-nothing governor enjoys no-build options and multi-billion dollar tweaks – anything that isn’t transformative is good to him. The do-nothing state legislature enjoys this situation, since it is no more capable of managing such a project, and having a governor who says no to everything enables it to avoid taking responsibility.

New Report on Construction Costs Misses the Mark

In the last few years, ever more serious and powerful actors have begun investigating the fact of high American infrastructure construction costs. First it was Brian Rosenthal’s excellent New York Times exposé, and then it was the Regional Plan Association’s flop of a study. At the same time, I was aware that the congressional Government Accountability Office, or GAO, was investigating the same question, planning to talk to sources in the academic world as well as industry in order to make recommendations.

The GAO report is out now, and unfortunately it is a total miss, for essentially the same reason the RPA’s report was a miss: it did not go outside the American (and to some extent rest-of-Anglosphere) comfort zone. Its literature review is if anything weaker than the RPA’s. Its interviews with experts are telling: out of nine mentioned on PDF-p. 47, eight live in English-speaking countries. Even when more detailed information about non-English-speaking countries is readily available, even in English, the GAO report makes little use of it. It is a lazy study, and people who ideologically believe the American federal government does not work should feel confident citing this as an example.

Cost comparisons

Brian himself already notes one of the reasons the report is so weak: Congress mandated a comparative study, but the report made no international comparisons at all. Instead, the report offered this excuse (PDF-p. 27):

The complexity of rail transit construction projects and data limitations, among other things, limits the ability to compare the costs of these projects, according to the stakeholders we interviewed. As highlighted above, each project has a unique collection of specific factors that drive its costs. According to FTA officials, each proposed transit project has its own unique characteristics, physical operating environment, and challenges. Some stakeholders said that the wide disparity in the relative effect of different cost factors renders cost comparisons between projects difficult. For example, representatives of an international transit organization said that because of the large number of elements that can affect a project’s costs and the differences in what costs are included in different projects’ data, projects should be compared only at a very granular level and that aggregate cost comparisons, such as between the costs per mile or costs per kilometer of different projects, are likely flawed. Some stakeholders also said that project costs should not be compared without considering the projects’ contexts, such as their complexity. For example, one academic expert contended that project costs cannot be compared without considering the context of each project, and that analysis of projects should focus on leading practices and lessons learned instead.

There is a big problem with the above statement: disaggregated costs for many aspects of urban rail construction do exist. The Manhattan Institute’s Connor Harris has done a lot of legwork comparing tunnel boring machine staffing levels and wages in New York and in Germany, and found that New York pays much higher wages but also has much higher staffing levels, 25-26 workers compared with 12. I have done some work looking at station costs specifically, and at the cost of installing elevators for wheelchair accessibility.

There is a lot of detailed comparative research about the costs of high-speed rail; the report even references one such meta-study undertaken within Europe, but omits the study’s analysis of causes of cost differences and instead asserts that it shows that comparing different projects is hard. In the interim, California contracted Deutsche Bahn to do a post-mortem of its elevated high-speed rail costs, which found that California needlessly built larger structures than necessary, explaining its cost premium over Germany.

Instead of probing these disaggregated estimates, the GAO preferred to say that they are too hard and move on.

Sanity checks

Even without disaggregation, there are some good sanity checks one can make about construction costs. The most important is that big projects – major subway expansions, regional rail tunnels, high-speed rail – cost an appreciable amount of the government’s budget. The budget for the 200-kilometer Grand Paris Express project is €35 billion, plus another €3 billion in contributions for related suburban rail extensions such as that of the RER E. There may be future cost overruns, but they will be reported in the media, just as the current overrun has been; it is extremely difficult to hide cost overruns measured in tens of billions in a Paris-size city, and even in a China-size country it may not be easy.

Is it plausible that GPX is inherently easier to build than New York’s $1+ billion/km subway tunnels? Yes. It’s equally plausible that it is inherently harder. Second Avenue Subway runs under a wide, straight throughfare, a situation that simplifies construction. In Israel, the ministry of transportation has long mentioned the ease of tunneling under wide, straight boulevards in connection with plans to extend the second line of the Tel Aviv subway to North Tel Aviv under Ibn Gabirol, and admitted this even when it opposed the extension on land use grounds.

The most important sanity check is that in a world with several dozens of cities with a wide variety of wealth levels, land use patterns, geologies, and topographies, no city has managed to match or even come close to New York’s construction costs. New York is not special enough to be an edge case in all or even most relevant geographic variables – it is dense but no denser than Seoul or Paris, it is wealthy but no wealthier than London or Paris or Munich and barely wealthier than Stockholm, it has hard rock but less hard than Stockholm (and in Stockholm the gneiss is cited as a cost saver – bored tunnels do not require concrete lining), etc.

Moreover, the cities that have the highest construction costs outside New York are almost without exception in the same set of countries: the US, Canada, Britain, Singapore, Australia. What’s likelier – that there is some special geographic feature common to the entire Anglosphere (including Quebec) but absent from all other developed countries, or that there is a shared set of legal and political traditions that developed in the last 50 years that impede cost-effective construction? Instead of probing this pattern, the GAO preferred to wash its hands and refuse to compare projects across countries.

Internal comparisons

In lieu of making international comparisons, the GAO has engaged in extensive internal comparison. It cites aspects that have raised the costs of Second Avenue Subway above other American subway projects, such as overdesign for stations. Apparently, it’s completely legit to compare two different cities’ construction if they’re in the same country.

Over and over again, it references its own domestic standards. The GAO has 12 design standards, e.g. on PDF-pp. 51-52 and 56-60; the report mentions that existing cost estimation methodologies by the Federal Transit Administration, or FTA, meet 7 of them; thus, it exhorts transit agencies to meet the other 5 standards.

The only problem is that there is no evidence supplied that those design standards are really useful. After all, the United States has very high costs, so why should anyone trust its standards? Even domestically, the report makes no effort to bring up successful examples of low overall costs coming from following prescribed standards. Seattle recently opened a light rail tunnel built for around $400 million per kilometer, a cost that would get most European project managers fired but that is still the lowest for an American urban rail tunnel built in this century. But the report never brings up Seattle at all, never mind that New York would salivate over the prospect of tunneling at Seattle’s cost.

The real internal comparisons then are not between different cities in the United States. Rather, they’re between different stages of cost estimation for the same project. There is published literature on cost overruns, most famously by Bent Flyvbjerg and his research group. The report cites Flyvbjerg. Moreover, one of the nine academic experts it consulted is Don Pickrell, who published a seminal paper on American cost overruns and ridership shortfalls in 1990. Pickrell was influential enough that a 2009 review found that not only had cost and ridership projections improved greatly in the intervening two decades, but also there was an improvement in ridership estimate quality attributable to Pickrell’s paper.

The GAO report is not the best source on cost overruns, but it is not completely useless there. Unfortunately, it remains useless when it comes to discussing absolute costs, a different topic from relative increases. Flyvbjerg’s original paper found that the US did not have higher cost overruns than Europe; but absolute costs in the US are several times as high. Flyvbjerg’s paper found that urban rail has higher cost overruns than road projects; but when a rail tunnel and a road tunnel are built in the same city, the road tunnel is more expensive by a factor of 1.5-2.5, at least in the four-city pilot I reported in 2017, owing to the need to build bigger bores with ventilation to carry heavy car traffic.

Lazy analysis, lazy synthesis

Americans who think of themselves as reformers like to point out real problems to solve, but then propose solutions that they made up without any connection with their analysis. The RPA study is one such example: even though one of its sources (namely, former Madrid Metro CEO Manuel Melis Maynar’s writeup about low Spanish costs) explicitly calls for separation of design and construction, its recommendations include a greater reliance on design-build. The same design-build recommendation appeared in a 2008 report in Toronto comparing the costs of the Sheppard subway, opened in 2002, with those of subways in Madrid; construction costs in Toronto have since tripled, while those of Madrid have barely risen.

To the GAO report’s credit, it does not recommend design-build. It even mentions the biggest drawback of design-build: it shifts cost risk to the private contractor, who compensates by demanding more public money up front. Nonetheless, it does not follow through and does not make the correct recommendation on this subject – namely, that cities and states should cease using this approach. It buries a recommendation for in-house expertise alongside a fad for peer review of projects.

Instead of lazily proposing design-build, the GAO lazily proposes two barely relevant tweaks (PDF-p. 43):

  • The FTA administrator should ensure that FTA’s cost estimating information for project sponsors is consistent with all 12 steps found in GAO’s Cost Estimating and Assessment Guide and needed for developing reliable cost estimates.
  • The FTA Administrator should provide a central, easily accessible source with all of FTA’s cost estimating information to help project sponsors improve the reliability of their cost estimates.

In other words, the report makes no recommendation about how to reduce costs, only about how to tell the public in advance that costs will be unaffordably high.

Why are these reports so bad?

This is not the first time a serious group releases an incurious study of American construction costs. What gives?

I suspect the answer has to be a combination of the following problems:

  • Reform factions often have a lot of internal ideas about how to improve things based on what they already know. They will cite new information if they feel like they must do so to save face, but they will not let new evidence change their conclusions. A little knowledge can be dangerous.
  • Finding information from outside the US, especially outside the English-speaking world, puts Americans (and Canadians) at a disadvantage. They know few to no foreigners, have little experience with cities abroad except as tourists, and do not speak foreign languages. Even when machine translation is decently accurate, which it is in the engineering literature in European languages, they are intimidated by the idea of dealing with non-English material. The process of learning is humbling, and some people prefer to remain proud and ignorant.
  • Open-ended analysis does not always lend itself to easy explanations or easy solutions. Even when solutions do present themselves, they may not flatter the people in power. Ten years ago I did not think senior management at American transit organs should be fired; today I think mass layoffs of the top brass, especially the political appointees, are somewhere between very useful and essential.

All three problems interact. For example, senior management is even less likely to be multilingual than junior staffers, who may be second-generation immigrant heritage speakers of a foreign language; thus, anything relying on foreign material disempowers the high-ups in favor of up-and-comers. The quick-and-easy-and-wrong solutions reformists seize upon if they find a little bit of knowledge let outfits like the GAO feel more powerful without actually challenging any obstructive politician or interest group, and if those solutions fail, they can always keep churning reports about implementation.

Last year, I did not know whether the GAO was capable of providing a blueprint for improving American infrastructure at lower cost. I assumed good faith because I had no reason not to. With this report, it is clear to me as well as to other observers of American public transit that the GAO is not so capable. Instead of doing what was in the country’s best interest, the people who commissioned and wrote the report delivered the minimal product that would get them kudos from superiors who do not know any better. They could have learned, or made a serious effort to learn, but that might challenge their assumptions or those of the high political echelons, and thus they preferred to say nothing and propose to do nothing.

Costs are Rising, US Highway Edition

There’s a preliminary paper circulating at Brookings, looking at American infrastructure construction costs. Authors Leah Brooks and Zachary Liscow have tabulated the real costs of the American Interstate program over time, from the 1950s to the 1990s, and find that they increased from $5.3 million per km ($8.5 million/mile) in 1958-63 to $21.3 million/km ($34.25 million/mile) in 1988-93.

Moreover, they have some controls for road difficulty, expressed in slope (though not, I believe, in tunnel quantity), urbanization, and river and wetland crossings, and those barely change the overall picture. They go over several different explanations for high American infrastructure costs, and find most of them either directly contradicted by their results or at best not affirmed by them.

I urge readers to read the entire paper. It is long, but very readable, and it is easy to skip the statistical model and go over the narrative, including favored and disfavored explanations, and then poke at the graphs and tables. I’m going to summarize some of their explanations, but add some important context from cross-national comparisons.

Why costs (probably) aren’t rising

The authors identify four hypotheses they rule out using their research, in pp. 19-23 (they say five but only list four):

Difficult segments postponed and built later – they have some controls for that, as mentioned above. The controls are imperfect, but the maps depicted on pp. 59-61 for the Interstate network’s buildout by decade don’t scream “the segments built after 1970 were harder than those built before.”

Time-invariant features – these include cross-national comparisons, since the United States has always been the United States. I will discuss this in a subsequent section, because two separate refinements of what I’ve seen from cross-national comparisons deal with this issue specifically.

Input prices – this is by far the longest explanation the authors deal with. Anecdotally, it’s the one I hear most often: “labor costs are rising.” What the authors show is that labor and materials costs did not rise much over the period in question. Construction worker wages actually peaked in real terms in 1973 and fell thereafter; materials costs jumped in the aftermath of the oil crisis, but came down later, and were back at pre-crisis levels by the 1990s (p. 48). Land costs did rise and have kept rising, but over the entire period, only 17.7% of total costs were preliminary engineering and land acquisition, and the rest were in construction.

Higher standards – the authors looked and did not find changes in standards leading to more extensive construction.

There are several more incorrect explanations that jump from the data. I was surprised to learn that throughout the 1970s and 80s, completion time remained mostly steady at 3-3.5 years of construction; thus, delays in construction cannot be the explanation, though delays in planning and engineering can be.

The authors themselves list additional explanations that have limited evidence but are not ruled out completely from their data, on pp. 32-35. Construction industry market concentration may be an explanation, but so far data is lacking. Government fragmentation, measured in total number of governments per capita, has no effect on the result (for example, California has high costs and not much municipal fragmentation); I’ll add that Europe’s most municipally fragmented country, France, has middle-of-the-road subway construction costs. State government quality, as measured by corruption convictions, has little explanatory power – and as with fragmentation, I’ll add that in Europe we do not see higher costs in states with well-known problems of clientelism and corruption, like Italy and Greece. Work rules requiring the addition of more workers may be relevant, but unionization and left-right politics are not explanatory variables (and this also holds for rail costs).

Economies of scale look irrelevant as well: there is negative correlation between costs and construction, but the causality could well go the other way. Finally, soft budget constraints are unlikely, as the federal government can punish states that mismanage projects and take more money; it’s possible that as the Interstate program ended states felt less constrained because there wouldn’t be money in the future either way (“end of repeated game”), but the fact that costs keep rising in subway construction suggests this is not relevant.

Favored explanations

Two explanations stand out to the authors. The first is that nearly the entire increase in construction costs over time can be attributed to a mix of higher real incomes and higher house prices. While the construction workers themselves did not see their wages rise in the late 1970s and 80s, a richer population may demand more highways, no matter the cost.

Higher real estate costs could have an impact disproportionate to the share of land acquisition in overall costs by forcing various mitigations that the paper does not control for, such as sound walls and tunnels, or by sending roads over higher-cost alignments.

The second explanation is what the authors call citizen voice. Regulatory changes in the 1960s and early 70s gave organized local groups greater ability to raise objections to planning and force changes, reducing community impact at the cost of higher monetary expenditures. The authors give an example from suburban Detroit, where a highway segment that disrupted a Jewish community center took 25 years to be built as a result of litigation.

The authors don’t say this explicitly, but the two explanations interact well together. The citizen voice is very locally NIMBY but is also pro-road outside a handful of rich urban neighborhoods. Higher incomes may have led to public acceptance of higher costs, but local empowerment through citizen voice is the mechanism through which people can express their preference for higher costs over construction inconvenience.

How time-invariant are national features, anyway?

The authors contrast two proposed explanations – higher incomes and property values, and stronger NIMBY empowerment – with what they call time-invariant features, which could not explain an increase in costs. But can’t they?

I spent years plugging the theory that common law correlates with high subway construction costs, and it does in the developed world, but upon looking at more data from developing countries as well as from before the last 25 years, I stopped believing in that theory. It started when I saw a datapoint for Indonesia, a civil-law country, but even then it took me a few more years to look systematically enough, not to mention to wait for more civil-law third-world countries to build subways, like Vietnam. By last year I was giving counterexamples, including Montreal, low rail electrification costs in some common law countries, and the lack of a London cost premium over Paris until the late 20th century.

In lieu of common law, what I use to explain high costs in the US relative to the rest of the world, and to some extent also in most first-world common law countries as well as third-world former colonies, is weak civil service. In the developed world, the theory behind this is called adversarial legalism, as analyzed by Robert Kagan. Adversarial legalism enforces the law through litigation, leading to a web of consent decrees. Some are naked power grabs: for example, in Los Angeles, a union sued a rolling stock vendor for environmental remediation and agreed to drop the lawsuit in exchange for a pledge that its factory be unionized, which may play a role in why the trains cost around 50% more than equivalent European products.

American litigiousness developed specifically in the 1970s – it’s exactly how what the authors of the paper call citizen voice is enforced. In contrast, on this side of the Channel, and to some extent even generally on this side of the Pond, laws are enforced by regulators, tripartite labor-business-government meetings, ombudsmen, or street protests. French riotousness is legendary, but its ability to systematically change infrastructure is limited, since rioting imposes a real cost on the activist, namely the risk of arrest and backlash; in contrast, it is impossible to retaliate against people who launch frivolous lawsuits.

I bring up the fact that I said most of this last year, and the rest at the beginning of this year, whereas I was not aware of the paper under discussion until it was released a few hours ago, to make it clear that I’m not overfitting. This is something that I’ve been talking about for around a year now, and a jump in American construction costs in the 1970s and 80s – something that also looks to be the case in subway construction – is fully compatible with this theory.

How Ambitious is Mayor de Blasio’s Bus Plan?

You have to give Bill de Blasio credit: when someone else forces his hand, he will immediately claim that he was on the more popular-seeming side all along. After other people brought up the idea of a bus turnaround, starting with shadow agencies like TransitCenter and continuing with his frontrunning successor Corey Johnson, the mayor released an action plan called Better Buses. The plan has a bold goal: to speed up buses to 16 km/h using stop consolidation and aggressive enforcement of bus priority. And yet, elements of the plan leave a bad taste in my mouth.

Bus speeds

The Better Buses plan asserts that the current average bus speed in New York is 8 miles per hour, and with the proposed treatments it will rise to 10. Unfortunately, the bus speed in New York is lower. The average according to the NTD is 7.05 miles per hour, or 11.35 km/h. This includes the Select Bus Service routes, whose average speed is actually a hair less than the New York City Transit average, since most of them are in more congested parts of the city. The source the report uses for the bus speed is an online feed that isn’t reliable; when I asked one of the bus planners while working on the Brooklyn route redesign, I was told the best source to use was the printed schedules, and those agree with the slower figures.

In Brooklyn, the average bus speed based on the schedules is around 11 km/h. But the starting point for the speed treatment Eric Goldwyn and I recommended is actually somewhat lower, around 10.8 km/h, for two reasons: first, the busiest routes already have faster limited-stop overlays, and second, the redesign process itself reduces the average speed by pruning higher-speed lightly-used routes such as the B39 over the Williamsburg Bridge.

The second reason is not a general fact of bus redesigns. In Barcelona, Nova Xarxa increased bus speeds by removing radial routes from the congested historic center of the city. However, in Brooklyn, the redesign marginally slows down the buses. While it does remove some service from the congested Downtown Brooklyn area, most of the pruning in is outlying areas, like the industrial nooks and crannies of Greenpoint and Williamsburg. Without having drawn maps, I would guess the effect in Queens should be marginal in either direction, for essentially the same set of reasons as in Brooklyn, but in the Bronx it should slow down the buses by pruning coverage routes in auto-oriented margins like Country Club.

With all of the treatments Eric and I are proposing, the speed we are comfortable promising if our redesign is implemented as planned is 15 km/h and not 16 km/h.

How does the plan compare with the speaker’s?

City Council Speaker Johnson’s own plan for city control of NYCT proposes a bus turnaround as well. Let us summarize the differences between the two plans:

Aspect Johnson’s plan De Blasio’s plan
Route redesign Yes Yes
Bus shelters Yes Probably
Stop consolidation Not mentioned Yes
Bus lanes 48 km installed per year 16-24 km installed per year
Bus lanes vs. cars Parking removal if needed Not mentioned
Physically separated bus lanes Yes 3 km pilot
Median bus lanes Probably Maybe
Signal priority 1000 intersections equipped per year 300 intersections equipped per year

For the most part, the mayor’s plan is less ambitious. The question of bus lanes is the most concerning. What Eric and I think the Brooklyn bus network should look like is about 350 km. Even excluding routes that already have bus lanes (like Utica) or that have so little congestion they don’t need bus lanes (like the Coney Island east-west route), this is about 300 km. Citywide this should be on the order of 1,000 km. At the speaker’s pace this is already too slow, taking about 20 years, but at the mayor’s, it will take multiple generations.

The plan does bring up median lanes positively, which I appreciate: pp. 10-11 talk about center-running lanes in the context of the Bx6, which has boarding islands similar to those I have observed on Odengatan in Stockholm and Boulevard Montparnasse in Paris. Moreover, it suggests physically separated lanes, although the picture shown for the Bx6 involves a more obtrusive structure than the small raised curbs of Paris, Stockholm, and other European cities where I’ve seen such separation. Unfortunately, the list of tools on pp. 14-15 assumes bus lanes remain in or near the curb, talking about strategies for curb management.

The omission of Nostrand

The mayor’s plan has a long list of examples of bus lane installation. These include some delicate cases, like Church Avenue. However, the most difficult, Nostrand, is entirely omitted.

Nostrand Avenue carries the B44, the second busiest bus in the borough and fifth in the city. The street is only 24 meters wide and therefore runs one-way southbound north of Farragut Avenue, just north of the crossing with Flatbush Avenue and Brooklyn College. Northbound buses go on New York Avenue if they’re local or on Rogers if they’re SBS, each separated from Nostrand by about 250 meters. The argument for the split is that different demographics ride local and SBS buses, and they come from different sides of Nostrand. The subway is on Nostrand and so is the commerce. And yet, parking is more important to the city than a two-way bus lane on the street to permit riders to access the main throughfare of the area most efficiently.

Moreover, even the bus lanes that the plan does discuss leave a lot to be desired. The second most important street in Brooklyn to equip with high-quality physically separated bus lanes, after Nostrand, is Church, like Nostrand a 24-meter street where something has to give. The plan trumpets its commitment to transit priority, and yet on Church it includes a short segment with curb lanes partly shared with delivery trucks using curb management. Limiting merchant complaints is more important to the mayor than making sure people can ride buses that are reliably faster than a fast walk.

Can the city deliver?

Probably not.

The mayor has recurrently prioritized the needs of people who are used to complaining at public meetings, who are typically more settled in the city, with a house and a car. New York may have a majority of its households car-free, but to many of them car ownership remains aspirational and so does home ownership, to the point that the transit-oriented lifestyle remains a marker of either poverty or youth, to be replaced with the suburban auto-oriented lifestyle as one achieves middle-class status. Even as there is cultural change and this mentality is increasingly not true, the city’s political system keeps a process that guarantees that millions of daily transit users must listen to drivers who complain that they have to park a block away.

The plan has an ambitious number: 16 km/h. But when it comes to actually implementing it, it dithers. Its examples of bus lanes are half-measures. There’s no indication that the city is willing to overrule merchants who think they have a God-given right to the street that their transit-riding customers do not. Without this, bus lanes will remain an unenforced joke, and the vaunted speed improvements will be localized to too small a share of bus route-km to truly matter.

The most optimistic take on Better Buses is that the mayor is signaling that he’s a complete nonentity when it comes to bus improvement, rather than an active obstacle. But more likely, the signal is that the mayor has heard that there are political and technical efforts to improve bus service in the city and he wants to pretend to participate in them while doing nothing.

Corey Johnson’s Report on City Control of the Subway

Yesterday, New York City Council speaker and frontrunner in the 2021 mayoral race Corey Johnson released a document outlining his plan to seek city control of the subway and buses. In addition to the governance questions involved in splitting the state-run MTA between a city-owned urban transit agency and state- or suburb-owned commuter rail, it talks about what Johnson intends to do to improve public transit, befitting a mayor in full control of subway and bus operations. There are a lot of excellent ideas there, but also some not so good ones and some that require further work or further analysis to be made good.

Governance

Johnson proposes to spin the urban parts of the MTA into a new agency, called BAT, or Big Apple Transit. The rump-MTA will remain in control of suburban operations and keep MTA Capital Construction (p. 35), and there will be a shared headquarters. Some cooperation will remain, such as contributions toward cheaper in-city commuter rail fares, but there is no call for fully integrated fares and schedules: the recommendation “all trains and buses in the city will cost the same and transfers will be free” does not appear anywhere in the document.

Johnson also proposes that the BAT board will be required to live in the city and use transit regularly. There is a serious problem today with senior managers and board members driving everywhere, and the requirement is intended to end this practice. Cynically, I might suggest that this requirement sounds reasonable in 2019 but would have been unthinkable until the 2000s and remains so in other American cities, even though it would be far more useful there and then; the off-peak frequency-ridership spiral is nowhere nearly as bad in New York as it is in Washington or Boston.

One strong suggestion in this section involves appointing a mobility czar (p. 36), in charge of the NYC Department of Transportation as well as BAT. Given the importance of the subway, this czar would be in effect the new minister of transportation for the city, appointed by the mayor.

Ultimately, this section tends toward the weaker side, because of a problem visible elsewhere in the report: all of the recommendations are based on internal analysis, with little to no knowledge of global best practices. Berlin has city-controlled transit in full fare union with Deutsche Bahn-run mainline rail, but there has been no attempt to learn how this could be implemented in New York. The only person in New York who I’ve seen display any interest in this example is Streetsblog’s David Meyer, who asked me how DB and Berlin’s BVG share revenue under the common umbrella of the Berlin Transport Association (or VBB); I did not know and although I’ve reached out to a local source with questions, I could not get the answer by his filing deadline.

Finance and costs

This is by far the weakest section in the proposal. The MTA funds itself in large part by debt; Johnson highlights the problem of mounting debt service, but his recommendations are weak. He does not tell New Yorkers the hard truth that if they can’t afford service today then they can’t afford it at debt maturity either. He talks about the need to “address debt” but refrains from offering anything that might inconvenience a taxpayer, a rider, or an employee (pp. 42-43), and offers a melange of narrow funding sources that are designed for maximum economic distortion and minimum visible inconvenience.

In fact, he calls transit fares regressive (pp. 59, 61) and complains about century-long fare increases: real fares have risen by a factor of 2.1 since 1913 – but American GDP per capita has risen by a factor of 7.7, and operating costs have mostly risen in line with incomes.

He brings up ways to reduce costs. In operations these involve negotiations with the unions; even though the report mentions that drivers get paid half-time for hours they’re not working between the morning and afternoon peaks (“swing shift,” p. 48), it does not recommend increasing off-peak service in order to provide more mobility at low marginal cost. There is no mention of two-person crews on the subway or of the low train operator efficiency compared with peer cities – New York City Transit train operators average 556 revenue hours per year, Berlin U-Bahn operators average 829.

In capital construction the recommendations are a mixed bag of good and bad, taken from a not-great RPA report from a year ago. Like the RPA, Johnson recommends using more design-build, in flagrant violation of one of the rules set by global cost reduction leader Madrid. However, to his credit, Johnson zooms in on real problems with procurement and conflict resolution, including change orders (pp. 50-51), and mentions the problem of red tape as discussed in Brian Rosenthal’s article from the end of 2017. He suggests requiring that contractors qualify to bid, which is a pretty way of saying that contractors with a history of shoddy work should be blacklisted; I have heard the qualify-to-bid suggestion from some sporadic inside sources for years, alongside complaints that New York’s current bid-to-qualify system encourages either poor work or red tape discouraging good contractors. Unfortunately, there is no talk of awarding bids based on a combination of technical score and cost, rather than just cost.

Overall the talk of cost is better than what I’ve seen from other politicians, who either say nothing or use high costs as an excuse to do nothing. But it has a long way to go before it can become a blueprint for reducing subway construction costs, especially given the other things Johnson proposes elsewhere in the document.

Accessibility

Another mixed part of the document is the chapter about accessibility for people with disabilities. Johnson recounts the lack of elevators at most subway stations and the poor state of the bus network, featuring drivers who are often hostile to people in wheelchairs. However, while his analysis is solid, his recommendations aren’t.

First of all, he says nothing of the cost of installing elevators on the subway. An MTA press release from last year states the cost of making five stations accessible as $200 million, of $40 million per station. This figure contrasts with that of Madrid, where a non-transfer station costs about 5 million to equip with elevators, and a transfer station costs about 5 million per line served (source, PDF-pp. 11-12). In Berlin, which is not a cheap city for subway construction, the figure is even lower: about 2 million per line served, with a single elevator costing just 800,000.

And second, his proposal for finding money for station accessibility involves using the zoning code, forcing developers to pay for such upgrades. While this works in neighborhoods with ample redevelopment, not all city neighborhoods are desirable for developers right now, and there, money will have to come from elsewhere. For a document that stresses the importance of equality in planning, its proposals for how to scrounge funds can be remarkably inequitable.

That said, in a later section, Johnson does call for installing bus shelters (p. 74). A paper referenced in a TransitCenter report he references, by Yingling Fan, Andrew Guthrie, and David Levinson, finds that the presence of shelter, a bench, and real-time arrival information has a large effect on passengers’ perceived wait times: in the absence of all three amenities, passengers perceive wait time as 2-2.5 times as long as it actually is, rising to a factor of almost 3 for 10-minute waits among women in unsafe areas, but in the presence of all three, the factor drops to around 1.3, and only 1.6 for long waits for women in unsafe areas. Unfortunately, as this aspect is discussed in the bus improvement section, there is no discussion of the positive effect shelter has on people with disabilities that do not require the use of a wheelchair, such as chronic pain conditions.

I do appreciate that the speaker highlights the importance of accessibility and driver training – drivers often don’t even know how to operate a wheelchair lift (p. 63). But the solutions need to involve more than trying to find developers with enough of a profit margin to extract for elevators. Bus stops need shelter, benches, and ideally raised curbs, like the median Berlin tramway stations. And subway stations need elevators, and they need them at acceptable cost.

Bus improvements

By far this is the strongest part of the report. Johnson notes that bus ridership is falling, and recommends SBS as a low-cost solution. He does not stop at just making a skeletal light rail-like map of bus routes to be upgraded, unlike the Bloomberg and de Blasio administrations: he proposes sweeping citywide improvements. The call for bus shelter appears in this section as well.

But the speaker goes beyond calling for bus shelters. He wants to accelerate the installation of bus lanes to at least 48 km (i.e. 30 miles) every year, with camera enforcement and physically-separated median lanes. The effect of such a program would be substantial. As far as I can tell, with large error bars caused by large ranges of elasticity estimates in the literature, the benefits in Eric Goldwyn’s and my bus redesign break down as 30% stop consolidation (less than its 60% share of bus speedup since it does involve making people walk longer), 30% bus lanes, 30% network redesign, 10% off-board fare collection.

There is no mention of stop consolidation in the paper, but there is mention of route redesign, which Johnson wishes to implement in full by 2025. The MTA is in support of the redesign process, and allowing for integrated planning between NYCDOT and the MTA would improve the mutual support between bus schedules and the physical shape of the city’s major streets.

Moreover, the report calls for transit signal priority, installed at the rate of at least 1,000 intersections per year. This is very aggressive: even at the average block spacing along avenues, about 80 meters, this is 80 kilometers per year, and at that of streets, it rises to 200+ km. Within a few years, every intersection in the city would get TSP. The effects would be substantial, and the only reason Eric’s and my proposal does not list them is that they are hard to quantify. In fact, this may be the first time an entire grid would be equipped with TSP; some research may be required to decide how to prioritize bus/bus conflicts at major junctions, based on transportation research as well as control theory, since conditional TSP is the only way to truly eliminate bus bunching.

Reinforcing the point about dedicated lanes, the study calls for clawing back the space given to private parking and delivery. It explicitly calls for setting up truck routes and delivery zones in a later section (pp. 86-87); right now, the biggest complaint about bus lanes comes from loss of parking and the establishment of delivery zones in lieu of letting trucks stop anywhere on a block, and it is reassuring to see Johnson commit to prioritizing public transit users.

Livable streets

This is another strong section, proposing pedestrian plazas all over the city, an expansion of bike lanes to the tune of 80 km (50 miles) a year with an eye toward creating a connected citywide bike lane network, and more bike share.

If I have any criticism here, it’s that it isn’t really about city control of the MTA. The bus improvements section has the obvious tie-in to the fact that the buses are run by the MTA, and getting the MTA and NYCDOT on the same page would be useful. With bikes, I don’t quite understand the connection, beyond the fact that both are transportation.

That said, the actual targets seem solid. Disconnected bike lane networks are not really useful. I would never bike on the current network in New York; I do not have a death wish. I wasn’t even willing to bike in Paris. Berlin is looking more enticing, and if I moved to Amsterdam I might well get a bike.

Conclusion

The sections regarding costs require a lot of work. Overall, I get the impression that Johnson based his recommendations on what he’s seen in the local press, so the suggestions are internal to the city or occasionally domestic; the only international comparisons come from the RPA report or from Eric’s and my invocation of Barcelona’s bus redesign. This works for such questions as how to apportion the MTA’s debt service or how to redesign the bus network, but not so much for questions involving subway capital construction.

New York has a large number of fluent Spanish speakers. It should have no problem learning what Spanish engineers know about construction costs, and the same is true for other communities that are well-represented in the cities, such as Korean-, Russian-, Chinese-, Brazilian-, and Polish-New Yorkers. Moreover, in most big cities that don’t send large communities to New York, such as those of Northern Europe, planners speak English. Johnson should not shy from using the expertise of people outside New York, ideally outside the United States, to get subway construction costs under control.

The speaker’s plan is still a very good first step. The proposed surface improvements to buses, bikes, and street allocation are all solid, and should be the city’s consensus for how to move forward. What’s needed is something to tie all of this together with a plan to move forward for what remains the city’s most important transportation network: the subway.

FRA Reform is Here!

Six and a half years ago, the Federal Railroad Administration announced that it was going to revise its passenger train regulations. The old regulations required trains to be unusually heavy, wrecking the performance of nearly every piece of passenger rolling stock running in the United States. Even Canada was affected, as Transport Canada’s regulations mirrored those south of the border. The revision process came about for two reasons: first, the attempt to apply the old rules to the Acela trains created trains widely acknowledged to be lemons and hangar queens (only 16 out of 20 can operate at any given time; on the TGV the maximum uptime is 98%), and second, Caltrain commissioned studies that got it an FRA waiver, which showed that FRA regulations had practically no justification in terms of safety.

The new rules were supposed to be out in 2015, then 2016, then 2017. Then they got stuck in presidential administration turnover, in which, according to multiple second-hand sources, the incoming Republican administration did not know what to do with a new set of regulations that was judged to have negative cost to the industry as it would allow more and lower-cost equipment to run on US tracks. After this limbo, the new rules have finally been published.

What’s in the new regulations?

The document spells out the main point on pp. 13-20. The new rules are similar to the relevant Euronorm. There are still small changes to the seats, glazing, and emergency lighting, but not to the structure of the equipment. This means that unmodified European products will remain illegal on American tracks, unlike the situation in Canada, where the O-Train runs unmodified German trains using strict time separation from freight. However, trains manufactured for the needs of the American market using the same construction techniques already employed at the factories in France, Germany, Switzerland, and Sweden should not be a problem.

In contrast, the new rules are ignoring Japan. The FRA’s excuse is that high-speed trains in Japan run on completely dedicated tracks, without sharing them with slower trains. This is not completely true – the Mini-Shinkansen trains are built to the same standards as the Shinkansen, just slightly narrower to comply with the narrower clearances on the legacy lines, and then run through to legacy lines at lower speed. Moreover, the mainline legacy network in Japan is extremely safe, more so than the Western European mainline network.

On pp. 33-35, the document describes a commenter who most likely has read either my writings on FRA regulations or those of other people who made the same points in 2011-2, who asked for rules making it possible to import off-the-shelf equipment. The FRA response – that there is no true off-the-shelf equipment because trains are always made for a specific buyer – worries me. The response is strictly speaking true: with a handful of exceptions for piggybacks, including the O-Train, orders are always tailored to the buyer. However, in reality, this tailoring involves changes within certain parameters, such as train width, that differ greatly within Europe. Changes to parts that are uniform within Europe, such as the roofing, may lead to unforeseen complications. I don’t think the cost will be significant, but I can’t rule it out either, and I think the FRA should have been warier about this possibility.

The final worry is that the FRA states the cost of a high-speed train is $50 million, in the context of modification costs; these are stated to be $300,000 for a $50 million European high-speed trainset and $4.7 million for a Japanese one. The problem: European high-speed trainsets do not cost $50 million. They cost about $40 million. Japanese sets cost around $50 million, but that’s for a 16-car 400-meter trainsets, whereas European high-speed trainsets are almost always about 200 meters long, no matter how many cars they’re divided into. If the FRA is baking in cost premiums due to protectionism or bespoke orders, this is going to swamp the benefits of Euronorm-like regulations.

But cost concerns aside, the changes in the buff strength rules are an unmitigated good. The old rules require trainsets to resist 360-945 metric tons of force without deformation (360 for trains going up to 200 km/h, 945 beyond 200 km/h), which raises their mass by several tons per cars – and lightweight frames require even more extra mass. The new ones are based on crumple zones using a system called crash energy management (CEM), in which the train is allowed to deform as long as the deformation does not compromise the driver’s cab or the passenger-occupied interior, and this should not require extra train mass.

How does it affect procurement?

So far, the new rules, though telegraphed years in advance, have not affected procurement. With the exception of Caltrain, commuter railroads all over the country have kept ordering rolling stock compliant with the old rules. Even reformers have not paid much attention. In correspondence with Boston-area North-South Rail Link advocates I’ve had to keep insisting that schedules for an electrified MBTA must be done with modern single-level EMUs in mind rather than with Metro-North’s existing fleet, which weighs about 65 metric tons per car, more than 50% more than a FLIRT per unit of train length.

It’s too late for the LIRR to redo the M9, demanding it be as lightweight as it can be. However, New Jersey Transit’s MultiLevel III is still in the early stages, and the railroad should scrap everything and require alternate compliance in order to keep train mass (and procurement cost) under control.

Moreover, the MBTA needs new trains. If electrification happens, it will be because the existing fleet is so unreliable that it becomes attractive to buy a few EMUs to cover the Providence Line so that at least the worst-performing diesels can be retired. Under no circumstance should these trains be anything like Metro-North’s behemoths. The trains must be high-performance and as close as possible to unmodified 160 km/h single-level regional rail rolling stock, such as the DBAG Class 423, the Coradia Continental, the Talent II, or, yes, the FLIRT.

Metra is already finding itself in a bind. It enjoys its antediluvian gallery cars, splitting the difference between one and two decks in a way that combines the worst of both worlds; first-world manufacturers have moved on, and now Metra reportedly has difficulty finding anyone that will make new gallery cars. Instead, it too should aim at buying lightly modified European trains. These should be single-level and not bilevel, because bilevels take longer to unload, and Chicago’s CBD-dominant system is such that nearly all passengers would get off at one station, Millennium Station at the eastern edge of the Loop, where there are seven terminating tracks and (I believe) four approach tracks.

Ultimately, on electrified lines, the new rules permit trains that are around two thirds as heavy as the existing EMUs and have about the same power output. Substantial improvements in train speed are possible just from getting new equipment, even without taking into account procurement costs, maintenance costs, and electricity consumption. Despite its flaws, the new FRA regulation is positive for the industry and it’s imperative that passenger railroads adapt and buy better rolling stock.