Category: Environmental Issues

Randal O’Toole Gets High-Speed Rail Wrong

Now that there’s decent chance of US investment in rail, Randal O’Toole is resurrecting his takes from the early Obama era, warning that high-speed rail is a multi-trillion dollar money sink. It’s not a good analysis, and in particular it gets the reality of European and Asian high-speed rail systems wrong. It displays lack of familiarity with rail practice and rail politics, to the point that most nontrivial assertions about rail in Europe and Asia are incorrect.

More broadly, the way O’Toole gets rail investment here wrong comes from making unexamined American assumptions and substituting them for a European or Japanese reality regarding rail as well as rail politics. If the US can’t do it, he thinks other countries can’t. Unfortunately, he’s even unfamiliar with recent work done on American costs, when he compares the Interstate system positively with recent high-speed rail lines.

High-Speed Rail Profitability: France

I’m currently working on building a database similar to our urban rail costs for high-speed rail. Between this and previous iterations of analyzing the TGV, I’ve been reading a lot of internal French reports about its system. Thankfully, France makes available very good public information about the costs and technical specifications of its system. It helps that I read French, but the gap between what’s available for France and Belgium (see for example line schemas) is vast. This provides crucial background that O’Toole is missing.

The most important thing to understand is that the TGV network is profitable. The Spinetta report on the fiscal losses of SNCF makes it clear, starting on p. 60, that the TGV network is profitable, and recommends favoring its development over the money-losing legacy networks, especially the branch lines. The report even calls for closing weak branch lines with only a few trains a day, which I called the Spinetta Axe at the time, in analogy with the Beeching Axe. Due to public outcry the state rejected the cuts and only implemented the organizational changes promoted by the report.

Moreover, all lines are very profitable excluding the cost of fixed capital. The Spinetta report’s TGV section says that operating costs average €0.06/seat-km, which is around 0.085€/p-km, despite overstaffing of conductors (8 per conventional 400-car TGV) and extensive travel on legacy track at low speed and higher per-km labor costs. Average TGV fare revenue per an ARAFER report from 2016 is 0.10€/p-km – compare p-km on p. 15 and revenue on p. 26. This is typical for Europe – RENFE and DB charge similar fares, and the nominal fares seem to have been flat over the last decade.

What’s dicier is cost of capital. In all other European countries for which I’m aware of the process, all of which are Northern rather than Southern, this is done with benefit-cost analysis with a fixed behind-the-scenes discount rate. France, in my view wisely, rates lines by their financial and social rates of return instead. A 2014 report about the Bordeaux-Toulouse LGV, recently given the go-ahead for 7.5 billion €, warns that the profitability of LGVs decreases as the system is built out: the LGV Sud-Est returned 15% to SNCF’s finances and 30% to French society (including rider consumer surplus), but subsequent lines only returned 4-7% to SNCF’s finances, and Bordeaux-Toulouse is likely to return less, 6% including social benefits per the study and at this point slightly less since the study assumed it would cost slightly less than the current budget.

The general theme in the French discourse on trains is that the TGV network is an obvious success. There absolutely is criticism, which focuses on the following issues:

  • Regional rail, that is not intercity rail, is underdeveloped in France outside Paris. The ridership of TER networks is pitiful in comparison with German-speaking and Nordic metropolitan areas of comparable size. For example, sourced to a dead link, Wikipedia claims 64,300 TER PACA trips per day, comprising the metropolitan areas of Marseille (1.8 million), Nice (1), Toulon (0.6), and Avignon (0.5); in Helsinki (1.5) alone, there are 200,000 daily commuter rail trips. But this isn’t really about high-speed rail, since TER planning and subsidies are devolved to regional governments, and not to SNCF.
  • SNCF has contentious labor relations. In the early 2010s, the unions went on a wave of strikes and got wage concessions that led to the evaporation of SNCF’s 600 million €/year primary surplus. The railway unions in France (“cheminots”) are unpopular, and Macron has been able to pass reforms to SNCF’s governance over their strikes and objections.
  • Future LGVs are not as strong as past ones. Real costs in France are rising, and the network already links Paris with all major secondary cities in airplane-competitive time save Nice. Interprovincial links on the network are weak, despite the construction of the LGV Rhin-Rhône, and nothing like the Deutschlandtakt is on the horizon enabling everywhere-to-everywhere travel.
  • SNCF thinks like an airline and not like a railroad. It separates passengers into different buckets as airlines do, has many executives with airline background (and Spinetta is ex-Air France), thinks passengers do not ride trains for longer than 3 hours even though at 4 hours the modal split with air is still better than 50-50, and has poor integration between the TGV and legacy rail.
  • SNCF still has a lot of accumulated debt from past operating losses, some predating the TGV and the start of regional subsidies for regional rail. It was hoped that TGV profits could cover them, but they can’t. This mirrors the controversy in Japan in the 1980s, where, in the breakup of JNR into the JRs and their privatization, debt from past operating losses was wiped but not debt from Shinkansen construction (see Privatization Best Practices, PDF-p. 106).

However, saying that the existing network is a failure is the domain of cranks and populists. It is unrecognizable from the discussion of transportation investments in France.

What O’Toole says about high-speed rail

O’Toole’s understanding of internal French (or Spanish, or Japanese) issues is weak. This isn’t surprising – Americans to a good approximation never have good insights on the internal issues of any other country, even when it speaks English. The American political sphere, which includes political thinktanks like Cato, is remarkably ignorant globally, and rather incurious. As a result, what he says about the TGV is based on an Americanized understanding. To wit:

Bus-rail competition

The Northeastern United States has a weak rail network: Amtrak averages vintage 1960s speeds and charges 2-4 times the per-km fare of the TGV. As a result, an ecosystem of private intercity buses has developed, starting with unregulated ones like Fung Wah and, as they were shut down, corporate systems like Megabus and Bolt. O’Toole is fond of these buses, with their lower fares and road-like lack of integration between infrastructure and operations.

And thus, he claims, falsely, that European high-speed rail cannibalized profitable buses. This is unrecognizable from within Europe, where intercity buses were underdeveloped until recently. In France, US-style intercity buses are called Macron buses, because the deregulation that brought them into existence passed in the mid-2010s, when Macron was the economy minister. They complement high-speed rail but do not replace it, because trains get me from Paris to the German border in 1:45 and buses don’t.

To be fair, TGV ridership has been stagnant in the last few years. But this stagnation goes back to the financial crisis, and if anything ridership picked up starting 2017 with the opening of the LGV Sud-Europe-Atlantique. So the buses are not even outcompeting the trains – they thrive in the gaps between them, just as historically they did on international routes, where rail fares are considerably higher and ridership lower.

High-speed rail construction costs

O’Toole looks at the most expensive few lines possible:

Britain’s 345‐​mile London–Scotland HS2 high‐​speed rail line was originally projected to cost £32.7 billion (about $123 million per mile) and is currently expected to cost £106 billion ($400 million per mile).

International comparisons of high-speed rail costs exist, and Britain’s costs are by far the worst. For example, a 2013 Australian comparison looking at the prospects for such a system in Australia finds that High-Speed 1/CTRL, the line linking the Channel Tunnel with London, cost A$134 million/km, and the second costliest line in the dataset was thee 94% tunneled Bologna-Florence line, at A$95 million/km.

French costs up until the LGV Bordeaux-Toulouse stood around $25-30 million per km in 2021 dollars, net of tunnels. German costs are similar, but German lines have far heavier tunneling than France, a range of 26-51% in tunnel compared with 0-6% in France. One reason is topography. But another is that Germany prefers mixed-use passenger-freight lines, which forces higher construction costs as freight requires gentler grades and, since superelevation must be lower, wider curves; France, like Japan and China, builds dedicated passenger lines, and, unlike Japan or China, keeps them largely at-grade to reduce costs.

O’Toole says, without more references, that it would cost $3-4 trillion to build a US-wide high-speed rail network. But the official Obama-era crayon, at 20,000 km, would be $500 billion at tunnel-free European costs, or maybe $600 billion with 5% tunneling, mostly in difficult places like California and across the Appalachians.

Freeway costs

O’Toole proposes more freeways, and says that to build the Interstate system today would cost $530 billion so it’s better than high-speed rail. Here is where his lack of knowledge of the most recent literature on infrastructure costs is a serious drag on his analysis: Brooks-Liscow establish that there was a large real increase in Interstate cost throughout the life of the program, so a budget that’s really a mixture of cheaper early-1960s construction and more expensive construction in the 1970s is not applicable today.

The same issue affects rail costs: the LGV Sud-Est cost, in today’s money, around $8 million/km, which cost would never recur. Brooks-Liscow explain this by greater surplus extraction from citizen voice groups, which demanded detours and route compromises raising costs. This appears true not just diachronically within the US but also synchronically across countries: so far, the low-cost subways we have investigated are all in states with bureaucratic rather than adversarial legalism, while medium-cost Germany is more mixed. Politicized demands leading to more tunneling are well-documented within Germany – the Berlin-Munich line was built through a topographically harder alignment in order to serve Erfurt, at Thuringia’s behest.

So no, today costs from the 1960s are not relevant. Today, urban motorway extensions cost double-digit millions of dollars per lane-km, sometimes more. The I-5 improvement project in Los Angeles is $1.9 billion for I-5 South, a distance of 11 km, adding two lanes (one HOV, one mixed traffic) in each direction. It’s possible to go lower than this – in Madrid this budget would buy a longer 6-lane tunnel – but then in Madrid the construction costs of rail are even lower, for both metros and high-speed lines.

The discourse on profits

In contrast with the basic picture I outlined for the TGV, French media and researchers often point out threats to rail profitability. This can easily be taken to mean that the TGV is unprofitable, and if one has an American mindset, then it’s especially easy to think this. If SNCF officials say that 20% of TGVs lose money, then surely they must be hiding something and the figure is much higher, right? Likewise, if Spinetta says that the TGV network is profitable but not all trains are, then surely the situation is even worse, right?

But no. This is an Americanized interpretation of the debate. In the US, Amtrak is under constant pressure to show book profits, and its very existence is threatened, often by people who cite O’Toole and other libertarians. Thus, as a survival strategy, Amtrak pretends it is more profitable than it really is.

This has no bearing on the behavior of railroads elsewhere, though. SNCF is not so threatened. The biggest threat from the perspective of SNCF management is union demands for higher wages, and therefore, its incentive is to cry poverty. Nobody in France takes out yardsticks of farebox recovery ratios, and therefore, nobody needs to orient their communications around what would satisfy American libertarians.

Energy

Within the European high-speed rail research community, the energy efficiency of high-speed rail is well-understood, and many studies look at real-world examples, for example the metastudy of Hasegawa-Nicholson-Roberts-Schmid. In fact, it’s understood that high-speed rail has lower energy consumption than conventional rail. For example, here is García Álvarez’s paper on the subject. This is counterintuitive, because higher speeds should surely lead to higher energy consumption, as Hasegawa et al demonstrate – but high-speed lines run at a uniform speed of 200 or 250 or 300 or 350 km/h, whereas legacy rail has many cycles of acceleration and deceleration. At speeds of up to about 200 km/h, nearly all electricity consumption is in acceleration and not maintaining constant speed, and even at 300 km/h, a late-model high-speed train consumes only above one third of its maximum power maintaining speed.

Instead of this literature, O’Toole picks out the fact that all else being equal energy consumption rises in speed, which it is not equal. Garcia in fact points out that higher speeds are better for the environment due to better competition with air, in line with environmental consensus that trains are far superior on well-to-wheels emissions to cars and planes. Worse, O’Toole is citing Chester-Horvath’s lifecycle analysis, which is not favorable to California High-Speed Rail’s energy efficiency. The only problem is that this paper’s analysis relies on a unit conversion error between BTUs and kWh, pointed out by Clem Tillier. The paper was eventually corrected, and with the correct figures, high-speed rail looks healthy.

Competition with cars and planes

Where high-speed rail exists, and the distance is within a well-understood range of around 300-800 km, it dominates travel. A 2004 report by Steer Davies Gleave has some profiles of what were then the world’s main networks. For Japan, it includes a graphic from 1998 on PDF-p. 120 of modal splits by distance. In the 500-700 km bucket, a slight majority of trips all over Japan are made by rail; this is because Tokyo-Osaka is within that range, and due to those cities’ size this city pair dominates pairs where rail is weaker, especially inter-island ones. In the 300-500 km bucket more people drive, but the Shinkansen is stronger than this on the Tokyo-Nagoya pair, it’s just that 300-500 includes many more peripheral links with no high-speed rail service. It goes without saying that high-speed rail does not get any ridership where it does not exist.

In France, this was also studied for the LGV PACA. On p. 14, the presentation lists modal splits as of 2009. Paris-Toulon, a city pair where the TGV takes around 4 hours, has an outright majority for the TGV, with 54% of the market, compared with 12% for air and 34% for driving. Paris-Cannes is 34% and Paris-Nice is 30%, both figures on the high side for their 5:00-5:30 train trips. Lyon-Nice, a 3:30 trip with awful frequency thanks to SNCF’s poor interprovincial service, still has a 25% market share for the TGV.

In general, competition with cars is understudied. Competition with planes is much more prominent in the literature, with plenty of reports on air-rail modal splits by train trip length. JR East, Central (PDF-p. 4), and West all report such market shares, omitting road transport. Many European analyses appeared in the 2000s, for example by Steer Davies Gleave again in 2006, but the links have rotted and Eurostat’s link is corrupt.

O’Toole misunderstands this literature. He lumps all air and road links, even on markets where rail is weak, sometimes for geographical factors such as mountains or islands, sometimes for fixable institutional ones like European borders. In fact, at least measured in greenhouse gas emission and not ridership, all air travel growth in Europe since 1990 has been international. International high-speed rail exists in Europe but charges higher fares and the infrastructure for it is often not built, with slowdowns in border zones. This is a good argument for completing the international network in Europe and a terrible one against building any network at all.

Topography

Even at the level of basic topography, O’Toole makes elementary errors. He discusses the Tokaido Shinkansen, pointing out its factor-of-2 cost overrun. But its absolute costs were not high, which he characterizes as,

The Tokyo–Osaka high‐​speed rail line supposedly made money, but it was built across fairly flat territory

So, first of all, the “supposedly” bit is painful given how much JR Central prints money. But “fairly flat territory” is equally bad. Japan’s mountainous topography is not an obscure fact. It’s visible from satellite image. Per Japanese Wikipedia, 13% of the route is in tunnel, more than California High-Speed Rail.

The United States can and should do better

The report is on stronger grounds when criticizing specifics of Amtrak and California High-Speed Rail. American rail construction is just bad. However, this is not because rail is bad; it’s because the United States is bad.

And there’s the rub. Americans in politics can’t tell themselves that another country does something better than the US does. If it’s in other countries and the US can’t do it, it must be, as O’Toole calls rail, obsolete. This is especially endemic to libertarians, who are intellectually detached from their European right-liberal counterparts (Dutch VVD, German FDP, etc.) even more than the American center-left is from social democrats here and the right is from the mainline and extreme right here.

So here, faced with not too hard to find evidence that high-speed rail is profitable in Europe and Asia, and in fact intercity rail is profitable here in general (direct subsidies are forbidden by EU law unless the line is classified as regional), unlike in the United States, O’Toole makes up reasons why trains here are unprofitable or unsuccessful. He says things that are not so much wrong as unrecognizable, regarding topography, buses, construction costs, debt, the state of the TGV debate, or greenhouse gas emissions.

O’Toole is aware of our transit costs comparison. I imagine he’s also aware of high-speed rail cost comparisons, which exist in the literature – if he’s not, it’s because he doesn’t want to be so aware. And yet, no matter how loudly the evidence screams “the United States needs to become more like France, Germany, Japan, Spain, etc.,” American libertarians always find excuses why this is bad or unnecessary. And then, when it comes to expanding freeways, suddenly the cost concerns go out the door and they use unrealistically low cost figures.

But figuring out why the US is bad requires way deeper dives. It requires delving into the field and understanding how procurement is done differently, what is wrong with Amtrak, what is wrong with the California High-Speed Rail Authority, how engineering is done in low- and medium-cost countries, various tradeoffs for planning lead time, and so on. It requires turning into the kind of expert that libertarians have spent the last 60 years theorizing why they need not listen to (“public choice”). And it requires a lot of knowledge of internal affairs of successful examples, none of which is in an English-speaking country. So it’s easier to call this obsolete just because incurious Americans can’t do it.

Meme Weeding: Climate Resilience

I recently heard of state-level American standards for climate resilience that made it clear that, as a concept, it makes climate change worse. The idea of resilience is that catastrophic climate change is inevitable, so might as well make the world’s top per capita emitter among large economies resilient to it through slow retreat from the waterfront. The theory is bad enough – Desmond Tutu calls it climate apartheid – but the practice is even worse. The biggest, densest, and most desirable American cities are close to the coast. Transit-oriented development in and around those cities is the surest way of bringing green prosperity, enabling emissions to go down without compromising living standards. And yet, on a number of occasions I have seen Americans argue against various measures for TOD and transit improvements on resilience grounds.

The worst exhibit is Secaucus Junction. The station is a few kilometers outside Manhattan, on New Jersey Transit’s commuter rail trunk, with excellent service. So close to city center, it doesn’t even matter that the trains are full – the seats are all occupied but there’s standing room, which may not appeal to people living 45 minutes out of Midtown but is fine at a station that is around 10 minutes away today and should be 6 minutes away with better scheduling and equipment.

The land use around Secaucus is also very conducive to TOD. Most of the area around the station is railyards and warehouses, which can pretty easily be cleaned up and replaced with high-density housing, retail, and office development. A small section of the walkshed is wetlands, but the large majority is not and can be built up to be less ecologically disturbing than the truck traffic the current storage development generates.

Politically, this is also far from existing NIMBY suburbia. In North America, the single-family house is held to be sacrosanct, and even very YIMBY regions like Vancouver only redevelop brownfields, not single-family neighborhoods; occasionally there are accessory dwelling units, but never anything that has even medium density or visibly looks like an apartment building. Well, Secaucus Junction is far from the residential areas of Secaucus, so the most common form of NIMBYism would be attenuated.

And yet, there is no concerted effort at TOD. This is not even just a matter of unimaginative politicians. Area advocacy orgs don’t really push for it, and I’m forgetting whether it was ReThinkNYC or the RPA that told me explicitly that their regional rail proposal omits Secaucus TOD on climate adaptation grounds. The area is 2 meters above sea level, and building there is too risky, supposedly, because a 2 meter sea level rise would only flood tens of millions of South Asians, Southeast Asians, and Africans, and those don’t count.

This goes beyond just wasting money on needless infrastructure projects like flood walls, or leaving money on the table that could come from TOD. In the 2000s, New York City was emitting 7 metric tons of CO2 per capita, which was better than Germany and a fraction of the US average. This must have gotten better since – New York had an abnormally high ratio of building emissions (i.e. energy) to transportation emissions (i.e. cars), and in every developed country I’m aware of, only energy emissions have fallen, not car emissions.

A bigger New York, counting very close-in suburbs as New York, is an important part of the American green transition. To have the emissions of the inner parts of the city within the city is a luxury people pay $3,000 a month in rent for; to have it in exurbia means having a smaller car than everyone else in an environment in which accumulating lots of stuff is the only way one can show off status. Breaking the various interests that prevent New York (and Los Angeles, and San Francisco, and Boston, and Washington) from growing denser is a valuable political fight. But here, no such breaking is even needed, because the anti-growth interests think locally, and the only locals around Secaucus Junction live in one high-rise development and would if anything welcome more such buildings in lieu of the warehouses.

And yet, Americans argue from the position of climate resilience against such densification. Normally it’s just a waste of money, but this would not just waste money (through leaving money on the table) but also lead to higher emissions since housing would be built in other metropolitan regions of the US, where there is no public transportation. Once adaptation and resilience became buzzwords, they took over the thinking on this matter so thoroughly that they are now directly counterproductive.
Somehow, the goal of avoiding catastrophic climate change has fallen by the wayside, and the usual American praxis of more layers of red tape before every decisions can be made (about climate resilience, design for equity, etc.) takes over. The means justify the ends: if the plan has the word climate then it must be environmentally progressive and sensitive, because what matters is not outcome (it’s too long-term for populists, and all US discourse is populist) but process: more lawsuits, more red tape, more accretion of special rules that everyone must abide by.

A Bigger City is a Better City

There’s a tendency among a number of important American YIMBYs that bothers me – they speak of development as a bad thing, a great burden that must be shared equally across neighborhoods. I’ve even seen this take regarding immigration, portraying it as such a terrible burden that Germany must undertake to redeem itself after the Holocaust. The underlying assumption is that growth is bad, and the ideal world is static and has people living in small communities.

But what if growth is good? What if more urban development is good? What if immigration is good, and immigrants are good people individually and collectively?

Growth is good

There’s a “growth for its own sake is the ideology of the cancer cell” meme out there. Well, no. Growth is not for its own sake. It’s for the sake of the things you can do in a society that produces more stuff: live longer, own refrigerators and other appliances, travel beyond walking range, communicate with people beyond travel range, get your own room, eat more interesting food than whatever scraps concentration camp prisoners fight over, wear more interesting clothes than concentration camp prisoner uniform, play interesting games, etc.

What is true is that no single element of these is in perfect correlation with wealth. You can even devise a large subset of these that aren’t, and focus on places that are exceptional relative to their income levels; Kerala is popular for its high literacy and life expectancy relative to its wealth. But usually these early investments then pay off in growth – this was the case in 1960s and 70s’ Korea, which was approaching universal literacy at the start of this period with astonishingly low incomes, and then used its advantage in relatively skilled, low-wage work to industrialize.

Urban development is good

The ability to access more stuff easily is a good thing and there’s a reason both employers and residents pay extra to have it. More and bigger buildings stimulate this kind of access. On the production side, this means thicker social networks for people who work in related industries and can come up with new innovations – this is why the tech industry sticks in San Francisco and environs, and not the bay view or the state of California’s public services. This, in turn, raises wages. On the consumption side, this means more variety in what to buy.

Moreover, this is true down to the neighborhood level. A denser neighborhood has more amenities, because more people is a good thing, because new people stimulate new social events, new consumption, and new opportunities for job access. If more people move to your neighborhood, that means first of all that employers are more likely to site jobs where convenient for you, and second of all that the city is likelier to want to build more subway lines in your direction.

A corollary of this is that private developers, as a class, are good, because they convert factors of production like labor and capital into finished, habitable apartments and offices. Yes, they can individually be terrible people. But collectively as a class their effect is good and the state needs to stop treating them as a source of loot to be doled to sympathetic neighborhood groups.

The most frustrating thing about it is that New York specifically likes to extol its own size as a reason for its supposed greatness. But then the idea that an even bigger city is a better city makes the political system there wince, and therefore the city permitted not many more than 20,000 housing units per year at the peak of the pre-virus economy, about one quarter the per capita rate of the Seoul metropolitan region or Tokyo (the city proper, but I think the suburbs have similar housing growth), and one third that of Ile-de-France.

Immigrants are good

Vancouver is a racist city, and I say this having lived in Israel. I somehow found myself in a room at a meetup where an all-white group of people were talking about black men’s penis size. Anti-Semitism, anti-black racism, Sinophobia, hate for indigenous people: you name it, I saw it there, used casually, by people who didn’t even think they were saying something controversial. The representatives of the people of that city have come across the realization that there is extensive immigration to their city and therefore it may be prudent to choke housing development because it’s all for immigrants anyway.

There’s a weird kind of defensiveness about immigration, even in societies where it’s fairly popular. Germany and Sweden both think they’re shouldering a great burden by taking in refugees, and even Germans who identify as left-wing and antiracist seem scared of diverse neighborhoods that immigrants of all social classes don’t find anything wrong with. But Germans at least have the excuse of not being used to diversity, and I think they’re slowly learning to be more tolerant. Vancouverites are used to diversity and decided they prefer racial purity to growth. Housing growth in Vancouver was healthy before the crisis but a lot of political forces in the city seem intent on making sure this doesn’t happen again, and with the transit-oriented development sites filling fast, the region will soon have to make tough decisions on upzoning single-family neighborhoods 600 meters from the train rather than 100 meters.

For the same reason a bigger city is a better city, the movement of immigrants into a country is an unalloyed good for the recipient country, unless perhaps that country is extremely dependent on primary resources, which Germany isn’t and even British Columbia isn’t.

Developers may be individually bad people but collectively good as a class; with immigrants, the good is both individual and collective. Immigrants as individuals are good, and it’s better for a country to have more of them (us, really): if anyone wants me to babble about all the statistics about employment (even for refugees in Germany), lower crime rates, cultural emphasis on skills and education, etc., I’ll be happy to do so in comments. Immigrants as a collective are likewise good, through introducing more cultural variety to a place and promoting cultural and social ties to parts of the world this place may not have thought to learn much from.

How Climate Change is Like War

The military historian Danny Orbach writes about the popular analogy of the Covid-19 crisis to war, and what kinds of lessons from military history policymakers can learn. He of course understands the big differences – he doesn’t talk about tactics or operations, but rather about common issues regarding public support and the price of war. It’s not my intention to talk about the virus in the post, but rather, of an even bigger long-term global crisis: catastrophic climate change. Danny’s insights form a good guideline to why climate action is so difficult.

Popular willpower in crisis

The core of Danny’s post is that the public’s willingness to bear personal costs is limited, and can change during the crisis, usually for the worse. He gives a number of examples from historic wars, and concludes (bold in original),

Thus, the main moral is as follows: if you’re a leader facing a crisis like a war or a pandemic, the public trust must always be on your mind. Remember that it is always limited, and tends to run out much faster than you imagine. Most of the American public, for example, was willing to sacrifice a lot to save South Vietnam and Southeast Asia from communism, but not to pay an unlimited economic and human cost as General Westmoreland demanded. The Viet Cong and North Vietnam did not manage to defeat the United States, only to stall for time and exhaust it until the public trust of the American public ran out.

When fighting a pandemic, like the corona crisis, it’s equally necessary to think about the consequences of each move not just for the fight against the plague but also for the public trust for facing it. The main factor here is time. The more time passes, and the economic damage grows, the more the public trust runs out at an ever increasing rate. For this reason, policymakers must understand that they have limited time, and they must take every step to shorten it: for example, massive and fast increase in testing (even at research labs, which the Ministry of Health harassed for weeks), shortening red tape in obtaining results, handing out masks even at an early stage, and fast contact tracing to replace the general lockdown with targeted lockdowns. In Israel, the Ministry of Health understood this too late, in my estimation because of the public pressure to end the lockdown after Passover. It’s also important to understand that every further tightening wastes the public trust even faster, especially if it looks petty and redundant (the 100-meter limit on out-of-home trips, harassment of beach surfers, cutting the quota of permitted workers per business from 30% of normal to 15%). Finally, so that the public trust will last longer, personal example of the leaders is also important. When the Israeli public saw [PM Bibi] Netanyahu, [President Rubi] Rivlin, [Immigration and Absorption Minister Yoav] Galant, [Health Minister] Litzman, and other policymakers flout their own guidelines, the public’s willingness to sacrifice for a length period of time naturally decreased.

The details are naturally tailored to the situation of Israel, whose infection rates are low by Western standards (but high by democratic Asian ones), but the broad outline isn’t. Capricious rules lead to widespread derision even among people who support the overall program, even in relatively high-trust societies like Germany.

The implications for climate change

If public trust is a limited resource, then climate action has to involve a plan for conserving it. It’s related to plans by political operatives to conserve political capital, but is not the same – political capital refers to the support of political elites, especially elected officials, whereas public trust is broader. Disempowering some local group costs political capital but may increase public trust if it gives the appearance of faster and more decisive action; authoritarian leaders habitually surround themselves with corrupt sycophants who they can publicly remove to popular acclaim.

So how can governments fight climate change while maintaining public support for such measures? Visible green infrastructure helps, which nearly everyone understands, but what people don’t understand so easily is that the program itself cannot have too high a cost. The sort of leftists who propose Green New Deal programs don’t think trillions of dollars in deficit spending is ever bad, but the general public differs; when unemployment is not too high, it’s important to limit the costs. Shortening lead time from when a project is announced to when it opens is important as well.

Good interim measures are helpful, too, but they have a limit. Paris is one of the most polluted cities in Europe, but it is not Delhi; reducing pollution there is helpful but evidently did not get unanimous support. So reducing pollution and car accidents buys some public trust, but not to infinite extent. Building more housing to reduce rents in expensive cities is the same – it helps alleviate the stereotype that dense cities are expensive, but this doesn’t equal universal public patience for programs that abolish mobility by car.

The good news is that the highest carbon tax regime in the world, Sweden, has also had one of the stronger economic growth rates in the first world. So the economic cost of what’s been done so far does not exist. It’s a matter of the cost of further action, which includes limiting flights and cars, directing development to dense transit-oriented cities, etc.

The issue of personal example

Danny brings up the personal example issue among top leaders. I would add that personal example among a broader segment of the population is even more important – the EU plans for a Green Deal call for fairly high (though not Swedish, let alone fully damage-mitigating) taxes on aviation fuel within the EU, a policy that would help with public trust because of perceptions that domestic carbon taxes do not levy the tax on the rich because they do not cover international flights.

Among the literal leaders, the situation is more delicate. The threat model of a national leader, who is a personal target for state-level actors and major terrorist groups, is not the same as that of the ordinary person, who to the terrorist is just a statistic. To the ordinary person, a train has lower terrorism risk than a plane, since a bomb can’t kill the people on an entire train. To the national leader, a train has higher risk, because attacks on the fixed infrastructure (such as bridges) are easier to the group that wants to kill a particular person. When François Hollande traveled France by TGV rather than by plane to lead by example, soldiers had to guard every bridge. In this situation, it is not hypocritical for leaders to fly even when a train is available.

All of this is much easier when national leadership is more distributed and there is no executive president who provides a juicy target to hostile actors. Switzerland’s plural executive does not have the massive security of an ordinary head of government, and its members do take the tram around Bern, which would be unthinkable for a French president.

But even that has a real limit. Populists make up stories of hypocrisy all the time. Emmanuel Macron does not supply any proper scandals, and may be the first leader in the history of France who is faithful to his wife, so rumormongers and fake news sites step in with fake quotes and stories. The point of personal example isn’t to get unanimous consent; repression is not an avoidable aspect of climate action, or for that matter of having a state to begin with. The point is to shrink the opposition to the most risible elements, who the general public won’t mind seeing ignored or repressed if need be.

Climate change as forever war

A more interesting case study of war, not in the original post, is the modern forever war. The US has been in Afghanistan since 2001, in a conflict that has no end in sight; France is likewise in a forever war in its former Sahelian colonies. There’s a lot of mockery about this, but the general public is broadly okay with this situation, because the cost to the public in the US and France is so low. (Afghans, Malians, and Nigeriens naturally do not get a vote.) Even the limited extent of sacrifice the French and American voting publics endured trying to hold on to Vietnam would not be acceptable over such a long time, let alone that of a total war like World War Two. Thus, a forever war cannot be a total war.

The rhetoric about climate change is that of a total war, but that means little – leaders routinely engage in apocalyptic rhetoric in limited wars, like Israel’s cold war with Iran (“the year is 1938 and Iran is Germany” per Netanyahu), the American war on Iraq in 2003 (“we don’t want the smoking gun to be a mushroom cloud” per Condoleeza Rice). Everything else about climate change points to a forever war. The time horizon is far, with discussions of reducing emissions sharply by 2030 and eliminating them by 2050.

So if it’s a forever war, public trust is especially limited. It makes it especially important to make climate action feel like not much of a sacrifice, but an opportunity to live in rich, dynamic transit cities while paying affordable rents. This is not going to be a universal positive feeling, but the point, again, is not to get universal support, just to conserve public trust enough to implement the requires programs successfully.

Holidays by Train

What does leisure travel look like in a world where driving and flying are prohibitively expensive, and rail travel is more abundant and convenient?

It does not look exactly like today’s travel patterns except by train. Where people choose to travel is influenced by cultural expectations that are themselves influenced by available technology, prices, and marketing. Companies and outfits providing transportation also market the destinations for it, whether it’s a private railway selling real estate in the suburbs on its commuter lines, an airline advertising the resort cities it flies to, or a highway authority promoting leisure drives and auto-oriented development. The transition may annoy people who have gotten used to a set of destinations that are not reachable by sustainable transportation, but as the tourism economy reorients itself to be greener, new forms of leisure travel can replace old ones.

Historic and current examples

Railroads were the first mode of mechanized transportation, and heavily marketed the destinations one could reach by riding them. The involvement of some railroads in suburban development, such as Japanese private railroads or the original Metropolitan Railway, is fairly well-known to the rail advocacy community. Lesser-known but equally important is rail-based tourism. Banff and Jasper owe their existence to transcontinental railways, Lake Louise was founded as a montane resort on top of the Canadian Pacific Railway, Glacier National Park opened thanks to its location next to the (American) Great Northern. Even Niagara Falls, for all its unique natural beauty, benefited from heavy marketing by the New York Central, which offered the fastest route there from New York.

Other than Niagara Falls, the North American examples of rail-based tourism are all in remote areas, where people no longer travel by train. Some may drive, but most fly over them. The American system of national parks, supplemented by some state parks like the Adirondacks and Catskills, has thus reoriented itself around long-distance leisure travel by car. This includes popular spots like Yellowstone, Bryce, Grand Canyon, and Yosemite in the United States, Schwarzwald in Germany, or the tradition of summer homes in outlying areas in Sweden or the American East Coast.

The airline industry has changed travel patterns in its own way. Planes are fast, and require no linear infrastructure, so they are especially suited for getting to places that are not easy to reach by ground transportation. Mass air travel has created a tourism boom in Hawaii, the Maldives, southern Spain, the Caribbean, any number of Alpine ski resorts, Bali, all of Thailand. Much of this involves direct marketing by the airlines telling people in cold countries that they could enjoy the Mediterranean or Indian Ocean sun. Even the peak season of travel shifted – English vacation travel to the Riviera goes back to the early Industrial Revolution, but when it was by rail and ferry the peak season was winter, whereas it has more recently shifted to the summer.

The politics of vacation travel

In some cases, states and other political actors may promote particular vacation sites with an agenda in mind. Nationalists enjoy promoting national unity through getting people to visit all corners of the country, and if this helps create a homogeneous commercial national culture, then all the better. This was part of the intention of the Nazi program for Autobahn construction and Volkswagen sales, but it’s also very common in democratic states that aim to use highways for nation-building, like midcentury America.

If there’s disputed land, then nationalists may promote vacation travel there in order to instill patriotic feelings toward it among the population. Israel has turned some demolished Arab villages into national forests, and promoted tourism to marginal parts of the country; settler forces are likewise promoting vacation travel to the settlements, cognizant of the fact that the median Israeli doesn’t have strong feelings toward the land in the Territories and wouldn’t mind handing them over in exchange for a peace agreement.

Politics may also dictate promoting certain historic sites, if they are prominent in the national narrative. In the Jewish community, two such trips are prominent, in opposite directions: the first is the organized Israeli high school trips to Poland to see the extermination camps and the ghettos, perpetuating the memory of the Holocaust in the public; the second is Birthright trips for Jews from elsewhere to visit Israel and perhaps find it charming enough to develop Zionist feelings toward it.

So what does this mean?

I bring up the politics and economic history of leisure travel, because a conscious reorientation of vacation travel around a green political agenda is not so different from what’s happened in the last few generations. The big change is that the green agenda starts from how people should travel and works out potential destinations and travel patterns from there, whereas nationalist agendas start from where people should travel and are not as commonly integrated with economic changes in how people can travel.

The point, then, is to figure out what kinds of vacation travel are available by train. Let’s say the map that I put forth in this post is actually built, and in contrast, taxes on jet fuel as well as petrol rise by multiple euros per liter in order to effect a rapid green transition. Where can people go on vacation and where can’t they?

Intercity leisure travel

By far the easiest category of leisure travel to maintain in a decarbonized world is between cities within reasonable high-speed rail range. Tens of millions of people already visit Paris and London every year, for business as well as for tourism. This can continue and intensify, especially if the green transition also includes building more housing in big high-income cities, creating more room for hotels.

High-speed rail lives on thick markets, the opposite of air travel. Once the basic infrastructure is there, scaling it up to very high passenger volumes on a corridor is not difficult; the Shinkansen’s capacity is not much less than 20,000 passengers per hour in each direction. Many people wish to travel to Paris for various reasons, so the TGV makes such travel easier, and thus even more people travel to and from the capital. A bigger and more efficient high-speed rail network permits more such trips, even on corridors that are currently underfull, like the LGV Est network going toward much of Germany or the LGV Sud-Europe Atlantique network eventually connecting to much of Spain.

Germany does not have a Paris, but it does have several sizable cities with tourist attractions. A tightly integrated German high-speed rail network permits many people in Germany and surrounding countries to visit the museums of Berlin, go to Carnival in Cologne, attend Oktoberfest in Munich, see the architecture of Hamburg, or do whatever it is people do in Frankfurt. The international connections likewise stand to facilitate German travel to neighboring countries and their urban attractions: Paris, Amsterdam, Basel, Vienna, Prague.

Intercity travel and smaller cities

Big cities are the most obvious centers of modern rail-based tourism. What else is there? For one, small cities and towns that one encounters on the way on corridors designed to connect the biggest cities. Would Erfurt justify a high-speed line on its own? No. But it has an ICE line, built at great expense, so now it is a plausible place for travel within Germany. The same can be said about cities that are not on any plausible line but could easily connect to one via a regional rail transfer. When I fished for suggestions on Twitter I got a combination of cities on top of a fast rail link to Berlin, like Leipzig and Nuremberg, and ones that would require transferring, like Münster and Heidelberg.

Even auto-oriented vacation sites can have specific portions that are rail-accessible, if they happen to lie near or between large cities. In North America the best example is Niagara Falls, conveniently located on the most plausible high-speed rail route between New York and Toronto. In Germany, South Baden is normally auto-oriented, but Freiburg is big enough to have intercity rail, and as investment in the railroad increases, it will be easier for people from Frankfurt, Munich, and the Rhine-Ruhr to visit.

Farther south, some Swiss ski resorts have decent enough rail connections that people could get there without too much inconvenience. If the German high-speed rail network expands with fast connections to Basel (as is planned) and Zurich (which is nowhere on the horizon), and Switzerland keeps building more tunnels to feed the Gotthard Base Tunnel (which is in the Rail 2035 plan but with low average speed), then people from much of central and southern Germany could visit select Swiss ski resorts in a handful of hours.

Non-urban travel

The green transition as I think most people understand it in the 21st century is an intensely urban affair. Berlin offers a comfortable living without a car, and as the German electric grid replaces coal with renewables (slower than it should, but still) it slowly offers lower-carbon electricity, even if it is far from Scandinavia or France. Small towns in contrast have close to 100% car ownership, the exceptions being people too poor to own a car. But the world isn’t 100% urban, and even very developed countries aren’t. So what about travel outside cities large and small?

The answer to that question is that it depends on what cities and what railroads happen to be nearby. This is to a large extent also true of ordinary economic development even today – a farming town 20 km from a big city soon turns into a booming commuter town, by rail or by highway. Popular forests, trails, mountains, and rivers are often accessible by railroad, depending on local conditions. For example, some of the Schwarzwald valleys are equipped with regional railways connecting to Freiburg.

Here, it may be easier to give New York examples than Berlin ones. Metro-North runs along the banks of the Hudson, allowing riders to see the Palisades on the other side. The vast majority of travelers on the Hudson Line do not care about the views, but rather ride the train to commute from their suburbs to Manhattan. But the line is still useful for leisure trips, and some people do take it up on weekends, for example to Poughkeepsie. The Appalachian Trail intersects Metro-North as well, though not many people take the train there. Mountains are obstacles for rail construction, but rivers are the opposite, many attracting railroads near their banks, such as the Hudson and the Rhine.

Conversely, while New York supplies the example of the Hudson Line, Germany supplies an urban geography that facilitates leisure travel by rail out of the city, in that it has a clear delineation between city and country, with undeveloped gaps between cities and their suburbs. While this isn’t great for urban rail usage, this can work well for leisure rail usage, because these gaps can be developed as parkland.

Where’s the catch?

Trains are great, but they travel at 300-360 km/h at most. An aggressive program of investment could get European trains to average around 200-240 km/h including stops and slow zones. This allows fast travel at the scale of a big European country or even that of two big European countries, but does not allow as much diversity of climate zones and biomes as planes do.

This does not mean trains offer monotonous urban travel. Far from it – there’s real difference in culture, climate, topography, and architecture within the German-speaking world alone, Basel and Cologne looking completely different from each other even as both are very pretty. But it does limit people to a smaller tranche of the world, or even Europe, than planes do. A Berliner who travels by train alone can reach Italy, but even with a Europe-scale high-speed rail program, it’s somewhat less than 4:45 to Venice, 5:00 to Milan, 5:30 to Florence, 6:45 to Rome, 7:45 to Naples. It’s viable for a long vacation but not as conveniently as today by plane with airfare set at a level designed to redraw coastlines. Even in Italy, there’s great access to interesting historic cities, but less so to coastal resorts designed around universal car use, located in topographies where rail is too difficult.

The situation of Spanish resorts is especially dicey. There isn’t enough traffic from within Spain to sustain them, there are so many. Germany is too far and so is Britain if planes are not available at today’s scale. What’s more, people who are willing to travel 7 or 8 hours to a Spanish resort can equally travel 5 hours to a French or Italian one. The French Riviera has gotten expensive, so tourism there from Northern Europe feels higher-income to me than tourism to Alicante, but if people must travel by train, then Nice is 4:30 from Paris and Alicante is 7:30, and the same trip time difference persists for travelers from Britain and Germany.

Is it feasible?

Yes.

High carbon taxes are not just economically feasible and desirable, but also politically feasible in the context of Europe. The jet fuel tax the EU is discussing as part of the Green Deal program is noticeable but not enough to kill airlines – but what environmental policy is not doing, the corona virus crisis might. If low-cost air travel collapses, then much of the market for leisure travel specifically will have to reorient itself around other modes. If Europe decides to get more serious about fighting car pollution, perhaps noticing how much more breathable the air in Paris or Northern Italy is now than when people drive, then taxes and regulations reducing mass motorization become plausible too.

The transition may look weird – people whose dream vacation involved a long drive all over Italy or France or Germany may find that said vacation is out of their reach. That is fine. Other vacations become more plausible with better rail service, especially if they’re in big cities, but also if they involve any of a large number of natural or small-town destinations that happen to be on or near a big city-focused intercity rail network.

Coronavirus and Cities

There’s a meme going around the American discourse saying that the Covid-19 outbreak is proving that dense cities are bad. Most of this is bullshit from politicians, like Andrew Cuomo. But now there’s serious research on the subject, by a team at Marron led by the excellent Solly Angel. Solly’s paper looks at confirmed infection rates in American metropolitan areas as of late March and finds a significant correlation with density, but no significant correlation between deaths and density. In this post, I’m going to look at Germany. Here, big or dense cities are not disproportionately affected by the virus.

Why Germany?

Germany has pretty reliable data on infections because testing is fairly widespread, so far covering 1.6% of the population. Moreover, testing is this high throughout the country, whereas in the US, there are vast differences in testing as well as in other aspects of response by state, e.g. New York has tested 2% of state population, Louisiana 1.9%, Florida 0.8%, California and Texas 0.4%.

I also have granular data on infection rates in Germany, thanks to Zeit. The data I’m using is synchronic rather than diachronic, i.e. I’m looking at current infection rates rather than growth. Growth rates aren’t the same everywhere – in particular, they’re lower in North Rhine-Westphalia, which was the epicenter of the German outbreak weeks ago, than in southern Germany – but they’re low enough that I don’t think the situation will change in short order.

Size and density

Within Germany, there aren’t huge gradients in density between cities. More central neighborhoods have taller buildings than less central ones and higher ratios of building to courtyard, but there are no huge differences in residential built form the way there are between American cities.

For example, look at densities by neighborhood in Berlin, Hamburg, Munich, Frankfurt, Cologne, Stuttgart. There aren’t big differences in the pattern: the densest inner neighborhoods have about 15,000 people per square kilometer, and density falls to 3,000-5,000 in outer neighborhoods. Hamburg has a few areas with no residents, since they include the city’s immense port. Stuttgart’s densest districts are in the 5,000-6,000/km^2 range, but that’s because the districts are not very granular and the dense ring of inner-city neighborhoods just outside the commercial center is not congruent to district boundaries.

The upshot is that the big question about density and the risk of epidemics cannot be answered by comparing German cities to one another, but only to the surrounding rural areas. So the real question should be, are the major German cities more afflicted by the virus than the rest of the country?

Infection rates by city

As of the end of 2020-04-09, Zeit reports 118,215 confirmed coronavirus cases, which is 14.2 per 10,000 people. The six states of former East Germany, counting the entirety of Berlin and not just East Berlin, total only 12,873 cases, or 7.9 per 10,000. The Robert Koch Institute’s definitive numbers are slightly lower, but are also slightly outdated, as states sometimes take 1-2 days to report new cases. Going by Zeit data, we have the following infection rates by major city:

City Population Cases Cases/10,000
Berlin 3,644,826 4,357 12
Hamburg 1,841,179 3,518 19.1
Munich 1,471,508 4,123 28
Hanover* 1,157,624 1,389 12
Cologne 1,085,664 1,947 17.9
Frankfurt 753,056 730 9.7
Stuttgart 634,830 1,056 16.6
Dusseldorf 619,294 737 11.9
Leipzig 587,857 451 7.7
Dortmund 587,010 507 8.6
Essen 583,109 578 9.9
Bremen 569,352 425 7.5
Dresden 554,649 476 8.6
Nuremberg 518,365 733 14.1
Duisburg 498,590 525 10.5

*Zeit reports Hanover data for the entire region; the city itself only has 538,000 people

The sum total of the fifteen largest cities in Germany, with 15.1 million people, is 21,552 cases, which is 14.3 cases per 10,000 people. This is the same as in the rest of the country to within measurement error of total population, let alone to within measurement error of Covid-19 cases.

State patterns

Bavaria and Baden-Württemberg both have high confirmed case counts, averaging 23.6 and 21.7 per 10,000 people respectively. Munich’s rate is somewhat higher than the Bavarian average, but its suburbs are on a par with the city, as are some entirely rural areas all over the state. Oddly, the second and third largest cities in the state, Nuremberg and Augsburg, have lower rates – though both Fürth and the rural areas around Nuremberg and Fürth have very high rates as well.

The pattern around Stuttgart is perhaps similar to that around Nuremberg. The city’s infection rate is not much higher than the national average, but the infection rates in counties and cities around it are: Esslingen (24.8/10,000), Reutlingen (29.3), Tübingen (47.9), Böblingen (28.4), Ludwigsburg (22.9).

NRW’s rate is 13.9/10,000, i.e. essentially the same as the national average. The worst is in areas right on the Belgian border, like Heinsberg. Cologne has a noticeably higher rate, but Dusseldorf has a lower rate, and the cities of the Ruhr area a yet lower one. Don’t let the fact that these cities only have around 600,000 people each fool you – they’re major city centers, with the density and transportation network to boot. Dortmund alone has three independent subway-surface trunks, meeting in a Soviet triangle; total public transportation ridership in Dortmund across all modes is 130 million per year. Essen has two subway-surface trunks, one technically light rail and one technically a streetcar tunnel; total ridership there and in Mülheim, population 170,000, is 140 million per year.

What’s going on in Frankfurt?

There is some correlation between wealth and a high infection rate, since Bavaria and Baden-Württemberg have high rates of confirmed cases and the East German states have low ones. However, Frankfurt’s rate is fairly low as well, as are the rates of surrounding suburbs like Offenbach and Darmstadt. Frankfurt is not as rich as Munich, but like Hamburg and Stuttgart, it is fairly close, all three metro regions surpassing Ile-de-France and roughly matching London per Eurostat’s per capita market income net of rent and interest table.

In particular, it is unlikely that the greater international connections of rich cities like Munich explain why they have higher rates. Frankfurt Airport is the primary international hub in Germany, with many passengers standing in line at the terminal and coughing on other people. It would have been the easiest for imported infections to arise there rather than in the Rhineland, and yet it doesn’t have a major cluster.

Frankfurt also has extensive O&D business travel; Wikipedia puts it third after Berlin and Munich, but Frankfurt’s visitors are most likely disproportionately business travelers rather than tourists. This is important, since February and March are low season for tourism, whereas business travelers are if anything more likely to be going to Frankfurt during low season because during the summer high season they go on vacation in more interesting places.

So, is urban density more vulnerable to infectious diseases?

Probably not. Rural Germany has some areas with Korean levels of confirmed cases per capita, and some where 1% of the population and counting has tested positive. Overall, there isn’t much of an urban-rural difference – the 15 largest cities in Germany collectively have the same rate as the rest of the country, and moreover, where there are notable state-level patterns, they also hold for the states’ big cities. If Munich’s high infection rate is caused by its high rate of U- and S-Bahn usage, then the suburbs should have lower infection rates (they’re more auto-oriented) and the rest of Bavaria should be much lower; in reality, nearly the entirety of Bavaria has high rates.

The highest density in the developed world does not exist in Germany. German neighborhoods top at 15,000/km^2, with individual sections scratching 20,000; Paris tops at 40,000 in the 11th Arrondissement, New York scratches 50,000 on the Upper East Side, and Hong Kong has entire districts in the 50s. So the “density doesn’t matter” null hypothesis, while amply supported on German data, requires some extrapolation for the handful of world cities with the highest density.

Nonetheless, these are not huge caveats. German data is pretty reliable in the density range for which it exists; if cities today had the infection rates they did before modern plumbing, when a noticeable fraction of a city’s population might die in a single epidemic, it would be noticeable today. But there is no mass death, nor are urban hospitals here collapsing under the strain. On both the level of a basic sanity check and that of looking at the data, cities do not appear to be vulnerable to disease.

What does this mean?

There is no need to redesign the world to be less urban or dense in the wake of the coronavirus. Nor is there any need to let go of collective public transportation. The Rhine-Ruhr and Frankfurt are not Tokyo or Hong Kong in their public transportation usage, or even Paris or Berlin, but they have extensive urban and regional connections by train. And yet, the Heinsberg disaster zone and the high infection rate of Cologne have not been exported to the Ruhr, nor is southern Hesse particularly affected by German standards.

The virus has exposed serious issues with cleanliness. But even given Germany’s current levels of urban cleanliness, those issues are not enough to turn Berlin, Frankfurt, Hanover, or the Ruhr cities into hotspots. There is no danger to public health coming from urbanization, density, development, or public transportation. Cities should keep investing in all four in order to reduce the costs of transportation and environmental damage, even if the occasional failed politician blames the virus on density to deflect attention from his own incompetence.

The Importance of Decarbonizing Transport

While researching my previous post about nuclear power, I found various sources about the construction costs of renewable electricity. They all point to the same conclusion: the installation costs of solar and wind power took a nosedive in the 2010s. By now they are down to 1-1.50 per watt for onshore wind, 1.50-2.50 per watt for offshore wind (PDF-p. 24) and around $1.10 per watt for utility-scale solar power (PDF-pp. 7, 50-51). The levelized cost of energy (LCOE) for onshore wind and solar power is, depending on source, 4-7 cents per kWh (see Fraunhofer, Lazard, IRENA), at which point it’s cheaper than new coal and gas without subsidies or carbon taxes and cheaper than existing coal and gas with mild carbon taxes. Intermittency is still an issue, but at continental scale it is much more of an irritant than a serious impediment. Decarbonization of electricity is substantially a solved problem.

The problem is that decarbonization of transportation is not a solved problem.

The world of 2020 is not that of 2000. The greenhouse gas inventory of 2020 is not that of 2000. In developed countries, electricity is down, and transportation is up or at best flat. In developing ones (i.e. China and India) the situation is different, but there too there’s growing public concern with coal power pollution, to the point that one of the premier sites for information about air pollution levels, AQICN, is Beijing-based. Nonetheless, cars remain aspirational in those countries, despite high levels of investment in urban and intercity rail transportation (periodic reminder: about two-thirds of global high-speed rail ridership is in China).

The problem with transportation is cars.

Cars are not getting better. There’s a growing but very small share of the market for new cars that is electric; so far production costs remain high, and there are real long-term issues with rare earth metals used in the batteries. Costs are inching down, but it’s firmly in “more research is needed” territory. And meanwhile, in the carbon tax-free developed world (i.e. the US) the vast majority of cars that are not electric are getting bigger and less fuel-efficient. American transportation emissions peaked in the mid-2000s and fell as fuel prices rose, but now that fuel is cheap they’re rising, faster than population (source, PDF-p. 32).

The problem is partly, but not only, the United States.

Whatever historical causes made Americans this way, American culture of the early 21st century is still one that thinks it’s normal to want every American to have an SUV and deviant to want every American to have an apartment in a big city with a good subway system. This mentality cuts across classes, parties, subcultures, and states, and was recently affirmed in California, particularly Los Angeles. Decarbonizing solutions on the road that may be popular in segments of the tech industry, like electric cars and mobility as a service, are still brushing against a culture that equates the size of one’s car and engine with one’s moral worth. One of two things will happen: this culture will vanish, or hundreds of millions of people in countries Americans can’t find on a map will be inundated.

But it’s not just the United States.

Public transportation usage in Europe is increasing, unlike in the United States – and it’s increasing from an already nontrivial base. But it’s not increasing fast enough. The same motorist culture of the United States exists in a more attenuated form here. There are high fuel taxes and they help a lot – SUVs and pickup trucks are rare, and vehicle-km per capita are maybe half what they are in the US – but the difference between greenhouse gas emissions of 17 and 8 metric tons-CO2 per capita is one of whether catastrophic climate change will happen soon or shortly later.

It’s a priority for Europe specifically, precisely because it’s in uncharted territory.

The United States needs to learn to imitate and get from 17 to 8 on its way to 0, but Europe needs to get from 8 to 0 and to figure out how to do so. Switzerland and the Netherlands are already at the forefront of improving mainline rail, and yet have widespread auto usage in local as well as interregional travel.

There are a number of headwinds to the replacement of cars with public transportation, all of which are politically or technically nontrivial in ways that mass installation of solar and wind power isn’t:

  1. Public transport is the most convenient in large cities and least convenient in rural areas, but modern nationalism holds the rural to be more authentic and moral. Thus, when rural motorists riot the state is paralyzed with inaction and the media urges understanding of populist anger at elites, whereas when urbanites riot the state immediately engages in mass arrests and the media urges law and order.
  2. The pace of urban redevelopment is too low, thanks to local NIMBYism, making it hard for people to live in cities where car-free living is already convenient. Local housing activism always focuses on people already present; Berlin passed a new rent control law that is projected to reduce investment by 25%. Even Paris, which is building more housing, is doing so almost exclusively in the suburbs and not in the city proper.
  3. Local notables tend to drive even controlling for income and social class. One does not become a local notable by working at a city center office with people from many neighborhoods, many of whom are recent migrants to the city, but by staying within one neighborhood and interacting with old-timers. The latter kind of economic and social network is less convenient to travel by train. Thus, the loudest voices in a local discussion are against seizing space from cars and giving it to pedestrians, cyclists, buses, or trams.
  4. At low levels of public investment, the car will predominate, for two reasons. First, some state action is needed to give buses priority on roads. Second, public transportation has more moving parts that must be integrated – fares, schedules, infrastructure, equipment, development. This makes fiscal austerity a drag on the ability of a developed society to demotorize unless this austerity specifically takes the form of very high taxes on cars and fuel.
  5. A political process that slows down investment in order to mollify NIMBY opposition makes it very hard to shift priorities on the ground. In this sense, the freeway revolts and the changes they led to are the best thing that ever happened to car culture, even more than the freeways themselves; in the American context, the revolts happened largely only when the freeways intruded on middle-class neighborhoods.

These headwinds are phrased politically, but all have various technical components, like construction costs for new rail lines, public transport network design, interagency cooperation issues that are too far removed from mass politics to be truly political, etc. Is the problem solvable? Most likely, yes. It’s not only in the biggest cities in the world that public transport usage is high; getting Stockholm, Vienna, Zurich, and so on to demotorize is within the realm of possibility, and getting other cities to have what those cities have is as well.

But “within the realm of possibility” is not a statement of utmost confidence. It’s a difficult program, one where failure is regrettably an option. Every aspect is hard: convincing governments that don’t like spending money on mobile people to invest more in rail, raising taxes on fuel and on cars, building more housing in the cities, reclaiming street space from cars, improving the quality of public transport service, improving connections between lines. It all takes money, and though the required subsidies may well fall with better technology and higher usage, the most optimistic view is that public transportation now is like wind and solar power in 2010, when they was still an economic gamble, and not what they are today that the gamble is paying off.

Germany and Nuclear Power

I’ve seen far too many people in the English-speaking world attack Germany repeatedly for its closure of nuclear power plants, for a variety of reasons. So as a public service, I would like to explain why Germany is like this. This may be relevant to other related issues concerning the politics of the green transition, including transportation and urbanism.

Electricity in Germany

There’s easy-to-search data on the electricity mix in Germany by source on Clean Energy Wire and the Working Group on Energy Balance (AGEB); on the latter site, Stromdaten gives the overall mix. In 2019, 40% of German power generation was renewable, and 12% was nuclear. The renewable share of German power consumption was slightly higher, 42.6% – Germany is a net exporter of electricity. The biggest contributor to renewable power is wind, but solar has recently been growing as well. Hydro power counts with renewable energy here, but is not a major factor, as German population density is high, unlike in Canada, Sweden, or Norway.

Over the decade, there was a large reduction in nuclear power generation. Nuclear power generation is down by slightly less than half, and a full phaseout is expected by the end of 2022. This has created a lot of criticism from pro-nuclear advocates as well as from trolls who enjoy attacking Germany, the green movement, and German greens specifically. Here is one typical example, a 2013 Telegraph article warning German economic growth might fall and saying utilities were turning to coal. But coal production fell in absolute numbers even more than nuclear power, down over the decade from 42% to 28%.

Why is Germany like this?

It’s still worth asking, why did Germany cut nuclear production, where it could have instead reduced coal production even further?

The answer can be found in the following Cold War joke:

Q. What is a tactical nuclear weapon?
A. Anything that lands on Germany.

West Germany built some nuclear plants in the 1960s and 70s, as did many other developed countries, like the US and France. But it faced New Left protests early and often, and this has to be understood in the context of the association between nuclear power and nuclear weapons. In Japan, such popular opposition happened even earlier, going back to the 1950s; the state kept building nuclear plants anyway, but slowly, without anything like France’s rapid buildup in the aftermath of the 1973 oil crisis.

Nuclear power advocates get frustrated when people compare nuclear power with nuclear weapons, but peaceful use of nuclear power always involved this association, often by supporters too. In the US, physicists proposed using nuclear bombs for infrastructure purposes. In the 1960s there were plans to use nuclear bombs to built I-40 as well as straighten the Southern Transcon; eventually I-40 was built by conventional means, and the Southern Transcon was not straightened. This was always a solution looking for a problem – the atomic age was the hallmark of modernity, so why not use nukes for more purposes than just war?

In France, too, the reasoning for the buildup of nuclear energy in the 1980s was justified on national security grounds – “in France we have no oil, we have ideas.” Germany and Japan, which do not have the global superpower pretensions of France, did not have the same justification to expand nuclear power at the same time.

Nuclear power and the modern greens: costs

On the eve of the Fukushima plant closures of 2011, German electricity was 23% nuclear, French electricity more than 70%. The origin of this difference is not about modern greens but about whether the national consensus viewed nuclear weapons positively or negatively in the 1970s and 80s, at which time nobody thought climate change was a serious problem.

The 2010s and 20s are not the 1970s and 80s; today, people do understand just how important climate change is as a global environmental problem. The green movement has adapted, if not as radically as pro-nuclear advocates would like. The German environmentalists I talk to either don’t care about nuclear power or are in favor of keeping it around. I tried to explain to the Breakthrough Institute’s Ted Nordhaus that at the big Fridays for Future protest on the 20th of September, there were hundreds of anti-coal power sign and just one anti-nuclear sign, held by people visibly older than most of the millennial and postmillennial attendees; he replied, “Greta is anti-nuclear.”

What is true is that nobody except Breakthrough calls for the construction of new nuclear power. But nuclear power is expensive with modern safety standards, while the costs of renewable energy are falling, those of onshore wind in Germany already lower than those of any other source, even coal. A 2009-11 analysis claims onshore wind costs $1.75-2.40 per watt to install (source, PDF-p. 25). A 2018 comparison within Europe finds a range of 1-1.50/W for onshore wind and perhaps 1.50-2.50 for offshore wind (source, PDF-p. 24), with noticeable correlation between a country’s wind power costs per watt and its urban subway tunneling costs per kilometer. Breakthrough has a cost comparison of nuclear power plant construction, where South Korea, which they praise for its low-cost construction, builds plants for about $2.50/W after PPP adjustment.

The cost comparison suggests strongly that people interested in green energy should be fine with retaining existing nuclear power in the medium term but not call for new capacity – it’s more expensive than renewables.

Political compromises

There are people who are against nuclear power categorically. There are people who want to reduce greenhouse gas emissions. There is a clash between these two propositions, but it is not a total war. Before Fukushima, German power was 23% nuclear, and nuclear power costs were already higher than wind power costs, so decarbonizing the German electricity sector meant incentivizing more renewable power, not building more nuclear power. Since there was no point in dying on the nuclear hill – it was too small a share of power generation to be worth defending as in France, and too expensive to be worth expanding – the NIMBYs got their wish and nuclear power is being phased out early. Nonetheless, the majority of German electricity is generated by carbon-free sources, and the growth in renewable power has grown its scale to make it economic.

In France, the calculation is different. After Fukushima, there was no chance of a phaseout, only plans to reduce the share of electricity coming from nuclear power from the 70s to 50%. But the Macron administration has extended the lifespan of existing plants and pushed back plans for plant closure. In France, the nuclear power share is high enough because of decisions made in the 1970s and 80s that defending what exists is important, and thus the state can postpone mass installation of solar and wind energy until costs fall further. But in Germany, with an imminent need to install renewable power anyway, the political compromise went in another direction.

The formation of a de facto anti-nuclear political consensus has to be seen in this context. By the time the political system got serious about reducing greenhouse gas emissions, roughly in the 2000s and 10s, the costs of renewables were more favorable than those of nuclear power. Thus, to people who do distinguish nuclear power from nuclear weapons, think the plants are safe, and harbor no NIMBY opposition to new construction, nuclear power was an acceptable political sacrifice. It wouldn’t be the first choice to close these plants, but as a second choice combined with extensive renewable construction, it was fine.

It’s important to think in terms of goals – decarbonization, improving public health, reducing housing costs, etc. Breaking down these goals further – decarbonizing the power sector, reducing air pollution, etc. – can be desirable for specific solutions. But the goals are still too important for activists to be wedded to a specific solution and convert it from a means to an end. If the relative costs of different solutions change, it’s important to recognize this fact and switch support to the cheaper solution.

The Greta Effect

Bloomberg is reporting that Germany and Sweden are seeing a trend of reduced domestic air travel and greater rail usage. In Germany, intercontinental air traffic is up 2% year-over-year and international European traffic is down 2%, but domestic traffic has crashed in the last few months and is down 12% now. In Sweden, domestic air traffic is down 11%.

The Greta effect

Greta Thunberg famously crossed the Atlantic by sailboat to avoid personally contributing to greenhouse gas emissions. But she’s fairly practical about alternatives and said right out that she travels in such conditions to highlight how difficult complete decarbonization is. She is also very insistent on the fact that while changes in behavior are nice, collective political action is still needed.

Moreover, the young (as in, younger than me) Greens I meet in Germany are themselves practical as well. The more committed might take a train to France or Italy, but there’s not much interest in back-to-the-land 1960s communes, degrowth, or political revolution in the sense of the socialists and anarchists. Nor have I seen anti-nuclear sentiments recently – the one anti-nuclear sign I saw at the September 20th climate march, which had 100,000 people in attendance, was held by a pensioner and someone who looked 40, whereas the median age at the rally looked like 20.

It’s relatively easy to change travel behavior to avoid domestic flying in Germany as well as Sweden. Domestic rail travel pain in Germany means hourly Hamburg-Munich and Berlin-Stuttgart trains take 5:40 each. International rail travel pain means Berlin-Paris trains take 8:11 with a short transfer that I don’t trust DB or SNCF to meet. Domestic trains only get this long if many transfers are needed, in which case the main competition to the train is the car rather than the airplane, or if one needs to travel between Umeå (population 123,000) and central or southern Sweden. It’s thus likely that the shift in travel pattern reflects a change in consumer desires to avoid polluting – other explanations, such as the grounding of the 737 MAX, would equally affect domestic and European air travel.

Upcoming carbon taxation

Germany has been planning climate legislation for years, but the September 20th protest created a lot of pressure on the government to enact an aggressive package. A carbon tax will begin at €25/t-CO2 in 2021 and rise to €55/t by 2025, where the original plan was to only go up to €35/t. Sweden has had a carbon tax going back to 1991; starting in 2014, the Löfven cabinet has hiked the tax on industry to match the tax on transportation, both currently at €114/t. The effects on the German economy are to be seen, but in Sweden, economic growth has been healthy throughout this period, ahead of any not-newly-industrialized developed country save Australia (although the differences near the top are small).

In addition to the German carbon tax package, the EU is planning to levy a carbon tax on jet fuel for internal flights; so far, international emissions, including international aviation and shipping, are not subject to carbon tax. A leaked report suggests the EU is considering a tax of €330 per 1,000 liters of jet fuel, which corresponds to a hefty €130/t-CO2, the high figure coming from the fact that a ton of CO2 emitted at high altitude causes more global warming than one emitted at ground level. A very fuel-efficient plane like the A320neo consumes 2.25 liters per 100 seat-km on a 1,200 km flight, raising fares on a full flight by €9.06, which is not a game changer but is noticeable at low-cost carrier rates.

Planning for busier trains

The upshot is that demand for flights in Europe is likely to go down, shifting toward rail. The article linked above about the Greta effect says that DB expects its intercity rail traffic to double to 260 million passengers a year by 2040. The article makes no mention of which further investments in intercity rail DB is assuming, but a virtuous cycle is likely: higher ridership justifies more investment, and faster and more convenient trains attract higher ridership.

Of note, the weakness of international rail in Europe points to international connections as an investment priority. In Sweden, trains from Stockholm are fast toward Gothenburg and Malmö, averaging almost 140 km/h, and there are unfunded plans for high-speed rail connecting the three largest cities. However, Stockholm-Oslo trains are quite slow (about 6 hours for what looks like 500 km), even though Oslo is bigger than Gothenburg and Malmö and there are extensive economic and cultural connections between the Nordic countries. The Greens have called for Stockholm-Oslo high-speed rail, and the government should work with Norway on establishing such a line.

In Germany, the situation is different. London and Paris are vast cities, and Paris is within reasonable high-speed rail distance of most of Germany, with good connections on the French side and poor ones on the German one. Trains between Paris and Frankfurt take about 3:48, of which 1:47 is between Paris and Saarbrücken on the German side of the border, a distance of 380 km, and then 2:00 is between Saarbrücken and Frankfurt, a distance of about 200 km by rail and 160 by air. In Belgium, the existing high-speed line east of Brussels is compromised to the point of being slower between Brussels and Liège or Aachen than legacy lines like Stockholm-Gothenburg or London-Manchester.

The reason the map of the high-speed rail I think Germany should build is heavy on international connections is mostly that Europe is gradually building thicker international economic and social connections. However, a future with more expensive air travel and a consumer taste for greener ways of travel does not change the basic picture, and makes it more urgent.

(Map legend: blue is existing or under-construction lines, red is lines that are either in planning or not even in planning but should be built.)

Speed and capacity

DB’s forecast for 260 million annual rail travelers argues in favor of building more capacity. However, in no way does this conflict with building a dedicated high-speed rail network for Germany. On the contrary, the bypasses providing relief to congested lines are already planned to be high-speed: this was the case for the Tokaido Shinkansen and LGV Sud-Est decades ago, and this is now the case for HS2 and the planned Frankfurt-Mannheim express connection.

A largely dedicated network for high-speed passenger rail, with freight using the legacy lines, improves intercity rail reliability, allowing average speeds to rise to be closer to their theoretical technical maximums. Average speeds of 250 km/h on a few lines are plausible, as on Paris-Strasbourg or Madrid-Barcelona. Moreover, through-tunnels enabling intercity trains to run through Frankfurt and possibly Munich without reversing direction facilitate planning high-speed rail as a separate system. Timed connections with regional trains remain important, but critical trunks like Frankfurt-Cologne and Berlin-Hanover can run very frequently.

The schedule I tried writing for the above map in which domestic city pairs mostly run every half hour all day, interlining on a few trunks, assumes ridership of about 250 million. This is not the same as DB’s forecast of 260 million: this counts only high-speed rail riders, and assumes the average trip is 350 km long. To get from DB’s forecast to 87.5 billion p-km per year requires the virtuous cycle of higher ridership and more investment to work over time, but this is plausible given high levels of investment.

Green convenience

When Greta talks about systemic solutions, she understands that it’s important to make it easier to live a comfortable life without greenhouse gas emissions and harder to live one with high emissions. There are many aspects to green convenience: carbon-free electricity (largely achieved in Sweden but not in Germany), pedestrian- and bike-friendly streets, urban and periurban public transport, intercity and freight rail, passive solar design, urban density, carbon-free industrial power generation.

In every case, it’s important to seize upon any social, economic, or political trend that facilitates the green option. If people want to live in big central cities, then governments should make it easy to build housing there so that more people can enjoy the low-carbon wealth of Munich or Stockholm rather than live in cheap declining rural areas and drive. If people support solar power, then governments should leverage its political popularity and subsidize it to decarbonize electricity.

In the case of intercity transportation, a shift in taste toward intercity rail is a cause for celebration. Europe is full of intercity trunk lines ranging from ones that scream “build me now” no matter what (HS2, completing Berlin-Munich, etc.) to speculative ones. Any positive shift toward rail justifies adding ever more marginal intercity rail lines to the network. Perhaps if the network I mapped was justified before the Greta effect, after the Greta effect the most marginal parts of the network (like Stuttgart-Würzburg) are on more solid footing, while unmapped marginal lines like Munich-Prague or even Bremen-Oldenburg-Groningen become plausible.

But celebration does not mean idleness. Climate change is a systemic issue. The state must plan ahead, using the shift toward rail to plan further investments now so that they open in the 2020s and early 30s. This way, the rail network will meet near- and medium-term growth in demand, while stimulating long-term growth, to be satisfied through future investment, paid by taxes on the richer Germany of the 2030s. Good transit activists should take a page from Greta’s refusal to treat good news as grounds for letting up, and demand intensive investment in Europe’s rail network to ensure that green travel will be more convenient, featuring higher speeds rather than more sitting on luggage in the corridors of full trains.

How Come Carbon Taxes are Good for the Economy?

Two of the cities I have lived in are in areas with a carbon tax regime: Vancouver and Stockholm. British Columbia implemented a carbon tax starting in 2008, at a level reaching C$30 per metric ton of CO2, under the right-wing BC Liberals, who favored the carbon tax as a market-friendlier approach than the left-wing NDP’s proposal for cap-and-trade. The tax was revenue-neutral, offsetting other taxes, and is seen as a success; the NDP has since won power and announced a hike in the tax to C$50/t by 2021.

Sweden’s carbon tax is higher and older. It was implemented by the Social Democrats in 1991, at a rate of 24/t for home use, such as fuel, and 6/t for industrial use; it has been subsequently hiked multiple times, reaching 88/t for home use by 2004, and Löfven’s coalition of Social Democrats and Greens has increased it to 114/t for both home and industrial use. Our World in Data cites it as a success too, linking it to high levels of political trust and low corruption levels in Sweden as well as in other European countries with carbon taxes, such as Switzerland.

The question of interest is, how come these carbon taxes are good not just for reducing greenhouse gas emissions, but also for the economy? British Columbia’s economy has grown somewhat faster than that of the rest of Canada. Sweden has had high economic growth since the 1990s as well – see for example World Bank data from 1990 to 2018, in which Sweden’s growth in GDP per capita only behind that of Norway and the Netherlands, both by very small margins. What gives? How come this is apparently good for raw economic growth, when it’s supposed to be an economic distortion that reduces living standards if one ignores long-term environmental benefits?

Negative carbon taxes

There is an array of policies that act as negative carbon taxes – that is, taxes on green activity, or subsidies to polluting activity. The construction of highways is one example – the negative effects of cars include not just climate change but also local air pollution, noise, and car accidents. There are various policies counteracting these effects, such as fuel taxes and mandatory insurance, but they are not enough. For example, in British Columbia the minimum insurance requirement is $200,000 in personal injury plus $300,000 in medical expenses and smaller sums for related torts like funeral costs, but the insurance value of human life is measured in the millions.

To the extent non-carbon taxes on cars are too low, the addition of a carbon tax should move the tax level closer to the true level of the negative externality even ignoring long-term climate change. Carbon taxes should not by themselves improve economic growth on a 30-year horizon, let alone a 10-year one, but lower levels of air pollution, fewer car crashes, and less traffic congestion would.

Another aspect is development. Various zoning laws, such as single-family residential zones in much of Vancouver and restrictions on high-rises in Central Stockholm, encourage people to live and work in lower-density areas. This is simultaneously a negative carbon tax of a sort and a drag on economic productivity. A carbon tax is no substitute for reforms making it easier to add housing – and thankfully, both Stockholm and Vancouver already have fast housing construction, unlike (say) New York – but it does help countermand the subsidies to suburbanization implicit in restrictive zoning.

Climate science vs. arbitrary rule

The economic reasoning behind why special fees on various activities are inferior to broad taxes on income, property, and consumption has to do with incentives and rule of law. Taxing a specific activity incentivizes people and corporations to find creative ways to shift apparent activity elsewhere, creating economic distortions. It also sends everyone a message, “spend more money on lobbying politicians to keep your sector’s taxes lower than those of other sectors.” Broad-based taxes don’t do that, first because the only way to avoid an income tax is to be poorer, and second because there are fewer moving parts to an income or sales tax.

However, carbon taxes are not your run-of-the-mill tax on an activity some politician does not like. Yes, there is a definitive political movement calling for restraining greenhouse gas emissions, but the reasoning behind it is telegraphed years and even decades in advance, and is based on a scientific consensus. Lobbyists can try to fight for exemptions, as they can from income taxes, but the tax itself is based on a process that is transparent to informed economic actors.

In green democracy as in social democracy, the role of the state is not to side with the interest groups that voted for the party in power, unlike in populism. Social democracy holds that the state has an expansive role to play in the economy, but this role is not based on arbitrary exceptions but rather on budgetary and regulatory priorities that have been largely stable for generations: income compression, labor unions, health care, education, child care, infrastructure, housing. It’s not a coincidence that the part of the world with the strongest social-democratic institutions, the Nordic countries, also has more or less the lowest corruption levels.

Green democracy has a different set of priorities from social democracy, but they too are well-known, especially when it comes to the transition away from greenhouse gases. There’s a lot of lobbying concerning specific spending priorities, but the point of a carbon tax is that it adjudicates how to prioritize different aspects of the transition apolitically.

Carbon taxes and good government

The World in Data’s praise of Sweden’s carbon tax regime talks about the necessity for low corruption and high trust levels for a carbon tax to work. But does the causation really run in that direction? What if the causation is different? It’s likely that a carbon tax could politically work in a wide variety of countries, but only in states with high levels of political transparency do politicians prefer it to opaque schemes that reward cronies and favored interest groups.

In other words, once British Columbia enacted its carbon tax the results were positive even without unusually low corruption for a rich country. But for the most part, governments without much transparency or rule of law such as much of the United States do not like the simplicity of a carbon tax. Politicians who call themselves green prefer schemes that either directly subsidize favored groups or at least politically empower them (“Green New Deal”), and that specifically ream difficulties on groups they do not favor (real estate developers, the nuclear industry, etc.).

But that American politicians do not like carbon taxation does not mean carbon taxation could not work in an American context. It does in a Canadian one, without any of the negative economic effects that people who take perverse joy in environmental destruction predicted. The private economy can and does adapt to changes in relative prices, as fuel becomes much more expensive and other products become cheaper to compensate – and judging by the experience of Sweden in particular, even a fairly high tax is compatible with fast economic growth for a mature economy. All it takes is someone willing to spend short-term political capital on the long-term green transition.