Category: Environmental Issues

In-Motion Charging is not for Trains

Streetsblog Massachusetts editor Christian MilNeil has just asked a very delicate question on Twitter about battery power for public transportation. In-motion charging (IMC) is a positive technological development for buses, wiring part of a route in order to provide electric coverage to a much broader area. So why not use it for trains? The context is that the government of Massachusetts is doing everything in its power to avoid wiring commuter rail; its latest excuse is that a partly-wired system with battery-electric trains is cheaper. So how come IMC works for buses but not trains?

The answer is that trains and buses differ in ways that make fully wiring a train much more advantageous for equipment cost while costing less compared with IMC-style partial wiring – and the size of trains makes the equipment cost much more prominent.

Equipment cost

The cost of a single-deck electric multiple unit (EMU) other than high-speed rail is about $100,000 per linear meter of length, and appears to have changed little over the last 10-20 years. I have a list of recent tramways built in Europe for that cost, a shorter one of subways (including more outliers due to procurement problems or bespoke designs), and some standard citations for commuter rail EMUs. For the latter, here is a recent example of a Coradia Continental order in Germany: 200M€ for 32 trainsets, 20 with five 18-meter cars and 12 with four, or 75,000€ per linear meter.

In contrast, battery-EMUs (BEMUs) are far more expensive. Comparing like with like, here is a recent Coradia Continental BEMU order for Leipzig-Chemnitz, which line should have long been wired: 100M€ for 11 three-car, 56-meter long trainsets, or 160,000€ per linear meter.

Buses do not display such a premium. Trolleybus advocate Martin Wright writes a comparison of battery-electric and trolleybuses for Vancouver, and suggests that equipment costs are largely the same in the North American market (which is expensive by European standards). TU Berlin’s Dominic Jefferies and Dietmar Göhlich find that the base cost of an electric 12-meter bus is 450,000€, rising to 600,000€ with battery (p. 25); this is a premium, but it’s small, almost an order of magnitude less than that for trains per unit of length. Kiepe says that the cost of rebuilding 16 12-meter trolleybuses with IMC for Solingen is in the single-digit millions.

Why?

How come trains display such a large premium for batteries over electric traction supplied by trackside distribution (catenary wire or third rail) and buses don’t? This is not about the cost of the batteries: Jeffries-Göhlich cite a cost of 500-800€/kWh for a battery pack on a bus, and while Alstom hasn’t said what the battery capacity of the Coradia is in kWh, based on the range (120 km) and this slide deck about BEMUs (or PDF-p. 22 of a VDE study about EMUs and BEMUs), the capacity is likely around 700 kWh for the entire three-car train, with a cost about an order of magnitude less than the observed cost premium over EMUs.

Rather, the issue is likely about fitting the batteries on the train. Railvolution reports that to fit the batteries, Alstom had to demotorize one of the three powered bogies, reducing the maximum power drawn from 2.16 MW to 1.44. As a byproduct, this also somewhat hurts performance, increasing the stop penalty from the train’s maximum speed of 160 km/h by 15-20 seconds (46 empty or 51 full for an EMU, 60 and 71 respectively for a BEMU).

The cost of wiring

The cost of trolleybus wiring, at least judging by industry brochures such as that of UITP, is linear in route-km. This makes IMC attractive in that it cuts said cost by a factor of 2 to 3 on a single route, or even more on a route that branches out of a common trunk. For this reason, IMC is ideally suited for branched bus networks such as that of Boston, and is less valuable on grids where it’s uncommon for multiple bus routes to run together for a significant portion, such as the systems in Chicago, Toronto, and Vancouver.

But rail electrification does not quite work this way. Overall, the cost of wiring is mostly proportional to route-length, but the cost appears to be split evenly between the wire and the substations. A full-size commuter train in a major metropolitan area like Boston would be drawing around 7 MW while accelerating; a Citaro bus has a 220 kW diesel engine, or 125 in the electric version. Even taking into account that buses are slower and more frequent than trains and thus run at much higher frequency per route-km, there’s nearly a full order of magnitude between the substation costs per km for the two modes.

The upshot is that while IMC saves the cost of installing wire, it does not save a single penny on the cost of installing substations. The substations still need to fully charge a train in motion – and derating the train’s power as Alstom did does not even help much, it just means that the same amount of energy is applied over a longer period while accelerating but then still needs to be recharged on the wire.

How benefits of electrification scale

Electrification has a number of benefits over diesel power:

  • No local air pollution
  • Much less noise, and none while idling
  • Higher reliability
  • Higher performance
  • Much lower lifecycle costs

The first three are shared between externally-supplied electric and battery-electric power, at least when there’s IMC (pure battery power is unreliable in cold weather). The fourth is a mix: BEMUs have better performance than DMUs but worse than EMUs – whereas with buses this flips, as trolleybuses have performance constraints at trolleywire junctions. The fifth is entirely an EMU benefit, because of the high cost of BEMU acquisition.

The first two benefits are also much more prominent for buses than for trains. Buses run on streets; the pollution affects nearby pedestrians and residents as well as waiting riders, and the idling noise is a nuisance at every intersection and whenever there’s car traffic. Bus depots are an air quality hazard, leading to much environmental justice activism about why they’re located where they are. Trains are more separated from the public except when people wait for them.

In contrast, the last benefit, concerning lifecycle costs, is more prominent on trains. The benefits of electrification scale with the extent of service; that the acquisition cost of EMUs is around half that of BEMUs, and the lifecycle cost is around half that of DMUs, means that the return on investment on electrification can be modeled as a linear function of the fleet size in maximum service.

A US-standard 25 meter railcar costs $2.5 million at global EMU prices (which the US was recently able to achieve, though not anymore), and twice that at BEMU prices. 40-year depreciation and 4% interest are $162,500/year; a single train per hour, per car, is around $3,000/km (this assumes 50-60 km/h average speed counting turnaround time), or $6,000 counting both directions, and lifecycle maintenance costs appear to be similar to initial acquisition cost, for a total of around $12,000/km. At $2.5 million/km, this means electrification has an ROI of 0.5% per peak car per hour; a single 8-car train per hour is already enough for 4% ROI.

The numbers don’t work out this way for buses. Workhorse city buses run every 5 minutes at rush hour, and may occasionally run articulated buses, but the capacity is still only equivalent to a single hourly train; in the absence of IMC, electrification of buses is therefore hard to justify without the additional environmental benefits. But those environmental benefits can be provided at much lower cost with IMC.

Why electrify?

The upshot of the above discussion is that the reasons to electrify buses and trains are not the same. Bus electrification benefits center environmental and environmental justice: diesel buses are noisy and polluting and have poor ride quality. The only reason to wire buses at all rather than go for unwired battery-electric buses (BEBs) is that BEBs are not reliable in freezing temperatures and cost far more than diesels due to their downtime for charging.

But rail electrification is different. The environmental benefits are real, but less important. Train depots have not been major sources of air pollution since the steam era, unlike bus depots. The primary reasons are technical: equipment acquisition costs, maintenance costs, performance, reliability. And those overall advantage EMUs over BEMUs with IMC.

How to Waste Money on Public Transportation

This is the fourth in a series of five (not four) posts about the poor state of political transit advocacy in the United States, following posts about the Green Line Extension in metro Boston, free public transport proposals, and federal aid to operations, to be followed by a post about how to do better instead.

I think very highly of Yonah Freemark. His academic and popular work on public transport and urbanism ranges from good to excellent, and a lot of my early thinking (and early writing!) on regional rail and high-speed rail owes a debt to him.

But I think he’s wrong in his proposal for a Green New Deal for transportation. This is a proposal by the Climate and Community Project (not the Urban Institute as I said in previous posts – sorry) to decarbonize transport in the United States, through fleet electrification and investments in public transport. Yonah is one of several authors; I identify him with the public transit-related parts of the report, but I want to make it clear that it’s the report I’m criticizing, regardless of who wrote what.

The fundamental problem of the CCP report is what I’ve been building up to in the last three posts in this series: it tries to please everybody by throwing money everywhere and making conflicting promises. The Green Line Extension was built this way under Deval Patrick, and costs ballooned, and what passed for discipline under Charlie Baker just reinforced the same long-term loss of state capacity that led to the cost explosion.

For example, here’s its take on fleet electrification:

In other words, there is a compelling and immediate need to decarbonize this fleet within a decade. And that’s feasible: buses are replaced every 10 to 15 years on average, and commuter rail trains about every 25 years; currently, commuter trains in the United States are on average 22 years old. Publicly owned vehicles would be replaced with the electric equivalent; for privately owned contracted vehicles (the case for many school buses), and requirements for electrification would be written into contracts and tax credits given to assist the transition of buses from fossil fuels to electric. The commissioning of thousands of new transit vehicles would produce new, good-paying union jobs in manufacturing. The shift to electric transit vehicles would affect maintenance requirements, and the Department of Transportation must ensure the mechanic and operator workforce is fully prepared for the electric transition through workforce retraining assistance. This may require retraining, such as encouraging mechanics to retrain as electric vehicle charging installers.

(…)

Electrifying existing diesel railways would require overhead catenary electrical wires to be useful for electrified trains (though the trains themselves actually cost less than diesel vehicles). The cost of railway electrification infrastructure alone is between roughly $1 and $5 million per mile. There are roughly 6,600 miles of non-electrified commuter rail in the United States, plus roughly 20,800 miles of non-electrified Amtrak service (with some overlap between the two). Amtrak’s routes are mostly owned by freight rail companies, but we suggest joint electrification that includes both passenger trains and freight trains, using this program for Amtrak and another we lay out below for the freight lines. To electrify the national passenger rail network of existing lines would cost between $27 and $137 billion. In addition, new trains would have to be purchased to run on these electrified lines.

I cite this pair of paragraphs because of something they show about the study: it is not uniformly bad. The second paragraph is a decent idea (though $1m/mile is very cheap), and trying to workshop how to wire the national freight network is not necessarily a bad idea, even if the report doesn’t go into enough detail about what the business barrier to electrification is for the private carriers.

But the first quoted paragraph is awful. Here’s the key thing: “The commissioning of thousands of new transit vehicles would produce new, good-paying union jobs in manufacturing” is a giant waste of money. Bus vendors outside North America consistently produce equipment for much less than the protected North American market; the Boris Bus, at £350,000 per unit (around $500,000), is both cheaper than American buses and locally considered expensive, a prime example of Boris Johnson’s poor performance as mayor of London.

The passenger rail industry does not exist in the United States, and attempts by American governments to coerce it to build factories domestically in order to create well-paying jobs have resulted in ballooning costs. The premium for recent American rolling stock orders, behind bespoke regulations, protectionism, informal state-level protectionism, and agency heads that know less than recently-graduated interns who make one quarter of what they do (less, if those interns are European), looks like 50% over European equivalents. Nor does this do much job creation, except perhaps for sitework consultants: the premium for some recent orders has been $1 million per $20/hour 4-to-6-year job created. Those are not objectively good jobs – the wages are not much higher than present-day retail, food service, and delivery jobs – but backward-looking politicians consider them inherently moral, and the report coddles them instead of looking forward.

Then, the report has the following recommendations for how to spend money on improving public transportation:

End the use of federal infrastructure funding for new highway infrastructure, except for focused opportunities that improve equity. Provide immediate funds for a quick-start infrastructure program for walking and cycling. Vastly expand support for transit and metropolitan network planning.

Appropriate $250 billion over 10 years, or $25 billion annually, in federal funding bill to support transit operations funding throughout the United States.

Increase federal support for transit and intercity rail capital projects to $400 billion over 10 years, or $40 billion annually, providing funds for new lines, maintenance of existing infrastructure, and upgrades designed for equitable accessibility.

Require metropolitan planning organization voting systems to be proportional to resident population. Mandate adjustments to local zoning policy to enable more dense, affordable housing near transit in exchange for federal aid. Implement regional commuter benefits throughout the nation.

This, I’m sorry, is a bad program. The $40 billion/year capital investment is not bad, but the proposal explicitly includes maintenance, making it vulnerable to the state of good repair scam, in which agencies demand escalating amounts of money for infrastructure with nothing to show for it. The $25 billion/year operating aid is likely to be a waste as well.

Transit agencies can invest money prudently, but the report says nothing about how to do it, instead proposing to zero out highway funding (which is a good way to save money, but is less relevant to mode shift than American transit advocates think it is). The one concrete suggestion for what to do with the money is “One goal, for example, would be for all residents to have access to a bus or train with a short wait within at most a 15-minute walk at all times of the day.” This is a standard I can get behind in a dense place like New York; nearly everywhere else, it means overfunding coverage routes in low-density areas, often middle-class white flight suburbs, ahead of workhorse urban routes. Writing years ago about New Haven, Sandy Johnston noted that a bus reform there would cannibalize the circuitous suburban bus branches to add service on the core routes through the city and Hamden. The CCP report would do the opposite, boosting frequencies where they are least useful.

Finally, the MPO rules seem weak. I get what Yonah (and perhaps the other authors) wants to do here: he wants to incentivize more housing production near mass transit nodes. But MPO voting weights are not especially relevant. What is relevant is using state power to disempower local communities, which are dominated by NIMBYs even in places where the residents vote YIMBY at the state level, such as San Francisco. The report talks about banning single-family zoning (okay, but duplexes are not TOD), but that’s it. Then it suggests extracting developer profits through mandatory inclusionary housing, which acts as a tax on TOD and reduces housing production. The authors of the study are left-wing, but do not propose public housing, only taxes on TOD to subsidize some local housing; Yonah knows this is not how social housing works in Paris, but he still proposes this for the United States.

The theme of lack of willingness to prioritize flow throughout these recommendations. There is no discussion of how to prioritize good investments, how to increase efficiency (the report points out operating costs for all US transit combined are $50 billion/year; this is 2.5 times the German level, for similar ridership, not per capita), how to make sure that progress does not get extracted by programs for groups thought inherently moral.

Institutional Issues: Dealing with Technological and Social Change

I’ve covered issues of procurement, professional oversight, transparency, and proactive regulations so far. Today I’m going to cover a related institutional issue, regarding sensitivity to change. It’s imperative for the state to solve the problems of tomorrow using the tools that it expects to have, rather than wallowing in the world of yesterday. To do this, the civil service and the political system both have to be sensitive to ongoing social, economic, and technological changes and change their focus accordingly.

Most of this is not directly relevant to construction costs, except when changes favor or disfavor certain engineering methods. Rather, sensitivity to change is useful for making better projects, running public transit on the alignments where demand is or will soon be high using tools that make it work optimally for the travel of today and tomorrow. Sometimes, it’s the same as what would have worked for the world of the middle of the 20th century; other times, it’s not, and then it’s important not to get too attached to nostalgia.

Yesterday’s problems

Bad institutions often produce governments that, through slowness and stasis, focus on solving yesterday’s problems. Good institutions do the opposite. This problem is muted on issues that do not change much from decade to decade, like the political debate over overall government spending levels on socioeconomic programs. But wherever technology or some important social aspect changes quickly, this problem can grow to the point that outdated governance looks ridiculous.

Climate change is a good example, because the relative magnitudes of its various components have shifted in the last 20 years. Across the developed world, transportation emissions are rising while electricity generation emissions are falling. In electricity generation, the costs of renewable energy have cratered to the point of being competitive from scratch with just the operating costs of fossil and nuclear power. Within renewable energy, the revolution has been in wind (more onshore than offshore) and utility-scale solar, not the rooftop panels beloved by the greens of last generation; compare Northern Europe’s wind installation rates with what seemed obvious just 10 years ago.

I bring this up because in the United States today, the left’s greatest effort is spent on the Build Back Better Act, which they portray as making the difference between climate catastrophe and a green future, and which focuses on the largely solved problem of electricity. Transportation, which overtook electricity as the United States’ largest source of emissions in the late 2010s, is shrugged off in the BBB, because the political system of 2021 relitigates the battles of 2009.

This slowness cascades to smaller technical issues and to the civil service. A slow civil service may mandate equity analyses that assume that the needs of discriminated-against groups are geographic – more transit service to black or working-class neighborhoods – because they were generations ago. Today, the situation is different, and the needs are non-geographic, but not all civil service systems are good at recognizing this.

The issue of TOD

Even when the problem is static, for example how to improve public transit, the solutions may change based on social and technological changes.

The most important today is the need to integrate transportation planning with land use planning better. Historically, this wasn’t done much – Metro-land is an important counterexample, but in general, before mass motorization, developers built apartments wherever the trains went and there was no need for public supervision. The situation changed in the middle of the 20th century with mass competition with the automobile, and thence the biggest successes involved some kind of transit-oriented development (TOD), built by the state like the Swedish Million Program projects in Stockholm County or by private developer-railroads like those of Japan. Today, the default system is TOD built by private developers on land released for high-density redevelopment near publicly-built subways.

Some of the details of TOD are themselves subject to technological and social change:

  • Deindustrialization means that city centers are nice, and waterfronts are desirable residential areas. There is little difference between working- and middle-class destinations, except that city center jobs are somewhat disproportionately middle-class.
  • Secondary centers have slowly been erased; in New York, examples of declining job centers include Newark, Downtown Brooklyn, and Jamaica.
  • Conversely, there is job spillover from city center to near-center areas, which means that it’s important to allow for commercialization of near-center residential neighborhoods; Europe does this better than the United States, which is why at scale larger than a few blocks, European cities are more centralized than American ones, despite the prominent lack of supertall office towers. Positive New York examples include Long Island City and the Jersey City waterfront, both among the most pro-development parts of the region.
  • Residential TOD tends to be spiky: very tall buildings near subway stations, shorter ones farther away. Historic construction was more uniformly mid-rise. I encourage the reader to go on some Google Earth or Streetview tourism of a late-20th century city like Tokyo or Taipei and compare its central residential areas with those of an early-20th century one like Paris or Berlin.

The ideal civil service on this issue is an amalgamation of things seen in democratic East Asia, much of Western and Central Europe, and even Canada. Paris and Stockholm are both pretty good about integrating development with public transit, but only in the suburbs, where they build tens of thousands of housing units near subway stations. In their central areas, they are too nostalgic to redevelop buildings or build high-rises even on undeveloped land. Tokyo, Seoul, and Taipei are better and more forward-looking.

Public transit for the future

Besides the issue of TOD, there are details of how public transportation is built and operated that change with the times. The changes are necessarily subtle – this is mature technology, and VC-funded businesspeople who think they’re going to disrupt the industry invariably fail. This makes the technology ideal for treatment by a civil service that evolves toward the future – but it has to evolve. The following failures are regrettably common:

  • Overfocus on lines that were promised long ago. Some of those lines remain useful today, and some are underrated (like Berlin’s U8 extension to Märkisches Viertel, constantly put behind higher cost-per-rider extensions in the city’s priorities). But some exist out of pure inertia, like Second Avenue Subway phases 3-4, which violates two principles of good network design.
  • Proposals that are pure nostalgia, like Amtrak-style intercity trains running 1-3 times per day at average speeds that would shame most of Eastern Europe. Such proposals try to fit to the urban geography of the world of yesterday. In Germany, the coalition’s opposition to investment in high-speed rail misses how in the 21st century, German urban geography is majority-big city, where a high-speed rail network would go.
  • Indifference to recent news relevant to the technology. Much of the BART to San Jose cost blowout can still be avoided if the agency throws away the large-diameter single-bore solution, proposed years ago by people who had heard of its implementation in Barcelona on L9 but perhaps not of L9’s cost overruns, making it by far Spain’s most expensive subway. In Germany, the design of intercity rail around the capabilities of the trains of 25 years ago falls in this category as well; technology moves on and the ongoing investments here work much better if new trains are acquired based on the technology of the 2020s.
  • Delay in implementation of easy technological fixes that have been demonstrated elsewhere. In a world with automatic train-mounted gap fillers, there is no excuse anywhere for gaps between trains and platforms that do not permit a wheelchair user to board the train unaided.
  • Slow reaction time to academic research on best practices, which can cover issues from timetabling to construction methods to pricing to bus shelter.

Probably the most fundamental issue of sensitivity to social change is that of bus versus rail modal choice. Buses are labor-intensive and therefore lose value as the economy grows; the high-frequency grid of 1960s Toronto could not work at modern wages, hence the need to shift public transit from bus to rail as soon as possible. This in turn intersects with TOD, because TOD for short-stop surface transit looks uniformly mid-rise rather than spiky. The state needs to recognize this and think about bus-to-rail modal shift as a long-term goal based on the wages of the 21st century.

The swift state

In my Niskanen piece from earlier this year, I used the expression building back, quickly, and made references to acting swiftly and the swift state. I brought up the issue of speeding up the planning lead time, such as the environmental reviews, as a necessary component for improving infrastructure. This is one component of the swift state, alongside others:

  • Fast reaction to new trends, in technology, where people travel, etc. Even in deeply NIMBY areas like most of the United States, change in urban geography is rapid: job centers shift, new cities that are less NIMBY grow (Nashville’s growth rates should matter to high-speed rail planning), and connections change over time.
  • Fast rulemaking to solve problems as they emerge. This means that there should be fewer layers of review; a civil servant should be empowered to make small decisions, and even the largest decisions should be delegated to a small expert team, intersecting with my previous posts about civil service empowerment.
  • Fast response time to civil complaints. It’s fine to ignore a nag who thinks their property values deserve state protection, but if people complain about noise, delays, slow service, poor UI, crime, or sexism or racism, take them seriously. Look for solutions immediately instead of expecting them to engage in complex nonprofit proof-of-work schemes to show that they are serious. The state works for the people, and not the other way around.
  • Constant amendment of priorities based on changes in the rest of society. A state that wishes to fight climate change must be sensitive to what the most pressing sources of emissions are and deal with them. If you’re in a mature urban or national economy, and you’re not frustrating nostalgics who show you plans from the 1950s, you’re probably doing something wrong.

In all cases, it is critical to build using the methods of the world of today, aiming to serve the needs of the world of tomorrow. Those needs are fairly predictable, because public transit is not biotech and changes therein are nowhere near as revolutionary as mRNA and viral vector vaccines. But they are not the same as the needs of 60 years ago, and good institutions recognize this and base their budgetary and regulatory focus on what is relevant now and not what was relevant when color TVs were new.

Institutional Issues: Proactive and Reactive Regulations

So far, in this series on institutional factors behind differences in the quality and cost of public transportation infrastructure, I’ve gone over procurement, public-sector oversight, and transparency. These three posts can be read together as a series: procurement is the keystone, and to get it right it is critical to have high-quality in-house supervision of the work, and to get that right in turn it’s important to cultivate transparency.

Today I’m going to turn the camera 90 degrees and talk about another relevant issue: that of proactive versus reactive state regulation and supervision. This is related to the issue of oversight, in that proactive regulation requires deeper in-house expertise and detachment from politics, so that the state can effectively make changes as necessary based on changes in travel and social patterns and advances in knowledge by scientists and practitioners.

Nudging and doing

One of the distinctions I’ve noticed regarding different regulatory traditions is whether the regulators do things or merely nudge. This is related to the issue of oversight, in that strong engineering bureaucracies that do design and planning in-house also come up with their own sets of clear rules.

The Italian civil service does rather than nudges: there are clear proactive rules by the Ministry of Culture about the protection of historical monuments, limiting the permitted building settlement in sensitive areas to 3 mm. Such proactive clear rules lead to a more predictable legal situation since it’s easy to measure what is and what is not legal, reducing risk. Long-term standards that impose real costs on business also soon sprout innovation for how to follow them while minimizing costs, as is the case for Japanese and Chinese zoning standards for light; ad hoc rules instead impose new costs every time, since the investment in trying to adapt to them would be spread across just one project rather than many.

The American regulatory apparatus has a mixture of doing and nudging. Environmental protection is almost entirely adversarial: the National Environmental Protection Act requires agencies to prepare environmental impact statements (EISes) before every project, but those are not judged by regulators but instead subject to lawsuit, and soon the nudge turns into red tape with hundreds of pages in an EIS aiming to anticipate every possible legal objection. Labor law is largely adversarial, but some states have passed triple damages statutes, in which the penalty for violation is specified at three times the missed wage and therefore workers do not have to litigate against much better-resourced employers.

The disability rights regime in the United States is a mix but include a significant amount of doing. There are clear standards for elevator accessibility, longest path of travel for people in wheelchairs, and maximum permitted gaps between the platform and the train; more recently, the FRA has wanted to mandate automatic gap fillers on mainline rail in order to permit passengers in wheelchairs to board unaided even across small gaps.

This is related to the issue of adversarial legalism, but is not exactly the same. There is plenty of adversarial legalism in the American disability rights regime, in which agencies refuse to follow the law and dare advocates to sue them.

Moreover, federal regulations in the United States remain a matter of nudging more than doing whenever there is any interaction with state and local authorities; instead of coordinating different authorities from a position of being able to engage in planning things itself, a federal agency will often try to nudge through offering incentives.

Two examples of equity

There’s a sense in much of the planning world in both the United States and Europe that it is necessary to proactively plan cities and transportation for the benefit of disadvantaged groups, or else even well-meaning planners would make unquestioned assumptions that harm such groups. It’s worthwhile examining the differences between the approaches to such planning, because one is proactive and the other reactive.

Before going on, I would like to point out a huge difference that is not about proactive planning: in the United States, the Title VI process for egalitarian planning (currently in revision, for which I’m very likely to submit comments make this and other points) centers racial equity, as a legacy of the civil rights movement that it came out of. In Europe, planners persistently ignore the problem of racism, and people of color are severely underrepresented in the civil services that I’ve seen, which issue is so glaring it makes Americans discount any European experience. However, European planners do look at class equity (for example, in Paris) and gender equity (for example, in Sweden), and there, they aim for proactive changes to reduce barriers to access.

The Swedish system is accessible to the English speaker, because feminist writers in English have occasionally looked to the Nordic world for inspiration, and outlets like Streetsblog have examined gender-based planning in Sweden. In 2015, Stockholm examined travel patterns by gender and found that women walk and take public transportation more and drive less than men, and as a result, it changed its snowplowing patterns to prioritize sidewalks over roads.

I was similarly told that when Swedish cities do surface construction, such as the cut-and-cover stations of Västlänken in Gothenburg or the cut-and-cover entry halls into the deep mined stations of the Stockholm T-bana extensions, by regulation the contractors must preserve sufficient sidewalk space on the street for pedestrians. If they need to open up most of the street, they can take car traffic lanes. The reasoning isn’t corrective discrimination, but rather that past planners, who prioritized keeping roads open over sidewalks, had erred because of conscious or unconscious discounting of the experience of women. The change in snowplowing practices led to a fall in injuries, since three times as many people in Sweden were injured walking in icy conditions as driving.

The Swedish system is proactive: the municipality or the state comes up with actionable, concrete changes based on its understanding of travel pattern. Researchers working for the city, perhaps in partnership with activists, notice a discriminatory practice, and come up with an alternative.

Now consider the American system. Title VI does not offer a clear set of practices for anti-racist transportation planning. It instead requires agencies to engage in review of their practices whenever they propose a change, leading first to status quo bias and second to arbitrary enforcement of rules. Much of the enforcement is not done top-down by regulators who are apolitical subject matter experts, but bottom-up from lawsuit or the threat thereof with supervision by judges trained in law but not in the specifics of transportation.

Status quo and reactivity

The worst aspect of reactive planning is that it leads to status quo bias. American regulations for civil rights and environmental protection require review of changes, but not of the status quo. The process can stop an agency from implementing a change or delay implementation until mitigations are done, but it cannot compel an agency to take an action it does not wish to take.

To nuance this somewhat, a judge can put an agency under a consent decree. But that already assumes an adversarial relationship between the state and itself. The process can imposing fines and constraints on an agency that does not want to do something, such as following ADA law and installing elevators at every subway station (something Berlin, an older system than New York, is about to complete systemwide). But it cannot literally build elevators there itself. It’s akin to the Jewish concept of a get, in which a rabbinical court can impose arbitrary fines on a husband who refuses to grant his wife a divorce, where what is needed is to permit women to initiate divorce without their husband’s permission.

A more proactive and less reactive regulatory culture can break out of the status quo trap. The first thing it must do is create a system that does not privilege the status quo: if a change is subject to review on such grounds as accessibility, racial equality, and environmental protection, then current practice must be as well. If it turns out that current practice falls short or is discriminatory, as Sweden’s snowplowing priorities were a decade ago, the agency must change its ways based on clear, concrete standards.

More proactive regulations are more obtrusive and visible, but they reduce costs and improve service quality. They are more sensitive to the current economic and social conditions and to the state of present-day knowledge than to the conditions and knowledge of a generation ago. They are more legible to the public and to contractors, who can then come up with ways to follow them without gambling on favorable judicial or political rulings. And they are less likely to surprise agencies deep into the process with a sudden imposition.

A state that acts as a helping hand rather than a grabbing hand helps more by governing more. Making it easier to ditch a status quo that worked for the world of yesterday but doesn’t for that of today or tomorrow, or one that never worked but was falsely believed to work, allows it to govern more efficiently. It’s necessary then to ensure that the highest-level civil servants who regulate transportation be empowered to make concrete decisions and coordinate lower-level agencies rather than just nudging in the right direction.

Randal O’Toole Gets High-Speed Rail Wrong

Now that there’s decent chance of US investment in rail, Randal O’Toole is resurrecting his takes from the early Obama era, warning that high-speed rail is a multi-trillion dollar money sink. It’s not a good analysis, and in particular it gets the reality of European and Asian high-speed rail systems wrong. It displays lack of familiarity with rail practice and rail politics, to the point that most nontrivial assertions about rail in Europe and Asia are incorrect.

More broadly, the way O’Toole gets rail investment here wrong comes from making unexamined American assumptions and substituting them for a European or Japanese reality regarding rail as well as rail politics. If the US can’t do it, he thinks other countries can’t. Unfortunately, he’s even unfamiliar with recent work done on American costs, when he compares the Interstate system positively with recent high-speed rail lines.

High-Speed Rail Profitability: France

I’m currently working on building a database similar to our urban rail costs for high-speed rail. Between this and previous iterations of analyzing the TGV, I’ve been reading a lot of internal French reports about its system. Thankfully, France makes available very good public information about the costs and technical specifications of its system. It helps that I read French, but the gap between what’s available for France and Belgium (see for example line schemas) is vast. This provides crucial background that O’Toole is missing.

The most important thing to understand is that the TGV network is profitable. The Spinetta report on the fiscal losses of SNCF makes it clear, starting on p. 60, that the TGV network is profitable, and recommends favoring its development over the money-losing legacy networks, especially the branch lines. The report even calls for closing weak branch lines with only a few trains a day, which I called the Spinetta Axe at the time, in analogy with the Beeching Axe. Due to public outcry the state rejected the cuts and only implemented the organizational changes promoted by the report.

Moreover, all lines are very profitable excluding the cost of fixed capital. The Spinetta report’s TGV section says that operating costs average €0.06/seat-km, which is around 0.085€/p-km, despite overstaffing of conductors (8 per conventional 400-car TGV) and extensive travel on legacy track at low speed and higher per-km labor costs. Average TGV fare revenue per an ARAFER report from 2016 is 0.10€/p-km – compare p-km on p. 15 and revenue on p. 26. This is typical for Europe – RENFE and DB charge similar fares, and the nominal fares seem to have been flat over the last decade.

What’s dicier is cost of capital. In all other European countries for which I’m aware of the process, all of which are Northern rather than Southern, this is done with benefit-cost analysis with a fixed behind-the-scenes discount rate. France, in my view wisely, rates lines by their financial and social rates of return instead. A 2014 report about the Bordeaux-Toulouse LGV, recently given the go-ahead for 7.5 billion €, warns that the profitability of LGVs decreases as the system is built out: the LGV Sud-Est returned 15% to SNCF’s finances and 30% to French society (including rider consumer surplus), but subsequent lines only returned 4-7% to SNCF’s finances, and Bordeaux-Toulouse is likely to return less, 6% including social benefits per the study and at this point slightly less since the study assumed it would cost slightly less than the current budget.

The general theme in the French discourse on trains is that the TGV network is an obvious success. There absolutely is criticism, which focuses on the following issues:

  • Regional rail, that is not intercity rail, is underdeveloped in France outside Paris. The ridership of TER networks is pitiful in comparison with German-speaking and Nordic metropolitan areas of comparable size. For example, sourced to a dead link, Wikipedia claims 64,300 TER PACA trips per day, comprising the metropolitan areas of Marseille (1.8 million), Nice (1), Toulon (0.6), and Avignon (0.5); in Helsinki (1.5) alone, there are 200,000 daily commuter rail trips. But this isn’t really about high-speed rail, since TER planning and subsidies are devolved to regional governments, and not to SNCF.
  • SNCF has contentious labor relations. In the early 2010s, the unions went on a wave of strikes and got wage concessions that led to the evaporation of SNCF’s 600 million €/year primary surplus. The railway unions in France (“cheminots”) are unpopular, and Macron has been able to pass reforms to SNCF’s governance over their strikes and objections.
  • Future LGVs are not as strong as past ones. Real costs in France are rising, and the network already links Paris with all major secondary cities in airplane-competitive time save Nice. Interprovincial links on the network are weak, despite the construction of the LGV Rhin-Rhône, and nothing like the Deutschlandtakt is on the horizon enabling everywhere-to-everywhere travel.
  • SNCF thinks like an airline and not like a railroad. It separates passengers into different buckets as airlines do, has many executives with airline background (and Spinetta is ex-Air France), thinks passengers do not ride trains for longer than 3 hours even though at 4 hours the modal split with air is still better than 50-50, and has poor integration between the TGV and legacy rail.
  • SNCF still has a lot of accumulated debt from past operating losses, some predating the TGV and the start of regional subsidies for regional rail. It was hoped that TGV profits could cover them, but they can’t. This mirrors the controversy in Japan in the 1980s, where, in the breakup of JNR into the JRs and their privatization, debt from past operating losses was wiped but not debt from Shinkansen construction (see Privatization Best Practices, PDF-p. 106).

However, saying that the existing network is a failure is the domain of cranks and populists. It is unrecognizable from the discussion of transportation investments in France.

What O’Toole says about high-speed rail

O’Toole’s understanding of internal French (or Spanish, or Japanese) issues is weak. This isn’t surprising – Americans to a good approximation never have good insights on the internal issues of any other country, even when it speaks English. The American political sphere, which includes political thinktanks like Cato, is remarkably ignorant globally, and rather incurious. As a result, what he says about the TGV is based on an Americanized understanding. To wit:

Bus-rail competition

The Northeastern United States has a weak rail network: Amtrak averages vintage 1960s speeds and charges 2-4 times the per-km fare of the TGV. As a result, an ecosystem of private intercity buses has developed, starting with unregulated ones like Fung Wah and, as they were shut down, corporate systems like Megabus and Bolt. O’Toole is fond of these buses, with their lower fares and road-like lack of integration between infrastructure and operations.

And thus, he claims, falsely, that European high-speed rail cannibalized profitable buses. This is unrecognizable from within Europe, where intercity buses were underdeveloped until recently. In France, US-style intercity buses are called Macron buses, because the deregulation that brought them into existence passed in the mid-2010s, when Macron was the economy minister. They complement high-speed rail but do not replace it, because trains get me from Paris to the German border in 1:45 and buses don’t.

To be fair, TGV ridership has been stagnant in the last few years. But this stagnation goes back to the financial crisis, and if anything ridership picked up starting 2017 with the opening of the LGV Sud-Europe-Atlantique. So the buses are not even outcompeting the trains – they thrive in the gaps between them, just as historically they did on international routes, where rail fares are considerably higher and ridership lower.

High-speed rail construction costs

O’Toole looks at the most expensive few lines possible:

Britain’s 345‐​mile London–Scotland HS2 high‐​speed rail line was originally projected to cost £32.7 billion (about $123 million per mile) and is currently expected to cost £106 billion ($400 million per mile).

International comparisons of high-speed rail costs exist, and Britain’s costs are by far the worst. For example, a 2013 Australian comparison looking at the prospects for such a system in Australia finds that High-Speed 1/CTRL, the line linking the Channel Tunnel with London, cost A$134 million/km, and the second costliest line in the dataset was thee 94% tunneled Bologna-Florence line, at A$95 million/km.

French costs up until the LGV Bordeaux-Toulouse stood around $25-30 million per km in 2021 dollars, net of tunnels. German costs are similar, but German lines have far heavier tunneling than France, a range of 26-51% in tunnel compared with 0-6% in France. One reason is topography. But another is that Germany prefers mixed-use passenger-freight lines, which forces higher construction costs as freight requires gentler grades and, since superelevation must be lower, wider curves; France, like Japan and China, builds dedicated passenger lines, and, unlike Japan or China, keeps them largely at-grade to reduce costs.

O’Toole says, without more references, that it would cost $3-4 trillion to build a US-wide high-speed rail network. But the official Obama-era crayon, at 20,000 km, would be $500 billion at tunnel-free European costs, or maybe $600 billion with 5% tunneling, mostly in difficult places like California and across the Appalachians.

Freeway costs

O’Toole proposes more freeways, and says that to build the Interstate system today would cost $530 billion so it’s better than high-speed rail. Here is where his lack of knowledge of the most recent literature on infrastructure costs is a serious drag on his analysis: Brooks-Liscow establish that there was a large real increase in Interstate cost throughout the life of the program, so a budget that’s really a mixture of cheaper early-1960s construction and more expensive construction in the 1970s is not applicable today.

The same issue affects rail costs: the LGV Sud-Est cost, in today’s money, around $8 million/km, which cost would never recur. Brooks-Liscow explain this by greater surplus extraction from citizen voice groups, which demanded detours and route compromises raising costs. This appears true not just diachronically within the US but also synchronically across countries: so far, the low-cost subways we have investigated are all in states with bureaucratic rather than adversarial legalism, while medium-cost Germany is more mixed. Politicized demands leading to more tunneling are well-documented within Germany – the Berlin-Munich line was built through a topographically harder alignment in order to serve Erfurt, at Thuringia’s behest.

So no, today costs from the 1960s are not relevant. Today, urban motorway extensions cost double-digit millions of dollars per lane-km, sometimes more. The I-5 improvement project in Los Angeles is $1.9 billion for I-5 South, a distance of 11 km, adding two lanes (one HOV, one mixed traffic) in each direction. It’s possible to go lower than this – in Madrid this budget would buy a longer 6-lane tunnel – but then in Madrid the construction costs of rail are even lower, for both metros and high-speed lines.

The discourse on profits

In contrast with the basic picture I outlined for the TGV, French media and researchers often point out threats to rail profitability. This can easily be taken to mean that the TGV is unprofitable, and if one has an American mindset, then it’s especially easy to think this. If SNCF officials say that 20% of TGVs lose money, then surely they must be hiding something and the figure is much higher, right? Likewise, if Spinetta says that the TGV network is profitable but not all trains are, then surely the situation is even worse, right?

But no. This is an Americanized interpretation of the debate. In the US, Amtrak is under constant pressure to show book profits, and its very existence is threatened, often by people who cite O’Toole and other libertarians. Thus, as a survival strategy, Amtrak pretends it is more profitable than it really is.

This has no bearing on the behavior of railroads elsewhere, though. SNCF is not so threatened. The biggest threat from the perspective of SNCF management is union demands for higher wages, and therefore, its incentive is to cry poverty. Nobody in France takes out yardsticks of farebox recovery ratios, and therefore, nobody needs to orient their communications around what would satisfy American libertarians.

Energy

Within the European high-speed rail research community, the energy efficiency of high-speed rail is well-understood, and many studies look at real-world examples, for example the metastudy of Hasegawa-Nicholson-Roberts-Schmid. In fact, it’s understood that high-speed rail has lower energy consumption than conventional rail. For example, here is García Álvarez’s paper on the subject. This is counterintuitive, because higher speeds should surely lead to higher energy consumption, as Hasegawa et al demonstrate – but high-speed lines run at a uniform speed of 200 or 250 or 300 or 350 km/h, whereas legacy rail has many cycles of acceleration and deceleration. At speeds of up to about 200 km/h, nearly all electricity consumption is in acceleration and not maintaining constant speed, and even at 300 km/h, a late-model high-speed train consumes only above one third of its maximum power maintaining speed.

Instead of this literature, O’Toole picks out the fact that all else being equal energy consumption rises in speed, which it is not equal. Garcia in fact points out that higher speeds are better for the environment due to better competition with air, in line with environmental consensus that trains are far superior on well-to-wheels emissions to cars and planes. Worse, O’Toole is citing Chester-Horvath’s lifecycle analysis, which is not favorable to California High-Speed Rail’s energy efficiency. The only problem is that this paper’s analysis relies on a unit conversion error between BTUs and kWh, pointed out by Clem Tillier. The paper was eventually corrected, and with the correct figures, high-speed rail looks healthy.

Competition with cars and planes

Where high-speed rail exists, and the distance is within a well-understood range of around 300-800 km, it dominates travel. A 2004 report by Steer Davies Gleave has some profiles of what were then the world’s main networks. For Japan, it includes a graphic from 1998 on PDF-p. 120 of modal splits by distance. In the 500-700 km bucket, a slight majority of trips all over Japan are made by rail; this is because Tokyo-Osaka is within that range, and due to those cities’ size this city pair dominates pairs where rail is weaker, especially inter-island ones. In the 300-500 km bucket more people drive, but the Shinkansen is stronger than this on the Tokyo-Nagoya pair, it’s just that 300-500 includes many more peripheral links with no high-speed rail service. It goes without saying that high-speed rail does not get any ridership where it does not exist.

In France, this was also studied for the LGV PACA. On p. 14, the presentation lists modal splits as of 2009. Paris-Toulon, a city pair where the TGV takes around 4 hours, has an outright majority for the TGV, with 54% of the market, compared with 12% for air and 34% for driving. Paris-Cannes is 34% and Paris-Nice is 30%, both figures on the high side for their 5:00-5:30 train trips. Lyon-Nice, a 3:30 trip with awful frequency thanks to SNCF’s poor interprovincial service, still has a 25% market share for the TGV.

In general, competition with cars is understudied. Competition with planes is much more prominent in the literature, with plenty of reports on air-rail modal splits by train trip length. JR East, Central (PDF-p. 4), and West all report such market shares, omitting road transport. Many European analyses appeared in the 2000s, for example by Steer Davies Gleave again in 2006, but the links have rotted and Eurostat’s link is corrupt.

O’Toole misunderstands this literature. He lumps all air and road links, even on markets where rail is weak, sometimes for geographical factors such as mountains or islands, sometimes for fixable institutional ones like European borders. In fact, at least measured in greenhouse gas emission and not ridership, all air travel growth in Europe since 1990 has been international. International high-speed rail exists in Europe but charges higher fares and the infrastructure for it is often not built, with slowdowns in border zones. This is a good argument for completing the international network in Europe and a terrible one against building any network at all.

Topography

Even at the level of basic topography, O’Toole makes elementary errors. He discusses the Tokaido Shinkansen, pointing out its factor-of-2 cost overrun. But its absolute costs were not high, which he characterizes as,

The Tokyo–Osaka high‐​speed rail line supposedly made money, but it was built across fairly flat territory

So, first of all, the “supposedly” bit is painful given how much JR Central prints money. But “fairly flat territory” is equally bad. Japan’s mountainous topography is not an obscure fact. It’s visible from satellite image. Per Japanese Wikipedia, 13% of the route is in tunnel, more than California High-Speed Rail.

The United States can and should do better

The report is on stronger grounds when criticizing specifics of Amtrak and California High-Speed Rail. American rail construction is just bad. However, this is not because rail is bad; it’s because the United States is bad.

And there’s the rub. Americans in politics can’t tell themselves that another country does something better than the US does. If it’s in other countries and the US can’t do it, it must be, as O’Toole calls rail, obsolete. This is especially endemic to libertarians, who are intellectually detached from their European right-liberal counterparts (Dutch VVD, German FDP, etc.) even more than the American center-left is from social democrats here and the right is from the mainline and extreme right here.

So here, faced with not too hard to find evidence that high-speed rail is profitable in Europe and Asia, and in fact intercity rail is profitable here in general (direct subsidies are forbidden by EU law unless the line is classified as regional), unlike in the United States, O’Toole makes up reasons why trains here are unprofitable or unsuccessful. He says things that are not so much wrong as unrecognizable, regarding topography, buses, construction costs, debt, the state of the TGV debate, or greenhouse gas emissions.

O’Toole is aware of our transit costs comparison. I imagine he’s also aware of high-speed rail cost comparisons, which exist in the literature – if he’s not, it’s because he doesn’t want to be so aware. And yet, no matter how loudly the evidence screams “the United States needs to become more like France, Germany, Japan, Spain, etc.,” American libertarians always find excuses why this is bad or unnecessary. And then, when it comes to expanding freeways, suddenly the cost concerns go out the door and they use unrealistically low cost figures.

But figuring out why the US is bad requires way deeper dives. It requires delving into the field and understanding how procurement is done differently, what is wrong with Amtrak, what is wrong with the California High-Speed Rail Authority, how engineering is done in low- and medium-cost countries, various tradeoffs for planning lead time, and so on. It requires turning into the kind of expert that libertarians have spent the last 60 years theorizing why they need not listen to (“public choice”). And it requires a lot of knowledge of internal affairs of successful examples, none of which is in an English-speaking country. So it’s easier to call this obsolete just because incurious Americans can’t do it.

Meme Weeding: Climate Resilience

I recently heard of state-level American standards for climate resilience that made it clear that, as a concept, it makes climate change worse. The idea of resilience is that catastrophic climate change is inevitable, so might as well make the world’s top per capita emitter among large economies resilient to it through slow retreat from the waterfront. The theory is bad enough – Desmond Tutu calls it climate apartheid – but the practice is even worse. The biggest, densest, and most desirable American cities are close to the coast. Transit-oriented development in and around those cities is the surest way of bringing green prosperity, enabling emissions to go down without compromising living standards. And yet, on a number of occasions I have seen Americans argue against various measures for TOD and transit improvements on resilience grounds.

The worst exhibit is Secaucus Junction. The station is a few kilometers outside Manhattan, on New Jersey Transit’s commuter rail trunk, with excellent service. So close to city center, it doesn’t even matter that the trains are full – the seats are all occupied but there’s standing room, which may not appeal to people living 45 minutes out of Midtown but is fine at a station that is around 10 minutes away today and should be 6 minutes away with better scheduling and equipment.

The land use around Secaucus is also very conducive to TOD. Most of the area around the station is railyards and warehouses, which can pretty easily be cleaned up and replaced with high-density housing, retail, and office development. A small section of the walkshed is wetlands, but the large majority is not and can be built up to be less ecologically disturbing than the truck traffic the current storage development generates.

Politically, this is also far from existing NIMBY suburbia. In North America, the single-family house is held to be sacrosanct, and even very YIMBY regions like Vancouver only redevelop brownfields, not single-family neighborhoods; occasionally there are accessory dwelling units, but never anything that has even medium density or visibly looks like an apartment building. Well, Secaucus Junction is far from the residential areas of Secaucus, so the most common form of NIMBYism would be attenuated.

And yet, there is no concerted effort at TOD. This is not even just a matter of unimaginative politicians. Area advocacy orgs don’t really push for it, and I’m forgetting whether it was ReThinkNYC or the RPA that told me explicitly that their regional rail proposal omits Secaucus TOD on climate adaptation grounds. The area is 2 meters above sea level, and building there is too risky, supposedly, because a 2 meter sea level rise would only flood tens of millions of South Asians, Southeast Asians, and Africans, and those don’t count.

This goes beyond just wasting money on needless infrastructure projects like flood walls, or leaving money on the table that could come from TOD. In the 2000s, New York City was emitting 7 metric tons of CO2 per capita, which was better than Germany and a fraction of the US average. This must have gotten better since – New York had an abnormally high ratio of building emissions (i.e. energy) to transportation emissions (i.e. cars), and in every developed country I’m aware of, only energy emissions have fallen, not car emissions.

A bigger New York, counting very close-in suburbs as New York, is an important part of the American green transition. To have the emissions of the inner parts of the city within the city is a luxury people pay $3,000 a month in rent for; to have it in exurbia means having a smaller car than everyone else in an environment in which accumulating lots of stuff is the only way one can show off status. Breaking the various interests that prevent New York (and Los Angeles, and San Francisco, and Boston, and Washington) from growing denser is a valuable political fight. But here, no such breaking is even needed, because the anti-growth interests think locally, and the only locals around Secaucus Junction live in one high-rise development and would if anything welcome more such buildings in lieu of the warehouses.

And yet, Americans argue from the position of climate resilience against such densification. Normally it’s just a waste of money, but this would not just waste money (through leaving money on the table) but also lead to higher emissions since housing would be built in other metropolitan regions of the US, where there is no public transportation. Once adaptation and resilience became buzzwords, they took over the thinking on this matter so thoroughly that they are now directly counterproductive.
Somehow, the goal of avoiding catastrophic climate change has fallen by the wayside, and the usual American praxis of more layers of red tape before every decisions can be made (about climate resilience, design for equity, etc.) takes over. The means justify the ends: if the plan has the word climate then it must be environmentally progressive and sensitive, because what matters is not outcome (it’s too long-term for populists, and all US discourse is populist) but process: more lawsuits, more red tape, more accretion of special rules that everyone must abide by.

A Bigger City is a Better City

There’s a tendency among a number of important American YIMBYs that bothers me – they speak of development as a bad thing, a great burden that must be shared equally across neighborhoods. I’ve even seen this take regarding immigration, portraying it as such a terrible burden that Germany must undertake to redeem itself after the Holocaust. The underlying assumption is that growth is bad, and the ideal world is static and has people living in small communities.

But what if growth is good? What if more urban development is good? What if immigration is good, and immigrants are good people individually and collectively?

Growth is good

There’s a “growth for its own sake is the ideology of the cancer cell” meme out there. Well, no. Growth is not for its own sake. It’s for the sake of the things you can do in a society that produces more stuff: live longer, own refrigerators and other appliances, travel beyond walking range, communicate with people beyond travel range, get your own room, eat more interesting food than whatever scraps concentration camp prisoners fight over, wear more interesting clothes than concentration camp prisoner uniform, play interesting games, etc.

What is true is that no single element of these is in perfect correlation with wealth. You can even devise a large subset of these that aren’t, and focus on places that are exceptional relative to their income levels; Kerala is popular for its high literacy and life expectancy relative to its wealth. But usually these early investments then pay off in growth – this was the case in 1960s and 70s’ Korea, which was approaching universal literacy at the start of this period with astonishingly low incomes, and then used its advantage in relatively skilled, low-wage work to industrialize.

Urban development is good

The ability to access more stuff easily is a good thing and there’s a reason both employers and residents pay extra to have it. More and bigger buildings stimulate this kind of access. On the production side, this means thicker social networks for people who work in related industries and can come up with new innovations – this is why the tech industry sticks in San Francisco and environs, and not the bay view or the state of California’s public services. This, in turn, raises wages. On the consumption side, this means more variety in what to buy.

Moreover, this is true down to the neighborhood level. A denser neighborhood has more amenities, because more people is a good thing, because new people stimulate new social events, new consumption, and new opportunities for job access. If more people move to your neighborhood, that means first of all that employers are more likely to site jobs where convenient for you, and second of all that the city is likelier to want to build more subway lines in your direction.

A corollary of this is that private developers, as a class, are good, because they convert factors of production like labor and capital into finished, habitable apartments and offices. Yes, they can individually be terrible people. But collectively as a class their effect is good and the state needs to stop treating them as a source of loot to be doled to sympathetic neighborhood groups.

The most frustrating thing about it is that New York specifically likes to extol its own size as a reason for its supposed greatness. But then the idea that an even bigger city is a better city makes the political system there wince, and therefore the city permitted not many more than 20,000 housing units per year at the peak of the pre-virus economy, about one quarter the per capita rate of the Seoul metropolitan region or Tokyo (the city proper, but I think the suburbs have similar housing growth), and one third that of Ile-de-France.

Immigrants are good

Vancouver is a racist city, and I say this having lived in Israel. I somehow found myself in a room at a meetup where an all-white group of people were talking about black men’s penis size. Anti-Semitism, anti-black racism, Sinophobia, hate for indigenous people: you name it, I saw it there, used casually, by people who didn’t even think they were saying something controversial. The representatives of the people of that city have come across the realization that there is extensive immigration to their city and therefore it may be prudent to choke housing development because it’s all for immigrants anyway.

There’s a weird kind of defensiveness about immigration, even in societies where it’s fairly popular. Germany and Sweden both think they’re shouldering a great burden by taking in refugees, and even Germans who identify as left-wing and antiracist seem scared of diverse neighborhoods that immigrants of all social classes don’t find anything wrong with. But Germans at least have the excuse of not being used to diversity, and I think they’re slowly learning to be more tolerant. Vancouverites are used to diversity and decided they prefer racial purity to growth. Housing growth in Vancouver was healthy before the crisis but a lot of political forces in the city seem intent on making sure this doesn’t happen again, and with the transit-oriented development sites filling fast, the region will soon have to make tough decisions on upzoning single-family neighborhoods 600 meters from the train rather than 100 meters.

For the same reason a bigger city is a better city, the movement of immigrants into a country is an unalloyed good for the recipient country, unless perhaps that country is extremely dependent on primary resources, which Germany isn’t and even British Columbia isn’t.

Developers may be individually bad people but collectively good as a class; with immigrants, the good is both individual and collective. Immigrants as individuals are good, and it’s better for a country to have more of them (us, really): if anyone wants me to babble about all the statistics about employment (even for refugees in Germany), lower crime rates, cultural emphasis on skills and education, etc., I’ll be happy to do so in comments. Immigrants as a collective are likewise good, through introducing more cultural variety to a place and promoting cultural and social ties to parts of the world this place may not have thought to learn much from.

How Climate Change is Like War

The military historian Danny Orbach writes about the popular analogy of the Covid-19 crisis to war, and what kinds of lessons from military history policymakers can learn. He of course understands the big differences – he doesn’t talk about tactics or operations, but rather about common issues regarding public support and the price of war. It’s not my intention to talk about the virus in the post, but rather, of an even bigger long-term global crisis: catastrophic climate change. Danny’s insights form a good guideline to why climate action is so difficult.

Popular willpower in crisis

The core of Danny’s post is that the public’s willingness to bear personal costs is limited, and can change during the crisis, usually for the worse. He gives a number of examples from historic wars, and concludes (bold in original),

Thus, the main moral is as follows: if you’re a leader facing a crisis like a war or a pandemic, the public trust must always be on your mind. Remember that it is always limited, and tends to run out much faster than you imagine. Most of the American public, for example, was willing to sacrifice a lot to save South Vietnam and Southeast Asia from communism, but not to pay an unlimited economic and human cost as General Westmoreland demanded. The Viet Cong and North Vietnam did not manage to defeat the United States, only to stall for time and exhaust it until the public trust of the American public ran out.

When fighting a pandemic, like the corona crisis, it’s equally necessary to think about the consequences of each move not just for the fight against the plague but also for the public trust for facing it. The main factor here is time. The more time passes, and the economic damage grows, the more the public trust runs out at an ever increasing rate. For this reason, policymakers must understand that they have limited time, and they must take every step to shorten it: for example, massive and fast increase in testing (even at research labs, which the Ministry of Health harassed for weeks), shortening red tape in obtaining results, handing out masks even at an early stage, and fast contact tracing to replace the general lockdown with targeted lockdowns. In Israel, the Ministry of Health understood this too late, in my estimation because of the public pressure to end the lockdown after Passover. It’s also important to understand that every further tightening wastes the public trust even faster, especially if it looks petty and redundant (the 100-meter limit on out-of-home trips, harassment of beach surfers, cutting the quota of permitted workers per business from 30% of normal to 15%). Finally, so that the public trust will last longer, personal example of the leaders is also important. When the Israeli public saw [PM Bibi] Netanyahu, [President Rubi] Rivlin, [Immigration and Absorption Minister Yoav] Galant, [Health Minister] Litzman, and other policymakers flout their own guidelines, the public’s willingness to sacrifice for a length period of time naturally decreased.

The details are naturally tailored to the situation of Israel, whose infection rates are low by Western standards (but high by democratic Asian ones), but the broad outline isn’t. Capricious rules lead to widespread derision even among people who support the overall program, even in relatively high-trust societies like Germany.

The implications for climate change

If public trust is a limited resource, then climate action has to involve a plan for conserving it. It’s related to plans by political operatives to conserve political capital, but is not the same – political capital refers to the support of political elites, especially elected officials, whereas public trust is broader. Disempowering some local group costs political capital but may increase public trust if it gives the appearance of faster and more decisive action; authoritarian leaders habitually surround themselves with corrupt sycophants who they can publicly remove to popular acclaim.

So how can governments fight climate change while maintaining public support for such measures? Visible green infrastructure helps, which nearly everyone understands, but what people don’t understand so easily is that the program itself cannot have too high a cost. The sort of leftists who propose Green New Deal programs don’t think trillions of dollars in deficit spending is ever bad, but the general public differs; when unemployment is not too high, it’s important to limit the costs. Shortening lead time from when a project is announced to when it opens is important as well.

Good interim measures are helpful, too, but they have a limit. Paris is one of the most polluted cities in Europe, but it is not Delhi; reducing pollution there is helpful but evidently did not get unanimous support. So reducing pollution and car accidents buys some public trust, but not to infinite extent. Building more housing to reduce rents in expensive cities is the same – it helps alleviate the stereotype that dense cities are expensive, but this doesn’t equal universal public patience for programs that abolish mobility by car.

The good news is that the highest carbon tax regime in the world, Sweden, has also had one of the stronger economic growth rates in the first world. So the economic cost of what’s been done so far does not exist. It’s a matter of the cost of further action, which includes limiting flights and cars, directing development to dense transit-oriented cities, etc.

The issue of personal example

Danny brings up the personal example issue among top leaders. I would add that personal example among a broader segment of the population is even more important – the EU plans for a Green Deal call for fairly high (though not Swedish, let alone fully damage-mitigating) taxes on aviation fuel within the EU, a policy that would help with public trust because of perceptions that domestic carbon taxes do not levy the tax on the rich because they do not cover international flights.

Among the literal leaders, the situation is more delicate. The threat model of a national leader, who is a personal target for state-level actors and major terrorist groups, is not the same as that of the ordinary person, who to the terrorist is just a statistic. To the ordinary person, a train has lower terrorism risk than a plane, since a bomb can’t kill the people on an entire train. To the national leader, a train has higher risk, because attacks on the fixed infrastructure (such as bridges) are easier to the group that wants to kill a particular person. When François Hollande traveled France by TGV rather than by plane to lead by example, soldiers had to guard every bridge. In this situation, it is not hypocritical for leaders to fly even when a train is available.

All of this is much easier when national leadership is more distributed and there is no executive president who provides a juicy target to hostile actors. Switzerland’s plural executive does not have the massive security of an ordinary head of government, and its members do take the tram around Bern, which would be unthinkable for a French president.

But even that has a real limit. Populists make up stories of hypocrisy all the time. Emmanuel Macron does not supply any proper scandals, and may be the first leader in the history of France who is faithful to his wife, so rumormongers and fake news sites step in with fake quotes and stories. The point of personal example isn’t to get unanimous consent; repression is not an avoidable aspect of climate action, or for that matter of having a state to begin with. The point is to shrink the opposition to the most risible elements, who the general public won’t mind seeing ignored or repressed if need be.

Climate change as forever war

A more interesting case study of war, not in the original post, is the modern forever war. The US has been in Afghanistan since 2001, in a conflict that has no end in sight; France is likewise in a forever war in its former Sahelian colonies. There’s a lot of mockery about this, but the general public is broadly okay with this situation, because the cost to the public in the US and France is so low. (Afghans, Malians, and Nigeriens naturally do not get a vote.) Even the limited extent of sacrifice the French and American voting publics endured trying to hold on to Vietnam would not be acceptable over such a long time, let alone that of a total war like World War Two. Thus, a forever war cannot be a total war.

The rhetoric about climate change is that of a total war, but that means little – leaders routinely engage in apocalyptic rhetoric in limited wars, like Israel’s cold war with Iran (“the year is 1938 and Iran is Germany” per Netanyahu), the American war on Iraq in 2003 (“we don’t want the smoking gun to be a mushroom cloud” per Condoleeza Rice). Everything else about climate change points to a forever war. The time horizon is far, with discussions of reducing emissions sharply by 2030 and eliminating them by 2050.

So if it’s a forever war, public trust is especially limited. It makes it especially important to make climate action feel like not much of a sacrifice, but an opportunity to live in rich, dynamic transit cities while paying affordable rents. This is not going to be a universal positive feeling, but the point, again, is not to get universal support, just to conserve public trust enough to implement the requires programs successfully.

Holidays by Train

What does leisure travel look like in a world where driving and flying are prohibitively expensive, and rail travel is more abundant and convenient?

It does not look exactly like today’s travel patterns except by train. Where people choose to travel is influenced by cultural expectations that are themselves influenced by available technology, prices, and marketing. Companies and outfits providing transportation also market the destinations for it, whether it’s a private railway selling real estate in the suburbs on its commuter lines, an airline advertising the resort cities it flies to, or a highway authority promoting leisure drives and auto-oriented development. The transition may annoy people who have gotten used to a set of destinations that are not reachable by sustainable transportation, but as the tourism economy reorients itself to be greener, new forms of leisure travel can replace old ones.

Historic and current examples

Railroads were the first mode of mechanized transportation, and heavily marketed the destinations one could reach by riding them. The involvement of some railroads in suburban development, such as Japanese private railroads or the original Metropolitan Railway, is fairly well-known to the rail advocacy community. Lesser-known but equally important is rail-based tourism. Banff and Jasper owe their existence to transcontinental railways, Lake Louise was founded as a montane resort on top of the Canadian Pacific Railway, Glacier National Park opened thanks to its location next to the (American) Great Northern. Even Niagara Falls, for all its unique natural beauty, benefited from heavy marketing by the New York Central, which offered the fastest route there from New York.

Other than Niagara Falls, the North American examples of rail-based tourism are all in remote areas, where people no longer travel by train. Some may drive, but most fly over them. The American system of national parks, supplemented by some state parks like the Adirondacks and Catskills, has thus reoriented itself around long-distance leisure travel by car. This includes popular spots like Yellowstone, Bryce, Grand Canyon, and Yosemite in the United States, Schwarzwald in Germany, or the tradition of summer homes in outlying areas in Sweden or the American East Coast.

The airline industry has changed travel patterns in its own way. Planes are fast, and require no linear infrastructure, so they are especially suited for getting to places that are not easy to reach by ground transportation. Mass air travel has created a tourism boom in Hawaii, the Maldives, southern Spain, the Caribbean, any number of Alpine ski resorts, Bali, all of Thailand. Much of this involves direct marketing by the airlines telling people in cold countries that they could enjoy the Mediterranean or Indian Ocean sun. Even the peak season of travel shifted – English vacation travel to the Riviera goes back to the early Industrial Revolution, but when it was by rail and ferry the peak season was winter, whereas it has more recently shifted to the summer.

The politics of vacation travel

In some cases, states and other political actors may promote particular vacation sites with an agenda in mind. Nationalists enjoy promoting national unity through getting people to visit all corners of the country, and if this helps create a homogeneous commercial national culture, then all the better. This was part of the intention of the Nazi program for Autobahn construction and Volkswagen sales, but it’s also very common in democratic states that aim to use highways for nation-building, like midcentury America.

If there’s disputed land, then nationalists may promote vacation travel there in order to instill patriotic feelings toward it among the population. Israel has turned some demolished Arab villages into national forests, and promoted tourism to marginal parts of the country; settler forces are likewise promoting vacation travel to the settlements, cognizant of the fact that the median Israeli doesn’t have strong feelings toward the land in the Territories and wouldn’t mind handing them over in exchange for a peace agreement.

Politics may also dictate promoting certain historic sites, if they are prominent in the national narrative. In the Jewish community, two such trips are prominent, in opposite directions: the first is the organized Israeli high school trips to Poland to see the extermination camps and the ghettos, perpetuating the memory of the Holocaust in the public; the second is Birthright trips for Jews from elsewhere to visit Israel and perhaps find it charming enough to develop Zionist feelings toward it.

So what does this mean?

I bring up the politics and economic history of leisure travel, because a conscious reorientation of vacation travel around a green political agenda is not so different from what’s happened in the last few generations. The big change is that the green agenda starts from how people should travel and works out potential destinations and travel patterns from there, whereas nationalist agendas start from where people should travel and are not as commonly integrated with economic changes in how people can travel.

The point, then, is to figure out what kinds of vacation travel are available by train. Let’s say the map that I put forth in this post is actually built, and in contrast, taxes on jet fuel as well as petrol rise by multiple euros per liter in order to effect a rapid green transition. Where can people go on vacation and where can’t they?

Intercity leisure travel

By far the easiest category of leisure travel to maintain in a decarbonized world is between cities within reasonable high-speed rail range. Tens of millions of people already visit Paris and London every year, for business as well as for tourism. This can continue and intensify, especially if the green transition also includes building more housing in big high-income cities, creating more room for hotels.

High-speed rail lives on thick markets, the opposite of air travel. Once the basic infrastructure is there, scaling it up to very high passenger volumes on a corridor is not difficult; the Shinkansen’s capacity is not much less than 20,000 passengers per hour in each direction. Many people wish to travel to Paris for various reasons, so the TGV makes such travel easier, and thus even more people travel to and from the capital. A bigger and more efficient high-speed rail network permits more such trips, even on corridors that are currently underfull, like the LGV Est network going toward much of Germany or the LGV Sud-Europe Atlantique network eventually connecting to much of Spain.

Germany does not have a Paris, but it does have several sizable cities with tourist attractions. A tightly integrated German high-speed rail network permits many people in Germany and surrounding countries to visit the museums of Berlin, go to Carnival in Cologne, attend Oktoberfest in Munich, see the architecture of Hamburg, or do whatever it is people do in Frankfurt. The international connections likewise stand to facilitate German travel to neighboring countries and their urban attractions: Paris, Amsterdam, Basel, Vienna, Prague.

Intercity travel and smaller cities

Big cities are the most obvious centers of modern rail-based tourism. What else is there? For one, small cities and towns that one encounters on the way on corridors designed to connect the biggest cities. Would Erfurt justify a high-speed line on its own? No. But it has an ICE line, built at great expense, so now it is a plausible place for travel within Germany. The same can be said about cities that are not on any plausible line but could easily connect to one via a regional rail transfer. When I fished for suggestions on Twitter I got a combination of cities on top of a fast rail link to Berlin, like Leipzig and Nuremberg, and ones that would require transferring, like Münster and Heidelberg.

Even auto-oriented vacation sites can have specific portions that are rail-accessible, if they happen to lie near or between large cities. In North America the best example is Niagara Falls, conveniently located on the most plausible high-speed rail route between New York and Toronto. In Germany, South Baden is normally auto-oriented, but Freiburg is big enough to have intercity rail, and as investment in the railroad increases, it will be easier for people from Frankfurt, Munich, and the Rhine-Ruhr to visit.

Farther south, some Swiss ski resorts have decent enough rail connections that people could get there without too much inconvenience. If the German high-speed rail network expands with fast connections to Basel (as is planned) and Zurich (which is nowhere on the horizon), and Switzerland keeps building more tunnels to feed the Gotthard Base Tunnel (which is in the Rail 2035 plan but with low average speed), then people from much of central and southern Germany could visit select Swiss ski resorts in a handful of hours.

Non-urban travel

The green transition as I think most people understand it in the 21st century is an intensely urban affair. Berlin offers a comfortable living without a car, and as the German electric grid replaces coal with renewables (slower than it should, but still) it slowly offers lower-carbon electricity, even if it is far from Scandinavia or France. Small towns in contrast have close to 100% car ownership, the exceptions being people too poor to own a car. But the world isn’t 100% urban, and even very developed countries aren’t. So what about travel outside cities large and small?

The answer to that question is that it depends on what cities and what railroads happen to be nearby. This is to a large extent also true of ordinary economic development even today – a farming town 20 km from a big city soon turns into a booming commuter town, by rail or by highway. Popular forests, trails, mountains, and rivers are often accessible by railroad, depending on local conditions. For example, some of the Schwarzwald valleys are equipped with regional railways connecting to Freiburg.

Here, it may be easier to give New York examples than Berlin ones. Metro-North runs along the banks of the Hudson, allowing riders to see the Palisades on the other side. The vast majority of travelers on the Hudson Line do not care about the views, but rather ride the train to commute from their suburbs to Manhattan. But the line is still useful for leisure trips, and some people do take it up on weekends, for example to Poughkeepsie. The Appalachian Trail intersects Metro-North as well, though not many people take the train there. Mountains are obstacles for rail construction, but rivers are the opposite, many attracting railroads near their banks, such as the Hudson and the Rhine.

Conversely, while New York supplies the example of the Hudson Line, Germany supplies an urban geography that facilitates leisure travel by rail out of the city, in that it has a clear delineation between city and country, with undeveloped gaps between cities and their suburbs. While this isn’t great for urban rail usage, this can work well for leisure rail usage, because these gaps can be developed as parkland.

Where’s the catch?

Trains are great, but they travel at 300-360 km/h at most. An aggressive program of investment could get European trains to average around 200-240 km/h including stops and slow zones. This allows fast travel at the scale of a big European country or even that of two big European countries, but does not allow as much diversity of climate zones and biomes as planes do.

This does not mean trains offer monotonous urban travel. Far from it – there’s real difference in culture, climate, topography, and architecture within the German-speaking world alone, Basel and Cologne looking completely different from each other even as both are very pretty. But it does limit people to a smaller tranche of the world, or even Europe, than planes do. A Berliner who travels by train alone can reach Italy, but even with a Europe-scale high-speed rail program, it’s somewhat less than 4:45 to Venice, 5:00 to Milan, 5:30 to Florence, 6:45 to Rome, 7:45 to Naples. It’s viable for a long vacation but not as conveniently as today by plane with airfare set at a level designed to redraw coastlines. Even in Italy, there’s great access to interesting historic cities, but less so to coastal resorts designed around universal car use, located in topographies where rail is too difficult.

The situation of Spanish resorts is especially dicey. There isn’t enough traffic from within Spain to sustain them, there are so many. Germany is too far and so is Britain if planes are not available at today’s scale. What’s more, people who are willing to travel 7 or 8 hours to a Spanish resort can equally travel 5 hours to a French or Italian one. The French Riviera has gotten expensive, so tourism there from Northern Europe feels higher-income to me than tourism to Alicante, but if people must travel by train, then Nice is 4:30 from Paris and Alicante is 7:30, and the same trip time difference persists for travelers from Britain and Germany.

Is it feasible?

Yes.

High carbon taxes are not just economically feasible and desirable, but also politically feasible in the context of Europe. The jet fuel tax the EU is discussing as part of the Green Deal program is noticeable but not enough to kill airlines – but what environmental policy is not doing, the corona virus crisis might. If low-cost air travel collapses, then much of the market for leisure travel specifically will have to reorient itself around other modes. If Europe decides to get more serious about fighting car pollution, perhaps noticing how much more breathable the air in Paris or Northern Italy is now than when people drive, then taxes and regulations reducing mass motorization become plausible too.

The transition may look weird – people whose dream vacation involved a long drive all over Italy or France or Germany may find that said vacation is out of their reach. That is fine. Other vacations become more plausible with better rail service, especially if they’re in big cities, but also if they involve any of a large number of natural or small-town destinations that happen to be on or near a big city-focused intercity rail network.

Coronavirus and Cities

There’s a meme going around the American discourse saying that the Covid-19 outbreak is proving that dense cities are bad. Most of this is bullshit from politicians, like Andrew Cuomo. But now there’s serious research on the subject, by a team at Marron led by the excellent Solly Angel. Solly’s paper looks at confirmed infection rates in American metropolitan areas as of late March and finds a significant correlation with density, but no significant correlation between deaths and density. In this post, I’m going to look at Germany. Here, big or dense cities are not disproportionately affected by the virus.

Why Germany?

Germany has pretty reliable data on infections because testing is fairly widespread, so far covering 1.6% of the population. Moreover, testing is this high throughout the country, whereas in the US, there are vast differences in testing as well as in other aspects of response by state, e.g. New York has tested 2% of state population, Louisiana 1.9%, Florida 0.8%, California and Texas 0.4%.

I also have granular data on infection rates in Germany, thanks to Zeit. The data I’m using is synchronic rather than diachronic, i.e. I’m looking at current infection rates rather than growth. Growth rates aren’t the same everywhere – in particular, they’re lower in North Rhine-Westphalia, which was the epicenter of the German outbreak weeks ago, than in southern Germany – but they’re low enough that I don’t think the situation will change in short order.

Size and density

Within Germany, there aren’t huge gradients in density between cities. More central neighborhoods have taller buildings than less central ones and higher ratios of building to courtyard, but there are no huge differences in residential built form the way there are between American cities.

For example, look at densities by neighborhood in Berlin, Hamburg, Munich, Frankfurt, Cologne, Stuttgart. There aren’t big differences in the pattern: the densest inner neighborhoods have about 15,000 people per square kilometer, and density falls to 3,000-5,000 in outer neighborhoods. Hamburg has a few areas with no residents, since they include the city’s immense port. Stuttgart’s densest districts are in the 5,000-6,000/km^2 range, but that’s because the districts are not very granular and the dense ring of inner-city neighborhoods just outside the commercial center is not congruent to district boundaries.

The upshot is that the big question about density and the risk of epidemics cannot be answered by comparing German cities to one another, but only to the surrounding rural areas. So the real question should be, are the major German cities more afflicted by the virus than the rest of the country?

Infection rates by city

As of the end of 2020-04-09, Zeit reports 118,215 confirmed coronavirus cases, which is 14.2 per 10,000 people. The six states of former East Germany, counting the entirety of Berlin and not just East Berlin, total only 12,873 cases, or 7.9 per 10,000. The Robert Koch Institute’s definitive numbers are slightly lower, but are also slightly outdated, as states sometimes take 1-2 days to report new cases. Going by Zeit data, we have the following infection rates by major city:

City Population Cases Cases/10,000
Berlin 3,644,826 4,357 12
Hamburg 1,841,179 3,518 19.1
Munich 1,471,508 4,123 28
Hanover* 1,157,624 1,389 12
Cologne 1,085,664 1,947 17.9
Frankfurt 753,056 730 9.7
Stuttgart 634,830 1,056 16.6
Dusseldorf 619,294 737 11.9
Leipzig 587,857 451 7.7
Dortmund 587,010 507 8.6
Essen 583,109 578 9.9
Bremen 569,352 425 7.5
Dresden 554,649 476 8.6
Nuremberg 518,365 733 14.1
Duisburg 498,590 525 10.5

*Zeit reports Hanover data for the entire region; the city itself only has 538,000 people

The sum total of the fifteen largest cities in Germany, with 15.1 million people, is 21,552 cases, which is 14.3 cases per 10,000 people. This is the same as in the rest of the country to within measurement error of total population, let alone to within measurement error of Covid-19 cases.

State patterns

Bavaria and Baden-Württemberg both have high confirmed case counts, averaging 23.6 and 21.7 per 10,000 people respectively. Munich’s rate is somewhat higher than the Bavarian average, but its suburbs are on a par with the city, as are some entirely rural areas all over the state. Oddly, the second and third largest cities in the state, Nuremberg and Augsburg, have lower rates – though both Fürth and the rural areas around Nuremberg and Fürth have very high rates as well.

The pattern around Stuttgart is perhaps similar to that around Nuremberg. The city’s infection rate is not much higher than the national average, but the infection rates in counties and cities around it are: Esslingen (24.8/10,000), Reutlingen (29.3), Tübingen (47.9), Böblingen (28.4), Ludwigsburg (22.9).

NRW’s rate is 13.9/10,000, i.e. essentially the same as the national average. The worst is in areas right on the Belgian border, like Heinsberg. Cologne has a noticeably higher rate, but Dusseldorf has a lower rate, and the cities of the Ruhr area a yet lower one. Don’t let the fact that these cities only have around 600,000 people each fool you – they’re major city centers, with the density and transportation network to boot. Dortmund alone has three independent subway-surface trunks, meeting in a Soviet triangle; total public transportation ridership in Dortmund across all modes is 130 million per year. Essen has two subway-surface trunks, one technically light rail and one technically a streetcar tunnel; total ridership there and in Mülheim, population 170,000, is 140 million per year.

What’s going on in Frankfurt?

There is some correlation between wealth and a high infection rate, since Bavaria and Baden-Württemberg have high rates of confirmed cases and the East German states have low ones. However, Frankfurt’s rate is fairly low as well, as are the rates of surrounding suburbs like Offenbach and Darmstadt. Frankfurt is not as rich as Munich, but like Hamburg and Stuttgart, it is fairly close, all three metro regions surpassing Ile-de-France and roughly matching London per Eurostat’s per capita market income net of rent and interest table.

In particular, it is unlikely that the greater international connections of rich cities like Munich explain why they have higher rates. Frankfurt Airport is the primary international hub in Germany, with many passengers standing in line at the terminal and coughing on other people. It would have been the easiest for imported infections to arise there rather than in the Rhineland, and yet it doesn’t have a major cluster.

Frankfurt also has extensive O&D business travel; Wikipedia puts it third after Berlin and Munich, but Frankfurt’s visitors are most likely disproportionately business travelers rather than tourists. This is important, since February and March are low season for tourism, whereas business travelers are if anything more likely to be going to Frankfurt during low season because during the summer high season they go on vacation in more interesting places.

So, is urban density more vulnerable to infectious diseases?

Probably not. Rural Germany has some areas with Korean levels of confirmed cases per capita, and some where 1% of the population and counting has tested positive. Overall, there isn’t much of an urban-rural difference – the 15 largest cities in Germany collectively have the same rate as the rest of the country, and moreover, where there are notable state-level patterns, they also hold for the states’ big cities. If Munich’s high infection rate is caused by its high rate of U- and S-Bahn usage, then the suburbs should have lower infection rates (they’re more auto-oriented) and the rest of Bavaria should be much lower; in reality, nearly the entirety of Bavaria has high rates.

The highest density in the developed world does not exist in Germany. German neighborhoods top at 15,000/km^2, with individual sections scratching 20,000; Paris tops at 40,000 in the 11th Arrondissement, New York scratches 50,000 on the Upper East Side, and Hong Kong has entire districts in the 50s. So the “density doesn’t matter” null hypothesis, while amply supported on German data, requires some extrapolation for the handful of world cities with the highest density.

Nonetheless, these are not huge caveats. German data is pretty reliable in the density range for which it exists; if cities today had the infection rates they did before modern plumbing, when a noticeable fraction of a city’s population might die in a single epidemic, it would be noticeable today. But there is no mass death, nor are urban hospitals here collapsing under the strain. On both the level of a basic sanity check and that of looking at the data, cities do not appear to be vulnerable to disease.

What does this mean?

There is no need to redesign the world to be less urban or dense in the wake of the coronavirus. Nor is there any need to let go of collective public transportation. The Rhine-Ruhr and Frankfurt are not Tokyo or Hong Kong in their public transportation usage, or even Paris or Berlin, but they have extensive urban and regional connections by train. And yet, the Heinsberg disaster zone and the high infection rate of Cologne have not been exported to the Ruhr, nor is southern Hesse particularly affected by German standards.

The virus has exposed serious issues with cleanliness. But even given Germany’s current levels of urban cleanliness, those issues are not enough to turn Berlin, Frankfurt, Hanover, or the Ruhr cities into hotspots. There is no danger to public health coming from urbanization, density, development, or public transportation. Cities should keep investing in all four in order to reduce the costs of transportation and environmental damage, even if the occasional failed politician blames the virus on density to deflect attention from his own incompetence.