Category: Development
CNBC Video on Construction Costs
There’s a CNBC video about construction costs. It references our data a bunch, and I’d like to make a few notes about this.
Urban rail and GDP
CNBC opens by saying better urban rail would increase American GDP by 10%, sourcing the claim to our report. This isn’t quite right: our report references Hsieh-Moretti on upzoning in New York and the Bay Area; they estimate that relaxing zoning restrictions in those two regions to the US median starting in 1964 would have, assuming perfect mobility, raised American GDP by 9% in the conditions of 2009 (and the effect size should have grown since).
The relevance of transportation is that the counterfactual involves both regions growing explosively: New York employment grows by 1,010% more than in reality, so by a factor of about five compared with actual 1960s population and about 3.6 compared with actual 2009 (in 1969-2009, metro employment grew 35.4%), and likewise San Francisco would be 3.9 times bigger than in reality in 2009 and San Jose, having had much faster growth in the previous decades in reality, would have still been 2.5 times bigger. Hsieh-Moretti assume infrastructure expands to accommodate this growth. But if it can’t, then the growth in GDP is lower and the growth in consumer welfare is massively lower due to congestion externalities, hence our citation of Devin Bunten’s paper on this subject.
So the issue isn’t really that building subways would increase American GDP by 10%. It’s that building subways paired with transit-oriented development, the latter proceeding at levels that would raise regional population at a somewhat faster rate than in 1900-30, would do so. The issue of costs in the United States is only peripherally connected with the lack of transit-oriented development, an American peculiarity in which more housing is built in poorer regions than in the largest, richest metro areas. In contrast, Canada gets TOD right and yet is rapidly converging to American construction costs, Toronto’s reaching around US$1 billion/km per the latest estimates. Germany, conversely, is rather NIMBY, although its rich cities still build much more than New York or the Bay Area, and is capable of building subways just fine.
The portrayal of Second Avenue Subway
The portrayal looks mostly good. It points out the tension between Second Avenue Subway’s extreme cost per km and reasonable cost per rider, the latter comparing very favorably with Los Angeles and about on a par with Grand Paris Express. Second Avenue Subway Phase 1 was a bad project in the sense that it was severely overbuilt and poorly managed, but were it not possible to build it for cheaper (which it was), it would be a good value proposition, and even Phase 2 is marginal rather than bad. The issue is that New York’s cost-effectiveness frontier, at current costs, makes it capable of building a few km of subway per generation, whereas that of Paris, a city that isn’t especially cheap to build in, enables the 200 km Grand Paris Express.
The video goes over our comparison of station to tunnel costs, and connects this with various forms of surplus extraction; Eric gives examples of how cities demand betterments and do general micromanagement and threaten to withhold permits unless they get what he calls bribes. It gets the picture well for how important actors, up to and including the mayor of New York, just treat infrastructure as an opportunity to grab surplus for other priorities.
There are a few errors, all minor:
- The visualization of Second Avenue Subway has it running down First Avenue in Midtown and Downtown Manhattan, which was certainly not in the original plan and I think still is not.
- The video states the cost of Grand Paris Express at $38 billion, I think out of converting euros to dollars at exchange rate, whereas in PPP terms it’s $47 billion in 2012 prices and $60 billion in 2022 dollars, either way about 10 times the absolute cost of Second Avenue Subway Phase 1 for 10 times the projected ridership and 70 times the overall length. But the costs per rider are correct, at least.
- I’m not sure why, but the Madrid numbers are stated to be around $200 million/km, which is a cost that I don’t think exists there – costs in our database don’t include the latest lines there, but the ongoing expansion program is 40.5 km for 2 billion euros, which in PPP terms is around $70 million/km, I think all underground.
- The section on soft costs says that they were 21% of Second Avenue Subway’s overall costs, compared with a norm of 5-10% elsewhere. This is not quite true – they were 21% of the hard costs (and the same is true of the 5-10% figure); their share of overall costs was therefore a bit lower.
Carmen Bianco and Robert Puentes
Three people are extensively interviewed in the video. The first is Carmen Bianco, who was New York City Transit head in 2013-5. The second is Eric. The third is Eno’s Robert Puentes. The interviews are pretty good (by which I mean those with Bianco and Puentes – I of course find what Eric says good I’m the least impartial judge on this). There’s also a short quote from Bent Flyvbjerg about construction productivity, which isn’t quite true (productivity is rising in Sweden, just at lower rates than general growth).
Puentes talks about standardization, comparing the custom-designed stations in the United States with the standardized ones in Copenhagen. He also talks about the benefits of utilitarian stations and connects this with standardization – American subway and light rail stations aren’t particularly nice (the overbuilding goes to crew break rooms and crossovers, not passenger facilities), but one way local political actors get to feel important is making each station a bit different, and I’m glad he highlights this connection between overbuilding and poor standardization. But I think he somewhat errs in that he says that one cause of this among a few is that American cities build little subway tunneling. Copenhagen, after all, built its first line in the 1990s and early 2000s (using consultants, since there was no preexisting in-house staff and no political appetite to staff up); it just made the right design decision to standardize, which has helped it build a subway even at not especially low costs, in a fairly small city.
Then there’s Bianco, who I think appears talking more than anyone else, even Eric. He gives the standard list of problems in New York: it’s a dense city with a lot of complex underground infrastructure, utility relocation is difficult, and so on. At least on camera, he doesn’t make excuses. It’s just, complex historic utilities are not unique to New York, and I don’t know to what extent he understands that New York can learn this from Italian cities (or from London, which I believe has very good underground utility mapping). I assume Bianco isn’t generally great about this since he was in charge in 2013-5 and didn’t reform this system, but he doesn’t come off as repulsive, and it’s plausible that he’s more reasonable knowing not what he may not have 10 years ago.
Berlin’s U-Bahn Expansion Plan
An obscure change in German benefit-cost analysis regulations has led to expansive proposals for urban rail construction in Germany. In Berlin, where ongoing coalition negotiations between CDU and SPD are leading in a developmentalist cars-and-trains direction, this led BVG to propose a massive program for growing the U-Bahn from its current 155 km of route-length to 318. The BVG proposal is split fairly evenly between good lines and lines that duplicate the S-Bahn and have little transportation value, and yet I’ve not seen much discussion of the individual technical merit of the program. Instead, anti-developmental activists who think they’re being pro-environment, such as BUND, regurgitate their anti-U-Bahn conspiracy theories and go to the point of associating subway tunneling with the Nazis. (I, unlike native Europeans, associate the Nazis with the Holocaust instead.)
What is the BVG proposal?
A number of media outlets have produced maps of the proposal; here is Tagesspiegel’s, reproduced here because it shows S-Bahn and regional lines as thin but visible lines.

All nine lines of the U-Bahn are to be extended, most in both directions; U3 and U4, currently a branch of U1 and a low-ridership shuttle line respectively, are to be turned into full main lines via Mitte. In addition, a ring line called U0 is to be built, duplicating the Ringbahn on its western margin and taking over some lines currently planned as radial extensions to Tegel, and running as a circumferential at consistently larger radius than the Ring to the south, east, and north.
Background
The immediate news leading BVG to propose this plan is a combination of federal and city-level changes. The federal change is obscure and I only saw it discussed by one low-follower account on Twitter, Luke Horn. Luke points out that after years of red tape, the federal government finally released its updated benefit-cost analysis regulations. As those are used to score projects, city and state governments are required to follow exact rules on which benefits may be counted, and at what rate.
One of these benefits is modal shift. It’s notoriously hard to measure, to the point that anti-U-Bahn advocates argued based on one low-count measurement that U-Bahn construction generated more emissions than it saved through modal shift; their study has just been retracted for overestimating construction emissions, but the authors are unrepentant.
At any rate, on the 21st, the new federal rules were finally published. Greenhouse gas emissions avoided through modal shift are to be counted as a benefit at the rate of 670€ per metric ton of CO2 (see PDF-p. 243). This is a high number, but it’s only high when it comes to pushing carbon taxes through a political system dominated by old climate denialists; by scientific consensus it’s more reasonable – for example, it’s close to the Stern Report estimates for the 2020s. If Germany imposed a carbon tax at this rate, and not the current rate of 55€/t, the fuel price here would grow by around 1.50€/liter, roughly doubling the price and helping kill the growing market for SUVs and luxury cars. If that is the rate at which modal shift is modeled, then even with an undercount of how urban rail construction substitutes for cars, many otherwise marginal lines pencil out.
The city-level change is that Berlin just had a redo of the 2021 election, and while technically the all-left coalition maintained its majority, CDU got the most votes, which gave Mayor Franziska Giffey (SPD) the excuse she needed to break the coalition and go into a grand coalition negotiation with CDU. Giffey had had to resign from the federal cabinet in the late Merkel era when it turned out that she had plagiarized her thesis, leading the university to revoke her degree, but out of shamelessness she remained Berlin SPD’s mayoral candidate and won in 2021. The Greens thought little of having to serve under such a scandalized mayor, and out of personal pettiness, Giffey, politically well to the right of most SPD voters anyway, accused them of personally disrespecting her and went into negotiations with CDU.
The importance of this is that the Greens (and Die Linke) are a pro-tram, anti-U-Bahn, NIMBY party. When CDU and SPD said they’d finally develop the parade of Tempelhofer Feld with housing, an advisor to a Green Bundestag member accused them of wanting to develop the area out of personal spite, and not, say, out of wanting Berlin to have more housing. Under the all-left coalition, U-Bahn planning continued but at a slow pace, and by far the most important extension on a cost per rider basis, sending U8 north to Märkisches Viertel, was deprioritized; CDU’s campaign in the election was mostly about parking and opposition to road diets, but it also hit the Greens on their opposition to U-Bahn development.
The plan as it stands has a few sops to CDU. The U0 ring is the most significant: in a country where the median age is 45, under-18s can’t vote, and CDU is disproportionately an old people’s party, CDU’s median voter was an adult through the era of the Berlin S-Bahn Boycott, as both halves of the S-Bahn were run by the East during the Cold War. Where CSU supports the Munich S-Bahn as a vehicle for conservatives to move away from the left-wing city while still having access to city jobs, Berlin CDU is uniquely more negative toward the S-Bahn. Thus, the plan has a line that mostly duplicates the Ring. The U2 expansion to the west duplicates the S-Bahn as well, especially west of Spandau. Finally, the proposed western terminus of U1 is explicitly billed as a park-and-ride, which type of service Berlin CDU has long supported.
But other than the U0 ring, the plan is not too different from things that have long been planned. The longest segment other than U0 is the U3 extension to the northeast; this was part of the 200 km plan already in the 1950s, except originally the plan for this extension was not to hook into U3 as on post-Cold War plans but to run along an alignment closer to that of U9, whose southern terminus at Rathaus Steglitz was even built with room for this line, then numbered U10. A fair number of other sections on BVG’s map have a long history of languishing in unfavorable benefit-cost ratios. Other than U0, the plan is rather similar to what was studied in 2019:

However, this history has not prevented people from literally comparing BVG’s plan to the Nazis. The more prosaic reality is that the 1938 Welthauptstadt Germania U-Bahn expansion plan, other than its ring (built inside of the Ringbahn, the opposite of U0), made it to the 200 km plan and most of the lines it proposed were built, the largest change being that Cold War realities made West Berlin build U7 and U9 to serve the center of West Berlin at the Zoo rather than as additional lines serving Mitte.
The issue of costs
I have not seen an official cost estimate. BUND, which opposes the plan on the grounds that building tramways is better, says that it would cost 35 billion euros. Judging by recent construction costs of realized and proposed lines in Berlin, I think this estimate is broadly correct, if the project is run well.
The estimate is then about 210 million €/km, which looks realistic. The construction of the U5 extension from Alexanderplatz to Brandenburger Tor opened in 2020 at a cost of 280 million €/km in 2022 prices, but that was in the very center of the city, including a station at Museumsinsel mined directly beneath the Spree, for which BVG had to freeze the sandy soil. Conversely, the estimates of outer extensions that were already under planning before a week ago are lower: U7, the most advanced of these, is projected at 890 million € for about 8 km, or 110 million €/km, in an unusually easy (not really urbanized) tunneling environment.
The risk is that such a large project, done all at once, would strain the planning capacity of Berlin and Brandenburg. This exact risk happened in Paris: at 205 million €/km for 80% underground construction Grand Paris Express is more expensive per km than smaller Métro extensions built in the 2010s as it’s so large the region ran out of in-house planning capacity, and its response, setting up a British-style special purpose delivery vehicle (SPDV) along the lines of Crossrail, has resulted in British-style permanent loss of state capacity. Now, even the short Métro extensions, like the planned eastern M1 extension, cost more like GPE and not like similar projects from 10 years ago.
Notably, while France and the Nordic countries are seeing growing construction costs (France from a medium-low level and the Nordic countries from a very low one), Germany is not. I haven’t been able to find historic costs for Berlin with few exceptions. One of those exception, the last section of U9, cost 235 million € in 2022 prices for 1.5 or 1.6 km, or around 150 million €/km; this was built in 1968-74, in a relatively easy area, albeit with extra costs as noted above preparing for the U10 line. Another exception is the final section of U7 to Spandau, which cost around 800 million € for 4.9 km, or around 160 million €/km. Taken together with some numbers I posted here, it’s notable that in the 1970s, the construction costs per km in Italy, Germany, and the UK were all about the same but since then German costs have stayed the same or at worst inched up, Italian costs have fallen due to the anti-corruption laws passed in the wake of mani pulite, and British costs have quadrupled.
The most frustrating part of this discourse is that I’ve yet to see a single German rail advocate express any interest in the issue of costs. The critics of U-Bahn and other rail transport expansion plans who cite costs, of which BUND is a prime example, never talk about how to make metro construction in Germany cheaper; instead, they use it as an argument for why building underground railways is a waste of money, and urban rail must take the form of streetcars, which are held to be not only cheaper but also more moral from a green point of view as they annoy drivers. The same problem crops up in the discourse on high-speed rail, where Germany makes fairly easily fixable mistakes, generally falling under the rubric of over-accommodation of NIMBYs, and thus instead of figuring out how to build more lines, advocates write the idea off as impractical and instead talk about how to run trains on slow lines.
Can Berlin make do with streetcars?
No.
The problem with streetcars is that, no matter how much priority they get over other street traffic, they’re still slow. T3 in Paris, about the most modern urban tramway I’ve seen, running in a grassy reservation in the middle of the 40 meter wide Boulevards des Maréchaux, averages 18 km/h. The Berlin streetcars average 17.6 km/h; they don’t have 100% dedicated lanes at places, but for the most part, they too are run to very high standards, and only minor speedups can be seriously expected. Meanwhile, the U-Bahn averages 30.5 km/h, which is on the high side for the 780 m stop spacing, but is without driverless operations, which raised Paris’s average speed on M1 with its 692 m interstation from 24.4 to 30 km/h, at least in theory. The best Berlin can do with tramway modernization is probably around 20 km/h; the best it can do with the U-Bahn is probably 35 km/h, and with the S-Bahn maybe 45 km/h.
And Berlin is already large enough to need the speed. Leipzig is a good example of an Eastern city maintaining modal split with no U-Bahn, just streetcars and a recently-opened S-Bahn tunnel; in 2018, its modal split for work trips was 47% car, 20% public transport, 22% bike, 11% pedestrian (source, p. 13). But most of the walkable urban area of Leipzig is contained within a four kilometer radius of the main train station, a large majority of the city’s population is within six, and by eight one is already in the suburbs. Slow transportation like bikes and trams can work at that scale, to an extent.
In contrast with Leipzig’s smaller scale, I live four km from Berlin Hauptbahnhof and I’m still in Mitte, albeit at the neighborhood’s southeastern corner where Hbf is at the northwestern one. From the most central point, around Friedrichstrasse, both the Zoo and Warschauer Strasse are four km away, and both have high-rise office buildings. At eight km, one finally gets to Westkreuz and ICC-Messe, Steglitz, Lichtenberg, and the former airport grounds of Tegel; Gropiusstadt, a dense housing project built as transit-oriented development on top of U7, is 13 km from Friedrichstrasse by straight line.
The actual average speed, door-to-door, is always lower than the in-vehicle average speed. There’s access time, which is independent of mode, but then wait times are shorter on a high-intensity metro system than on a more diffuse streetcar network, and extra time resulting from the fact that rail lines don’t travel in a straight line from your home to your destination scales with in-vehicle travel time.
Leipzig’s modal split for work trips is 47% car, 20% public transport. Berlin’s is 28% car, 40% public transport. This is partly because Berlin is bigger, but mostly related to the city’s U-Bahn network; closer to Leipzig’s size class, one finds Prague, with a larger per capita urban rail ridership than Berlin or even Paris, with a system based on metro lines fed by streetcars and high-intensity development near the metro.
Berlin’s multiple centers make this worse. The same tram-not-subway NIMBYs who oppose U-Bahn development believe in building polycentric cities, which they moralize as more human-scale than strong city centers with tall buildings (apparently, Asia is inhuman). The problem is that when designing transportation in a polycentric city, we must always assume the worst-case scenario – that is, that an East Berliner would find work near the Zoo or even at ICC and a Spandauer would find it in Friedrichshain. The Spandauer who can only choose jobs and social destinations within streetcar distance for all intents and purposes doesn’t live in Berlin, lacking access to any citywide amenities or job opportunities; not for nothing, Spandauers don’t vote for NIMBYs, but for pro-development politicians like Raed Saleh.
Truly polycentric cities are not public transport-oriented. Upper Silesia is auto-oriented while Warsaw has one of Europe’s strongest surface rail networks. In Germany, the Rhine-Ruhr is an analog: its major cities have strong internal Stadtbahn networks, but most of the region’s population doesn’t live in Cologne or Essen or Dortmund or Dusseldorf, and the standard way to get between two randomly-selected towns there, as in Silesia, is by car.
The reason BUND and other NIMBYs don’t get this is a historical quirk of Germany. The Stadtbahn – by which I mean the subway-surface mode, not the Berlin S-Bahn line – was developed here in the 1960s and 70s, at a time of rapidly rising motorization. The goal of the systems as built in most West German cities was to decongest city center by putting the streetcars underground; then, the streetcar lines that fed into those systems were upgraded and modernized, while those that didn’t were usually closed. The urban New Left thus associates U-Bahn construction with a conspiracy to get trains out of cars’ way, and Green activists have reacted to the BVG plan by saying trams are the best specifically because they interfere with cars.
That belief is, naturally, hogwash. The subway-surface trolley, for one, was invented in turn-of-the-century Boston and Philadelphia, whose centers were so congested by streetcars, horsecars, and pedestrians that it was useful to bury some of the lines even without any cars. The metro tunnel was invented in mid-Victorian London for the same reason: the route from the train terminals on Euston Road to the City of London was so congested with horsecars there was demand for an underground route. Today, there’s less congestion than there was then, but only because the metro has been invented and the city has spread out, the latter trend raising the importance of high average speed, attainable only with full grade separation.
BUND and others say that the alternative to building 170 km of U-Bahn is building 1,700 km of streetcar. Setting aside that streetcars tend to be built in easier places and I suspect a more correct figure than 1,700 is 1,000 km, Berlin can’t really use 1,700 or 1,000 or even 500 km of tramway, because that would be too slow. Saturating every major street within the Ring with surface rail tracks would run into diminishing returns fast; the ridership isn’t there, getting it there requires high-density development that even SPD would find distasteful and not just the Greens, and streetcars with so many intersections with other streetcars would have low average speed. I can see 100-200 km of streetcar, organized in the Parisian fashion of orbital lines feeding the U- and S-Bahn; M13 on Seestrasse is a good example. But the core expansion must be U- and S-Bahn.
Okay, but is the BVG plan good?
Overall, it’s important for Berlin to expand its U- and S-Bahn networks, both by densifying them with new trunk lines and by expanding them outward. However, some of the lines on the BVG map are so out there that the plan is partly just crayon with an official imprint.
Core lines
The way I see it, the proposal includes 2.5 new trunk lines: U3 (again, formerly planned as U10), U4, and the western extension of U5.
Of those, U3 and U5 are unambiguously good. Not for nothing, they’ve been on the drawing board for generations, and many of their difficult crossings have already been built. Jungfernheide, where U5 would connect with U7, was built with such a connection in mind; the plan was and to an extent remains to extend U5 even further, sending it north to what used to be Tegel Airport and is now a planned redevelopment zone as the Urban Tech Republic, but the new BVG proposal gives away the Tegel connection to the U0 ring.
The U3 and U4 trunks in fact are planned along the routes of the two busiest tramways in the city, the M4 and combined M5/M6/M8 respectively (source, p. 7). The U3 plan thus satisfies all criteria of good subway construction – namely, it’s a direct radial line, in fact more direct than U2 (built around and not on Leipziger Strasse because the private streetcar operator objected to public U-Bahn development on its route), replacing a busy surface route. The U4 expansion mostly follows the same criterion; I am less certain about it because where M5 and M6 today serve Alexanderplatz, the proposed route goes along that of M8, which passes through the northern margin of city center, with some employment but also extensive near-center residential development near the Mitte/Gesundbrunnen boundary. I’m still positive on the idea, but I would rate it below the U3 and U5 extensions, and am also uncertain (though not negative) on the idea of connecting it from Hbf south to U4.
The U5 extension parallels no streetcar, but there’s high bus ridership along the route. The all-left coalition was planning to build a streetcar instead of an U-Bahn on this route. If it were just about connecting Jungfernheide to Hbf I’d be more understanding, but if the Urban Tech Republic project is built, then that corner of the region will need fast transportation in multiple directions, on the planning principle outlined above that in a polycentric city the public transport network must assume the worst-case scenario for where people live and work.
Outward extensions
All of Berlin’s nine U-Bahn lines are planned with at least one outward extension. These are a combination of very strong, understandable, questionable, and completely drunk.
The strongest of them all is, naturally, the U8 extension to Märkisches Viertel. In 2021, it was rated the lowest-cost-per-rider among the potential extensions in the city, at 13,160€/weekday trip; the U7 extension to the airport is projected to get 40,000 riders, making it around 22,000€/trip. It has long been to the city’s shame that it has not already completed this extension: Märkisches Viertel is dense, rather like Gropiusstadt on the opposite side of the city except with slightly less nice architecture, and needs a direct U-Bahn connection to the center.
Several other extensions are strong as well – generally ones that have been seriously planned recently. Those include U7 to the airport, the combination of the one-stop expansion of U2 to Pankow Kirche and the northeastern extension of U9 to intersect it and then terminate at the S-Bahn connection at Pankow-Heinersdorf, and U7 to the southwest to not just the depicted connection to U1 at Gatower Strasse but also along the route that the new plan gives to U1 to Heerstrasse.
The U3 expansion to the southwest is intriguing in a different way. It’s a low-cost, low-benefit extension, designed for network completeness: a one-stop extension to the S-Bahn at Mexikoplatz is being planned already, and the BVG plan acknowledges near-future S-Bahn plans adding a new southwestern branch and connect to it at Düppel.
Unfortunately, most of the other radial extensions go in the opposite direction from U3: where U3 acknowledges S-Bahn expansion and aims to connect with it, these other plans are closely parallel to S-Bahn lines that are not at capacity and are about to get even more capacity soon. Spandau, in particular, sees a train every 10 minutes; the Stadtbahn’s core segment has three trains in 10 minutes, with more demand from the east than from the west, so that a train every 10 minutes goes to Spandau, another goes to Potsdam, and a third just turns at Westkreuz since demand from the west is that weak. Creating more demand at Spandau would rebalance this system, whereas building additional U-Bahn service competing with current S-Bahn service (especially the U1 plan, which loses benefit west of the Ring) or with future expansion (such as U2 – compare with the expansion on the 2019 plan) would just waste money.
The southern extensions are a particularly bad case of not working with the S-Bahn but against it. The North-South Tunnel has 18 peak trains per hour, like the Stadtbahn; this compares with 30 on the trunk of the Munich S-Bahn. The ongoing S21 project should divert southeast, but as currently planned, it’s essentially a second North-South Tunnel, just via Hbf and not Friedrichstrasse, hence plans to beef up service to every five minutes to Wannsee and add branches, such as to Düppel. This massive increase in S-Bahn capacity is best served with more connections to the S-Bahn south of the Ring, such as east-west streetcars feeding the train; north-south U-Bahn lines, running more slowly than the S-Bahn, are of limited utility.
Finally, the extension of U1 to the northeast is a solution looking for a problem. U1’s terminus is frustratingly one S-Bahn stop away from the Ring, and perhaps the line could be extended east. But it points north, and is elevated, and past the U5 connection at Frankfurter Tor there’s no real need to serve the areas with another line to Friedrichshain.
The ring
The radial component of the BVG plan includes good and bad ideas. In contrast, the U0 ring is just a bad idea all around. The problem is that it doesn’t really hit any interesting node, except Tegel and Westkreuz, and maybe Steglitz and Pankow; Alt-Mariendorf, for example, is not especially developed. Berlin is polycentric within the Ring, but the importance of destinations outside it is usually low. This should be compared with Grand Paris Express’s M15 ring, passing through La Défense and the Stade de France.
Where circumferential service is more useful is as a feeder to S- and U-Bahn lines connecting people with the center. However, metro lines don’t make good feeders for other metro lines; this is a place where streetcars are genuinely better. The required capacity is low, since the constraints are on the radial connection to the center. The expected trip length is short and a transfer is required either way, which reduces the importance of speed – and at any rate, these outer circumferential routes are likely less congested, which further reduces the speed difference. The differences in cost permit streetcars to hit multiple stations on each line to connect with (though this means two parallel lines, not ten); this is not the same as fantasies about 1,700 km of streetcar in areas where people vote Green.
Is this a good plan?
Well, it’s about half good. Of the 163 km in BVG’s proposal, I think around 68 are good, and the rest, split between the U0 ring and the less useful outer extensions, should be shelved. That’s the crayon element – parts of the plan feel like just drawing extra extensions, by which I mean not just U0 but also the southern extensions.
However, substantial expansion of the U-Bahn is obligatory for Berlin to maintain healthy growth without being choked by cars. NIMBY fantasies about deurbanizing workplace geography would make the city more like Los Angeles than like their ideal of a 15-minute bikable small city center. Berlin needs to reject this; small is not beautiful or sustainable, and the city’s transport network needs to grow bigger and better with a lot more subway construction than is currently planned.
What’s more, the fact that construction costs in Germany are fundamentally the same in real terms as they were 40-50 years ago means that the country should accelerate its infrastructure construction program. Benefits for the most part scale with national GDP per capita – for example, the value of time for commuters, students, and other travelers so scale. Ignoring climate entirely, lines that were marginal in 1980 should be strong today; not ignoring climate, they are must-builds, as is high-density housing to fill all those trains and enable people to live in a desirable city with low car usage.
No, the Anglosphere isn’t Especially NIMBY
There’s an article going around social media on Financial Times, by John Burn-Murdoch, making the case that slow housing growth, with consequent rises in rents, is a pan-Anglosphere phenomenon. A non-paywalled summary can be found on New York Magazine by Eric Levitz, reproducing the FT graphs showing changes in the number of housing units per capita in various developed countries, and making some general comments about Anglo culture. The problem with this analysis is that it’s completely false. As someone who did once err in an analysis of the Anglo problem of high construction costs – a problem that Britain did not have until the 1990s and Canada and Australia until the 2000s or even 2010s – let me throw some cold water on this Anglo NIMBY theory.
Housing construction rates
Housing construction rates per capita show no generic Anglosphere effect. The highest rates are in Austria, the Nordic countries and Canada, New Zealand, and Australia. Here are the numbers as far as I’ve been able to find, all expressed in dwelling completions per 1,000 people in 2021:
Australia (starts): 9
Austria: 7.9
New Zealand: 6.9
Finland: 6.8
Denmark: 6.1
Canada: 5.8
Norway: 5.3
Switzerland: 5.2
Sweden: 5
Belgium: 4.9
France (starts): 4.7
Netherlands: 4.1
Ireland: 4.1
US: 4
Germany: 3.5
UK: 3
Portugal: 2.2
Spain: 1.7
Italy: 1.5
The FT article’s data mostly ends in 2020, whereas the above list is from 2021. But looking at earlier years doesn’t change much. The annual average in 2016-20, relative to 2018 and not 2021 population, was 8.2 in Australia, 5.8 in New Zealand, and 5.2 in Canada – slightly lower per capita than in 2021, and yet higher than in all comparison countries. In those other comparison countries the numbers are usually fairly stable as well going back to the mid-2010s recovery from the Great Recession; the only notable changes are in Spain, Portugal and Denmark, which saw sharp rises in construction from the mid-2010s (in Spain’s case, still a far cry from pre-Great Recession rates).
Some trends can be discerned. Southern Europe has low construction rates, owing to the poor state of its economy – but note that Europe’s top builder, Finland, was hit hard by the Great Recession, when coincidentally the smartphone revolution devastated Nokia, and took until last year to recover to its pre-recession GDP per capita. Germany builds the least in Northern Europe; Austria builds the most, for which difference I have no explanation. However, there is no trend separating the Anglosphere into its own group. The US and UK build less than most countries they’re like to be compared with, but those comparison countries include their Anglo peers.
So why does Burn-Murdoch think there’s an Anglo trend here?
FT’s statistics
Burn-Murdoch uses a different statistic from construction rates per capita. He instead looks at the rate of change in the overall number of dwellings per capita in the above countries I listed, minus Austria and Switzerland. The Anglo countries have stagnated at 400-450 dwellings per 1,000 people since the 1980s; the non-Anglo European countries have kept developing housing and are now in the 500-550 range.
The problem is that housing per capita is the wrong measure to use. It’s influenced by both housing construction rates and population growth, the latter coming from birthrates and immigration. Canada, Australia, and New Zealand are all notable for their high immigration rates, and therefore Canada and Australia have seen slow rises in dwellings per capita and New Zealand has even seen decreases. The same is true of Sweden and Norway, which build a fair amount of housing but are not seeing a large increase in the dwelling stock per capita, because people keep coming in to fill these new apartments.
Instead, on FT’s graphic of growth in housing per capita in the last 10 years, the standouts are France, Portugal, Italy, and Finland. Finland indeed builds a lot of housing, but its issue is that its weak economy in the last 15 years has not been able to attract as many immigrants as Sweden and Norway. Italy and Portugal are literally the two lowest per capita builders on this list, and have negative population growth thanks to weak economies and very low birthrates, so their per capita housing stock looks like it’s doing well.
Where is the housing built?
A real distinction, motivating YIMBY movements even in fast builders like Canada, is where the housing is built. This is an important question at both the national level and the regional level. At the national level, one should expect housing to be built where there is the most demand, typically in the richest city regions. At the regional level, one should likewise expect housing to be built in the areas with the best access to work, which can be infill near city center, or new areas opened by the construction of urban rail lines.
The links on the list above often include subnational breakdowns that one can peruse. Thus, for example, in Norway, we find that Oslo built less housing per capita than the rest of the country in 2021, only 3.7/1,000 people, but Viken, a gerrymandered county collecting Oslo’s suburbs, built more, 7.5/1,000, averaging to 6.2 regionwide. France is less certain, since my regional data is approvals and not starts or completions. In Ile-de-France in 2021, the approval rate for new dwellings was 5.9/1,000 people, with Paris itself at a pitiful 1.2, and same source gives the national rate as 7/1,000. But going a few years back, the French rate is still around 5/1,000, whereas the Francilien one is about 7/1,000 (still with little construction in the city).
A uniquely American misfeature is that while the overall rate of housing construction is below average for a growing country rather than terrible, the interregional pattern of where housing is built is awful. The richest regions of the United States don’t build very much, with the exception of Seattle. New York, the largest by far of these regions, builds well below the national average. Thus, while in stagnant Italy, Spain, and Portugal (or for that matter Japan) the rich main cities are still growing, in the United States the richest city regions have below-average population growth, which is seen at every congressional reapportionment once per decade.
But even this is not an Anglo feature: there’s a detailed local breakdown for England, and while London does build less than the rest of the country, it’s not by a large margin, about 2.5/1,000 people averaged over the last few years versus 3 overall. And in Canada, there’s a detailed local breakdown by metro area and within each such region, and there we see 2021 completion rates of 7.3/1,000 in Toronto, 4.8/1,000 in Toronto’s suburbs, 7/1,000 in Calgary, 9.1/1,000 in Edmonton, and 9.5/1,000 in Metro Vancouver (of which 9.9/1,000 were in Vancouver proper – this isn’t sprawl).
To temper my praise for Vancouver and its high growth rates, I should specify that while Canada is building housing in decent if not eye-popping quantities, in the regions where it’s most needed, it’s not building housing in the neighborhoods where it’s most needed. Metro Vancouver builds transit-oriented development on SkyTrain but not in its richest places: the West Side of the city remains strongly NIMBY, despite its excellent location between city center and UBC, forcing students into hour-long commutes; an indigenous West Side housing project built without needing to consult local NIMBYs is deeply controversial among those same NIMBYs.
That said, “housing is not built in rich urban neighborhoods” is not a national-scale statistic, nor a particularly Anglo one (very little housing is built in Paris proper). So why is it so appealing to posit NIMBYism as a uniquely Anglo problem?
The false appeal of deep roots
Middlebrow writers love talking about deep roots – that is, processes that are said to be part of a shared cultural heritage that stretches a long way back, and is therefore by implication hard to impossible to change through policy. An American bestselling book argued that the South’s political institutions come from its unique history of Scottish rather than English settlement (and not from, say, slavery) – institutions that are nowhere in sight in modern Scotland. Often (but not always!), it’s a thin veneer for racism, normalizing the idea that non-Westerners could never perform on a par; until the growth of the Asian Tigers was impossible to ignore, there was a common belief in the West that Confucianism was a deeply-rooted obstacle to growth, which now has flipped to an argument that it’s a deeply-rooted accelerator of growth.
In the case of housing, it’s therefore important to note that even in the US and UK, there’s no longstanding pattern of NIMBYism beyond what’s found in every non-city-state. The US had rapid urban growth around the turn of the century, which romantics found offensive – but that’s little different from the concurrent urbanization of Germany. Romantic and nationalistic interests fought against this urban growth throughout this era, from the 1870s to World War Two. Japan and South Korea today are famous in YIMBY circles for their high capital-region housing growth rates, but neither country is happy with its capital-centricity, and South Korea is even relocating capital functions to a new city in the far suburbs of Seoul.
There’s a real longstanding difference between London and comparable Continental cities like Paris and Berlin, in that London’s housing typology, the rowhouse, is much less dense than the mid-rise apartment blocks of the Continent. This goes back to early industrialization, when Paris, Berlin, and other Continental cities were walled for tax purposes and British cities were not. Thus, Britain evolved a culture of “gentlemen don’t live on shelves” whereas the French and German urban middle classes were happy with mid-rise apartments.
However, New York behaves in exactly the same way as Continental cities: there were historic impediments to urban sprawl coming from the width of the Hudson and East Rivers, leading to a mid-rise urban form and the now-familiar pattern in which middle-class city residents live in a single-story apartment in a multistory building (British dwellings were multistory even for the working class). And New York’s elite hated the city, fleeing to segregated suburbs more than a 100 years ago far away from Jewish and Catholic immigrants, and inventing modern zoning to keep Jews out of Fifth Avenue department stores. The city is fiercely NIMBY today, building little housing by the standards of Berlin or of Paris with its inner suburbs.
Very little of the problem of NIMBYism in either Britain or the US – or for that matter Germany – is especially deeply rooted. The US has an unusual problem with democratic deficit at the local level, which YIMBYs seek to resolve through disempowering local actors and creating national networks that push for more pro-development policy; they are starting to see some success in California. New Zealand, without federalism, imitated some of the California YIMBYs’ proposals and is seeing a wave of new construction and falling rents in parts of the country. Germany is the NIMBYest place in Northern Europe, but high rents are understood as a problem and so SPD has, in its usual slow pace, sought to embrace YIMBYism, Olaf Scholz pledging to increase the housing construction rate here from 250,000 units a year (3/1,000) to 400,000 (4.8/1,000) and the party’s next generation within Jusos openly calling themselves YIMBYs. The UK has a parliamentary casework system that lets petty actors constrain the otherwise unitary state, but not when the state makes something a priority, and so Labour runs on increasing housing production.
In fact, in the US, UK, and Germany, we’re even seeing the same political pattern emerge: in response to slow housing production and high rents, national and nationally-looking center-left forces are politicizing the issue in order to flush out urban NIMBYs, who vote center-left as well but are locally rather than nationally rooted and so have opinions out of touch with those of the median voter or party supporter. Even there, we see a difference: the UK also has center-right thinktanks pushing for the same on neoliberal grounds, and this is also seen in Canada, whereas CSU is proudly NIMBY and the Republicans are, from their origin of embracing housing construction in Texas, slowly trending that way too.
None of this is deeply-rooted or Anglo. Sometimes, social trend evolve in parallel in multiple countries. It’s easy to pattern-match this to Anglo or not; I do this for infrastructure construction costs and have to constantly remind people that until the 1990s, London built urban rail tunnels for the same per-km cost as Milan and Rome, and Canadian cities only lost their ability to build efficiently 10-20 years ago. The same is true of housing: first of all, there’s no Anglo-wide pattern at all, the UK and US differing profoundly from Canada, Australia, and New Zealand, and second of all, their shared characteristics are also shared with Germany.
Anne Hidalgo Hates Paris
Paris has depopulated by 123,000 people in 10 years, or about 5.5% of its population. Normally, this should be cause for alarm: it means either mass abandonment of the city, or, if rents are up, insufficient quantity of housing. But not so according to Mayor Anne Hidalgo, who celebrates the city’s depopulation. Hidalgo – and the New Left urban tendency that she’s so celebrated for – manifestly dislikes her own city so much that she thinks it’s a good thing people of lower incomes are displaced from it to the suburbs; she calls it good news. Why?
The standard excuses
There are specific complaints about overcrowding in Paris, but these are conflated with density. Paris is famously very dense – around 26,000/km^2, excluding the Bois de Vincennes and Bois de Boulogne, both of which extrude from the Périphérique, which otherwise acts as the city’s limit. It is also rather overcrowded: in 2013, INSEE reported that the average dwelling size per person in the city was 31 square meters, which may be the worst in the developed democratic world – Tokyo is at 33 by one calculation, and I believe Seoul is about 32 nowadays, while German and Dutch cities are in the 40s (Amsterdam is at 49).
However, Paris’s overcrowding is not about density, and Hidalgo’s dream of sending the working class to the suburbs is hardly going to give them space. Per the same INSEE source, the dwelling size in the Petite Couronne was actually lower per capita than in the city: Val-de-Marne and Hauts-de-Seine, both fairly wealthy departments, are at 31 just like the city, and infamously poor Seine-Saint-Denis is at 27. Note that Paris is richer than its suburbs – this is how Seine-Saint-Denis is so overcrowded – but the same income gradient is found in Stockholm, and there, the city is at 33 and suburbs like Huddinge and Södertälje are at 35.
So the problem isn’t that Paris is too dense – if it were, the Petite Couronne would have the residential space of Amsterdam, or at least Vienna (which is at 36). Rather, the issue is that up until 2013, little housing was built in Ile-de-France.
YIMBY region, NIMBY city
The overcrowding levels for Ile-de-France are from 2013. But in the last 10 years, there has been a building boom, entirely in the suburbs. Yonah Freemark has the best introduction to this issue that I’ve seen in English. In 2014, the housing production in Ile-de-France was around 3.5 per 1,000 people and had been for a generation. In the next two years, this figure doubled, and would stay around 7/1,000 at least through 2019, when Yonah wrote his paper.
Little of this new housing is in the city. In 2021, housing production in Ile-de-France was 72,000, a little less than 6/1,000 people, of which 2,600 units were in Paris, or 1.2/1,000 people. While housing production in the region intensified starting in the mid-2010s, it did not in the city – production in 2019 was lower than in 2014 and has since fallen further. This is not quite a matter of suburbanization and building where there’s more space, because in 2021 the Petite and Grande Couronnes had identical housing production rates (both about 6.8-6.9), and before corona, the Petite Couronne had a substantially higher rate, 8.6 vs. 7.2. Rather, it’s a matter of a growth plan done in tandem with the construction and upgrade of suburban rail, as part of a transit-oriented development plan.
And practically none of this plan concerns the city. This is not because there’s no space: the city is full of high-rise residential housing, typically social projects of around 12-15 floors, and conversely there are sections only built up to 3-4 floors, low enough that the buildings can be replaced. There are still railyards inherited from the steam era that have not been redeveloped yet in the manner of Bercy. Yonah’s paper talks about the top-down nature of the regional growth plan, which has overruled local NIMBYs in the suburbs; but in the city, perhaps the national elites who have little trouble telling a suburb that the needs of the state trump the needs of a mayor are reluctant to do the same out of an emotional reaction to the city.
Hidalgo’s role
Hidalgo has has little trouble overruling NIMBYs on matters that are important to her. The trickle of housing that is built in the city is disproportionately social, often in wealthy areas, where the mayor enjoys needling rich snobs. The same snobs who look down on social housing also look down on taking public transport alongside the hoi polloi; public transport usage in the city is very high, but the wealthiest arrondissement, the 16th, has a fairly large share of drivers, 26% compared with a city average of 12% (see table here). And Hidalgo has little trouble overruling such snobs when she redoes streets to give their cars less space so that there is more room for cycle paths, bike share docks, and wider sidewalks.
So if so little housing is built in the city, it’s not because Hidalgo is powerless in the face of NIMBY opposition. No: she is the NIMBY opposition to growth. No wonder she thinks it’s a positive thing that the working class is moving to the suburbs.
Why is she like this?
The New Left has always been uncomfortable with growth and production. Instead, it centers consumption. Its theory of the city is about consumption, and thus, its take on matters like growth, decline, gentrification, displacement, and housing centers consumption amenities, in which the city itself is what is being consumed. It pays little attention to job growth and instead tells a story of the middle class chasing some artistry, which is not in evidence in either patterns of development or what the urban middle class says drives its locational choices.
In Paris, this is seen in the museumification of the city. It’s a middle class that feels a little guilty about its privileges, and therefore Hidalgo will make sure there’s some social housing in the city for the poor, but the idea that the working class could just afford market rate and live in the city at scale (which it can in YIMBYer cities like Tokyo) is unthinkable to her and to generations of New Left urbanists. If poorer people leave, it’s a victory for the New Left: there are fewer poor people to take care of. Stalin promised socialism in one country; Hidalgo and her left-NIMBY counterparts in the United States and Germany build socialism in one county.
This also cascades to transport policy. Hidalgo has been very good about removing cars from the city – but the city already has a 64% public transport modal split and only a 12% split for cars. It’s more important to grow the city and allow people to move into it rather than out of it than to squeeze those last 12%. Migration out of the city is nothing to celebrate; unless those people are moving to a comparably car-free place like Tokyo, Stockholm, or Barcelona, it’s a net negative for everyone who cares about modal shift.
More broadly, Hidalgo and the New Left care little about how people get to work; Hidalgo is not involved in any plan to improve public transport in the region, and the high-level socialist in the region who was, Elisabeth Borne, is currently serving as prime minister under Macron while Hidalgo allied with far-left forces, including Putin apologists (which she herself is not), to form NUPES in opposition. Instead, they try to create little bubbles where the middle class can feel good about its own consumption while changing little at macro scale. This ideology is, in practice, to the pedestrian, city center, and to the car, the world.
The hate for the city
There are places in the United States that are notorious for their combination of left-wing politics, extreme NIMBYism, high rents, and an entrenched local middle class that looks down on the consumption of the workers who it has displaced. They are never major cities: New York has people with these attitudes but they don’t really run the city – New York’s NIMBYism comes from other interest groups. Rather, they are small places, often college towns or resort towns; Aspen and Boulder are both notorious for it.
The museumification of the city is the product of the ideology of turning Paris from a productive city with millions of jobs that one gets to on the Métro or RER into an enclave for rich people who don’t need to work outside the home. If you want work, you live and work in the suburbs and unless your commute lines up perfectly with the orbital lines in Grand Paris Express, you drive. It’s casual hate for the city, by people who don’t like change and don’t like sharing space with other people, and only differ from the snobs of the 16th in that they are the snobs of the Left Bank instead.
The Four Quadrants of Cities for Transit Revival
Cities that wish to improve their public transportation access and usage are in a bind. Unless they’re already very transit-oriented, they have not only an entrenched economic elite that drives (for example, small business owners almost universally drive), but also have a physical layout that isn’t easy to retrofit even if there is political consensus for modal shift. Thus, to shift travel away from cars, new interventions are needed. Here, there is a distinction between old and new cities. Old cities usually have cores that can be made transit-oriented relatively easily; new cities have demand for new growth, which can be channeled into transit-oriented development. Thus, usually, in both kinds of cities, a considerably degree of modal shift is in fact possible.
However, it’s perhaps best to treat the features of old and new cities separately. The features of old cities that make transit revival possible, that is the presence of a historic core, and those of new cities, that is demand for future growth, are not in perfect negative correlation. In fact, I’m not sure they consistently have negative correlation at all. So this is really a two-by-two diagram, producing four quadrants of potential transit cities.
Old cities
The history of public transportation is one of decline in the second half of the 20th century in places that were already rich then; newly-industrialized countries often have different histories. The upshot is that an old auto-oriented place must have been a sizable city before the decline of mass transit, giving it a large core to work from. This core is typically fairly walkable and dense, so transit revival would start from there.
The most successful examples I know of involve the restoration of historic railroads as modern regional lines. Germany is full of small towns that have done so; Hans-Joachim Zierke has some examples of low-cost restoration of regional lines. Overall, Germany writ large must be viewed as such an example: while German economic growth is healthy, population growth is anemic, and the gradual increase in the modal split for public transportation here must be viewed as more intensive reuse of a historic national rail network, anchored by tens of small city cores.
At the level of a metropolitan area, the best candidates for such a revival are similarly old places; in North America, the best I can think of for this are Philadelphia, Boston, and Chicago. Americans don’t perceive any of the three as especially auto-oriented, but their modal splits are comparable to those of small French cities. But in a way, they show one way forward. If there’s a walkable, transit-oriented core, then it may be attractive for people to live near city center; in those three cities it’s also possible to live farther away and commute by subway, but in smaller ones (say, smaller New England cities), the subway is not available but conversely it’s usually affordable to live within walking distance of the historic city center. This creates a New Left-flavored transit revival in that it begins with the dense city center as a locus of consumption, and only then, as a critical mass of people lives there, as a place that it’s worth building new urban rail to.
New cities
Usually, if a city has a lot of recent growth from the era in which it has become taken for granted that mobility is by car, then it should have demand for further growth in the future. This demand can be planned around growth zones with a combination of higher residential density and higher job density near rail corridors. The best time to do transit-oriented development is before auto-oriented development patterns even set in.
There are multiple North American examples of how this works. The best is Vancouver, a metropolitan area that has gone from 560,000 people in the 1951 census to 2.6 million in the 2021 census. Ordinarily, one should expect such a region to be entirely auto-oriented, as most American cities with almost entirely postwar growth are; but in 2016, the last census before corona, it had a 20% work trip modal split, and that was before the Evergreen extension opened.
Vancouver has achieved this by using its strong demand for growth to build a high-rise city center, with office towers in the very center and residential ones ringing it, as well as high-density residential neighborhoods next to the Expo Line stations. The biggest suburbs of Vancouver have followed the same plan: Burnaby built an entirely new city center at Metrotown in conjunction with the Expo Line, and even more auto-oriented Surrey has built up Whalley, at the current outer terminal of the line, as one of its main city centers. Housing growth in the region is rapid; YIMBY advocacy calls for more, but the main focus isn’t on broad development (since this already happens) but on permitting more housing in recalcitrant rich areas, led by the West Side, which will soon have its Broadway extension of the Millennium Line.
Less certain but still interesting examples of the same principle are Calgary, Seattle, and Washington. Calgary, a low-density city, planned its growth around the C-Train, and built a high-rise city center, limiting job sprawl even as residential sprawl is extensive; Seattle and the Virginia-side suburbs of Washington have permitted extensive infill housing and this has helped their urban rail systems achieve high ridership by American standards, Seattle even overtaking Philadelphia’s modal split.
The four quadrants
The above contrast of old and new cities misses cities that have positive features of both – or neither. The cities with both positive features have the easiest time improving their public transportation systems, and many have never been truly auto-oriented, such as New York or Berlin, to the point that they’re not the best examples to use for how a more auto-oriented city can redevelop as a transit city.
In North America, the best example of both is San Francisco, which simultaneously is an old city with a high-density core and a place with immense demand for growth fueled by the tech industry. The third-generation tech firms – those founded from the mid-2000s onward (Facebook is in a way the last second-generation firm, which generation began with Apple and Microsoft) – have generally headquartered in the city and not in Silicon Valley. Twitter, Uber, Lyft, Airbnb, Dropbox, and Slack are all in the city, and the traditional central business district has expanded to South of Market to accommodate. This is really a combination of the consumption-oriented old-city model, as growing numbers of employees of older second-generation firms chose to live in the city and reverse-commute to Silicon Valley, and the growth-oriented new-city model. Not for nothing, the narrower metropolitan statistical area of San Francisco (without Silicon Valley) reached a modal split of 17% just before corona, the second highest in the United States, with healthy projections for growth.
But then there is the other quadrant, comprising cities that have neither the positive features of old cities nor those of new cities. To be in this quadrant, a city must not be so old as to have a large historic core or an extensive legacy rail network that can be revived, but also be too poor and stagnant to generate new growth demand. Such a city therefore must have grown in a fairly narrow period of time in the early- to mid-20th century. The best example I can think of is Detroit. The consumption-centric model of old city growth can work even there, but it can’t scale well, since there’s not enough of a core compared with the current extent of the population to build out of.
Quick Note on Transit Expansion and Development
I’ve been thinking a lot about where subway extensions can go in New York. One of the appendices we’re likely to include down the line in the Transit Costs Project is a proposal for what New York could do if its construction costs were more reasonable, and this means having to think about plausible extensions. Leaving aside regional rail and systematic investments for now, this may roughly be it:

The full-size image (warning: 52 MB) can be found here.
The costs depicted are about twice as high as what I wrote in 2019 with Nordic costs as the baseline, because nominal Nordic costs have doubled since then, partly due to updating price levels from the early 2010s to the early 2020s, but mostly because of the real cost explosion in the Nordic countries. These costs are about $200 million/km in outlying areas, $300 million/km in Manhattan or across water, somewhat less than $100 million/km above ground or in an open trench, and higher than $300 million/km when reconstruction of existing tunnel complexes is proposed; everything is rounded to the nearest $100 million, which creates some rounding artifacts for short extensions that cancel one another out.
But the precise map is not what I think is the most interesting. The point is to build to the frontier of the cost per rider that is acceptable in American cities today, so by definition the marginal line for inclusion on the map, such as the D extension to Gun Hill Road to meet with the 2 train, is also socioeconomically marginal. What I think is more interesting is how important transit-oriented development is for the prospects of lines beyond the most obvious ones (Second Avenue Subway Phase 2, 125th Street, Utica, Nostrand, IBX, and maybe also the 7 to College Point).
The current land use in New York is largely frozen from the middle of the 20th century; the 1961 zoning law was the watershed. Since then, change has been slow, in contrast with rapid redevelopment in places that have chosen a pro-growth path. If the pace of change stays slow, then fewer lines are viable; if the city instead chooses not to keep anti-developmental neighborhood interests in the loop, then more are.
This, in turn, feeds into growth plans. Nordic and Italian planning bundles the question of where the regional housing growth goes with where the subway goes. (Our other positive case study, Turkey, works differently; the answer to both questions is “everywhere.”) This means that subway service goes to areas where substantial quantities of transit-oriented development will be permitted and built, often in negotiations with NIMBY municipalities that would rather just get the infrastructure without the housing; in Stockholm the scale involved is tens of thousands of units per tranche of Nya Tunnelbanan.
In the case of New York, this affects the shape of the map above more than anything. The 6 extension to Coop City is likely good either way, but the other radial extensions in the Bronx are more questionable and depend on where new housing in the borough will be built. The same is true in Queens: more housing in Northeast Queens may argue even in favor of further lines not depicted on the map, for example extending the 7 even further.
Growth Without Urbanization
Last year, I poked around developing-country urbanization rates. The starting point is that in 2000-20, India grew from 28% urban to 35% urban. This is an anemic growth rate: it’s lower in absolute numbers than in the United States, which took not 20 years to grow at this rate but 10, from 1880 to 1890. And this is especially offensive in the context of a high-growth developing country – India has high economic growth, and by one measure in the 19 years before corona went from the GDP per capita the US had in 1847 to that the US had in 1899. In 19 years, it caught up with 52 years of US growth, but not quite 10 years of US urbanization. Why?
Is it unavoidable in developing countries?
No. Urbanization rates in East Asia were healthy during its period of catchup growth, which is still to a large extent happening in China. South Korea and China both took seven years to grow from 28% urban to 35%.
There’s been a lot of historical rewriting in the last 10 or so years, treating East Asia as always having been developed or at least having had the state capacity to grow, in contrast with laggards elsewhere in the world. This is often bundled with racism positing East Asians as a peer master race to white people, contrasted with Southeast Asia (for example, in Garett Jones), South Asia, and of course Africa. But in the last third of the 20th century, people commenting on East Asian growth did not distinguish East and Southeast Asia, and until the 1997 financial crisis, anti-communist autocracies Indonesia and the Philippines weren’t obviously different from South Korea and Taiwan; the divergence has been mostly in the last 25 years.
In urbanization, at any rate, Southeast Asia has been mostly showing rapid historic growth as well. Indonesia took the same 7 years as South Korea and China to grow from 28% to 35% urban, and its urbanization rate has grown from 42% to 57% since 2000. This is slower than China (36-61%), but in the context of weaker post-1997 growth, it’s moderate growth and moderate urbanization, rather than growth without urbanization as in India. Vietnam has fast growth and fast urbanization – 24-38% over the same period that India grew 28-35%, with similar per capita income trajectory as India. Thailand has exploded from 31% to 52% since 2000.
In Indian discourse, a growing comparison case is Bangladesh. It’s right nearby, it’s famous for being extremely poor, and in reality it’s barely any poorer than India. Moreover, it has the relatively unregulated labor-intensive manufacturing growth that Indian neoliberals wish India had, and less strict urban zoning restrictions. Well, Bangladesh has grown from 24% urban in 2000 to 39% last year, with exactly the same GDP per capita growth as India – 4.7%/year from 2000 to 2021 vs. 4.6% in India, albeit with India suffering a setback during corona and better-masked Bangladesh maintaining positive growth in 2020.
Is it unique to India?
Not exactly. The thread linked in the lede brings examples from all over Asia and Africa; Pakistan has even slower urbanization than India, albeit in a context of weak income growth. Africa is hard to compare with India because it has both low economic growth for how poor it is and slow urbanization, and its faster-growing states don’t necessarily urbanize fast, for example Sudan. The African country most discussed as a growth case in neoliberal English-language media, Ghana, has had a decent pace of urbanization – 44-58% since 2000 – but the accolades one sees to it must be viewed as drawing a target around where the arrow landed. To round up the English-speaking African states, Nigeria and Tanzania have had fairly healthy urbanization growth as well, but Kenya and Uganda have not.
So it’s not exactly just an Indian problem. But it’s a problem that does appear worse in India (and perhaps Pakistan) than in other developing countries, especially in contrast with India’s truly fast pace of income growth.
Why?
One answer is strict zoning. The density in Indian cities is very high (due to overcrowding), but it’s still lower than in the most direct comparison case, Dhaka.
But this is not a satisfying answer, and I worry that Indian urbanists overfocus on the maximum floor area ratio. Anup Malani, a Chicago law professor with economics background, tweeted a graphic summarizing the maximum floor area ratios (FARs)/floor space indices (FSIs) in various cities, showing how much Indian cities fall short. I picked this example because I saw it a week ago but it’s typical of Indian urbanist discourse to say something like “Mumbai permits a maximum FSI of about 4, New York permits 12.” But this is not quite accurate – Indian urban FSI limits tend to apply citywide, or at least in very large swaths of the city, whereas North American FARs apply at the level of the individual block; little of New York permits residential FAR 12, largely just the avenues and two-way streets on the Upper East and West Sides, and the vast majority of residential land permits FAR 1.5-3.
In this way, Indian zoning is more like traditional European zoning, which assumes high uniform density, with FARs of about 2.5-3.5 in the larger cities. It’s not quite the same because Parisian zoning prefers regulating height to regulating FAR, and Indian urban housing in the recently-built formal sector is much more likely to be tall-and-thin (as in, say, Vancouver) than mid-rise-and-thick as in Europe, but in terms of the pattern of density, India unwittingly tries to be Europe.
What’s true is that housing construction rates in India are lagging. A report by Knight Frank looked at new housing completions (“launches”) in the eight largest cities in 2018 and 2019. Relative to 2011 census population, in 2019, housing construction per 1,000 people reached 6.4 units in Mumbai, 8.9 in Pune, 4 in Bangalore, 1.4 in Delhi, 2 in Hyderabad, 1.6 in Chennai, 1.4 in Ahmedabad, and 1.3 in Kolkata. Maharashtra liberalized its zoning in the late 2010s, boosting Mumbai FSI from 1.33 to about 4, and this might be why Mumbai’s housing growth rate was not so bad (that is, it’s about comparable with that of Ile-de-France or Stockholm County and still lags Seoul and Tokyo), but elsewhere growth rates are extremely low. Government-funded housing heavily favors rural areas even more than their share of the population, but Mumbai rents are such that privately-funded housing should be viable at much higher rates than 80,000 units a year (in a city of 12.5 million).
Vancouver, Stockholm, and the Suburban Metro Model
I was asked by an area advocate about SkyTrain, and this turned into a long email with various models to compare Vancouver with. In my schema contrasting suburban metro systems and S-Bahns, Vancouver is firmly in the first category: SkyTrain is not commuter rail, and Vancouver’s commuter rail system, the West Coast Express, is so weak it might as well not exist. The suburban metro model forces the region to engage in extensive transit-oriented development, which Vancouver has done. Has it been successful? To some extent, yes – Vancouver’s modal split is steadily rising, and in the 2016 census, just before the Evergreen Line opened, was 20%; supposedly it is 24% now. But it could have done better. How so?
Could Vancouver have used the S-Bahn model?
No.
There is a common line of advocacy; glimpses of it can be found on the blog Rail for the Valley, by a writer using the name Zweisystem who commented on transit blogs like Yonah and Jarrett‘s in the 2000s. Using the name of Karlsruhe’s tram-train as inspiration, Zwei has proposed that Vancouver use existing commuter rail corridors in suburban and exurban areas and streetcars in the urban core.
The problem with this is that Vancouver has very little legacy mainline rail infrastructure to work with. There are two mainlines serving city center: the Canadian Pacific, and Canadian National. The CP line hugs the coast, full of industrial customers; the CN line is farther inland and has somewhat more fixable land use, but the Millennium Line partly parallels it and even after 20 years its ridership is not the strongest in the system. Most of the urban core is nowhere near a rail mainline.
This is completely unlike the Central European S-Bahn-and-streetcars systems, all of which have legacy commuter lines radiating in all directions, and use legacy streetcars rather than newly-built light rail lines. In the last generation they’ve expanded their systems, building connections and feeding rapid transit, but none of these is a case of completely getting rid of the streetcars and then restoring them later; the busiest system that’s entirely new, that of Paris, is largely orbitals and feeders for the Métro and RER.
Vancouver did in fact reuse old infrastructure for the suburban metro concept. The Expo Line involved very little greenfield right-of-way use. Most of the core route between the historic core of Vancouver and New Westminster is in the private right-of-way of a historic BC Electric interurban; this is why it parallels Kingsway but does not run elevated over it. The tunnel in Downtown Vancouver is a disused CP tunnel; this is why the tracks are stacked one over the other rather than running side by side – the tunnel was single-track but tall enough to be cut into two levels. This limited the construction cost of the Expo Line, which the largely-elevated Millennium Line and the partly underground, partly elevated Canada Line could not match.
The Stockholm example
In my post about S-Bahns and suburban metros, I characterized Stockholm as an archetypal suburban metro. Stockholm does have an S-Bahn tunnel nowadays, but it only opened 2017, and ridership so far, while rising, is still a fraction of that of the T-bana.
Stockholm’s choice of a full metro system in the 1940s, when it had about a million people in its metro area, had its critics at the time. But there wasn’t much of a choice. The trams were fighting growing traffic congestion, to the point that some lines had to be put in a tunnel, which would later be converted for the use of the Green Line as it goes through Södermalm. Working-class housing was overcrowded and there was demand for more housing in Stockholm, which would eventually be satisfied by the Million Program.
And there were too few commuter lines for an S-Bahn system. Swedes were perfectly aware of the existence of the S-Bahn model; Berlin and Hamburg both had S-Bahns running on dedicated tracks, and Copenhagen had built its own system, called S-Tog in imitation of the German name. But they didn’t build that. None of this was the integrated Takt timetable that Munich would perfect in the 1970s, in which branches could be left single-track or shared with intercity trains provided the regular 20-minute headways could be scheduled to avoid conflicts; the track sharing required in the 1940s would have been too disruptive. Not to mention, Stockholm had too few lines, if not so few as Vancouver – only two branches on each of two sides of city center, with most of the urban core far from the train.
So Stockholm built the T-bana, with three highly branched lines all meeting at T-Centralen, the oldest two of the three having a cross-platform transfer there and at the two stations farther south. The roughly 104 km system (57 km underground) cost, in 2022 US dollars, $3.6 billion. Stockholm removed all the regular streetcars; a handful running all or mostly in private rights-of-way were retained with forced transfers at outlying T-bana stations like Ropsten, as was the narrow-gauge Roslagsbana (with a forced transfer at KTH, where I worked for two years).
At the same time the T-bana was under construction, the state built the Million Program, and in the Stockholm region, the housing projects were designed to be thoroughly oriented around the system. The pre-Million Program TOD suburb of Vällingby was envisioned as part of a so-called string of pearls, in which towns would radiate from each T-bana station, with local retail and jobs near the station surrounded by housing. In 2019, the T-bana had 1,265,900 riders per workday, Citybanan had 410,300, and the remaining lines 216,100; Sweden reports modal split for all trips and not just work trips, but the commute modal split appears to be 40% or a little higher, a figure that matches Paris, a metro area of 13 million that opened its first metro line in 1900.
So why is Stockholm better?
There are parallels between Stockholm and Vancouver – both are postwar cities with 2.5 million people in their metropolitan areas with rapid growth due to immigration. Their physical geographies are similar, with water barriers inhibiting the contiguous sprawl of many peers. Both extensively employed TOD to shape urban geography around the train: Stockholm has Vällingby and other, less famous examples of TOD; Vancouver has Metrotown and smaller examples of residential TOD along the Expo Line, alongside a famously high-rise downtown. But the T-bana has more than twice the annual ridership of SkyTrain, and Stockholm has around twice the modal split of Vancouver – this is not a matter of Canadians riding buses more than Europeans do. So what gives?
Part of it is about TOD models. Stockholm is an exceptionally monocentric city, and this has created a lot of demand for urban rail to Central Stockholm. But Vancouver’s high-rise city center has a lot of jobs, and overall, around 30% of Metro Vancouver jobs are in the city or the University Endowment Lands (that is, UBC), and the proportion of Stockholm County jobs within an equivalent area is similar. Vancouver has never built anything as massive as the Million Program, but its housing growth rate is one of the highest in the world (around 11 gross units/1,000 people per year in the 2010s), and much of that growth clusters near the Expo Line and increasingly also near the worse-developed Millennium and Canada Lines.
I suspect that the largest reason is simply the extent of the systems. SkyTrain misses the entire West Side of Vancouver west of Cambie, has poor coverage in Surrey and none in Langley, and does not cross the Burrard Inlet. The T-bana has no comparable lacunae: Roslag is served by Roslagsbanan, and the areas to be served by the under-construction extensions are all target TOD areas with much less present-day density than North Vancouver, the cores of Fairview and Kitsilano, or the town centers in Surrey other than Whalley.
What’s more, Stockholm’s construction costs may be rising but those of Vancouver (and the rest of Canada) are rising even faster and from a higher base. Nya Tunnelbanan is currently budgeted at $3.6 billion in PPP terms – 19 underground km for about the same cost as the existing 104 – but Vancouver is building half of the most critical SkyTrain extension, that under Broadway, for C$2.83 billion (US$2.253 billion in PPP terms) for just 5 km, not all underground. The projected cost per rider is still favorable, but it’s less favorable for the planned extension to Langley, and there’s no active plan for anything to the North Shore.
The silver lining for Vancouver is that the West Side is big and underdeveloped. The region has the money to extend SkyTrain not just to Arbutus as is under construction but all the way to UBC, and the entire swath of land between Central Broadway and UBC screams “redevelop me.” The current land use is a mix of mid-rise, townhouses (“missing middle”), and single-family housing; Shaughnessy, whose northern end is within a kilometer of under-construction SkyTrain stations, is single-family on large lots, and can be redeveloped as high-rise housing alongside closer-in areas. Canada does not have Europe’s allergy to tall buildings, and this is a resource that can be used to turn Vancouver into a far more transit-oriented city along the few corridors where it can afford to build. The suburban metro is always like this: fewer lines, more development intensity along them.
Quick Note: How to Incentivize Transit-Oriented Development
The Biden administration recently put out a statement saying that it would work to increase national housing production. It talks about the need to close the housing shortfall, estimated at 1.5 million dwellings, and proposes to use the Bipartisan Infrastructure Law (BIL) to dole out transport funding based on housing production. This is a welcome development, and I’d like to offer some guidelines for how this can be done most effectively.
Incentives mean mistrust
You do not need to give incentives to trustworthy people. The notion of incentives already assumes that the people who are so governed would behave poorly by themselves, and that the governing body, in this case the federal government, surveils them loosely so as to judge them by visible metrics set in advance. Once this fundamental fact is accepted – the use of BIL funding to encourage housing production implies mistrust of all local government to build housing – every other detail should be set up in support of it.
Demand conflict with community
Federal funding should, in all cases, require state and local governments to discipline community groups that fight housing and extract surplus from infrastructure. Regions that cannot or do not do so should receive less funding; the feds should communicate this in advance, stating both the principle and the rules by which it will be judged. For example, a history of surrender to local NIMBYs to avoid lawsuits, or else an unwillingness to fight said lawsuits, should make a region less favored for funds, since it’s showing that they will be wasted. In contrast, a history of steamrolling community should be rewarded, showing that the government is in control and prioritizes explicit promises to the feds and the voters over implicit promises to the local notables who form the base of NIMBYism.
Spend money in growth regions
In cities without much housing demand, like Detroit and Cleveland, the problem of housing affordability is one of poverty; infrastructure spending wouldn’t fix anything. This means that the housing grant should prioritize places with growth demand, where current prices greatly exceed construction costs. These include constrained expensive cities like New York and San Francisco, but increasingly also other wealthy cities like Denver and Nashville, whose economic booms translate to population increase as well as income growth, but unfortunately housing growth lags demand. Even poorer interior cities are seeing rent increases as people flee the high prices of richer places, and encouraging housing growth in their centers is welcome (but not in their suburbs, where housing is abundant and not as desirable).
Look at residential, not commercial development
In the United States, YIMBY groups have focused exclusively on residential development. This is partly for political reasons: it’s easier to portray housing as more moral, benefiting residents who need affordable housing even if the building in question is market-rate, than to portray an office building as needing political support. In some cases it’s due to perceived economic reasons – the two cities driving the American YIMBY discourse, New York and San Francisco, have unusually low levels of job sprawl for the United States, and in both cities YIMBY groups are based near city center, where jobs look especially plentiful. At the local and state level, this indifference to commercial YIMBY is bad, because it’s necessary to build taller in city center and commercialize near-center neighborhoods like the West Village to fight off job sprawl.
However, at the federal level, a focus on residential development is good. This is a consequence of the inherent mistrust assumed in the incentive system. While economically, American cities need city centers to grow beyond the few downtown blocks they currently occupy, politically it’s too easy for local actors to bundle a city center expansion with an outrageously expensive urban renewal infrastructure plan. In New York, this is Penn Station redevelopment, including some office towers in the area that are pretty useful and yet have no reason to be attached to the ill-advised Penn Station South project digging up an entire block to build new tracks. Residential development is done at smaller scale and is harder to bundle with such unnecessary signature projects; the sort of projects that are bundled with it are extensions of urban rail to new neighborhoods to be redeveloped, and those are easier to judge on the usual transport metrics.
Microapartments for Students
Charlie Munger’s deservedly mocked plan for a university dorm with windowless bedrooms got me thinking about small studios for students. The size of the proposed Munger Hall – 156,000 m^2 for 4,500 students – is pretty reasonable for a large building housing students, provided the students get their own rooms with windows. But this raises interesting questions about building depths and apartment plans.
This post is best read as a companion for my posts about building depth and a high-density euroblock design. In the post on building depths, I argued that the higher ratio of apartment area to window frontage ought to be understood as an adaptation to larger apartments for wealthier people than those who lived in the cities of 100 years ago. This post can be seen as a practical demonstration, illustrating the limits of deep buildings in the use case of microapartments for students.
The parameters of student housing
Student housing has specific needs:
- Students have little disposable income, so space per capita is likely to be limited. Microapartments of 20-30 m^2 are reasonable, and in some cases they can even be smaller.
- University is a deracinating, equalizing institution, so a high level of uniformity of design is desirable, making modernist forms more palatable than for middle-class families. Nor is there much worry about intrusion and criminality, since the students form a community. In this sense, university is akin to the military.
- Unlike the military, university as an institution promotes individualism, and has no need for communal barracks. Social spaces are desirable, but the priority should be on individual living space.
- Students are young and sexually active, and in recognition of that, high levels of privacy are desirable. Not only should students get individual rooms (which is also useful for minimizing respiratory infections), but also they should have their own bathrooms, showers, and kitchen facilities.
Those requirements interact well with the high-density euroblock (or courtyard building) form I’ve pushed before. Munger speaks of fixing the mistakes made by modernist housing, name-checking Le Corbusier – but the social problems of modernist towers were specific to deracinated working-class families, and not students. When people criticize modernist design of universities, it’s not about the modernist style of student housing but about hostile architecture for class and administrative buildings designed to quell student riots.
The euroblock
The euroblock is a form of housing common in Central and Northern Europe, in which residential buildings enclose an internal courtyard. Bigger cities, like Berlin, traditionally had many interior courtyards to a block, overlooked by interior wings with a view of the courtyard but not the street; smaller and richer cities tend to have bigger courtyards and no wings, and much of Berlin has demolished the wings in the postwar era as well. Here’s a wingless example from Stockholm:

The width of the building in this case is exactly twice the ratio of apartment size to window frontage, ignoring internal corridors. This building has a width of 14.6 meters, which is pretty typical for the wingless forms; winged ones are shallower, since the corners of the wings are windowless, in all cases producing a ratio of about 7.5 m. Some higher-end buildings, including some newer North American condos using the courtyard design, go up to a width of 20 m, for a ratio of 10 m.
Populating the euroblock with student housing
The proposed Munger Hall at UCSB is to sit on a site of about 120*120 meters, so let’s start with that. Munger Hall is to be solid with no interior courtyard because the dorm rooms are windowless; to have the same floor area, we need to go taller, but that’s no obstacle for our purposes. Let’s consider both a 20 meters deep design and a winged 15 meters deep one.

The light gray at the outer corners represents social spaces with corner windows; the windowless inner corners are four elevator lobbies, the high capacity necessary due to the high density of the design and the synchronized class times. If units are 2.5*10 in theory, and closer to 2.4*9 in practice, then we get a unit per 2.5 m of window frontage, which is 288 per floor (interior sides are 80 m long, exterior ones 100 m); a total of 81% of floor area is student apartments, which is low by high-rise standards, but we’re deliberately giving the outer corners to social spaces, and with the corners added back in it’s a healthy 86%.
Note that the courtyard in the middle is massive. Any larger and half of it would be a regulation football pitch. So let’s add wings, and also add function spaces in the interior corners created by the wings, possibly sacrificing some adjacent units for windows for the function spaces.

Still at one apartment per 2.5 m of window frontage, we now have 352 units per floor, but also our efficiency has dramatically fallen – only 73%, and if we add the four exterior corners back it’s still only 77%. This is only desirable if massive function spaces are important – and those can then cannibalize the near-corner apartments for window space. This is very much an upper limit to the building depth – it averages a ratio of 11.25 m.
Let’s now look at a 15 m deep design with even more wings:

Everything is scaled down for the shallower building, but that’s okay – 7.5*7.5 still makes for a staircase with some elevators, and the four interior areas can have as big elevator banks as needed. Let’s say that, ignoring corridors, apartments are 3 1/3 m by 7.5, and in practice more like 3.2*6.7. We have three apartments per 10 m of window frontage, so a total of 340 per floor. We can even squeeze more apartments this way, by offsetting the courtyard-facing apartments by one, so that there are not six to a 20 m courtyard frontage but seven, with the outer two only having half the window space, giving 376 units, at 78% efficiency. As we will see below, window width is not the constraining factor – historically, masonry buildings had small windows. Nonetheless, the courtyards are small enough that a building of about 15 floors would have a high ratio of height to courtyard size, without much direct sunlight.
Apartment plans
To be very clear, this is austere student housing. People who are not students would only live in such conditions in situations of very high housing prices, such as what I experienced in Stockholm. Here is what I might mock up of 2.5 by 9 or 3 1/3 by 6 2/3:

The elongated floor plan turns the studio’s left side into a kind of corridor, and the longer the unit, the more space is wasted on said corridor. The version on the right can fit a mini-fridge doubling as a bedside table next to the bed; the version on the left can too but a foot-side table is less convenient (this is how my grad school dorm room was set up due to lack of alternatives). Both apartments can set up a stove and kitchen sink; the natural location is below the table (to the right from the perspective of someone sitting in the chair). But the version on the left can only do so by eating into free space to move around in, where the version on the right doesn’t.
This is a matter of length-width ratios and the long corridor forcing the door to be on the short side. This is why high-end apartments can maintain the depth on the left without a problem – a middle-class one-person apartment is 40-50 m^2, so around double the micro-unit depicted above. A building designed around such studios would have the floor plate of the wingless 20 m euroblock but with half as many apartments, and then there’s ample room for everything with enough left to move around. Such a larger unit can even be set up as a one-bedroom, with the bedroom taking half the window frontage.
Note also that this problem of elongated microapartments doesn’t affect bedrooms in family dwellings. A family dwelling can be set up with rooms fronting 2.5 m of window space but with doors on the long side coming in via a central living room, which means there’s no need for a long corridor for access to the bathroom and the bed.