Category: Construction Costs

China Won’t Save You

The construction costs of Britain’s just-approved domestic high-speed rail network, High Speed 2, are extreme. The headline costs are, in 2019 figures, £80.7-88.7 billion per the Oakervee review, with one estimate going up to £106.6 billion, all for a system only 530 km in length in mostly flat terrain. This includes rolling stock, but that is less than 10% of the projected cost. At the end of the day, Britain has decided to spend around $200 million per kilometer, a cost comparable to that of base tunnels and mostly-tunneled high-speed lines.

And now the People’s Republic of China has offered to build the entire thing for cheaper with a 5-year timeline, and everyone acts as if it’s a serious offer. So let me dust off my construction costs database and tell you: the PRC won’t save you. There is no alternative to developing good internal cost control. This requires learning from lower-cost countries, but Chinese high-speed rail construction costs are not really low.

Vietnam

Ho Chi Minh City and Hanoi are both building metros. Hanoi uses Chinese financing, HCMC uses Japanese financing. Both have very high construction costs – my database has HCMC’s 13% underground Line 1 at $320 million/km, 82% underground Line 2 phase 1 at $535 million/km, and 84% underground Line 5 phase 1 at $590 million/km, whereas Hanoi’s 74% underground Line 2A is $215 million/km and 32% underground Line 3 is $365 million/km.

The system in Hanoi has been plagued with delays. Line 2A was supposed to be operational by 2016. Construction was only completed in 2018, but the line is yet to open. Testing is ongoing, but Chinese experts couldn’t return to Vietnam after the Chinese New Year holiday because of the coronavirus quarantine. The South China Morning Post has compared the Hanoi project negatively with that of HCMC, which is for the most part on time, if expensive.

Like many developing-world cities, HCMC is paying more for a subway tunnel than Japan pays at home; to get to the cost range of HCMC in Japan, one needs to go to complex regional rail tunnels in Tokyo dipping under multiple older tunnels in city center. In that it is no different from Dhaka or Jakarta. The primary explanation must be that importing Japanese technology means using techniques optimized for a high-skill, high-wage labor force and cheap domestic capital, rather than ones optimized for a low-skill, low-wage labor force and expensive imported capital.

But that does not explain why the Hanoi Metro is so expensive. Chinese metros cost less (though not universally – Shanghai’s construction costs are rising fast): I want to say about $250 million/km on average, about the same as the non-Chinese global median, but the actually big set of data is unpublished so you guys can’t nitpick my sources yet. So what’s going on here? Vietnam is poorer than China, but the difference is not so big. It’s about half as rich as the PRC. It’s comparable to Europe, where Romania and Bulgaria are about half as rich as Western Europe, and they have low construction costs, lower than parts of Eastern Europe closer to Western incomes.

Chinese high-speed rail

The construction costs of high-speed rail in the PRC are fairly high, especially in its richer parts. The costs remain lower than those of tunnel-heavy lines like those of Italy, Japan, and South Korea, but by low-tunnel standards, they are high.

There is a perception that Chinese costs are low, but it comes from using the wrong currency conversion. Here, for example, is a World Bank report on the subject:

[P. 39] Figure 4.1 shows the construction cost of 60 projects. The average cost of a double-track HSR line (including signaling, electrification, and facilities) is about Y 139 million/km (US$20.6 million/km) for a 350 kph HSR line, about Y 114 million (US$16.9 million) for a 250 kph HSR line, and about Y 104 million (US$15.4 million) for a 200 kph HSR line. These costs are at least 40 percent cheaper than construction costs in Europe (European Court of Auditors 2018, 35).

The problem is, the exchange rate of $1 = ¥6.75 is incorrect. The OECD’s PPP conversion factor today is much higher, $1 = ¥3.5; for high-speed lines built a decade ago, it would be even higher, about $1 = ¥3.3, with ten years of American inflation since. Using the correct modern rate, the cost is about $40 million per kilometer, which is not lower than in Europe but rather higher. Beijing-Shanghai, as far as I can tell a ¥220 billion project for 1,318 km of which just 16 km are in tunnel, rises to $50 million per km, and more like $60 million per km in today’s money. It’s still cheaper than High Speed 2, but more expensive than every Continental Europe high-speed line that isn’t predominantly in tunnel, like Bologna-Florence.

There are all these longwinded explanations for why the PRC does things cheaper and faster than the first world, and they are completely false. China is not cheap to build in, especially not high-speed rail. The only reason Chinese costs aren’t even higher is that Eastern China is pretty flat. Even then, China has not taken advantage of this flatness to build tracks at-grade to minimize costs. Instead, it has built long viaducts at high cost, in contrast with the at-grade approach that has kept French LGV costs reasonable.

The PRC doesn’t even build things particularly quickly. Total actual construction time from start to finish per line segment is 4-6 years per Wikipedia’s list, which is comparable to recent LGVs. What is true is that China has been building many lines at once, and each line is long, but this is a matter of throughput, not latency. The limit to throughput is money; the PRC made a political decision to spend a lot of it at once as stimulus in the late 2000s and early 2010s, and by the same token, the UK has just made a political decision to spend just less than £100 billion on High Speed 2, in a trickle so that the system will take 15+ years to complete.

Why are they like this?

The myth of hyper-efficient Chinese construction seems never to die; I’ve seen it from the first days of this blog, e.g. then-US Secretary of Transportation Ray LaHood in 2012. It relates to a mythology that I think is mostly part of Anglo-American culture, of the tension between freedom and efficiency. The English-speaking world in this mythology is the epitome of freedom, with a gradation of less free, more efficient paces: Germany, then Japan, then finally China. It’s a world in which people’s ideas of what totalitarianism looks like come from reading George Orwell and not from hearing about the real-life Soviet Union’s comic incompetence – the gerontocracy, the court politics, the drunk officials, the technologically reactionary party apparatchiks – all of which was happening in real time in Nazi Germany too, which was fighting less efficiently than the UK and US did.

It’s equally a world in which people think rights Germans and Japanese take for granted, like various privacy protections, do not even register as important civil liberties. I dare any reader to try explaining to a British or American transit manager that really, no, you do not need our data, Central Europe manages to plan better than you without smartcards tracking users’ every move and storing the data in servers with infosec that screams “steal me.” Nor do Americans make much of an effort to import policing regimes from democracies with one twentieth their rate of police shootings per capita.

China’s incompetence is now visible to the entire world, in the form of a virus outbreak that local officials flailed about for a month, too afraid to acknowledge mistakes lest they take the fall for them. And yet it’s easier for American and British business leaders and politicians to point to China as an example to emulate than to Pareto-better France or Germany.

If anything, High Speed 2 is low-key overlearning some French lessons, leading to inferior infrastructure planning – but it’s messing up key details leading to cost explosion, such as “don’t build new signature urban train stations.” But my suspicion is that French and German rail experts will point out all those details. To us, if Britain changes some detail in a way that isn’t truly justified by local conditions, we will point it out – and push back when British blowhards try to explain to use that they do things differently because they’re morally superior to us. British people know this – they know they can’t pull rank. Americans are the same, except even less capable of dealing with other nations as equals than the British are.

The way forward

High Speed 2 is a mess, largely because of the cost. To move forward, talking to China about how it’s built high-speed rail may be useful, but it can’t be the primary comparison, not when Continental Europe is right here and does things better and cheaper. For Asian help, Japan has some important lessons about good operations and squeezing maximum use out of limited urban space. A lot of scope can be removed. A lot more can be modified slightly to connect to regional lines better.

More conceptually, Britain has a problem with costs and benefits chasing each other. If benefits are too high, the political system responds with sloppy cost control, for example by lading the project with ancillary side projects that someone wants or by giving in to NIMBY opposition. If the costs are too high, the political system responds with scrounging extra benefits, for example counting the consumer surplus of high-speed rail travelers as a benefit, by which standard every government subsidy to anyone has a benefit-cost ratio of at least 1.

Bringing in the PRC won’t help. It’s value-engineering theater, rather than the hard work required to coordinate infrastructure and timetable planning or to tell Home Counties NIMBYs that the state is not in the business of guaranteeing their views; there is so much tunneling on the proposed line that isn’t really necessary. None of the countries that builds trains cheaply did so by selling its civil service for spare parts; why would Britain be any different?

On Envying Canada

In England and Wales, 15.9% of workers get to work on public transport, and in France, 14.9% do. In Canada, the figure is close: 12.4%, and this is without a London or Paris to run up the score in. Vancouver is a metro region of 2.5 million people and 1.2 million workers, comparable in size to the metropolitan counties in England and to the metro area of Lyon; at 20.4%, it has a higher public transport modal share than all of them, though it is barely higher than Lyon with its 19.9% share. Calgary, Ottawa, Edmonton, and Winnipeg are likewise collectively respectable by the standards of similar-size French regions, such as the departments of Bouches-du-Rhône (Marseille), Alpes-Maritimes (Nice), Gironde (Bordeaux), Haute-Garonne (Toulouse), and Bas-Rhin (Strasbourg).

As a result, Jarrett Walker likes telling American cities and transit agencies to stop envying Europe and start envying Canada instead. Canada is nearby, speaks the same language, and has similar street layout, all of which contribute to its familiarity to Americans. If Europe has the exotic mystique of the foreign, let alone East Asia, Canada is familiar enough to Americans that the noticeable differences are a cultural uncanny valley.

And yet, I am of two minds on this. The most consistent transit revival in Canada has been in Vancouver, whose modal share went from 14.3% in 1996 to 20.4% in 2016 – and the 2016 census was taken before the Evergreen extension of the Millennium Line opened. TransLink has certainly been doing a lot of good things to get to this point. And yet, there’s a serious risk to Canadian public transport in the future: construction costs have exploded, going from Continental European 15 years ago to American today.

The five legs of good transit

I was asked earlier today what a good political agenda for public transportation would be. I gave four answers, like the four legs of a chair, and later realized that I missed a fifth point.

  1. Fuel taxes and other traffic suppression measures (such as Singapore and Israel’s car taxes). Petrol costs about €1.40/liter in Germany and France; diesel is cheaper but being phased out because of its outsize impact on pollution.
  2. Investment in new urban and intercity lines, such as the Madrid Metro expansion program since the 1990s or Grand Paris Express. This is measured in kilometers and not euros, so lower construction costs generally translate to more investment, hence Madrid’s huge metro network.
  3. Interagency cooperation within metropolitan regions and on intercity rail lines where appropriate. This includes fare integration, schedule integration, and timetable-infrastructure integration.
  4. Urban upzoning, including both residential densification in urban neighborhoods and commercialization in and around city center.
  5. Street space reallocation from cars toward pedestrians, bikes, and buses.

We can rate how Canada (by which I really mean Vancouver) does on this rubric:

  1. The fuel tax in Canada is much lower than in Europe, contributing to high driving rates. In Toronto, gasoline currently costs $1.19/liter, which is about €0.85/l. But Vancouver fuel taxes are higher, raising the price to about $1.53/l, around €1.06/l.
  2. Canadian construction costs are so high that investment in new lines is limited. Vancouver has been procrastinating building the Broadway subway to UBC until costs rose to the point that the budget is only enough to build the line halfway there.
  3. Vancouver and Toronto both have good bus-rapid transit integration, but there is no integration with commuter rail; Montreal even severed a key commuter line to build a private driverless rapid transit line. In Vancouver, bus and SkyTrain fares have decoupled due to political fallout from the botched smartcard implementation.
  4. Vancouver is arguably the YIMBYest Western city, building around 10 housing units per 1,000 people every year in the last few years. Toronto’s housing construction rate is lower but still respectable by European standards, let alone American ones.
  5. There are bike lanes but not on the major streets. If there are bus lanes, I didn’t see any of them when I lived in Vancouver, and I traveled a lot in the city as well as the suburbs.

Vancouver’s transit past and future

Looking at the above legs of what makes for good public transport, there is only one thing about Canada that truly shines: urban redevelopment. Toronto, a metro area of 6 million people, has two subway mainlines, and Montreal, with 4 million people, has 2.5. Vancouver has 1.5 lines – its three SkyTrain mainlines are one-tailed. By the same calculation, Berlin has 6.5 U- and 3 S-Bahn mainlines, and Madrid has 2 Cercanías lines and 7 metro lines. Moreover, high construction costs and political resistance from various GO Transit interests make it difficult for Canadian cities to add more rapid transit.

To the extent Vancouver has a sizable SkyTrain network, it’s that it was able to build elevated and cut-and-cover lines in the past. This is no longer possible for future expansion, except possibly toward Langley. The merchant lawsuits over the Canada Line’s construction impacts have ensured that the Broadway subway will be bored. Furthermore, the region’s politics make it impossible to just build Broadway all the way to the end: Surrey has insisted on some construction within its municipal area, so the region has had to pair half the Broadway subway with a SkyTrain extension to the Langley sprawl.

Put in other words, the growth in Vancouver transit ridership is not so much about building more of a network, but about adding housing and jobs around the network that has been around since the 1980s. The ridership on the Millennium and Canada Lines is growing but remains far below that on the Expo Line. There is potential for further increase in ridership as the neighborhoods along the Canada Line have finally been rezoned, but even that will hit a limit pretty quickly – the Canada Line was built with low capacity, and the Millennium Line doesn’t enter Downtown and will only serve near-Downtown job centers.

Potemkin bus networks

When Jarrett tells American cities to envy Canada, he generally talks about the urban bus networks. Toronto and Vancouver have strong bus grids, with buses coming at worst every 8 minutes during the daytime off-peak. Both cities have grids of major streets, as is normal for so many North American cities, and copying the apparent features of these grids is attractive to American transit managers.

And yet, trying to just set up a bus grid in your average American city yields Potemkin buses. Vancouver and Toronto have bus grids that rely on connections to rapid transit lines. In both cities, transit usage is disproportionately about commutes either to or from a city core defined by a 5 kilometer radius from city hall. Moreover, the growth in public transport commuting in both cities since 1996 has been almost exclusively about such commutes, and not about everywhere-to-everywhere commutes from outside this radius. Within this radius, public transportation is dominated by rail, not buses.

The buses in Toronto and Vancouver have several key roles to play. First, as noted above, they connect to rapid transit nodes or to SeaBus in North Vancouver. Second, they connect to job centers that exist because of rapid transit, for example Metrotown at the eastern end of Vancouver’s 49. And third, there is the sui generis case of UBC. All of these roles create strong ridership, supporting high enough frequency that people make untimed transfers.

But even then, there are problems common to all North American buses. The stop spacing is too tight – 200 meters rather than 400-500, with frequency-splitting rapid buses on a handful of very strong routes like 4th Avenue and Broadway. There is no all-door boarding except on a handful of specially-branded B-line buses. There are no bus lanes.

One American city has similar characteristics to Toronto and Vancouver when it comes to buses: Chicago. Elsewhere, just copying the bus grid of Vancouver will yield nothing, because ultimately nobody is going to connect between two mixed-traffic buses that run every 15 minutes, untimed, if they can afford any better. In Chicago, the situation is different, but what the city most needs is integration between Metra and CTA services, which requires looking at European rather than Canadian models.

Is Canada hopeless?

I don’t know. The meteoric rise in Canadian subway construction costs in the last 15 years has ensured expansion will soon grind to a halt. Much of this rise comes from reforms that the Anglosphere has convinced itself improve outcomes, like design-build and reliance on outside consultants; in that sense, the US hasn’t been copying Canada, but instead Canada has been copying the US and getting American results.

That said, two positive aspects are notable. The first is very high housing and commercial growth in the most desirable cities, if not in their most exclusive neighborhoods. Vancouver probably has another 10-20 years before its developable housing reserves near existing SkyTrain run out and it is forced to figure out how to affordably expand the network. Nowhere in Europe is housing growth as fast as in Metro Vancouver; among the cities for which I have data, only Stockholm comes close, growing at 7-8 net units per 1,000 people annually.

Moreover, with Downtown Vancouver increasingly built out, Vancouver seems to be successfully expanding the CBD outward: Central Broadway already has many jobs and will most likely have further commercial growth as the Millennium Line is extended there. Thus, employers that don’t fit into the Downtown Vancouver peninsula should find a home close enough for SkyTrain, rather than hopping to suburban office parks as in the US. Right now, the central blob of 100 km^2 – a metric I use purely because of limitations on French and Canadian data granularity – has a little more than 30% of area jobs in Vancouver, comparable to Paris, Lyon, New York, Boston, and San Francisco, and ahead of other American cities.

The second aspect is that Canadians are collectively a somewhat more internationally curious nation than Americans. They are more American than European, but the experience of living in a different country from the United States makes it easier for them to absorb foreign knowledge. The reaction to my and Jonathan English’s August article about Canadian costs has been sympathetic, with serious people with some power in Toronto contacting Jonathan to figure out how Canada can improve. The reaction I have received within the United States runs the gamut – some agencies are genuinely helpful and realize that they’ll be better off if we can come up with a recipe for reducing costs, others prefer to obstruct and stonewall.

My perception of Canadian politics is that even right-populists like Doug Ford are more serious about this than most American electeds. In that sense, Ford is much like Boris Johnson, who could move to Massachusetts to be viceroy and far improve governance in both Britain and Massachusetts. My suspicion is that this is linked to Canada’s relatively transit-oriented past and present: broad swaths of the Ontarian middle class ride trains, as is the case in Outer London and the suburbs of Paris. A large bloc of present-day swing voters who use public transport is a good political guarantee of positive attention to public transport in the future. American cities don’t have that – there are no competitive partisan elections anywhere with some semblance of public transportation.

These two points of hope are solid but still run against powerful currents. Toronto really is botching the RER project because of insider obstruction and timidity, and without a strong RER project there is no way to extend public transportation to the suburbs. Vancouver is incapable of concentrating resources where they do the most good. And all Canadian cities have seen an explosion in costs. Canadians increasingly understand the cost problem, but it remains to be seen whether they can fix it.

Quick Note: What is Culture, Anyway?

Six weeks ago, I talked about the Anglosphere in context of its high construction costs, especially recently. In comes Bella Wang, and in a much greater generality, asserts,

In the context of transportation, there are some empirical observations from construction cost and mode share data:

  • American transit usage underperforms any other first-world standard
  • Anglosphere construction costs are very high
  • Ex-colonies in the third world have very high construction costs

We can take all three observations to be matters of culture, but really culture is a measure of ignorance. It’s easy to list so many US-rest-of-world cultural differences, and still possible to list Anglosphere-rest-of-world differences that cover Singapore. But the question, which of them are relevant and which aren’t?, is still critical.

Separately, there’s the question, how deep is a specific cultural attribute? The example I want to zoom in on is the issue of hyperlocalism and too many stakeholders. In Brooks-Liscow, it’s identified as a key contributing factor to rising highway construction costs in the US since the 1960s (“citizen voice”) alongside rising incomes. In addition, one expert Eric and I talked to mentioned the multiplicity of stakeholders, as well as many other issues, not all of which I think are relevant.

From one angle, hyperlocalism goes very deep in American culture. Some of it is relatively recent, coming from the white middle class’s desire to maintain local control as the only way to legally prevent integration. Some of it is older – New England had a lot of local empowerment in the 18th and 19th centuries, and unlike in Europe, local elites were viewed as leaders who brought freedom rather than as the main obstacles to freedom.

But from another angle, the specific mechanism through which hyperlocalism acts is not that deep. The local gadfly who launches nuisance lawsuits against everything is a figure of derision; the politician who cuts through the red tape and knocks some heads together and gets things done is a figure of worship and a prime candidate for higher office. If anything, the reason things do not get done in the United States is that politicians prefer to play it safe and knock heads together on low-risk, low-reward projects, hence for example Andrew Cuomo’s proposal for a LaGuardia air train that goes the wrong way but avoids a NIMBY fight from 20 years ago.

The example of Cuomo’s air train, in turn, introduces another attribute: do-nothing politicians. That’s a fairly American problem – other high-cost countries, like Britain and Canada, have politicians that build extravagant projects at high cost, but those projects (HS2, Ontario Line, etc.) are actually useful. Is it a result of an American legal regime that favors the state against the individual and therefore cannot guarantee security of property unless the government credibly pledges to be slow and stupid? Or is it a contingent effect of a handful of governors being slow and stupid in 2019, which may change if someone more competent is elected in the future?

The ultimate question is “can anything get better?”. There’s a lot of evidence in both directions when it comes to American construction costs; when it comes to transit usage in the vast majority of the United States where there is no public transit, the same is true but right now I believe the evidence is stronger on the “no” side.

I’m Giving a Talk About Construction Costs Tomorrow

By popular demand, I’m giving the talk I gave 2 weeks ago at NYU, again. The database will be revised slightly to include more examples (like Ukraine, which I added between when I gave the talk and when I blogged about it), and I may switch around a few things, but it should be similar to what I already said.

Where? Halyards in Brooklyn at 3rd Avenue and 6th Street, near the 4th Avenue/9th Street subway stop where the F/G and R intersect.

When? Monday December 2nd at 9 pm, for an hour.

Do I need to RSVP? No.

Will there be food? To some extent – the bar has minimal selection, although what it does have on the menu seems better for the price than most American bar food (which, to be fair, is like saying “better public transportation than Los Angeles”).

I Gave a Talk About Transportation in Connecticut

I gave a second talk this week about transportation, this time at Hartford Station, concerning the plans for Connecticut transportation. The starting point is Governor Lamont’s $21 billion plan for investment, including both expansion and repairs (read: the State of Good Repair black hole), of which $14 billion is highways, $6.2 billion is rail, and $450 million is buses. But most of the talk concerns what Connecticut should be doing, rather than the specifics of Lamont’s plan.

Here are my slides. The talk itself took around 40-45 minutes out of a nearly 2-hour meeting, so it was designed around taking many questions, and around further explanations. Something I didn’t put in the slides but explained verbally is how easy the modern track renewal process is. Nowadays, there are machines that use no infrastructure except the tracks themselves, running on the tracks at very low speed (slower than walking) and systematically replacing the rails, ties, and ballast. They can also regrade the tracks’ superelevation angle independently of the drainage angle, changing the tracks’ cant as they go. The upshot is that increasing the cant on tracks is almost cost-free, and would enable large increases in train speed on both regional and intercity trains.

Other technology that has negative cost in the future is getting higher-performance EMUs than the current equipment. The current trains are obsolete technology, built around superseded federal regulations. There’s no point in getting more of the same. They’re okay to run until end of life, but new purchases should involve electrification and modern European EMUs. Whereas infrastructure costs are rising (see here and here), technology costs are falling in real terms. The fall in train costs is not so quick as that of computer costs, but still the rolling stock factories are designed around making products for the 2020s, not the 1990s, and retooling them for older technology costs extra.

Hence my slogan from the talk: better things are possible, on a budget.

One question I was asked at the talk that I didn’t have an answer to was, why is construction in Connecticut so expensive? Plans for infill stations are budgeted extravagantly, ranging between $50 million and $100 million without any special construction difficulties. Boston builds infill stations (counting high-platform upgrades as infill since the preexisting stations have no facilities) for $20-30 million counting various hidden costs (e.g. regular MBTA employees, like project managers, count as operating and not capital costs even if they only work on capital costs); Berlin does for €10-20 million.

After the talk, Roger Senserrich explained to me (and a planner at the MBTA confirmed to me) that in Connecticut there’s no in-house design at all. Massachusetts has a mix of in-house design review, with the team stymied by uncompetitive wages making hiring and retention difficult, and outsourcing work to consultants. CDOT exclusively outsources to consultants, and has no in-house expertise to evaluate whether the contracts are fair or whether it’s being overcharged.

I Gave a Talk About Construction Costs

Two years ago, I gave a talk at NYU about regional rail, and as promised, uploaded slides the next day for discussion. Yesterday I gave another such talk, about construction costs.

But here there are two things to upload: the slides, and the data table. I’ve been intermittently adding cities to a spreadsheet of various urban rapid transit lines and their construction costs, and by now there is a total of 207 distinct items, ranging from 1 km extensions to 3-figure packages like 200-km GPX and 160-km Delhi Metro phases. The total length of the lines in this database right now is 3610 km, of which 2090 are underground. These are almost exclusively new lines – most of them aren’t even open, and most of the rest opened this decade, so be cautious since much of the cost estimation is ex ante and a number of the soon-to-open line on the list have had serious cost overruns.

I hope people make use of this dataset and the preliminary analysis contained in the slides, and I ask that people look at both, since the slides do have some interpretive notes about confounding variables. One note that I did not include in the slides and explained verbally is what source means in the table: media means I’m drawing costs from popular media, trade means trade media like Railway Gazette, plan means official plans (either ex ante or ex post), wiki means Wikipedia (as always, a reliable source for line length and station count, never cost), measured means I measured line length on Google Earth lacking any alternative. One item, Crossrail, has its tunnel cost coming from a freedom of information request submitted by an alert reader who I will credit upon request; the headline budget is somewhat higher as it includes surface improvements, a common confounder for regional rail projects (the RER E extension, for example, splits its budget about 50/50 between the tunnel and above-ground works).

More detailed analysis is forthcoming, either here or in print.

What is the Anglosphere, Anyway?

As I’m putting more and more urban rail lines and their construction costs into one table, I have to notice trends. One that I’ve talked about for many years is that construction costs in the Anglosphere are higher than in the rest of the developed world, not just in world leader New York but also in other American cities as well as in Britain, Canada, Singapore, and so on. For years I identified this with common law, which I no longer do. Instead, I want to expand on this by asking what exactly the Anglosphere even means.

The features of the Anglosphere

Within the developed world, a subset of countries consists of the Anglosphere. The core is Britain, the US, Canada, Australia, and New Zealand, but Ireland has to be on the list too, as should Singapore and to varying extents Israel and Hong Kong. Which features separate them from the remainder of the first world:

  • For the most part, they use English as their usual language – but Israel, Hong Kong, and Quebec do not, and Singapore only does as a public language while maintaining Chinese, Malay, and Tamil as home languages.
  • They use English common law – but Quebec uses a French-derived code for civil law.
  • They have extensive right to trial by jury – but Israel and Singapore have no juries.
  • They use single-member districts in elections – but Singapore and Hong Kong are undemocratic, Israel and New Zealand use proportional representation, Ireland uses single transferable vote, and Australia’s single-member districts use instant runoff (cf. France’s single-member districts with runoffs).
  • They have higher economic inequality than other developed countries, lower taxes and government spending, and weaker unions – but there are some exceptions (e.g. Canada and Australia are less unequal than Italy, and South Korea and Japan have lower taxes than most of the Anglosphere), and moreover the ranges within both the Anglosphere and the rest of the developed world are quite wide.
  • They make extensive use of privatization and public-private partnerships for infrastructure and services – but Stockholm contracts out its urban rail whereas no major American city does, and France built one of its recent high-speed lines, the one to Bordeaux, as a PPP.
  • The smaller countries see the US, the UK, or both as inspirations for what modern prosperity looks like – but Israel compares itself with both the US and Western Europe (especially Germany), Singapore’s cultural cringe extends toward both the US/UK and bigger East Asian countries, and Hong Kong is torn between Western and Chinese models.

Every distinguishing feature of the Anglosphere can be made to correlate with high construction costs, but that tells us little, because it could be that this is just a spurious relationship, the real cause being something else about the Anglosphere. When making a claim about what makes the US, UK, and Canada so expensive to build in, it’s useful to test it against special cases – that is, countries that are part of the Anglosphere in general but fail that specific criterion.

The legal system

With respect to common law, Quebec is the ideal testing ground. Montreal and Toronto share more social and economic features than do other pairs of major cities with their respective languages. A large Toronto premium over Montreal would suggest that remaining differences, such as the legal code or maybe the peculiarities of Quebec politics, matter to construction costs.

But what we see is the opposite. In the 2000s, Toronto and Montreal both built subway extensions at pretty reasonable costs. Since then, costs have risen in both cities in tandem, placing the planned Blue Line extension in Montreal and the planned Ontario Line and Scarborough replacement in Toronto among the most expensive non-New York subways. So it’s likely that common vs. civil law makes no great difference to costs.

Electoral politics

By the same token as with the use of common versus civil law, we can look at the electoral system. Israel and New Zealand use fully proportional elections, and Israel has national lists, without any local empowerment. Both countries have cheap recent electrification projects, but when it comes to tunneling, both Tel Aviv and Auckland are on the expensive side.

Conversely, France has single-member districts with runoffs; the lack of a spoiler effect weakens political parties, but they’re still stronger than in the US, and in practice independent candidates mostly run explicitly as left or right. Any reasonable mechanism for why single-member districts should raise construction costs should apply regardless of whether these districts are elected by plurality or with runoffs (and besides which, Melbourne has extreme costs and Sydney fairly high ones). And yet, French costs are decidedly average: Grand Paris Express is the median world subway by construction costs, and other Metro extensions in Paris and other French cities are somewhat cheaper.

Unions and inequality

The political factor – the Anglosphere’s socioeconomic policy is generally to the right of that of Continental European countries – has its own special cases too. The American left and center-left has in particular seized upon the importance of health care to construction costs, since the US has high health care costs and employers, especially in the public sector, are expected to pay most of the costs of workers’ health insurance. But the UK and Canada both have largely public systems that the American left uses as inspiration for its single-payer health care plans, and the UK also has very good cost control; and yet both countries have very high infrastructure construction costs. Singapore, whose health care system is private and unequal but also low-cost, has very expensive subway construction as well.

We can similarly look at inequality in general, or at union power. The correlation between inequality and national construction costs should be fairly high, if only because the Anglosphere has high inequality as well as high construction costs. However, per Branko Milanovic’s data for after-tax-and-transfers inequality, Canada, Britain, and Australia all have slightly lower inequality than Spain, and are comparable to Greece and Italy.

Unions can affect construction costs in either direction. The American center-right and right complain that the power of public-sector unions warps public incentives and forces high construction and operating costs, citing union hostility to productivity improvements that include layoffs, or such regulations as prevailing wage laws. However, the most unionized countries in the developed world are in Scandinavia, where costs are low. The OECD has union density figures by country, and the big cleave is Scandinavia versus the rest. The Anglosphere is on the weaker side.

Perhaps the correlation must then go the other way? That is, weak unions increase costs, for example by creating a siege mentality among those workers who do have stable union jobs (including rail workers, as the industry’s economic and political situation is friendly to unionization)? But the data does not support that, either. Spain’s union density is barely higher than the US’s and much lower than Britain’s, and Greece’s is comparable to Britain’s. The available data strongly suggests that union power has no effect on construction costs, positive or negative.

Could it be privatization?

Privatization and the reliance on PPPs is the least clean of the Anglosphere’s special features – that is, it is not always used throughout the countries I identify with the Anglosphere, and conversely it may be used elsewhere, even in countries with generally left-wing economic policy like Sweden. Nonetheless, among the political, legal, social, and economic factors, it is the only one I cannot rule out.

The issue is not precisely contracting out something, as Stockholm is doing with urban rail. Rather, it is more specifically privatizing the planning aspects of the state, such as engineering. Spain relies heavily on in-house engineering and design, while the US and UK, and by imitation the rest of the Anglosphere, prefer private consultants. To the extent I have cost comparisons within the same city or country with different levels of privatization, they’re suggestive that it matters: the publicly-funded LGV Est Phase 2 cost €19 million per kilometer (with a tunnel covering 4% of the route), the PPP LGV Sud-Europe-Atlantique cost €23 million per kilometer (with no tunnels), the two lines opening within a year of each other. This is not an enormous cost difference, but accounting for the tunnel makes the cost noticeable, perhaps a factor of 1.5.

Conclusion

Overrelying on a single case is not particularly robust. In light of the similarities between costs of different lines in the same city, and even those of different cities in the same country, the N for a quantitative comparison is not large – my data table currently has 38 unique countries, and even accounting for a few misses for which I haven’t included data yet, like Israel, the number is not much larger than 40. It is not responsible to use multivariable regressions or other advanced statistical techniques in such a situation.

In that case, looking at one or two cases provides a powerful sanity check. As far as I can tell, the Anglosphere’s tendency toward privatization and using consultants, often reinforced by different English-speaking countries learning one another’s practices, could be a serious cost raiser. However, the other special features of the Anglosphere – common law, winner-take-all elections leading to two-party systems, and weak unions and welfare states – are unlikely to have a significant effect.

Construction Costs are National

I’m about to send a thinktank a draft of a table of subway construction costs, and I’d like to preview one of the most important findings from the data. This is based on 125 distinct items, totaling 2,297 kilometers – some complete, some under construction, a handful proposed. I’ve alluded to this here before, for example when writing about national traditions (US, Soviet, UK) or about Russian and Nordic costs. But the basic observation is that construction costs are not really a feature of an individual metro line, but of a city, and usually an entire country.

What this means is that if one line in Madrid is cheap, then we can expect other lines in Madrid to be cheap, as well as in the rest of Spain; if one line in London is expensive, then we can expect other lines in London to be expensive, as well as in the rest of the UK. In fact, in both countries the construction costs of metro systems in the capitals also accord with the construction costs of intercity high-speed rail: cheap in Spain, expensive in Britain, with Germany somewhere between Spain and Britain and France somewhere between Spain and Germany.

Some examples

The examples in this section are somewhat cherrypicked to be the ones with narrower ranges, but there are very few examples with truly large ranges over a similar period of time (i.e. not secular increases as in Canada). I am specifically excluding regional rail, as it tends to be more expensive per kilometer than subways.

Panama: Line 1 cost around PPP$260 million per kilometer for 53% underground construction, and Line 2 is cheaper, around $150 million, but is entirely above-ground. This is consistent with a factor-of-2.5 underground premium over elevated lines, well in line with the literature.

Greece: Athens Line 4 is €104 million per km, with construction having started recently. Thessaloniki has two lines in the database, the main line due to open next year and an extension to Kalamata due to open in 2021, and Athens is also about to wrap up an extension of Line 3 to Piraeus. All cost figures may be found here on PDF-p. 9. The two Thessaloniki projects are respectively €135 million/km and €118 million/km, the former at least including rolling stock and I believe the latter too; the Athens Line 3 extension, without rolling stock and with somewhat wider stop spacing, is much cheaper, €61 million/km, but this rises to €82 million/km with rolling stock.

Sweden: the Stockholm Metro extensions under construction all cost pretty much the same per kilometer. Three extensions are under construction at once, in three different directions; per this source, the costs per kilometer (in kronor) are 1 billion, 1.25 billion, and 1.15 billion, with the most expensive of the three involving brief underwater tunneling.

Russia: I asserted in an old post that Russian construction is expensive, with only a handful of projects. Since then I’ve found a source asserting that the entire 2011-20 program is 1.3 trillion rubles, for what appears to be 150 km, 57% underground. This is in PPP terms $364 million per km. Other costs are vaguely in that range – Railway Gazette claims the cost of boring in Moscow is (again in PPP terms) $400-600 million/km, Line 11 is around $310 million/km for underground suburban construction, one line mentioned on Railway Gazette in St. Petersburg is $310 million/km underground, another St. Petersburg line is maybe $360 million/km.

What does this mean?

That there’s correlation between different cities’ construction costs within the same country suggests the differences in costs are predominantly institutional or socio-political, rather than geological. This is further reinforced by looking at countries with very similar socio-political regimes, namely the Nordic countries: all of them are cheap, and even though Stockholm and Helsinki both have similar gneiss geology, the Oslo line I use for comparison does not (and neither does somewhat more expensive Copenhagen).

To further reinforce the institutional point, the costs of high-speed rail in different countries seem to follow the same order as the costs of metros. Spain is cheap: Ferropedia quotes construction costs below €20 million per kilometer. The UK, in contrast, just announced a cost overrun on HS2, a 540 kilometer network, to £88 billion, and even allowing for future inflation, this is maybe 7 or 8 times as expensive as in Spain. France and Germany are in between, in the same order as their metro costs. China, as far as I can tell comparable to France in its metro construction costs, has a high-speed rail construction cost range somewhat higher than France’s, mostly explainable by using more (generally avoidable) viaducts.

New York Rolling Stock Costs are Skyrocketing

The Metropolitan Transportation Authority has just released its capital plan for 2020-4. The cost is very high and the benefits substantial but limited, and I urge people to look over criticism by Henry Grabar at Slate about elevators and Ben Kabak’s overview at Second Avenue Sagas. Here I am going to focus on one worrying element: the cost of the trains themselves, on both the subway and commuter rail.

I started comparing subway construction costs nearly ten years ago. Here’s an early post on Second Avenue Sagas, hoisting something I wrote in comments. Over here I started writing about this in 2011. Early on, I was asked about the costs of the trains themselves rather than the tunnels, and said that no, there’s no New York premium there. At the time the most recent rolling stock order for the subway was the R160, for which the base order cost was $1.25 billion for 620 cars (source, PDF-p. 34), or about $110,000 per meter of length. Commuter rail was similar, about $2 million per 25-meter-long M7 in the early 2000s and $760 million for 300 M8s of the same length in the mid-2000s. London’s then-current order, the S Stock, cost £1.5 billion for 191 trains and 1,395 cars, around $90,000 per meter of length for narrower trains; Paris’s MP 05, a driverless rubber-tired train, cost €474 million for 49 trainsets, around $140,000 per meter.

But since then, costs have rapidly risen. The gap is still far smaller than that for infrastructure, which New York builds for an order of magnitude higher cost than the rest-of-world median. But it’s no longer a rounding error. Subway rolling stock costs are rising, and commuter rail rolling stock are rising even faster. The latest subway order, the R211, costs $1.45 billion for 535 cars, or $150,000 per meter, for the base order, and $3.69 billion for 1,612 cars, or $130,000 per meter, including options. Commuter rail equipment costs, once about $100,000 per meter of train length, inched up to $2.7 million per car in 2013, or $110,000 per meter, and then rose to $150,000 per meter for the M9 order.

Construction costs: subway trains

The 2020-4 capital plan has showcased even further rolling stock cost escalation. Go to the link for the MTA capital plan again. On PDF-p. 23 there’s a breakdown of different items on the subway, and rolling stock is $6.057 billion for a total of 1,977 cars, of which 900 are 15 meters long and the rest (I believe) 18, for a total of $185,000 per linear meter.

I’ve blogged before about comparative costs of light rail and regional rail rolling stock. In Europe, both still cluster around $100,000 per linear meter for single-level, non-high-speed equipment. There is no apparent premium over early- and mid-2000s cost even without adjusting for inflation, which is not surprising, as the real prices of manufactured goods tend to fall over time. But what about metros? Here, too, we can look at first-world world comparisons.

In London, a recent Piccadilly line order is, in exchange rate terms, $190,000/meter (the trains are 103 m long) – but it includes 40 years of maintenance and spare parts. In Singapore, a recent order is S$2.1 million per car, which is about $70,000 per meter in exchange rate terms. Grand Paris Express’s first tranche of orders costs €1.3 billion for 183 trains totaling 948 cars, each (I believe) 15 meters long, around $120,000 per meter. Metro Report states Busan’s recent order as 55.6 billion for 48 trainsets (replacing 140-meter long trains), which is almost certainly an error; assuming the actual cost is 556 billion, this is $70,000/meter in exchange rate terms and $90,000/meter in PPP terms (PPP is relevant as this is an entirely domestic order).

In Berlin, the situation is the diciest, with the highest costs outside New York (not counting London’s maintenance-heavy contracts). An emergency order of 20 52-meter trains, tendered because cracks were discovered in the existing trains, cost €120 million, around $150,000 per linear meter. A longer-term contract to supply 1,500 cars (some 13 meters long, most 16.5 meters long) for €3 billion by 2035 is on hold due to litigation: Siemens had already sued over the emergency order of Stadler cars, but now Alstom made its own challenge. But even here, costs are well below the levels of New York, even before we adjust for inflation since Berlin’s future contract is in 2020-35 prices and New York’s is in in 2020-24 prices.

Construction costs: New York-area commuter rail

Commuter rail is faring even worse. On PDF-p. 27 the LIRR is listed as spending $242 million on 17 coaches and 12 locomotives, and on PDF-p. 29 Metro-North is listed as spending $853 million on 80 EMU cars and 30 locomotives.

Figuring out exact comparisons is not easy, because locomotives do cost more than multiple-units and unpowered coaches, and there is a range of locomotive costs, with uncertainty due to currency conversions, as most information I can find about European locomotives is in Eastern Europe with its weak currencies, since Western Europe mostly uses multiple-units. Railway Gazette’s pages on the world rolling stock market suggest that a European locomotive is around €5 million (e.g. the PKP Vectron order), or $6.5 million; PKP’s domestic order (including some dual-modes) is around $4.2 million per unit measured in exchange rate terms, but twice as much in PPP terms; Bombardier has a sale to an undisclosed customer for about $4.8 million. Siemens claims the Vectron costs €2.5 million per unit, although all the contracts for which I can find prices are substantially more expensive.

For what it’s worth, in the US dual-mode locomotives for New Jersey Transit cost around $9.5 million apiece, which is still evidently lower than what the LIRR and Metro-North plan on spending. 242 – 9.5*12 = 128, and 128/17 = 7.5, or $300,000 per linear meter of unpowered coach; similarly, 853 – 9.5*30 = 568, and 568/80 = 7.1, or $280,000 per linear meter of new Metro-North EMU. If we take the normal-world cost of a locomotive at $6 million and that of an EMU or coach at $2.5 million per US-length car, then the LIRR has a factor-of-2.1 cost premium and Metro-North a factor-of-2.2 premium.

The equipment is conservative

The FRA recently realigned its regulations to permit lightly-modified European mainline trains to run on American tracks. Nonetheless, no American commuter rail operator has taken advantage of the new rules – the only ones buying European equipment had plans to do so even before the revision, going through costly waiver process that increased costs. At a public meeting last month, Metro-North’s vice president of engineering did not even know FRA rules had changed. The LIRR and Metro-North are buying the same equipment, to the same standards, as they have for decades.

The subway, likewise, is conservative. It is a laggard in adopting open gangways: the R211 order is the first one to include any, but that is just two test trainsets, the rest having doors between cars like all other older New York trainsets. It is not buying any of the modular products of the global vendors, like Bombardier’s Movia platform or the Alstom Metropolis. It is buying largely the same kind of equipment it has bought since the 1990s.

Despite this conservatism, costs are very high, consistent with a factor somewhat higher than 2 on commuter rail and somewhat lower than 2 on the subway.

But perhaps the conservatism is what increases costs in the first place? Perhaps the reason costs are high is that the world market has moved on and the MTA and some other American operators have not noticed. In Chicago, Metra found itself trying to order a type of gallery car that nobody makes any longer, using parts that are no longer available. Perhaps the same kind of outmoded thinking is present at the MTA, and this is why costs have exploded in the last 10 years.

A secular increase in costs of infrastructure construction is nearly universal. No such trend can be seen in rolling stock: nominal costs in Paris are 15% lower than they were 15 years ago, and real costs are about 30% lower, whereas in New York nominal costs are 70% higher than 10 years ago and real costs about 40% higher. Paris keeps innovating – M1 and M14 have the highest frequency of any metro system in the world, a train every 85 seconds at the peak, and M1 is the first driverless line converted from earlier manual operations rather than built from scratch. In contrast, New York is stuck in the 1990s, but far from keeping a lid on costs, it has seen rolling stock cost explosion.

Update 9/24: I just saw a new commuter rail coach order in Boston. These are bilevels so some cost premium is to be expected, but $345 million for 80 unpowered coaches, or $170,000 per meter, is excessive, and TransitMatters tried hard to fight against this order, arguing in favor of EMUs on the already-electrified Providence Line.

Why I Write About Rail Costs, not the Cost of Other Things

I’ve been asked from time to time, Alon, you write about comparative rail costs all the time, but what about roads? Sometimes the question expresses curiosity about whether roads display the same American construction cost premium as urban rail does; sometimes it expresses frustration that The Discourse doesn’t complain about road costs. Regardless of why people ask, I’d like to explain my reasoning in depth, especially now that serious people are asking why this is the focus of my comparative research.

There’s an easy answer and a hard answer. The easy answer is that I’m a railfan. I got into this because I was living in Morningside Heights and taking the subway to social events in Brooklyn and Queens, which involved 3- and sometimes 4-seat rides. It got me interested in coverage gaps and subway extensions, which got me interested in the construction costs of such extensions.

But that’s not really it. From my original purpose of comparing a few urban infill subways in large global cities I got into operating costs, and high-speed rail, and light rail, and electrification, and even road tunnels (here is my comparison of urban road tunnel projects). What’s more, other people have looked at comparative costs, and even without sharing my not-knowing-how-to-drive origin story, they don’t compare individual road projects much. The Brookings study about the Interstates looked at the entire cost of the US Interstate program rather than teasing it out project by project.

What’s really going on is that subways are megaprojects. Megaprojects are visible, and I don’t just mean physically – they’re widely discussed in the media and politics, and cost overruns invite intense criticism by the opposition and by investigative reporters. Everybody in New York knows about Second Avenue Subway, and everybody in New Jersey knows about the Gateway tunnel, and everybody in London knows about Crossrail.

The upshot is that megaproject cost estimates are just more reliable than those of anything else. What I mean is not that cost overruns are unlikely. Rather, what I mean is that cost overruns are difficult to hide, unless the agency goes the Canadian route of fluffing the budget with very high contingencies. The current budget for Grand Paris Express is around €35 billion, up from €25 billion when it was first announced. If it actually ends up at €36 billion and not €35 billion then it may be possible to scrounge extra funds from a few sources sub rosa, but not if it ends up at €45 billion.

The largest source of wasteful spending in the world is the American military. It has a budget of $700 billion a year, debated largely behind the scenes, with boisterous generals and their lackeys ready to publicly defend every $600 toilet seat and every procurement item in the district of any member of Congress who dares object. There is a shroud of secrecy around everything that can be justified as national security. There is no exit threat – the military can’t be shut down the way an underperforming state railroad can be privatized. Hidden costs are rampant, and as far as I understand, they are on the order of a few billion dollars at a time.

I bring up American military waste not to justify civilian waste on infrastructure, but to compare which costs can be plausibly hidden. If the US military can miss a few billion dollars, the transport planners of Ile-de-France can miss tens to hundreds of millions of euros on a 15-year, 200-kilometer project. Those of Madrid can probably miss an amount of money on the same order of magnitude as those of Paris. The low construction costs in Madrid have been plugged into additional construction, giving Madrid Europe’s third longest metro network after London and Moscow; those hundreds of kilometers built in the last 25 years could not have cost the same as in France, let alone the US, because this would have been too big of a difference, and the media would have noticed.

The same situation equally occurs for road megaprojects, such as tunnels or big urban reconstruction projects, such as the lane additions in Los Angeles. But it does not occur for run-of-the-mill road widening outside urban areas or for small projects to increase the capacity of a junction from a cloverleaf to a four-level interchange. These are not sufficiently visible for me to be able to trust that there is full cost accounting in the trade and popular press.

I’m happy to compare the costs of road tunnels between different cities; the few examples I have found paint the same picture as the subway cost comparison. But above-ground road construction is harder, just because “above-ground” can mean anything from a complex viaduct-over-viaduct to simple at-grade construction. Even then, ancillary costs like unnecessary street reconstruction may be bundled into the overall budget, and since above-ground construction isn’t so expensive, these extras may be a sizable fraction of the cost.

For a similar reason, I don’t look at airports so much: they’re just harder to compare. I do not know how big the Berlin-Brandenburg disaster is compared with other airports under construction, so I do not know how much it should cost; I don’t even know what the equivalent metric of cost per km or cost per new station excavated is. In contrast, to take another well-known German infrastructure disaster, Stuttgart21 has a definite tunnel length – 30 kilometers, as well as another 25 above ground – so I can compare with other regional rail projects and say that actually the cost of Stuttgart21 (€6.5 billion) is not so high relative to how much urban mainline rail tunneling costs elsewhere in the world.

For the exact same reason, when I look at above-ground urban rail I try to separate out truly at-grade light rail from elevated lines. The only times I try to do a deep dive are when these projects encroach on the cost range of subways, like the Boston Green Line Extension. Elsewhere, ancillary costs can be substantial, as with the Nice tramway: 70% of the budget was the tramway itself and 30% was stormwater drainage, rebuilding a public plaza, tree planting, and other extras. Extras introduce an error term into comparisons that are harder to ignore when the cost is $50 million per kilometer than when it is $300 million per kilometer.

Road costs remain a powerful sanity check. All of the reasons I (and others) believe are behind the American construction cost premium are equally applicable to roads and urban rail. So far, looking at road tunnels confirms the subway pattern, but there just aren’t a lot of road tunnels built around the world – they’re expensive for the capacity they provide. And if it’s possible to carefully tease out above-ground road megaproject costs then a comparison is welcome as well. But they are unlikely to form the backbone of any comparison.

Metro tunnels, for all the handwringing about special circumstances, are pretty consistent. Some places have easier rock and some have harder rock, but usually this will be noted in the trade and popular press; the most fundamental quantities, length and the number of stations, are if anything easier to find than the headline costs; ancillary extra costs are usually not significant, and when they are, they tend to be bundled into quantifiable metrics like station size and depth. The only big difference in reporting regimes is that some places (like Spain) bundle together infrastructure and rolling stock costs whereas most don’t.

The main approach to project-level comparison of infrastructure costs across countries has to be about urban rail, because that’s by far what’s most common across the world. The error bars around ex post costs are small enough that even a relatively restricted sample is suggestive of the real global effect as I’m learning when adding more and more projects to my database (currently about 130 projects totaling 2,000 km). This is the most comparable list of public infrastructure projects, and what we may learn about why various American urban rail lines cost so much and why Spanish and Korean and Nordic ones cost so little is likely to generalize.