Category: Urban Transit

Public Transportation in the Southeastern Margin of Brooklyn

Geographic Long Island’s north and south shores consist of series of coves, creeks, peninsulas, and barrier islands. Brooklyn and Queens, lying on the same island, are the same, and owing to the density of New York, those peninsulas are fully urbanized. In Southeastern Brooklyn, moreover, those peninsulas are residential and commercial rather than industrial, with extensive mid-20th century development. Going northeast along the water, those are the neighborhoods of Manhattan Beach, Gerritsen Beach, Mill Basin, Bergen Beach, Canarsie, Starrett City, and Spring Creek. The connections between them are weak, with no bridges over the creeks, and this affects their urbanism. What kind of public transportation solution is appropriate?

The current situation

The neighborhoods in the southeastern margin of Brooklyn and the southern margin of Queens (like Howard Beach) are disconnected from one another by creeks and bays; transportation arteries, all of which are currently streets rather than subway lines, go north and northwest toward city center. At the outermost margin, those neighborhoods are connected by car along the Shore Parkway, but there is no access by any other mode of transportation, and retrofitting such access would be difficult as the land use near the parkway is parkland and some auto-oriented malls with little to no opportunity for sprawl repair. The outermost street that connects these neighborhoods to one another is Flatlands, hosting the B6 and B82 buses, and if a connection onward to Howard Beach is desired, then one must go one major street farther from the water to Linden, hosting the B15.

For the purposes of this post, the study area will be in Brooklyn, bounded by Linden, the Triboro/IBX corridor, and Utica:

This is on net a bedroom community. In 2019, it had 85,427 employed residents and 39,382 jobs. Very few people both live and work in this area – only 4,005. This is an even smaller proportion than is typical in the city, where 8% of employed city residents work in the same community board they live in – the study zone is slightly smaller than Brooklyn Community Board 18, but CB 18 writ large also has a lower than average share of in-board workers.

In contrast with the limited extent of in-zone work travel, nearly all employed zone residents, 76,534, work in the city as opposed to its suburbs (and 31,685 of the zone’s 39,382 jobs are held by city residents). Where they work looks like where city workers work in general, since the transportation system other than the Shore Parkway is so radial:

Within the zone, the southwestern areas, that is Mill Basin and Bergen Beach, are vaguely near Utica Avenue, hosting the B46 and hopefully in the future a subway line, first as an extension of the 4 train and later as an independent trunk line.

To the northeast, Canarsie, Starrett City, and Spring Creek are all far from the subway, and connect to it by dedicated buses to an outer subway station – see more details on the borough’s bus map. Canarsie is connected to the L subway station named after it by the B42, a short but high-productivity bus route, and to the 3 and 4 trains at Utica by the B17, also a high-productivity route. Starrett City does not have such strong dedicated buses: it is the outer terminus of the circumferential B82 (which is very strong), but its dedicated radial route, the B83 to Broadway Junction, is meandering and has slightly below-average ridership for its length. Spring Creek is the worst: it is a commercial rather than residential area, anchored by the Gateway Center mall, but the mall is served by buses entering it from the south and not the north, including the B83, the B84 to New Lots on the 3 (a half-hourly bus with practically no ridership), the rather weak B13 to Crescent Street and Ridgewood, and the Q8 to Jamaica.

The implications for bus design

The paucity of east-west throughfares in this area deeply impacts how bus redesign in Brooklyn ought to be done, and this proved important when Eric and I wrote our bus redesign proposal.

First, there are so few crossings between Brooklyn and Queens that the routes crossing between the two boroughs are constrained and can be handled separately. This means that it’s plausible to design separate bus networks for Brooklyn and Queens. In 2018 it was unclear whether they’d be designed separately or together; the MTA has since done them separately, which is the correct decision. The difficulty of crossings argues in favor of separation, and so does the difference in density pattern between the two boroughs: Brooklyn has fairly isotropic density thanks to high-density construction in Coney Island, which argues in favor of high uniform frequency borough-wide, whereas Queens grades to lower density toward the east, which argues in favor of more and less frequent routes depending on neighborhood details.

Second, the situation in Starrett City is unacceptable. This is an extremely poor, transit-dependent neighborhood, and right now its bus connections to the rest of the world are lacking. The B82 is a strong bus route but many rush hour buses only run from the L train west; at Starrett City, the frequency is a local bus every 10-12 minutes and another SBS bus every 10-12 minutes, never overlying to produce high base frequency. The B83 meanders and has low ridership accordingly; it should be combined with the B20 to produce a straight bus route going direct on Pennsylvania Avenue between Starrett City and Broadway Junction, offering neighborhood residents a more convenient connection to the subway.

Third, the situation in Spring Creek is unacceptable as well. Gateway Center is a recent development, dating only to 2002, long after the last major revision of Brooklyn buses. The bus network grew haphazardly to serve it, and does so from the wrong direction, forcing riders into a circuitous route. Only residents of Starrett City have any direct route to the mall, but whereas Starrett City has 5,724 employed residents (south of Flatlands), and Spring Creek has 4,980 workers, only 26 people commute from Starrett City to Spring Creek. It’s far more important to connect Spring Creek with the rest of the city, which means buses entering it from the north, not the south. Our bus redesign proposal does that with two routes: a B6/B82 extension making this and not Starrett City the eastern anchor, and a completely redone B13 going directly north from the mall to New Lots and thence hitting Euclid Avenue on the A/C and Crescent Street on the J/Z.

What about rail expansion?

New York should be looking at subway expansion, and not just Second Avenue Subway. Is subway expansion a good solution for the travel needs of this study zone?

For our purposes, we should start with the map of the existing subway system; the colors indicate deinterlining, but otherwise the system is exactly as it is today, save for a one-stop extension of the Eastern Parkway Line from New Lots to the existing railyard.

Starrett City does not lie on or near any obvious subway expansion; any rail there has to be a tram. But Canarsie is where any L extension would go – in fact, the Canarsie Line used to go there until it was curtailed to its current terminus in 1917, as the trains ran at-grade and grade-separating them in order to run third rail was considered impractically expensive. Likewise, extending the Eastern Parkway Line through the yard to Gateway Center is a natural expansion, running on Elton Street.

Both potential extensions should be considered on a cost per rider basis. In both cases, a big question is whether they can be built elevated – neither Rockaway Parkway nor Elton is an especially wide street most of the way, about 24 or 27 meters wide with 20-meter narrows. The Gateway extension would be around 1.3 km and the Canarsie one 1.8 km to Seaview Avenue or 2.3 km to the waterfront. These should cost around $250 million and $500 million respectively underground, and somewhat less elevated – I’m tempted to say elevated extensions are half as expensive, but this far out of city center, the underground premium should be lower, especially if cut-and-cover construction is viable, which it should be; let’s call it two-thirds as expensive above-ground.

Is there enough ridership to justify such expansion?

Let’s start with Canarsie, which has 28,515 employed residents between Flatlands and the water. Those workers mostly don’t work along the L, which manages to miss all of the city’s main job centers, but the L does have good connections to lines connecting to Downtown Brooklyn (A/C), Lower Manhattan (A/C again), and Midtown (4/5/6, N/Q/R/W, F/M, A/C/E). Moreover, the density within the neighborhood is uniform, and so many of the 28,515 are not really near where the subway would go – Rockaway/Flatlands, Rockaway/Avenue L, Rockaway/Seaview, and perhaps Belt Parkway for the waterfront. Within 500 meters of Rockaway/L and Rockaway/Seaview there are only 9,602 employed residents, but then it can be expected that nearly all would use the subway.

The B42 an B17 provide a lower limit to the potential ridership of a subway extension. The subway would literally replace the B42 and its roughly 4,000 weekday riders; nearly all of the 10,000 riders of the B17 would likely switch as well. What’s more, those buses were seeing decreases in ridership even before corona due to traffic and higher wages inducing people to switch away from buses – and in 2011, despite high unemployment, those two routes combined to 18,000 weekday riders.

If that’s the market, then $500 million/18,000 weekday riders is great and should be built.

Let’s look at Gateway now. Spring Creek has 4,980 workers, but first of all, only 3,513 live in the city. Their incomes are very low – of the 3,513, only 1,030, or 29%, earned as much as $40,000/year in 2019 – which makes even circuitous mass transit more competitive with cars. There’s a notable concentration of Spring Creek workers among people living vaguely near the 3/4 trains in Brooklyn, which may be explained by the bus connections; fortunately, there’s also a concentration among people living near the proposed IBX route in both Brooklyn and Queens.

The area is the opposite of a bedroom community, unlike the other areas within the study zone – only 1,114 employed people live in it. Going one block north of Flatlands boosts this to 1,923, but a block north of Flatlands it’s plausible to walk to a station at Linden at the existing railyard. 51% of the 1,114 and 54% of the 1,923 earn at least $40,000 a year. Beyond that, it’s hard to see where neighborhood residents work – nearly 40% work in the public sector and OnTheMap’s limitations are such that many of those are deemed to be working at Brooklyn Borough Hall regardless of their actual commute destination.

There’s non-work travel to such a big shopping center, but there are grounds to discount it. It’s grown around the Shore Parkway, and it’s likely that every shopper in the area who can afford a car drives in; in Germany, with generally good off-peak frequency and colocation of retail at train stations, the modal split for public transit is lower for shopping trips than for commutes to work or school. Such trips can boost a Gateway Center subway extension but they’re likely secondary, at least in the medium run.

The work travel to the mall is thankfully on the margin of good enough to justify a subway at $50,000/daily trip, itself a marginal cost. Much depends on IBX, which would help deliver passengers to nearby subway nodes, permitting such radial extensions to get more ridership.

Adversarial Legalism and Accessibility

New York State just announced that per the result of a legal settlement, it is committing to make 95% of the subway accessible… by 2055. Every decade, 80-90 stations will be made accessible, out of 472. Area advocates for disability rights are elated; in addition to those cited in the press release or in the New York Times article covering the news, Effective Transit Alliance colleague Jessica Murray speaks of it as a great win and notes that, “The courts are the only true enforcement mechanism of the Americans with Disabilities Act.” But to me, it’s an example not of the success of the use of the courts for civil rights purposes, in what is called adversarial legalism, but rather its failure. The timeline is a travesty and the system of setting the government against itself with the courts as the ultimate arbiter must be viewed as a dead-end and replaced with stronger administration.

The starting point for what is wrong is that 2055 is, frankly, a disgrace. By the standards of most other old urban metro systems, it is a generation behind. In Berlin, where the U-Bahn opened in 1902, two years before the New York City Subway did, there has been media criticism of BVG for missing its 2022 deadline for full accessibility; 80% of the system is accessible, and BVG says that it will reach 100% in 2024. Madrid is slower, planning only for 82% by 2028, with full accessibility possible in the 2030s. Barcelona is 93% accessible and is in the process of retrofitting its remaining stations. Milan has onerous restrictions such that only one wheelchair user may board each train, but the majority of stations have elevators, and 76% have elevators or stairlifts. In Tokyo, Toei is entirely accessible, and so is nearly the entirety of Tokyo Metro. Even London is 40% accessible, somewhat ahead of New York. Only Paris stands as a less accessible major world metro system.

The primary reason for this is costs. The current program to make 81 stations accessible by 2025 is $5.2 billion. This is $64 million per station, and nearly all are single-line stations requiring three elevators, one between the street and the outside of fare control and one from just inside fare control to each of two side platforms. Berlin usually only requires one elevator as it has island platforms and no fare barriers, but sometimes it needs two at stations with side platforms, and the costs look like 1.5-2 million € per elevator. Madrid the cost per elevator is slightly higher, 3.2 million €. New York, in contrast, spends $20 million, so that a single station in New York is comparable in scope to the entirety of the remainder of the Berlin U-Bahn.

And this is what adversarial legalism can’t fix. The courts can compel the MTA to install elevators, but have no way of ensuring the MTA do so efficiently. They can look at capital plans and decree that a certain proportion be spent on accessibility; seeing $50 billion five-year capital plans, they can say, okay, you need to spend 5-10% of that on subway accessibility. But if the MTA says that a station costs $64 million to retrofit and therefore there is no room in the budget to do it by 2030, the courts have to defer.

This, in turn, is a severe misjudgment of what the purpose of civil rights legislation is. Civil rights laws giving individuals and classes the right to sue the government already presuppose that the government may be racist, sexist, or ableist. This is why they confer individual and group rights to sue under Title VI (racial equality in transportation and other facilities), Title IX (gender equality in education), and the ADA. If the intention was to defer to the judgment of government agencies, no such laws would be necessary.

And yet, the nature of adversarial legalism is that on factual details, courts are forced to defer to government agencies. If the MTA says it costs $64 million to retrofit a station, the courts do not have the power to dismiss managers and hire people who can do it for $10 million. If the MTA says it has friction with utilities, the courts cannot compel the utilities to stop being secretive and share the map of underground infrastructure in the city or to stop being obstructive and start cooperating with the MTA’s contractors when they need to do street work to root an elevator. Judges are competent in legal analysis and incompetent in planning or engineering, and this is the result.

Worse, the adversarial process encourages obstructive behavior. The response to any request from the public or the media soon becomes “make me”; former Capital Construction head and current MTA head Janno Lieber said “file a Freedom of Information request” to a journalist who asked what 400 questions federal regulators asked regarding congestion pricing. Nothing goes forward this way, unless accessibility in 33 years counts, and it shouldn’t.

How Washington Should Spend $10 Billion

The planned $10 billion expansion of Washington Union Station is a waste of money, but this does not mean that money appropriated for public transportation in the National Capital Region is a waste. The region has real transportation needs that should be addressed through urban rail expansion – just not through a rebuild of the intercity rail station. Those needs include local and regional travel, to be addressed through investment in both the Metro and the commuter rail networks. It is fortunate that when I probed on Twitter, there was broad if imperfect agreement among area advocates about what to do.

A $10 billion budget should be spent predominantly on new Metro Rail lines, carefully chosen to satisfy multiple goals at once: physical expansion of the reach of the system, additional core capacity, and deinterlining to improve reliability and increase the capacity of existing lines. For the purposes of the question I posed to area advocates, I set the expansion budget at $7.5 billion, good for 30 km at average global prices, leaving the rest for commuter rail improvements.

What to do about commuter rail

Washington does not have a large legacy commuter rail network, unlike New York, Chicago, Boston, or Philadelphia. It is not as old as those cities, and its conception as the southern end of an East Coast region stretching up to Boston is postwar, by which point investment in passenger rail was largely relegated to the past. Nonetheless, it does have some lines, three to the north as the MARC system and two to the south as the VRE system. They should be upgraded to better commuter rail standards.

Union Station already has the infrastructure for through-running. The junction between the through-tunnel and the terminal tracks is flat, and almost all intercity trains terminate and most will indefinitely no matter how much investment there is in high-speed rail to points south. This requires delicate scheduling, which is good up to about 18 trains per hour in each direction, either six through- and 12 terminating or the other way around. Running half-hourly all-day service on each of the lines, with some additional urban overlay in Virginia and extra service on the Penn Line to Baltimore, should not be too difficult.

Thus, the main spending items on the agenda are not new tracks, but electrification and high platforms. MARC runs diesel trains even under catenary on the Northeast Corridor, which problem requires no additional electrification to fix, but its other two lines are unelectrified, and VRE has no electrification infrastructure. Those lines total 327 route-km of required wiring, with extensive single-tracking reducing per-km cost; this should be around $600 million. But note that they all carry significant freight traffic, and additional accommodations may be necessary.

As far as platforms go, there are nearly 50 stations requiring high platforms (I think 49 but I may have miscounted). At Boston costs it should be $1 billion or a bit more, but that’s for long trains, and MARC trains are not so long, and a system based on shorter trains at higher frequency would be somewhat cheaper. Infill stations are probably unnecessary – there are Metro Rail lines along the inner sections of most of the lines providing the urban rail layer.

Metro Rail expansion

The most pressing problem WMATA’s trains have is poor reliability. Two changes in the late 2000s and 2010s made the system worse: the 2009 elimination of automatic (though not driverless) operations worsened ride quality and reducing capacity, and the 2014 opening of the Silver Line introduced too much interlining reducing both reliability and capacity. WMATA is aware of the first problem and is working to restore ATO; the Silver Line’s problems should be fixed through judicious use of deinterlining. Deinterlining by itself only requires a short extension of the Yellow Line to separate the lines, but it can be bundled with further expansion.

Consensus among area advocates is that there should be separate tunnels for the Yellow and Blue Lines and a new trunk line under Columbia Pike, which three lines total 21 km. Additional lines can consist of another trunk line going northeast from Union Station between the Brunswick and Camden Lines or an extension of the Columbia Pike line from Bailey’s Crossroads, the present outer limit of high density, to Annandale, which would require extension transit-oriented development along the line.

A full-size version can be found here; note that the lines at Union Station are moved around to get rid of the Red Line’s awkward U-shape. The northeast extension option is colored red but should be a Blue Line extension, but the Red Line taking over H Street and going to Largo.

Watch Our Webinar on Construction Costs Tomorrow

The Italy case, done by Marco Chitti, is up on the website. I encourage people to read the entire report on how Italy has set things up in the last 20-30 years so as to have one of the lowest-cost urban rail infrastructure programs in the world. The Turkey case, by Elif Ensari, will be up shortly.

This is leading to a webinar, to be done tomorrow at 16:00 my time, 10:00 New York time, in which Marco and Elif will present their cases to the general public. I encourage people to register; you’ll be able to ask us questions and we’ll answer in chat or on video. But if you can’t make it, it will be recorded.

Systemic Investments in the New York City Subway

Subway investments can include expansion of the map of lines, for example Second Avenue Subway; proposals for such extensions are affectionately called crayon, a term from London Reconnections that hopped the Pond. But they can also include improvements that are not visible as lines on a map, and yet are visible to passengers in the form of better service: faster, more reliable, more accessible, and more frequent.

Yesterday I asked on Twitter what subway investments people think New York should get, and people mostly gave their crayons. Most people gave the same list of core lines – Second Avenue Subway Phase 2, an extension of the 2 and 5 on Nostrand, an extension of the 4 on Utica, an extension of the N and W to LaGuardia, the ongoing Interborough Express proposal, and an extension of Second Avenue Subway along 125th – but beyond that there’s wide divergence and a lot of people argue over the merits of various extensions. But then an anonymous account that began last year and has 21 followers and yet has proven extremely fluent in the New York transit advocacy conversation, named N_LaGuardia, asked a more interesting question: what non-crayon systemic investments do people think the subway needs?

On the latter question, there seems to be wide agreement among area technical advocates, and as far as I can tell the main advocacy organizations agree on most points. To the extent people gave differing answers in N_LaGuardia’s thread, it was about not thinking of everything at once, or running into the Twitter character limit.

It is unfortunate that many of these features requiring capital construction run into the usual New York problem of excessive construction costs. The same institutional mechanisms that make the region incapable of building much additional extension of the system also frustrate systemwide upgrades to station infrastructure and signaling.

Accessibility

New York has one of the world’s least accessible major metro systems, alongside London and (even worse) Paris. In contrast, Berlin, of similar age, is two-thirds accessible and planned to reach 100% soon, and the same is true of Madrid; Seoul is newer but was not built accessible and retrofits are nearly complete, with the few remaining gaps generating much outrage by people with disabilities.

Unfortunately, like most other forms of capital construction in New York, accessibility retrofits are unusually costly. The elevator retrofits from the last capital plan were $40 million per station, and the next batch is in theory $50 million, with the public-facing estimates saying $70 million with contingency; the range in the European cities with extensive accessibility (that is, not London or Paris) is entirely single-digit million. Nonetheless, this is understood to be a priority in New York and must be accelerated to improve the quality of universal design in the system.

Platform screen doors

The issue of platform screen doors (PSDs) or platform edge doors (PEDs) became salient earlier this year due to a much-publicized homicide by pushing a passenger onto a train, and the MTA eventually agreed to pilot PSDs at three stations. The benefits of PSDs are numerous, including,

  • Safety – there are tens of accident and suicide deaths every year from falling onto tracks, in addition to the aforementioned homicide.
  • Greater accessibility – people with balance problems have less to worry about from falling onto the track.
  • Capacity – PSDs take up platform space but they permit passengers to stand right next to them, and the overall effect is to reduce platform overcrowding at busy times.
  • Air cooling – at subway stations with full-height PSDs (which are rare in retrofits but I’m told exist in Seoul), it’s easier to install air conditioning for summer cooling.

The main difficulty is that PSDs require trains to stop at precise locations, to within about a meter, which requires signaling improvements (see below). Moreover, in New York, trains do not yet have consistent door placement, and the lettered lines even have different numbers of doors sometimes (4 per car but the cars can be 60′ or 75′ long) – and the heavily interlined system is such that it’s hard to segregate lines into captive fleets.

But the biggest difficulty, as with accessibility, is again the costs. In the wake of public agitation for PSDs earlier this year, the MTA released as 2019 study saying only 128 stations could be retrofitted with PSDs, at a cost of $7 billion each, or $55 million per station; in Paris, PSDs are installed on Métro lines as they are being automated, at a cost of (per Wikipedia) 4M€ per station of about half the platform length as in New York.

Signaling improvements

New York relies on ancient signaling for the subway. This leads to multiple problems: maintenance is difficult as the international suppliers no longer make the required spare parts; the signals are designed around the performance specs of generations-old trains and reduce capacity on more modern trains; the signals are confusing to drivers and therefore trains run slower than they can.

To modernize them, New York is going straight to the most advanced system available: CBTC, or communications-based train control, also known as moving-block signaling. This is already done on the L and 7 trains and is under installation on other lines, which are not isolated from the rest of the system. CBTC permits much higher peak capacity in London; in New York, unfortunately, this effect has been weaker because of other constraints, including weak electrical substation capacity and bumper tracks at the terminals of both the L and the 7.

Moreover, in New York, the L train’s performance was derated when CBTC was installed, to reduce brake wear. The effect of such computer control should be the opposite, as computers drive more precisely than humans: in Paris, the automation of Line 1 led to a speed increase of 15-20%, and CBTC even without automation has the same precision level as full automation.

As before, costs form a major barrier. I can’t give the most recent analogs, because such projects tend to bundle a lot of extras, such as new trainsets and PSDs in Paris. In Nuremberg, the first city in the world to permanently convert a preexisting metro system to driverless operations, the cost of just the driverless system is said to have been 110M€ in the late 2000s, for what I believe is 13 km of U2 (U3 was built with driverless operations in mind, and then U2, from which it branches, was converted). It is said that automating U1 should cost 100M€ for 19.5 km, but this project is not happening due to stiff competition for federal funds and therefore its real cost is uncertain. In contrast, Reinvent Albany quotes $636 million for the 7 train in New York, of which $202 million must be excluded as rolling stock conversion; the Flushing Line is 16 km long, so this is still $27 million/km and not the $7-12 million/km of Nuremberg.

Maintenance regime

The maintenance regime in New York involves heavy slowdowns and capacity restrictions. Trains run 24/7 without any breaks for regular maintenance. Instead, maintenance is done one track at a time during off-peak periods, with flagging rules that slow down trains on adjacent tracks and have gotten more onerous over the last 10-20 years; only recently have planners begun to use temporary barriers to reduce the burden of flagging.

The result of this system is threefold. First, track maintenance productivity is extremely low – the train on an adjacent track slows down as it passes but the work stops as it passes as well. Second, speeds are unreliable off-peak and the timetable is in perpetual firefighting mode. And third, parts of the system are claimed to be incapable of running more than about 16 trains per hour off-peak, which means that if there is any branching, the branches are limited to 8, which is not enough frequency on a major urban metro system.

It takes a small amount of capital spending to increase efficiency of maintenance, through procuring more advanced machinery, installing barriers between tracks, and installing crossovers at appropriate locations. But it takes a large degree of operations and management reform to get there, which is necessary for reducing the high operating costs of the subway.

Deinterlining

New York has the most complicated interlining of any global metro network. Only four lines – the 1, 6, 7, and L – run by themselves without any track sharing with other lines. The 2, 3, 4, and 5 share tracks with one another. Then the lettered trains other than the L all share tracks on various segments, without any further segregation. Only some commuter rail networks are more complex than this – and even Tokyo has greater degree of segregation between different trunk lines, despite extensive through-service to commuter rail. The New York way guarantees more direct service on more origin-destination pairs, but at low frequency and with poor speed and reliability.

London, the second most interlined system, has long wanted to reduce interlining to increase capacity. The Northern line traditionally had just one southern segment reverse-branching to two central trunks, combining and splitting into two northern branches. When CBTC opened, the busier of the central trunks got 26 peak trains per hour; the more recent Battersea extension removed the interlining to the south, permitting boosting capacity up to 32 tph, and full deinterlining to the north would boost it to 36 tph, as on the most captive Underground lines.

In New York, it is desirable to remove all reverse-branching. At DeKalb Avenue in Downtown Brooklyn, the interlocking switches the four express (bridge) tracks from an arrangement of the B and D on one track pair and the N and Q on the other to the B and Q on one track pair and the D and N on the other; the process is so complex that every train is delayed two minutes just from the operation of the switches. Everywhere within the system, interlining creates too much dependency between the different trains, so that delays on one line propagate to the others, reducing reliability, speed, and capacity.

Some of the problem is, as usual, about high costs. Rogers Avenue Junction controls the branching of the 2, 3, 4, and 5 trains in Brooklyn, transitioning from the 2 and 3 sharing one track pair and the 4 and 5 sharing another to the 3 and 4 running on dedicated tracks and the 2 and 5 sharing tracks. For a brief segment, the 2, 3 and 5 trains all share tracks. This devastates capacity on both trunk lines, which rank first and third citywide in peak crowding as of the eve of the opening of Second Avenue Subway. There are already internal designs for rebuilding the junction to avoid this problem – at a cost of $300 million.

But some of the problem is also about operating paradigms. New York must move away from the scheduling ideas of the 1920s and 30s and understand that independently-operated lines with dedicated fleets and timetables, with passengers making transfers as appropriate, are more robust and overall better for most riders. DeKalb can be deinterlined with no capital spending at all, and so can Columbus Circle. It’s Rogers and Queens Plaza where spending is ideal (but even then, not strictly required if some operational compromises are made), and the 142nd Street Junction in Harlem where an extensive rebuild is obligatory in order to permit splitting the 2 from the 5 in the Bronx permanently.

Labor changes

Staffing levels in New York are very high. Trains have conductors and not just drivers; this is not globally unheard of (Toronto and some lines in Tokyo still have conductors) but it’s rare. With good enough signaling, a retrofit even for full automation is possible, as in Nuremberg, Paris, and Singapore. Maintenance work is likewise unproductive, not because people don’t work hard, but because they work inefficiently.

Improving this situation involves changes on both sides of the ledger – staffing and service. Conductors have to be cut for efficiency and not all of them can be absorbed by other roles, and the same is true of some station facilities and maintenance functions. In contrast, the low productivity of drivers in New York – they spend around 550 hours a year driving a revenue train whereas Berlin’s drivers, who get 6 weeks of annual paid vacation, scratch 900 – is the result of poor off-peak frequency, and must be resolved through increases in off-peak service that increase efficiency without layoffs.

Ultimate goal: six-minute service

I wrote two years ago about what it would take to ensure every public transit service in New York runs every six minutes off-peak, calling it a six-minute city.

Riders Alliance argues for the same goal, with the hashtag #6minuteservice; I do not know if they were basing this on what I’d written or if it’s convergent evolution. But it’s a good design goal for timetabling, with implications for labor efficiency, maintenance efficiency, the schedule paradigm, and the bus system.

No tradeoffs

It is fortunate that the agenda of systemwide improvements does not exhibit significant tradeoffs in investment. Other parts of the transit agenda do not need to suffer to implement those improvements. On the contrary, they tend to interact positively: accessibility and PSDs can be combined (and federal law is written in such a way that PSDs void the grandfather clause permitting the subway to keep most of its stations inaccessible), faster and more reliable trains can be run more frequently off-peak, better service means higher ridership and therefore higher demand for extensions. Only the issue of labor exhibits a clear set of losers from the changes, and those can be compensated in a one-time deal.

Moreover, the budget for such an agenda is reasonable, if New York can keep its construction costs under control. At the per-elevator costs of Berlin or Madrid, New York could make its entire network wheelchair-accessible for around $3.5-4 billion. Parisian PSDs, pro-rated to the greater size of New York trains, would be around $10 million a station, or $5 billion systemwide. Full automation at German costs would be maybe $6 billion with triple- and quad-track lines pro-rated. The entire slate of changes required for full deinterlining, including a pocket track for the 3 train at 135th Street, a rebuild of the 36th Street station in Queens, and a connection between Queensboro Plaza and Queens Plaza, should be measured in the hundreds of millions, not billions.

The overall program still goes into double-digit billions; it requires a big push. But this big push is worth two to three years’ worth of current New York City Transit capital spending. A New York that can do this can also add 50-100 km to its subway network and vice versa, all while holding down operating costs to typical first-world levels. For the most part, the planners already know what needs to be done; the hard part is getting construction costs to reasonable levels so that they can do it on the current budget.

How Comparisons are Judged

I’m about to complete the report for the Transit Costs Project about Sweden. For the most part, Sweden is a good comparison case: its construction costs for public transport are fairly low, as are those of the rest of Scandinavia, and the projects being built are sound. And yet, the Nordic countries and higher-cost countries in the rest of Northern Europe, that is Germany and the Netherlands, share a common prejudice against Southern Europe, which in the last decade or so has been the world leader in cost-effective infrastructure. (Turkey is very cheap as well but in many ways resembles Southern Europe, complete with having imported Italian expertise early on.)

This is not usually an overt prejudice. Only one person who I’ve talked to openly discounted the idea that Italy could be good at this, and they are not Nordic. But I’ve been reading a lot of material out of Nordic countries discussing future strategy, and it engages in extensive international comparisons but only within Northern Europe, including high-cost Britain, ignoring Southern Europe. The idea that Italians can be associated with good engineering is too alien to Northern Europeans.

The best way to illustrate it is with a toy model, about the concept of livable cities.

Livable cities

Consider the following list of the world’s most livable cities:

  1. Vienna
  2. Stockholm
  3. Auckland
  4. Zurich
  5. Amsterdam
  6. Melbourne
  7. Geneva
  8. Copenhagen
  9. Munich
  10. Vancouver

The list, to be clear, is completely made up. These are roughly the cities I would expect to see on such a list from half-remembering Monocle’s actual lists and some of the discourse that they generate: they should be Northern European cities or cities of the peripheral (non-US/UK) Anglosphere, and not too big (Berlin might raise eyebrows). These are the cities that urbanist discourse associates with livability.

The thing is, prejudices like “Northern Europe is just more livable” can tolerate a moderate level of heresy. If I made the above list, but put Taipei at a high place shifting all others down and bumping Vancouver, explaining this on grounds like Taipei’s housing affordability, strong mass transit system, and low corona rates (Taiwan spent most of the last two years as a corona fortress, though it’s cracked this month), it could be believed. In effect, Taipei’s status as a hidden gem could be legitimized by its inclusion on a list alongside expected candidates like Vienna and Stockholm.

But if instead the list opened with Taipei, Kaohsiung, Taichung, and Tainan, it would raise eyebrows. This isn’t even because of any real criteria, though they exist (Taiwan’s secondary cities are motorcycle- and auto-oriented, with weak metro systems). It just makes the list too Taiwanese, which is not what one expects from such a list. Ditto if the secondary Taiwanese cities were bumped for other rich Asian cities like Singapore or Seoul; Singapore is firmly in the one-heresy status – it can make such a list if every other city on the list is as expected – but people have certain prejudices of how it operates and certain words they associate with it, some right and some laughably wrong, and “livable” is not among them.

The implication for infrastructure

A single number is more objective than a multi-factor concept like livability. In the case of infrastructure, this is cost per kilometer for subways, and it’s possible to establish that the lowest-cost places for this are Southern Europe (including Turkey), South Korea, and Switzerland. The Nordic countries used to be as cheap but with last decade’s cost overruns are somewhat more expensive to dig in, though still cheaper than anywhere else in the world; Latin America runs the gamut, but some parts of it, like Chile, are Sweden-cheap.

Per the one-heresy rule, the low costs of Spain are decently acknowledged. Bent Flyvbjerg even summarized the planning style of Madrid as an exemplar of low costs recently – and he normally studies cost overruns and planning failures, not recipes for success. But it goes deeper than just this, in a number of ways.

  1. While Madrid most likely has the world’s lowest urban subway costs, the rest of Southern Europe achieves comparable results and so does South Korea. So it’s important to look at shared features of those places and learn, rather than just treat Spain as an odd case out while sticking with Northern European paradigms.
  2. Like Italy, Spain has not undergone the creeping privatization of state planning so typical in the UK and, through British soft power, other parts of Northern Europe. Design is done by in-house engineers; there’s extensive public-sector innovation, rather than an attempt to activate private-sector innovation in construction.
  3. Southern European planning isn’t just cheap, but also good. Metro Milano says that M5 carries 176,000 passengers per day, for a cost of 1.35b€ across both phases; in today’s money it’s around $13,000 per rider, which is fairly low and within the Nordic range. Italian driverless metros push the envelope on throughput measured in peak trains per hour, and should be considered at the frontier of the technology alongside Paris. Milan, Barcelona, and Madrid have all been fairly good at installing barrier-free access to stations, roughly on a par with Berlin; Madrid is planning to go 100% accessible by 2028.
  4. As a corollary of point #3, there are substantial similarities between Southern and Northern Europe. In particular, both were ravaged by austerity after the financial crisis; Northern Europe quickly recovered economically, but in both, infrastructure investment is lagging. In general, if you keep finding $10,000/rider and $15,000/rider subways to build, you should be spending more money on more subway lines. Turkey is the odd one out in that it builds aggressively, but on other infrastructure matters it should be viewed as part of the European umbrella.
  5. Italian corruption levels in infrastructure are very low, and from a greater distance this also appears true of Spain. Italy’s governance problems are elsewhere – the institutional problems with tax avoidance drag down the private sector, which has too many family-scale businesses that can’t grow and too few large corporations, and not the public sector.

I’m not going to make a list of the cities with the best urban rail networks in the world, even in jest; people might take this list as authoritative in ways they wouldn’t take a list I made up about livability. But in the same way that there are prejudices that militate in favor of associating livability with Northern Europe and the peripheral Anglosphere, there are prejudices that militate in favor of associating good public transport with Northern and Central Europe and the megacities of rich Asia. All of those places indeed have excellent public transportation, but this is equally true of the largest Southern European cities; Istanbul is lagging but it’s implementing two large metro networks, one for Europe and one for Asia, and already has Marmaray connecting them under the Bosporus.

And what’s more, just as Southern Europe has things to learn from Northern Europe, Northern Europe has things to learn from the South. But it doesn’t come naturally to Germans or Nordics. It’s expected that every list of the best places in Europe on every metric should show a north-south gradient, with France anywhere in between. If something shows the opposite, it must in this schema be unimportant, or even fraudulent. Northerners know that Southerners are lazy and corrupt – when they vacation in Alicante they don’t see anyone work outside the hospitality industry, so they come away with the conclusion that there is no high-skill professional work in the entire country.

But at a time when Germany is building necessary green infrastructure at glacial rates and France and Scandinavia have seen real costs go up maybe 50% in 20 years, it’s necessary to look beyond the prejudice. Madrid, Barcelona, Rome, Milan, Istanbul, Lisbon, and most likely also Athens have to be treated as part of the European core when it comes to urban rail infrastructure, with as much to teach Stockholm as the reverse and more to teach Berlin than the reverse.

Consolidating Stops with Irregular Spacing

There was an interesting discussion on Twitter a few hours ago about stop consolidation on the subway in New York. Hayden Clarkin, the founder of TransitCon, brings up the example of 21st Street on the G in Long Island City. The stop is lightly-used and very close to Court Square, which ordinarily makes it a good candidate for removal, a practice that has been done a handful of times in the city’s past. However, the spacing is irregular and in context this makes the stop’s removal a lower-value proposition; in all likelihood there should not be any change and trains should keep calling at the station as they do today.

What is 21st Street?

The G train, connecting Downtown Brooklyn with Long Island City directly, makes two stops in Queens today: Court Square, at the southern end of the Long Island City business district, and 21st Street, which lies farther south. Here is a map of the area:

Source: NYCT neighborhood map

At closest approach, the platforms of 21st are 300 meters away from those of Court Square on the G; taking train length into account, this is around 400 meters (the G runs short trains occupying only half the platform). Moreover, Court Square is a more in-demand area than 21st Street: Long Island City by now near-ties Downtown Brooklyn as the largest job center in the region outside Manhattan, and employment clusters around Queens Plaza, which used to be one stop farther north on the G before the G was curtailed to Court Square in order to make more room for Manhattan-bound trains at Queens Plaza. Court Square is still close to jobs, but 21st Street is 400 meters farther away from them, with little on its side of the neighborhood.

Stop spacing optimization

Subways cannot continuously optimize their stop spacing the way buses can. Building a new bus stop costs a few thousand dollars, or a few ten thousand if you’re profligate. Building a new subway stop costs tens of millions, or a few hundred million if you’re profligate. This means that the question of subway stop optimization can only truly be dealt with during the original construction of a line. Subsequently, it may be prudent to build a new stop but only at great expense and usually only in special circumstances (for example, in the 1950s New York built an infill express station on the 4 and 5 trains at 59th, previously a local-only station, to transfer with the N, R, and W). But deleting a stop is free; New York has done it a few times, such as at 18th Street on the 6 trains or 91st on the 1. Is it advisable in the case of 21st?

The answer has to start with the formula for stop spacing. Here is my earliest post about it, in the context of bus stops. The formula is,

\mbox{Optimum spacing} = \sqrt{4\cdot\frac{\mbox{walk speed}}{\mbox{walk penalty}}\cdot\mbox{stop penalty}\cdot\mbox{average trip distance}}

The factor of 4 in the formula depends on circumstances. If travel is purely isotropic along the line, then the optimum is at its minimum and the factor is 2. The less isotropic travel is, the higher the factor; the number 4 is when origins are purely isotropic, which reflects residential density in this part of New York, but destinations are purely anisotropic and can all be guaranteed to be at distinguished nodes, like business centers and transfer points. Because 21st Street is a residential area and Court Square is a commercial area and a transfer point, the factor of 4 is justified here.

Walk speed is around 1.33 m/s, the walk penalty is typically 2, the stop penalty on the subway is around 45 seconds, and the average unlinked trip on the subway is 6.21 km; the formula spits out an optimum of 863 m, which means that a stop that’s 400 meters from nearby stops should definitely be removed.

But there’s a snag.

The effect of irregular stop spacing

When the optimal interstation is 863 meters, the rationale for removing a stop that’s located 400 meters from adjacent stations is that the negative impact of removal is limited. Passengers at the stop to be removed have to walk 400 meters extra, and passengers halfway between the stop and either of the adjacent stops have no more walking to do because they can just walk to the other stop; the average extra walk is then 200 meters. The formula is based on minimizing overall travel time (with a walk penalty) assuming that removing a stop located x meters from adjacent stops incurs an extra walk of x/2 meters on average near the station. Moreover, only half of the population lives near deleted stops, so the average of x/2 meters is only across half the line.

However, this works only when stop spacing is regular. If the stop to be removed is 400 meters from an adjacent stop, but much farther from the adjacent stop on the other side, then the formula stops applying. In the case of 21st Street, the next stop to the south, Greenpoint Avenue, is 1.8 km away in Brooklyn, across an unwalkable bridge. Removing this stop does not increase the average walk by 200 meters but by almost 400, because anywhere from 21st south in Long Island City the extra walk is 400. Moreover, because this is the entire southern rim of Long Island City, this is more than just half the line in this area.

In the irregular case, we need to halve the factor in the formula, in this case from 4 to 2 (or from 2 to 1 if travel is isotropic). Then the optimum falls to 610; this already takes into account that 21st Street is a weaker-demand area than Court Square, or else the factor in the formula would drop by another factor of 2. At 610 meters, the impact of removing a stop 400 meters from an adjacent stop is not clearly positive. In the long run, it is likely counterproductive, since Long Island City is a growth area and demand is likely to grow in the future.

Does this generalize?

Yes!

In New York, this situation occurs at borough boundaries, and also at the state boundary if more service runs between the city and New Jersey. For example, in retrospect, it would have been better for the east-west subway lines in Manhattan to make a stop at 1st or 2nd Avenue, only 300-500 meters from the typical easternmost stop of Lexington. The L train does this, and if anything does not go far enough – there’s demand for opening a new entrance to the 1st Avenue stop (which is one of the busiest on the line) at Avenue A, and some demand for a likely-infeasible infill stop at Avenue C. These are all high-density areas, but they’re residential – most people from Queens are not going to 2nd Avenue but to Lex and points west, and yet, 2nd would shorten the walk for a large group of residential riders by around 400 meters, justifying its retrospective inclusion.

No Federal Aid to Transit Operations, Please

This is the third in a series of four posts about the poor state of political transit advocacy in the United States, following posts about the Green Line Extension in metro Boston and free public transport proposals, to be followed by an Urban Institute report by Yonah Freemark.

In the United States, political transit activists in the last few years have set their eyes on direct federal aid for operating subsidies for public transport. Traditionally, this has not been allowed: federal aid goes to capital planning (including long-term maintenance), and only a small amount of money goes to operations, all in peripheral bus systems. Urban transit agencies had to operate out of fares and local and state money. Demands for federal aid grew during corona, where emergency aid to operations led to demands for permanent subsidies, and have accelerated more recently as corona recovery has flagged (New York’s subway ridership is only around 60% of pre-corona levels). But said demands remain a bad idea in the short and long terms.

In the early 20th century, when public transport was expected to support itself out of fares, operating costs grew with wages, but were tempered by improvements in efficiency. New York City Transit opened with ticket-takers at every subway entrances and a conductor for every two cars; within a generation this system was replaced with automatic turnstiles and one conductor per train. Kyle Kirschling’s thesis has good data on this, finding that by the 1930s, the system grew to about 16,000 annual car-miles (=26,000 car-km) per employee.

And then it has stagnated. Further increases in labor efficiency have not happened. Most American systems have eliminated conductors, often through a multi-decade process of attrition rather than letting redundant workers go, but New York retains them. The network today actually has somewhat less service per employee than in the 1930s, 14,000 car-miles as of 2010, because fixed costs are spread across a slightly smaller system. Compare this with JICA’s report for Mumbai Metro comparing Japanese cities: Tokyo Metro has 283,871,000 car-km (PDF-p. 254) on 8,474 employees (PDF-p. 9), which is 33,500/employee, and that’s without any automation and with only partially conductor-less operations; Yokohama gets 40,000.

Moreover, the timeline in the US matches the onset of subsidies, to some extent: state and local subsidies relieved efficiency pressure. In Canada, TTC saw this and lobbied against subsidies for its own operations in the 1960s, on the grounds that without a breakeven mandate, the unions would capture all surplus; it took until the 1970s for it to finally receive any operating subsidies.

Federal subsidies make all of this worse. They are other people’s money (OPM), so local agencies are likely to maximize them at the expense of good service; this is already what they do with capital money, lading projects with local demands for betterments figuring that if everyone else hogs the trough then they should as well.

Then there is the issue of wages. Seniority systems in American unionized labor create labor shortages even when pay is high, because of how they interact with scheduling and tiered wage structures. Bus drivers in Boston earn around $80,000 a year, a pay that German bus and train drivers can only dream of, but starting drivers are in probational status and have a lower wage (they are not even given full-time work until they put in a long period of part-time work). Moreover, because drivers pick their shifts in seniority order, drivers for about the first 10 years are stuck with the worst shifts: split shifts, graveyard shifts at inconsistent intervals, different garages to report to. New York manages to find enough bus drivers to fill its ranks but only by paying around $85,000 a year; other American cities, paying somewhat less, are seeing thousands of missed runs over the year because they can’t find drivers.

And outside aid does nothing to fix that. Quite to the contrary, it helps paper over these problems and perpetuates the labor gerontocracy. New York City Transit has learned to react to every crisis by demanding a new source of income; there is not enough political appetite for transparent taxation, so the city and state find ever more opaque sources of funds, avoiding political controversy over wanton inefficiency but creating more distortion than a broad income tax would.

Instead of subsidizing current consumption, a developmental state should subsidize production. Don’t pay money to hire more bus drivers; pay for automating subway systems, for better dispatching, for better planning around intermodal integration. Current American wages, not to mention the unemployment rate, scream “invest in labor-saving technology” and not “expand labor-intensive production.”

The G Train

The G train is bad. I say this, 16 years after I moved to New York, 11 years after I left, and I know it’s what every New Yorker knows. Tourists walk too slowly, rent is too high for small apartments, and the G train sucks. What I want to highlight in this post is how the subway’s scheduling paradigm is especially bad for the G train and leads to a vicious cycle making the train less frequent and less useful for passengers.

The role of the G train

The G train is the only mainline subway service in New York that does not enter Manhattan; see map here. It connects what are now the region’s two largest non-Manhattan business centers, Long Island City and Downtown Brooklyn, running vaguely parallel to the East River on the Queens and Brooklyn side of it. To the south of Downtown Brooklyn, it has a tail serving the wealthy neighborhoods collectively called South Brooklyn, such as Carroll Gardens and Park Slope.

I’ve criticized the G before for its poor construction. It misses critical transfers, like the other lines built in the IND program in the 1920s-30s. In Queens it misses Queensboro Plaza and the transfer to the N/W trains on the Astoria Line, and in Brooklyn it misses every single non-IND line except the L (and, at a suboptimal location, the R). This already makes it less useful as a circumferential line – such lines live on convenient transfers to radial lines, because direct O&D service is less valuable to secondary destinations than to primary ones.

But what I realized last week, commuting from Long Island City to Downtown Brooklyn, is more delicate. My hotel was near Queensboro Plaza, which the G doesn’t serve, but the station is served by the 7, which connects to the G one stop away at Court Square; Marron’s new office is in Downtown Brooklyn right on top of the Jay Street station, on the IND-built A/C and F trains, which is either a cross-platform connection or a short walk from the G. So for my trip, the connections worked. And yet, I was regularly facing 10-minute waits on the shoulders of rush hour, and on the subway countdown clock I saw a 15-minute gap.

To explain what went so wrong that the G should have such low frequency at 10 in the morning, it’s necessary to explain how New York City Transit decides the frequency of each service during each time of day.

New York City Subway frequency

In New York, the system for deciding the frequency of each subway service at each time of day is based on average peak crowding. This means that for all trains using the service in a given time period, the crowding level at the peak crowding point of the journey is averaged; frequency is adjusted so that off-peak the peak crowding level is 125% of seated capacity, and at rush hour it is based on published standing capacity per car that works out to about 300% of seated capacity depending on car design.

This system is done per numbered or lettered service. Thus, for example, the 2 and 3 trains run on the same track most of the way, but where they diverge, the 2 is considerably busier, and therefore the 2 runs slightly higher frequency (most ridership on the 2 and 3 is on the shared segment, not the tails). As a result, on the shared trunk, there cannot be perfect alternation of 2 and 3 trains; a few times an hour, a 2 train is followed by another 2 train, which means that on the tail, the frequency is uneven. When two 2 trains follow each other with no 3 between them, the leading 2 train is more crowded than the trailing one; this variation is averaged out in the guidelines – it is not the busiest train that sets the frequency guidelines.

These guidelines are not a good way to timetable trains. The above example of how it can create uneven crowding on the 2 is one problem with this system; if instead there were regular alternation of 2 and 3 trains then the 2 would be persistently slightly more crowded than the 3, just as today there is uneven crowding whenever two 2 trains run with no 3 in between, but the frequency on both the shared trunk and the branches would be more regular. This is especially important on more complexly interlined parts of the network, where the current system leads to large programmed gaps between trains occasionally.

The G is not very heavily interlined; the issue there relates to another criticism of the guidelines, which is that they assume travel demand is fixed. If the ridership on a train is independent of frequency, which it is if the headway between trains is very short compared to the trip time (say, if the trains run every 2-3 minutes), then the sole purpose of service is to provide the capacity the passengers need, and so the guidelines make sense as a way of rationing service convenience. However, in reality, the elasticity of ridership with respect to service provision is not zero. Three years ago I did some analysis of New York’s situation and the existing literature on ridership-frequency elasticity, suggesting it is equal to about 0.4. So the low frequency of the G deters ridership, which then appears to justify the low frequency.

But 0.4 < 1. And I believe that there are two reasons why on the G, and on circumferential lines in general, the elasticity of ridership with respect to frequency should be higher.

Trip length

Circumferential lines in general tend to have shorter average trip time. Between two nearby spokes, say between Downtown Brooklyn and Williamsburg, they are the only real option; between two farther away ones, a direct radial may be an alternative.

The G is different from (say) the Ringbahn in that it misses most transfers, but this should not impact this pattern too much. The missed transfers in Downtown Brooklyn weaken the G for short as well as long trips involving a connection there. In contrast, in the middle the G does make the most important transfer, that with the L, and only misses the weaker J/M/Z.

The 0.4 estimate for ridership elasticity with respect to frequency assumes average behavior for trip length. But if trips are shorter, then the impact of frequency is larger. The 0.4 estimate comes out of an estimate of about -0.8 of ridership with respect to generalized trip time, which includes in-vehicle time, walk time, and wait time, the latter two given extra weight to account for transfer penalty. If one of the three components of trip times is shortened, the other two grow in importance.

The role of options

The G is not usually passengers’ only choice for making the trip. They can connect in Manhattan, or, in some cases, go directly via Manhattan, for example taking the N or R from Downtown Brooklyn to Queens (in the opposite direction, they serve separate station so it’s a harder choice, leading to asymmetric demand). Going between Marron and the East Village, Eric Goldwyn could connect to the L via the A/C/F or the G; I never once saw him use the G, only the lines via Manhattan.

I have not seen the impact of different transit paths on demand elasticity in the literature. It is likely that the elasticity in such case must be higher, because it is standard in economics that demand is more elastic for goods sold on a competitive market than by a monopolist.

Note also that it is to the overall system’s benefit to convince passengers to switch from radial lines to the G. The G is less crowded, so such a switch distributes ridership better on the system. And the G starts out much less frequent, so that even on a fixed operating budget, the impact of a service increase on the G on ridership is larger than on an already frequent trunk.

Quick Note: the LaGuardia Transit Connector

It’s amazing how much good can happen when an obstacle like Andrew Cuomo is removed. In lieu of his backward air train proposal, hated by just about everyone not on his payroll, Governor Kathy Hochul is moving forward on a better set of alternatives for a mass transit connection to LaGuardia. It’s interesting to see what the process is looking at but also what it isn’t; so far this looks better than the alternatives analysis for Interborough Express (ex-Triboro).

So far I have not seen analysis, only drawings of 14 alternatives. As with the IBX study, the LGA plan distinguishes different modes of public transit – there are bus, light rail, subway, and even ferry options. But it doesn’t stop there. It looks at multiple alignments: the scope is how to connect LGA to the rest of the city the best, and this can be done from a number of different directions – even a backward train (as light rail) along an alignment similar to Cuomo’s is present, and will likely not advance further because of its circuitous route.

Among the 14 alternatives, I think the obviously best one is a subway extension (slide 12 above); another subway option, a branch following the Grand Central Parkway (slide 11), is inferior because of branching splits frequencies and ridership at the cut off Astoria-Ditmars Boulevard station is high. A subway extension promises a connection in around 30 minutes to Times Square, every 5 minutes all day, with good connections to other destinations via the transfers at Queensboro Plaza and in Midtown.

The one thing that I’m sad the analysis hasn’t looked at is intermediate stations. It’s around 4.5 km from Ditmars to the main LGA terminal along the proposed alignment, passing through redevelopable industrial land and through residential land in Astoria Heights awkwardly tucked between airport grounds and Astoria proper. The same quality of service that the airport could get, these neighborhoods could get as well, except a hair faster because they’re closer.

Extending the Astoria Line is especially useful since it is short and not especially crowded until it hits Queensboro Plaza and inherits the crowding of the 7 train and its riders. In the context of deinterlining the subway, this is especially valuable: right now 60th Street Tunnel carries the N and W from Astoria but also the R from Queens Boulevard, and under deinterlining the tunnel would carry only Astoria riders, and so to match the high demand to 60th Street it’s valuable to create as much ridership as possible on the Astoria Line past Queensboro Plaza.

I hope that the alternatives analysis considers multiple stopping patterns in the future – that is, not just a nonstop route from Ditmars to the airport, but also an option with intermediate stations. (This does not mean local and express trains – either all trains should run locals, or all should run nonstop.) The cost of those stations is not high as it’s an elevated line, and the stop penalty on the subway is less than a minute since the top speed is so low (it looks like 45 seconds in practice comparing local and express trains on the same line).