Category: Urban Transit

Circumferential Lines and Express Service

In a number of large cities with both radial and circumferential urban rail service, there is a curious observation: there is express service on the radial lines, but not the circumferential ones. These cities include New York, Paris, and Berlin, and to some extent London and Seoul. Understanding why this is the case is useful in general: it highlights guidelines for urban public transport design that have implications even outside the distinction between radial and circumferential service. In brief, circumferential lines are used for shorter trips than radial lines, and in large cities connect many different spokes so that an express trip would either skip important stations or not save much time.

The situation

Berlin has three S-Bahn trunk lines: the Ringbahn, the east-west Stadtbahn, and the North-South Tunnel. The first two have four tracks. The last is a two-track tunnel, but has recently been supplemented with a parallel four-track North-South Main Line tunnel, used by regional and intercity trains.

The Stadtbahn has a straightforward local-express arrangement: the S-Bahn uses the local tracks at very high frequency, whereas the express tracks host less frequent regional trains making about half as many stops as well as a few intercity trains only making two stops. The north-south system likewise features very frequent local trains on the S-Bahn, and a combination of somewhat less frequent regional trains making a few stops on the main line and many intercity trains making fewer stops. In contrast, the Ringbahn has no systemic express service: the S-Bahn includes trains running on the entire Ring frequently as well as trains running along segments of it stopping at every station on the way, but the only express services are regional trains that only serve small slivers on their way somewhere else and only come once or twice an hour.

This arrangement is mirrored in other cities. In Paris, the entire Metro network except Line 14 is very local, with the shortest interstations and lowest average speeds among major world metro systems. For faster service, there is Line 14 as well as the RER system, tying the suburbs together with the city. Those lines are exclusively radial. The busiest single RER line, the RER A, was from the start designed as an express line parallel to Line 1, the Metro’s busiest, and the second busiest, the RER B, is to a large extent an express version of the Metro’s second busiest line, Line 4. However, there is no RER version of the next busiest local lines, the ring formed by Lines 2 and 6. For non-Metro circumferential service, the region went down the speed/cost tradeoff and built tramways, which have been a total success and have high ridership even though they’re slow.

In New York, the subway was built with four-track main lines from the start to enable express service. Five four-track lines run north-south in Manhattan, providing local and express service. Outside the Manhattan core, they branch and recombine into a number of three- and four-track lines in Brooklyn, Queens, and the Bronx. Not every radial line in New York has express service, but most do. In contrast, the circumferential Crosstown Line, carrying the G train, is entirely local.

In Seoul, most lines have no express service. However, Lines 1, 3, and 4 interline with longer-range commuter rail services, and Lines 1 and 4 have express trains on the commuter rail segments. They are all radial; the circumferential Line 2 has no express trains.

Finally, in London, the Underground has few express segments (all radial), but in addition to the Underground the city has or will soon have express commuter lines, including Thameslink and Crossrail. There are no plans for express service parallel to the Overground.

Is Tokyo really an exception?

Tokyo has express trains on many lines. On the JR East network, there are lines with four or six tracks all the way to Central Tokyo, with local and express service. The private railroads usually have local and express services on their own lines, which feed into the local Tokyo subway. But not all express services go through the primary city center: the Ikebukuro-Shibuya corridor has the four-track JR Yamanote Line, with both local services (called the Yamanote Line too, running as a ring to Tokyo Station) and express services (called the Saikyo or Shonan-Shinjuku Line, continuing north and south of the city); Tokyo Metro’s Fukutoshin Line, serving the same corridor, has a timed passing segment for express trains as well.

However, in three ways, the area around Ikebukuro, Shinjuku, and Shibuya behaves as a secondary city center rather than a circumferential corridor. The job density around all three stations is very high, for one. They have extensive retail as well, as the private railroads that terminated there before they interlined with the subway developed the areas to encourage more people to use their trains. This situation is also true of some secondary clusters elsewhere in Tokyo, like Tobu’s Asakusa terminal, but Asakusa is in a historically working-class area, whereas the Yamanote area was historically and still is wealthier, making it easier for it to attract corporate jobs.

Second, from the perspective of the transportation network, they are central enough that railroads that have the option to serve them do so, even at the expense of service to Central Tokyo. When the Fukutoshin Line opened, Tokyu shifted one of its two mainlines, the Toyoko Line, to connect to it and serve this secondary center, where it previously interlined with the Hibiya Line to Central Tokyo; Tokyu serves Central Tokyo via its other line, the Den-en-Toshi Line, which connects to the Hanzomon Line of the subway. JR East, too, prioritizes serving Shinjuku from the northern and southern suburbs: the Shonan-Shinjuku Line is a reverse-branch of core commuter rail lines both north and south, as direct fast service from the suburbs to Shibuya, Shinjuku, and Ikebukuro is important enough to JR East that it will sacrifice some reliability and capacity to Tokyo Station for it.

Third, as we will discuss below, the Yamanote Line has a special feature missing from circumferential corridors in Berlin and Paris: it has distinguished stations. A foreigner looking at satellite photos of land use and at a map of the region’s rail network without the stations labeled would have an easy time deciding where an express train on the line should stop: Ikebukuro, Shinjuku, and Shibuya eclipse other stations along the line, like Yoyogi and Takadanobaba. Moreover, since these three centers were established to some extent before the subway was built, the subway lines were routed to serve them; there are 11 subway lines coming from the east as well as the east-west Chuo Line, and of these, all but the Tozai and Chiyoda Lines intersect it at one of the three main stations.

Interstations and trip length

The optimal stop spacing depends on how long passenger trips are on the line: keeping all else equal, it is proportional to the square root of the average unlinked trip. The best formula is somewhat more delicate: widening the stop spacing encourages people to take longer trips as they become faster with fewer intermediate stops and discourages people from taking shorter ones as they become slower with longer walk distances to the station. However, to a first-order approximation, the square root rule remains valid.

The relevance is that not all lines have the same average trip length. Longer lines have longer trips than short lines. Moreover, circular lines have shorter average trips than straight lines of the same length, because people have no reason to ride the entire way. The Ringbahn is a 37-kilometer line on which trains take an hour to complete the circuit. But nobody has a reason to ride more than half the circle – they can just as well ride the shorter way in the other direction. Nor do passengers really have a reason to ride over exactly half the circle, because they can often take the Stadtbahn, North-South Tunnel, or U-Bahn and be at their destinations faster.

Circumferential lines are frequently used to connect to radial lines if the radial-radial connection in city center is inconvenient – maybe it’s missing entirely, maybe it’s congested, maybe it involves too much walking between platforms, maybe happens to be on the far side of city center. In all such cases, people are more likely to use the circumferential line for shorter trips than for longer ones: the more acute the angle, the more direct and thus more valuable the circle is for travel.

The relevance of this discussion to express service is that there’s more demand for express service in situations with longer optimum stop spacing. For example, the optimum stop spacing for the subway in New York based on current travel patterns is the same as that proposed for Second Avenue Subway, to within measurement error of parameters like walking speed; on the other trunk lines, the local trains have denser stop spacing and the express trains have wider stop spacing. On a line with very short optimum spacing, there is not much of a case for express service at all.

Distinguished stops versus isotropy

The formula for optimal stop spacing depends on the isotropy of travel demand. If origins and destinations are distributed uniformly along the line, then the optimal stop spacing is minimized: passengers are equally likely to live and work right on top of a station, which eliminates walk time, as they are to live and work exactly in the middle between two stations, which maximizes walk time. If the densities of origins and destinations are spiky around distinguished nodes, then the optimal stop spacing widens, because planners can place stations at key locations to minimize the number of passengers who have to walk longer. If origins are assumed to be perfectly isotropic but destinations are assumed to be perfectly clustered at such distinguished locations as city center, the optimum stop spacing is larger than if both are perfectly isotropic by a factor of \sqrt{2}.

Circumferential lines in large cities do not have isotropic demand. However, they have a great many distinguished stops, one at every intersection with a radial rail service. Out of 27 Ringbahn stops, 21 have a connection to the U-Bahn, a tramway, or a radial S-Bahn line. Express service would be pointless – the money would be better spent increasing local frequency, as ridership on short-hop trips like the Ringbahn’s is especially sensitive to wait time.

On the M2/M6 ring in Paris, there are 49 stops, of which 21 have connections to other Metro lines or the RER, one more doesn’t but really should (Rome, with a missed connection to an M14 extension), and one may connect to a future extension of M10. Express service is not completely pointless parallel to M2/M6, but still not too valuable. Even farther out, where the Paris region is building the M15 ring of Grand Paris Express, there are 35 stops in 69 kilometers of the main ring, practically all connecting to a radial line or located at a dense suburban city center.

The situation in New York is dicier, because the G train does have a distinguished stop location between Long Island City and Downtown Brooklyn, namely the connection to the L train at Bedford Avenue. However, the average trip length remains very short – the G misses so many transfers at both ends that end-to-end riders mostly stay on the radials and go through Manhattan, so the main use case is taking it a few stops to the connection to the L or to the Long Island City end.

Conclusion

A large urban rail network should be predominantly radial, with circumferential lines in dense areas providing additional connectivity between inner neighborhoods and decongesting the central transfer points. However, that the radial and circumferential lines are depicted together on the same metro or regional rail map does not mean that people use them in the same way. City center lies ideally on all radials but not on the circumferentials, so the tidal wave of morning commuters going from far away to the center is relevant only to the radials.

This difference between radials and circumferentials is not just about service planning, but also about infrastructure planning. Passengers make longer trips on radial lines, and disproportionately travel to one of not many distinguished central locations; this encourages longer stop spacing, which may include express service in the largest cities. On circumferential lines, they make shorter trips to one of many different connection points; this encourages shorter stop spacing and no express service, but rather higher local frequency whenever possible.

Different countries build rapid transit in radically different ways, and yet big cities in a number of different countries have converged on the same pattern: express service on the strongest radial corridors, local-only service on circumferential ones no matter how busy they are. There is a reason. Transportation planners in poorer cities that are just starting to build their rapid transit networks as well in mature cities that are adding to their existing service should take heed and design infrastructure accordingly.

The Future is not Retro

One faction of urbanists that I’ve sometimes found myself clashing with is people who assume that a greener, less auto-centric future will look something like the traditional small towns of the past. Strong Towns is the best example I know of of this tendency, arguing against high-rise urban redevelopment and in favor of urbanism that looks like pre-freeway Midwestern main streets. But this retro attitude to the future happens everywhere, and recently I’ve had to argue about this with the generally pro-modern Cap’n Transit and his take about the future of vacations. Even the push for light rail in a number of cities has connections with nostalgia for old streetcars, to the point that some American cities build mixed-traffic streetcars, such as Portland.

The future was not retro in the 1950s

The best analogy for a zero-emissions future is ironically what it seeks to undo: the history of suburbanization. In retrospect, we can view midcentury suburbanization as a physical expansion of built-up areas at lower density, at automobile scale. But at the time, it was not always viewed this way. Socially, the suburbs were supposed to be a return to rural virtues. The American patrician reformers who advocated for them consciously wanted to get rid of ethnic urban neighborhoods and their alien cultures. The German Christian democratic push for regional road and rail connections has the same social origin, just without the ethnic dimension – cities were dens of iniquity and sin.

At the same time, the suburbs, that future of the middle of the 20th century, were completely different from the mythologized 19th century past, before cities like New York and Berlin had grown so big. Most obviously, they were linked to urban jobs; the social forces that pushed for them were aware of that in real time, and sought transportation links precisely in order to permit access to urban jobs in what they hoped would be rural living.

But a number of other key differences are visible – for one, those suburbs were near the big cities of the early 20th century, and not in areas with demographic decline. In the United States, the Great Plains and Appalachia kept depopulating and the Deep South except Atlanta kept demographically stagnating. The growth in that era of interregional convergence happened in suburbs around New York, Chicago, and other big then-industrial cities, and in parts of what would soon be called the Sunbelt, namely Southern California, Texas, and Florida. In Germany, this history is more complicated, as the stagnating region that traditionalists had hoped to repopulate was Prussia and Posen, which were given to Poland at the end of the war and ethnically cleansed of their German populations. However, we can still see postwar shifts within West Germany toward suburbs of big cities like Munich and Frankfurt, while the Ruhr stagnated.

The future of transit-oriented development is not retro

People who dislike the auto-oriented form of cities can easily romanticize how cities looked before mass motorization. They’d have uniform missing middle built form in most of the US and UK, or uniform mid-rise in New York and Continental Europe. American YIMBYs in particular easily slip into romanticizing missing middle density and asking to replace single-family housing with duplexes and triplexes rather than with anything more substantial.

If you want to see what 21st-century TOD looks like, go to the richer parts of East Asia, especially Tokyo, which builds much more housing than Hong Kong and Singapore. The density in Tokyo is anything but uniform. There are clusters of high-rise buildings next to train stations, and lower density further away, even small single-family houses fronting narrow streets far enough from train stations that it’s not economical to redevelop them. It offends nostalgic Westerners; the future often does.

In the context of a growing city like New York or London, what this means is that the suburbs can expect to look spiky. There’s no point in turning, say, everything within two kilometers of Cockfosters (or the Little Neck LIRR station) into mid-rise apartments or even rowhouses. What’s the point? There’s a lot more demand 100 meters from the station than two kilometers away, enough that people pay the construction cost premium for the 20th floor 100 meters from the stations in preference to the third floor two kilometers away. The same is true for Paris – there’s no solution for its growth needs other than high-rises near RER stations and key Metro stations in the city as well as the suburbs, like the existing social housing complexes but with less space between buildings. It may offend people who associate high-rises with either the poor or recent high-skill immigrants, but again, the future often offends traditionalists.

The future of transportation is not retro

In countries that do not rigidly prevent urban housing growth the way the US does, the trend toward reurbanization is clear. Germany’s big cities are growing while everything else is shrinking save some suburbs in the richest regions, such as around Munich. Rural France keeps depopulating.

In this context, the modes of transportation of the future are rapid transit and high-speed rail. Rapid transit is preferable to buses and surface trains in most cities, because it serves spiky development better – the stations are spaced farther apart, which is fine because population density is not isotropic and neither is job density, and larger cities need the longer range that comes with the higher average speed of the subway or regional train over that of the tramway.

High-speed rail is likewise preferable to an everywhere-to-everywhere low-speed rail network like that of Switzerland. In a country with very large metro areas spaced 500 km or so apart, like the US, France, or Germany, connecting those growing city centers is of crucial importance, while nearby cities of 100,000 are of diminishing importance. Moreover, very big cities can be connected by trains so frequent that untimed transfers are viable. Already under the Deutschlandtakt plan, there will be 2.5 trains between Berlin and Hanover every hour, and if average speeds between Berlin and the Rhine-Ruhr were increased to be in line with those of the TGVs, demand would fill 4-6 trains per hour, enough to facilitate untimed transfers from connecting lines going north and south of Hanover. The Northeast Corridor has even more latent demand, given the huge size of New York.

The future of travel is not retro

The transportation network both follows and shapes travel patterns. Rapid transit is symbiotic with spiky TOD, and high-speed rail is symbiotic with extensive intercity travel.

The implication is that the future of holidays, too, is not retro. Vacation trips between major cities will become easier if countries that are not France and Japan build a dense network of high-speed lines akin to what France has done over the last 40 years and what Japan has done over the last 60. Many of those cities have thriving tourism economies, and these can expect to expand if there are fast trains connecting them to other cities within 300-1,000 kilometers.

Sometimes, these high-speed lines could serve romanticized tourist destinations. Niagara Falls lies between New York and Toronto, and could see expansion of visits, including day trips from Toronto and Buffalo and overnight stays from New York. The Riviera will surely see more travel once the much-delayed LGV PACA puts Nice four hours away from Paris by train rather than five and a half. Even the Black Forest might see an expansion of travel if people connect from high-speed trains from the rest of Germany to regional trains at Freiburg, going from the Rhine Valley up to the mountains; but even then, I expect a future Germany’s domestic tourism to be increasingly urban, probably involving the Rhine waterfront as well as the historic cities along the river.

But for the most part, tourist destinations designed around driving, like most American national parks as well as state parks like the Catskills, will shrink in importance in a zero-carbon future. It does not matter if they used to have rail access, as Glacier National Park did; the tourism of the leisure class of the early 20th century is not the same as that of the middle class of the middle of the 21st. Grand Canyon and Yellowstone are not the only pretty places in the world or even in the United States; the Hudson Valley and the entire Pacific Coast are pretty too, and do not require either driving or taking a hypothetical train line that, on the list of the United States’ top transportation priorities, would not crack the top 100. This will offend people whose idea of environmentalism is based on the priorities of turn-of-the-century patrician conservationists, but environmental science has moved on and the nature of the biggest ecological crisis facing humanity has changed.

The non-retro future is pretty cool

The theme of the future is that, just as the Industrial Revolution involved urbanization and rural depopulation, urban development patterns this century involve growth in the big metro areas and decline elsewhere and in traditional small towns. This is fine. The status anxieties of Basil Fawlty types who either can’t or won’t adapt to a world that has little use for their prejudices are not a serious public concern.

Already, people lead full lives in big global cities like New York and London without any of the trappings of what passed for normality in the middle of the 20th century, like a detached house with a yard and no racial minorities or working-class people within sight. The rest will adapt to this reality, just as early 20th century urbanites adapted to the reality of suburbanization a generation later.

It’s not even an imposition. It’s opportunity. People can live in high-quality housing with access to extensive social as well as job networks, and travel to many different places with different languages, flora and fauna, vistas, architecture, food, and local retail. Even in the same language zone, Northern and Southern Germany look completely different from each other, as do Paris and Southern France, or New England and Washington. Then outside the cities there are enough places walking distance from a commuter rail line or on the way on a high-speed line between two cities that people can if they’d like go somewhere and spend time out of sight of other people. There’s so much to do in a regime of green prosperity; the world merely awaits the enactment of policies that encourage such a future in lieu of one dominated by small-minded local interests who define themselves by how much they can pollute.

What is Light Rail, Anyway?

I’ve been asked on Twitter about the differences between various kinds of urban rail transit. There is a lot of confusion about the term light rail in English, since it can be used for urban public transport typologies that have little to do with one another. The best way to think about urban rail (other than regional rail) is to use the following schema:

Slow in center Fast in center
Slow in outlying areas Tramway Subway-surface
Fast in outlying areas Tram-train Rapid transit

 

In American parlance, all four have been called light rail: subway-surface and tram-train lines are always called light rail, and officially so are tramways; then one full rapid transit line, the Green Line in Los Angeles, is called light rail as it runs light rail vehicles (LRVs) rather than subways. Nonetheless, in this post I will ignore what things are called and focus on their speed.

In this context, fast and slow refer to right-of-way quality. A tramway in a low-density city with little traffic and widely separated stops may well be faster than a rapid transit line with many stops, such as most Paris Metro lines, but relative to the local urban typology the tramway is still slow while the metro is fast.

The two hybrid forms – subway-surface and tram-train – differ in where they focus higher-speed service. On a subway-surface line, the city center segment is in a subway and then the line branches farther out, for examples the Boston Green Line, San Francisco Muni Metro, Philadelphia Subway-Surface Lines, and Frankfurt and Cologne U-Bahn networks. On a tram-train, the train is fast outside city center, where it runs in a dedicated surface right-of-way, but then in city center it runs in tramway mode on the street at lower speed; the Karlsruhe tram-train is one such example, as are virtually all postwar light rail systems in the United States and Canada.

Aberrations

The 2*2 typology simplifies the situation somewhat. There exist lines that don’t fully obey it, and instead change between metro and streetcar mode haphazardly. Some of the Cologne lines go back and forth. Buffalo has a single light rail line without branches, dubbed the Buffalo Metro Rail, running on the surface in the center and in a greenfield tunnel farther out toward Amherst and the university campus. Frankfurt’s U1/2/3/8 trunk is the opposite of Buffalo, running in a tunnel in the center and on the surface farther out even downstream of the branch point. The Los Angeles Blue Line is underground at Metro Center but then runs on the surface, transitions to a grade-separated right-of-way later, and finally drops back to streetcar mode in Downtown Long Beach.

The most fascinating case is that of the Boston Green Line D branch. It is technically rapid transit, since the trunk line is in a tunnel alongside the other branches whereas the branch itself is a former commuter rail line; it is called light rail because it runs LRVs, like the Los Angeles Green Line, and shared the trunk with the B, C, and E branches, all of which have surface segments. But conceptually, it presages most proper American light rail lines: it was built in the 1950s as suburban-oriented rapid transit, with park-and-rides and downtown-focused service, creating a paradigm that postwar metros like BART and the Washington Metro would sometimes follow and that light rail systems from the 1980s onward (San Diego, Portland, etc.) always would.

Nonetheless, such aberrations are uncommon enough that the 2*2 simplification works when explaining what cities should be building.

Right-of-way availability

Cities are more likely to build fast trains when there is preexisting right-of-way for them. The Karlsruhe Zweisystem is based on using the area’s extensive legacy mainline network, on which LRVs run in train mode, and then diverging toward city center in streetcar mode. Jarrett Walker has a good post about Karlsruhe specifically: there is no good right-of-way with which to drag the Stadtbahn into city center in train mode, and thus the alternative to a tram-train is an expensive tunnel; such a tunnel is under construction now, at the cost of about €1 billion, but as Karlsruhe is a small city, it comes a generation after the tram-train system was put into place.

North American light rail systems often use mainline rail corridors as well, but thanks to federal regulations as well as weak regional rail systems, they almost never use mainline tracks; the Blue Line in San Diego, the first tram-train in the United States, is one of very few exceptions, and even then it shares track with a very lightly-used freight line, rather than with a frequent S-Bahn as in Karlsruhe. It is more common for North American tram-trains to run in disused corridors, on new tracks parallel to the mainline, or even in highway medians.

Reusing legacy rail lines and running in freeway medians are not unique to tram-trains. Rapid transit does both outside city center; the first subway network in the world, the London Underground, makes extensive use of branches of former commuter lines, and even shares track with a still-active one on a portion of the Watford DC Line. New York, likewise, connected former excursion lines in Brooklyn to the subway, forming most of the Coney Island-bound system, and later did the same with the LIRR in the Rockaways, now carrying branches of the A train. It is usually easy to spot whether an urban rail line descends from a legacy branch line – if it does then it is very unlikely to follow a single street (none of the lines serving Coney Island does), whereas if it doesn’t then it is usually a subway or el on a major arterial (such as Fourth Avenue in Brooklyn).

The upshot is that cities are likelier to build tram-trains and rapid transit in preference to tramways and subway-surface lines if they have high-quality right-of-way. New York and London were unlikely to build subway-surface lines in the early 20th century either way, but the high density of their metro networks in Southern Brooklyn and West London respectively can be explained by the extent of preexisting legacy lines in these areas. Comparable areas that did not have such good connections, for example Queens, have much less rapid transit coverage.

While this issue in theory affects tram-trains and rapid transit equally, in practice it is especially relevant to tram-trains. Rapid transit is more expensive, so it is likely to be built in larger and denser cities, where it is more acceptable to just tunnel under difficult segments. Tram-trains are present in smaller cities – Calgary, Edmonton, Karlsruhe, and so on – as well as in American Sunbelt cities that are so auto-oriented that they have the public transport of European cities one third or even one tenth their size. In those cities, tunneling is harder to justify, so the train goes where it can go cheaply. Downtown transit malls like those of Portland and Calgary are the least bad solution for connecting fast lines from the suburbs to provide better city center coverage and connect to lines on the other side of the region.

Subway-surface branching

Subway-surface lines are fast in city center and slow outside of it. Moreover, in city center their right-of-way segregation (in a tunnel in all of the American cases) means there is more capacity than on the surface. This makes branching especially attractive. Indeed, in all three American cases – Boston, Philadelphia, San Francisco – the subway-surface line has four to five branches.

Outside the United States, subway-surface branching is more complicated. In Frankfurt, the U4/5 and U6/7 lines work as in the United States, but with only two branches per trunk rather than four or five; but the U1/2/3 line has a surface segment on the mainline. In Cologne, there is extensive reverse-branching (see map), and while most of the system runs in subway-surface mode, one line runs in tramway mode through city center but then drops to a tunnel in Deutz and splits into two surface branches farther east.

Tel Aviv is building a subway-surface line from scratch, without any branching. The Red Line is to run underground in Central Tel Aviv, Ramat Gan, and Bnei Brak, and on the surface farther east in Petah Tikva as well as at the other end in Jaffa and Bat Yam. At the Petah Tikva end, an underground connection to the depot is to enable half the trains to terminate and go out of service without running on the surface; at the Jaffa/Bat Yam end, a loop near the portal is to enable half the trains to terminate and reverse direction without running on the surface.

The American way works better than the incipient Israeli way. The main advantage of branching is that the greater expanse of land in outer-urban neighborhoods and suburbs means more lines are needed than in the center to guarantee the same coverage. Thus Downtown San Francisco has just one line under Market Street, serving not just Muni Metro but also BART on separate tracks, but in the rest of the city, BART and the five branches of Muni serve an arc of neighborhoods from the Mission to the Sunset. The lack of branching on the Tel Aviv Red Lines means that it will not be able to serve Petah Tikva well: the city is not very dense or very central and has no hope of getting the multiline crisscross pattern eventually planned for Central Tel Aviv.

One implication of the fact that subway-surface lines should branch is that they are more appropriate for cities with natural branching than for cities without. Boston in particular is an excellent place for such branching. Its street network does not form a grid, but instead has arterials that are oriented around the historic city center; the Green Line makes use of two such streets, Commonwealth Avenue hosting the B branch and Beacon Avenue hosting the C branch. A light rail line following Washington Street could likewise branch to Warren Street and Blue Hill Avenue and potentially even branch farther out on Talbot Avenue to Ashmont, effectively railstituting the area’s busiest buses.

In contrast, cities whose street networks don’t lend themselves well to branching should probably not build subway-surface lines. North American cities with gridded street networks have little reason to use this technology. If they are willing to build downtown tunnels and have the odd right-of-way running toward city center diagonally to the grid, they should go ahead and build full rapid transit, as Chicago did on the Blue Line of the L.

Speed and range

Tramways are the cheapest variety of urban rail and metro tunnels are the most expensive. The reason cities don’t just build tramways in lieu of any grade separation is that tramways are slow and therefore have limited range. Berlin’s tramways average around 16 km/h; they run partly in mixed traffic, but I don’t think they can cross 20 km/h even with dedicated lanes and signal priority.

What this means is that tramways are mainly a solution for city centers and near-center neighborhoods. The tramways in Berlin work okay within the Ring, especially in U-Bahn deserts like the segment of East Berlin between U2 and U5. But in suburban Paris, they’re too slow to provide the full trip and instead work as Metro and RER feeders, providing circumferential service whereas the faster modes provide radial rail transport.

Tramway-centric transit cities can work, but only in a constrained set of circumstances:

  • They must be fairly small, like Karlsruhe, Strasbourg, or Geneva.
  • They should have a network of sufficiently wide streets (minimum 20-25 meters including sidewalks, ideally 30-35) through city center as well as radiating out of it.
  • They should have a supplementary regional rail network for longer trips.

Tramway-and-regional-rail is a powerful combination. Zurich is based on it, having rejected a subway network in two separate referendums. However, once the city grows beyond the size class of Strasbourg, the regional rail component begins to dominate, as there are extensive suburbs that are just too far away from city center for streetcars.

Upgrading to rapid transit

It’s common for cities to replace light rail with rapid transit by building new tunnels and burying the tracks. Historically, Boston and San Francisco both built their subway-surface networks by incrementally putting segments in tunnel, which would later protect these lines from replacement by diesel buses. Stockholm and Brussels both incrementally upgraded streetcars to metro standards, calling the intermediate phase pre-metro. Karlsruhe is building a tunnel for its Stadtbahn.

However, in the modern era, not all such tunneling projects are equally useful. Subway-surface lines stay subway-surface indefinitely: they have so much surface branching that the cost of putting everything underground would be prohibitive. San Francisco activists have flirted with a plan to replace one Muni Metro surface line with rapid transit and then reduce the rest to tramways with forced transfers; this plan is both terrible and unlikely to happen. Tel Aviv might eventually come to its senses and bury the entire Red Line, but this is possible only because the current branch-free layout is already more suited for a subway than for a subway-surface system.

Tram-trains are easier to convert to rapid transit. All that’s needed is a short tunnel segment in city center. Thus, in addition to the Karlsruhe tunnel project, there are serious discussions of city center tunneling in a variety of North American cities, including Portland and Calgary (in the near term) as well San Diego (on the 2050 horizon).

Finally, tramways can be upgraded to full rapid transit more easily than to either of the two intermediate forms. A good tramway is rarely a good subway-surface system, because the subway-surface system ideally branches and the pure tramway ideally does not. Moreover, a good tramway is unlikely to go very far into the suburbs because of its low speed, whereas a tram-train’s ability to leverage high speed in train mode allows it to go deep into the suburbs of Karlsruhe, Calgary, or San Diego. The optimal place for a tramway – dense city neighborhoods following a single line – is also the optimal one for a metro line, making the upgrade more attractive than upgrading the tramway to a hybrid.

New Report on Construction Costs Misses the Mark

In the last few years, ever more serious and powerful actors have begun investigating the fact of high American infrastructure construction costs. First it was Brian Rosenthal’s excellent New York Times exposé, and then it was the Regional Plan Association’s flop of a study. At the same time, I was aware that the congressional Government Accountability Office, or GAO, was investigating the same question, planning to talk to sources in the academic world as well as industry in order to make recommendations.

The GAO report is out now, and unfortunately it is a total miss, for essentially the same reason the RPA’s report was a miss: it did not go outside the American (and to some extent rest-of-Anglosphere) comfort zone. Its literature review is if anything weaker than the RPA’s. Its interviews with experts are telling: out of nine mentioned on PDF-p. 47, eight live in English-speaking countries. Even when more detailed information about non-English-speaking countries is readily available, even in English, the GAO report makes little use of it. It is a lazy study, and people who ideologically believe the American federal government does not work should feel confident citing this as an example.

Cost comparisons

Brian himself already notes one of the reasons the report is so weak: Congress mandated a comparative study, but the report made no international comparisons at all. Instead, the report offered this excuse (PDF-p. 27):

The complexity of rail transit construction projects and data limitations, among other things, limits the ability to compare the costs of these projects, according to the stakeholders we interviewed. As highlighted above, each project has a unique collection of specific factors that drive its costs. According to FTA officials, each proposed transit project has its own unique characteristics, physical operating environment, and challenges. Some stakeholders said that the wide disparity in the relative effect of different cost factors renders cost comparisons between projects difficult. For example, representatives of an international transit organization said that because of the large number of elements that can affect a project’s costs and the differences in what costs are included in different projects’ data, projects should be compared only at a very granular level and that aggregate cost comparisons, such as between the costs per mile or costs per kilometer of different projects, are likely flawed. Some stakeholders also said that project costs should not be compared without considering the projects’ contexts, such as their complexity. For example, one academic expert contended that project costs cannot be compared without considering the context of each project, and that analysis of projects should focus on leading practices and lessons learned instead.

There is a big problem with the above statement: disaggregated costs for many aspects of urban rail construction do exist. The Manhattan Institute’s Connor Harris has done a lot of legwork comparing tunnel boring machine staffing levels and wages in New York and in Germany, and found that New York pays much higher wages but also has much higher staffing levels, 25-26 workers compared with 12. I have done some work looking at station costs specifically, and at the cost of installing elevators for wheelchair accessibility.

There is a lot of detailed comparative research about the costs of high-speed rail; the report even references one such meta-study undertaken within Europe, but omits the study’s analysis of causes of cost differences and instead asserts that it shows that comparing different projects is hard. In the interim, California contracted Deutsche Bahn to do a post-mortem of its elevated high-speed rail costs, which found that California needlessly built larger structures than necessary, explaining its cost premium over Germany.

Instead of probing these disaggregated estimates, the GAO preferred to say that they are too hard and move on.

Sanity checks

Even without disaggregation, there are some good sanity checks one can make about construction costs. The most important is that big projects – major subway expansions, regional rail tunnels, high-speed rail – cost an appreciable amount of the government’s budget. The budget for the 200-kilometer Grand Paris Express project is €35 billion, plus another €3 billion in contributions for related suburban rail extensions such as that of the RER E. There may be future cost overruns, but they will be reported in the media, just as the current overrun has been; it is extremely difficult to hide cost overruns measured in tens of billions in a Paris-size city, and even in a China-size country it may not be easy.

Is it plausible that GPX is inherently easier to build than New York’s $1+ billion/km subway tunnels? Yes. It’s equally plausible that it is inherently harder. Second Avenue Subway runs under a wide, straight throughfare, a situation that simplifies construction. In Israel, the ministry of transportation has long mentioned the ease of tunneling under wide, straight boulevards in connection with plans to extend the second line of the Tel Aviv subway to North Tel Aviv under Ibn Gabirol, and admitted this even when it opposed the extension on land use grounds.

The most important sanity check is that in a world with several dozens of cities with a wide variety of wealth levels, land use patterns, geologies, and topographies, no city has managed to match or even come close to New York’s construction costs. New York is not special enough to be an edge case in all or even most relevant geographic variables – it is dense but no denser than Seoul or Paris, it is wealthy but no wealthier than London or Paris or Munich and barely wealthier than Stockholm, it has hard rock but less hard than Stockholm (and in Stockholm the gneiss is cited as a cost saver – bored tunnels do not require concrete lining), etc.

Moreover, the cities that have the highest construction costs outside New York are almost without exception in the same set of countries: the US, Canada, Britain, Singapore, Australia. What’s likelier – that there is some special geographic feature common to the entire Anglosphere (including Quebec) but absent from all other developed countries, or that there is a shared set of legal and political traditions that developed in the last 50 years that impede cost-effective construction? Instead of probing this pattern, the GAO preferred to wash its hands and refuse to compare projects across countries.

Internal comparisons

In lieu of making international comparisons, the GAO has engaged in extensive internal comparison. It cites aspects that have raised the costs of Second Avenue Subway above other American subway projects, such as overdesign for stations. Apparently, it’s completely legit to compare two different cities’ construction if they’re in the same country.

Over and over again, it references its own domestic standards. The GAO has 12 design standards, e.g. on PDF-pp. 51-52 and 56-60; the report mentions that existing cost estimation methodologies by the Federal Transit Administration, or FTA, meet 7 of them; thus, it exhorts transit agencies to meet the other 5 standards.

The only problem is that there is no evidence supplied that those design standards are really useful. After all, the United States has very high costs, so why should anyone trust its standards? Even domestically, the report makes no effort to bring up successful examples of low overall costs coming from following prescribed standards. Seattle recently opened a light rail tunnel built for around $400 million per kilometer, a cost that would get most European project managers fired but that is still the lowest for an American urban rail tunnel built in this century. But the report never brings up Seattle at all, never mind that New York would salivate over the prospect of tunneling at Seattle’s cost.

The real internal comparisons then are not between different cities in the United States. Rather, they’re between different stages of cost estimation for the same project. There is published literature on cost overruns, most famously by Bent Flyvbjerg and his research group. The report cites Flyvbjerg. Moreover, one of the nine academic experts it consulted is Don Pickrell, who published a seminal paper on American cost overruns and ridership shortfalls in 1990. Pickrell was influential enough that a 2009 review found that not only had cost and ridership projections improved greatly in the intervening two decades, but also there was an improvement in ridership estimate quality attributable to Pickrell’s paper.

The GAO report is not the best source on cost overruns, but it is not completely useless there. Unfortunately, it remains useless when it comes to discussing absolute costs, a different topic from relative increases. Flyvbjerg’s original paper found that the US did not have higher cost overruns than Europe; but absolute costs in the US are several times as high. Flyvbjerg’s paper found that urban rail has higher cost overruns than road projects; but when a rail tunnel and a road tunnel are built in the same city, the road tunnel is more expensive by a factor of 1.5-2.5, at least in the four-city pilot I reported in 2017, owing to the need to build bigger bores with ventilation to carry heavy car traffic.

Lazy analysis, lazy synthesis

Americans who think of themselves as reformers like to point out real problems to solve, but then propose solutions that they made up without any connection with their analysis. The RPA study is one such example: even though one of its sources (namely, former Madrid Metro CEO Manuel Melis Maynar’s writeup about low Spanish costs) explicitly calls for separation of design and construction, its recommendations include a greater reliance on design-build. The same design-build recommendation appeared in a 2008 report in Toronto comparing the costs of the Sheppard subway, opened in 2002, with those of subways in Madrid; construction costs in Toronto have since tripled, while those of Madrid have barely risen.

To the GAO report’s credit, it does not recommend design-build. It even mentions the biggest drawback of design-build: it shifts cost risk to the private contractor, who compensates by demanding more public money up front. Nonetheless, it does not follow through and does not make the correct recommendation on this subject – namely, that cities and states should cease using this approach. It buries a recommendation for in-house expertise alongside a fad for peer review of projects.

Instead of lazily proposing design-build, the GAO lazily proposes two barely relevant tweaks (PDF-p. 43):

  • The FTA administrator should ensure that FTA’s cost estimating information for project sponsors is consistent with all 12 steps found in GAO’s Cost Estimating and Assessment Guide and needed for developing reliable cost estimates.
  • The FTA Administrator should provide a central, easily accessible source with all of FTA’s cost estimating information to help project sponsors improve the reliability of their cost estimates.

In other words, the report makes no recommendation about how to reduce costs, only about how to tell the public in advance that costs will be unaffordably high.

Why are these reports so bad?

This is not the first time a serious group releases an incurious study of American construction costs. What gives?

I suspect the answer has to be a combination of the following problems:

  • Reform factions often have a lot of internal ideas about how to improve things based on what they already know. They will cite new information if they feel like they must do so to save face, but they will not let new evidence change their conclusions. A little knowledge can be dangerous.
  • Finding information from outside the US, especially outside the English-speaking world, puts Americans (and Canadians) at a disadvantage. They know few to no foreigners, have little experience with cities abroad except as tourists, and do not speak foreign languages. Even when machine translation is decently accurate, which it is in the engineering literature in European languages, they are intimidated by the idea of dealing with non-English material. The process of learning is humbling, and some people prefer to remain proud and ignorant.
  • Open-ended analysis does not always lend itself to easy explanations or easy solutions. Even when solutions do present themselves, they may not flatter the people in power. Ten years ago I did not think senior management at American transit organs should be fired; today I think mass layoffs of the top brass, especially the political appointees, are somewhere between very useful and essential.

All three problems interact. For example, senior management is even less likely to be multilingual than junior staffers, who may be second-generation immigrant heritage speakers of a foreign language; thus, anything relying on foreign material disempowers the high-ups in favor of up-and-comers. The quick-and-easy-and-wrong solutions reformists seize upon if they find a little bit of knowledge let outfits like the GAO feel more powerful without actually challenging any obstructive politician or interest group, and if those solutions fail, they can always keep churning reports about implementation.

Last year, I did not know whether the GAO was capable of providing a blueprint for improving American infrastructure at lower cost. I assumed good faith because I had no reason not to. With this report, it is clear to me as well as to other observers of American public transit that the GAO is not so capable. Instead of doing what was in the country’s best interest, the people who commissioned and wrote the report delivered the minimal product that would get them kudos from superiors who do not know any better. They could have learned, or made a serious effort to learn, but that might challenge their assumptions or those of the high political echelons, and thus they preferred to say nothing and propose to do nothing.

Little Things That Matter: Interchange Siting

I’ve written a lot about the importance of radial network design for urban metros, for examples here, here, here, here, and here. In short, an urban rail network should look something like the following diagram:

That is, every two radial routes should intersect exactly once, with a transfer. In this post I am going to zoom in on a specific feature of importance: the location of the intersection points. In most cities, the intersection points should be as close as possible to the center, first in order to serve the most intensely developed location by all lines, and second in order to avoid backtracking.

The situation in Berlin

Here is the map of the central parts of Berlin’s U- and S-Bahn network, with my apartment in green and three places I frequently go to in red:

(Larger image can be found here.)

The Ring is severed this month due to construction: trains do not run between Ostkreuz, at its intersection with the Stadtbahn, and Frankfurter Allee, one stop to the north at the intersection with U5. As a result, going to the locations of the two northern red dots requires detours, namely walking longer from Warschauer Strasse to the central dot, and making a complex trip via U7, U8, and U2 to the northern dot.

But even when the Ring is operational, the Ring-to-U2 trip to the northern dot in Prenzlauer Berg is circuitous, and as a result I have not made it as often as I’d have liked; the restaurants in Prenzlauer Berg are much better than in Neukölln, but I can’t go there as often now. The real problem is not just that the Ring is interrupted due to construction, but that the U7-U2 connection is at the wrong place for the city’s current geography: it is too far west.

As with all of my criticism of Berlin’s U-Bahn network layout, there is a method to the madness: most of the route of U7 was built during the Cold War, and if you assumed that Berlin would be divided forever, the alignment would make sense. Today, it does not: U7 comes very close to U2 in Kreuzberg but then turns southwest to connect with the North-South Tunnel, which at the time was part of the Western S-Bahn network, running nonstop in the center underneath Mitte, then part of the East.

On hindsight, a better radial design for U7 would have made it a northwest-southeast line through the center. West of the U6 connection at Mehringdamm it would have connected to the North-South Tunnel at Anhalter Bahnhof and to U2 at Mendelssohn Park, and then continued west toward the Zoo. That area between U1/U2 and Tiergarten Park is densely developed, with its northern part containing the Cold War-era Kulturforum, and in the Cold War the commercial center of West Berlin was the Zoo, well to the east of the route of U7.

Avoiding three-seat rides

If the interchange points between lines are all within city center, then the optimal route between any two points is at worst a two-seat ride. This is important: transfers are pretty onerous, so transit planners should minimize them when it is reasonably practical. Two-seat rides are unavoidable, but three-seat rides aren’t.

The two-seat ride rule should be followed to the spirit, not the letter. If there are two existing lines with a somewhat awkward transfer, and a third line is built that makes a three-seat ride better than connecting between those two lines, then the third line is not by itself a problem, and it should be built if its projected ridership is sufficient. The problem is that the transfer was at the wrong location, or maybe at the right location but with too long a walk between the platforms.

Berlin’s awkward U-Bahn network is such that people say that the travel time between any two points within the Ring is about 30 minutes, no matter what. When I tried pushing back, citing a few 20-minute trips, my interlocutors noted that with walking time to the station, the inevitable wait times, and transfers, my 20-minute trips were exceptional, and most were about 30 or slightly longer.

The value of an untimed transfer rises with frequency. Berlin runs the U-Bahn every 5 minutes during the daytime on weekdays and the S-Bahn mostly every 5 minutes (or slightly better) as well; wait times are shorter in a city like Paris, where much of the Metro runs every 3 minutes off-peak, and only drops to 5 or 6 minutes late in the evening, when Berlin runs trains every 10 minutes. However, Parisian train frequencies are only supportable in huge cities like Paris, London, and Tokyo, all of which have very complex transfers, as the cities are so intensely built that the only good locations for train platforms require long walks between lines.

New York of course has the worst of all worlds: a highly non-radial subway network with dozens of missed connections, disappointing off-peak frequencies, and long transfer corridors in Midtown. In New York, three-seat rides are ubiquitous, which may contribute to weak off-peak ridership. Who wants to take three separate subway lines, each coming every 10 minutes, to go 10 kilometers between some residential Brooklyn neighborhood and a social event in Queens?

Free Public Transportation

Note: this may turn into a long series of posts about public transportation fare systems and payments.

From time to time, people propose free public transport. Supporters have a variety of motivations, including an attempt to mirror cars (“do state roads charge tolls?”), ideological socialism, positive externalities, and the efficiencies of getting rid of fare collection.

In reality, making service free at the point of use means spending money on subsidies from other sources – money that could be spent on other things than zeroing out the fares. There are opportunity costs, and robust public transportation networks do not gain much efficiency from being free. If there is money to make service free, there is money to spend on service improvements, including more metro lines, higher frequency, and wheelchair accessibility where it isn’t already present.

Literature review

A tweetstorm from two days ago includes references to a number of studies on this issue:

Proof of payment

One argument for free transit is that it simplifies operations because no fare collection is needed. Front-door boarding and paying the drivers slow down bus boarding – each passenger takes 2.6-3 seconds to board (source, PDF-p. 20). Rapid transit systems also suffer from the complexity of fare collection infrastructure: batteries of faregates create chokepoints and require maintenance, and usually rapid transit agencies also have to hire station agents to watch the gates.

However, proof-of-payment fare enforcement, or POP, gets around most of these issues. If passengers do not need to pay at entry, everything becomes much simpler: they can board buses from any door, and get onto the train without crossing faregates. Berlin has all-door boarding and open, unstaffed U-Bahn stations. There are fare-vending machines, which are not free, but they are cheap. There are fare inspectors working on consignment – they get paid by catching non-paying riders.

Better uses for money

New York City Transit has $9.1 billion in operating and maintenance expenses as of 2016, and $4.3 billion in fare revenue (source). Ile-de-France Mobilités has a total of about €10 billion in annual operating and capital expenses, with about 10% of this being capital and the rest operating, and €2.8 billion in fare revenue. As of 2015, BVG had a total transport income of €1.344 billion (PDF-p. 7) and an additional subsidy of €620 million (PDF-p. 21).

In all of these cities, if there is money for fare elimination, there is money for further improvements in service. A disability rights advocacy group in Paris estimates the cost of making the Metro accessible at €4-6 billion, or 1.5-2 years’ worth of fares. Parisian construction costs for further Metro extensions are such that the budget for free fares could instead be spent on adding around 14 annual kilometers of new tunnels. In Berlin, a third S-Bahn trunk line running northwest-southeast would require about a year and a half’s worth of present-day fares to construct; adding service to guarantee 5-minute frequency on all trunk lines even on weekends and evenings would require a small increase in operating expenses.

New York’s construction costs are much higher than those of Paris and Berlin, and even its operating costs are elevated, but then it also charges higher fares. If there is $4.3 billion a year for free fares, there is much less $4.3 billion a year for boosting off-peak frequency on every named route (2, 4, A, etc.) to at worst 6 minutes, with 2- and 3-minute off-peak frequencies on interlined trunk lines. As with Paris, there is also a dire need for wheelchair accessibility; thanks to very high costs, full installation would not cost just 1.5-2 years’ worth of fare revenue, but more like 3 years’ worth.

Cities with and without public transport

The above discussion centers where the vast majority of public transportation takes place – that is, in cities with serious public transportation systems. The argument changes completely in smaller cities, which run the occasional bus but not at the required speed, coverage, or frequency for it to count as a real public transport network.

In Germany, there is no free transit, but the difference between big-city and small-city fare enforcement is telling: only relatively big cities have POP systems. Small-town Germany makes bus passengers pay the fare to the driver, and runs trains with conductors checking tickets. The reason is that roving inspectors only work on systems with enough frequency and coverage, or else they can’t efficiently ride the buses and trains and check tickets.

If POP is not possible, then the cost of collecting fares rises: buses are slowed down by every additional passenger, and trains require a second crew member. Such systems often have very low farebox recovery in the first place, and a very low-income rider profile, since everyone who can afford to drive drives rather than waits 25 minutes for the bus. In Los Angeles, total fare revenue on Metro (which includes most buses) is $350 million a year and total operating and maintenance expenses amount to $1.57 billion, and the average public transport commuter has about half the average income of the average solo driver. In that specific use case, making public transport free may be justified.

The one caveat is that if the plan is to convert a city from one without public transportation to speak of to one with a good system, for example in Los Angeles, then in the future, revenue will become more important. Even if free public transport is a good idea in the conditions of 2019, it may not be such a good idea in those of 2035, at least if grandiose transit city plans materialize (and I don’t think they will – the state of American local governance just isn’t good enough for cities to follow through).

Scooters

Three weeks ago, the consultancy 6t released a study about dockless e-scooters in France. The study is available only in French but there is an executive summary in English. It has convenient demographic profiles of e-scooter riders in Paris, Lyon, and Marseille, and generated some media controversy over the fact that scooters are barely displacing car trips – rather, they’re replacing trips by foot or public transit. This is on top of calls for greater regulations of the mode in multiple countries, not just by NIMBYs but also by serious urbanists like Streestblog’s Angie Schmitt; I was alerted to the study in the first place by Jonathan Rosin, who proposes regulations requiring geofencing to prevent riding on the sidewalk.

And yet, there’s something interesting about scooters and transit in the study, which suggests to me scooters have a positive role to play in a transit city. On p. 80, figure 48 shows combination of scooters with other modes. Out of about 4,000 respondents, 886 say they used scooters in combination with another mode – and of the latter, 66% used it in combination with public transportation.

How worried should we be about rider behavior?

Not really. There is an American discourse concerning dockless transportation that complains about clutter, scooter-pedestrian conflict, and nuisance scooters or bikes left on the sidewalk. The study itself discusses the regulations of e-scooters in various countries. In Britain and Italy e-scooters are legally classified as motor vehicles, which is effectively a ban, and in the US there are onerous regulations such as a requirement for a driver’s license and a minimum age of 18, such as in California. In France, Germany, Switzerland, Austria, Sweden, and Denmark, regulations are laxer, e.g. in Germany the minimum age is 14 and the e-scooter is treated as a bike.

The sort of clutter that Americans complain about was not evident to me in Paris, one of the largest markets in the world for e-scooters as well as bike share (it still has the largest bike share program in the world outside China). As far as I could tell, scooters were mostly used around Nation for recreational trips – at the very least, people did not preferentially leave them right at the Metro and RER station, and I did see a fair number of dockless vehicles (I forget if just bikes or also scooters) at the Bois de Boulogne. Central Paris had a higher density of scooters, but they too did not seem to clutter on the street, and I don’t remember ever having had to dodge a scooter even though people did ride on the sidewalk.

At least at eye level, the lax regulations France does have – the minimum age is 8, cities may choose to permit or prohibit riding on the sidewalk, riding on all streets with speed limit up to 50 km/h is required – appear sufficient. The American, British, and Italian approaches are too draconian and only serve to discourage this mode of transportation.

Gaps in the transit system

Pp. 111-4 have tables describing mode switching. Few of the scooter users would have traveled by car if the scooters hadn’t been available, only 8% including taxis and TNCs (“VTC” in French). In contrast, 46% would have walked and 32% would have taken public transportation.

But is this even a problem? The same tables have the average transit-to-scooter switcher gaining 5 minutes, taking 19 minutes instead of 24. On short trips, scooters are useful for filling little gaps in the regional public transport network. Maybe the origin and destination are not well-connected by Metro, as is for example the case for Nation and much of the Left Bank, so that a transit trip would require transfers. On a poll suggesting non-mutually-exclusive options for why people choose scooters over transit, 68% say it’s nicer, but 44% say it’s faster and 39% say it’s direct. From the perspective of the transit agencies, a mode that makes certain crosstown trips easier without changing trains at Chatelet is a net positive, as it decongests the station as well as other complex transfer points.

According to Owen Gutfreund’s book 20th Century Sprawl, in the 1900s and 1910s the American railroads were supportive of road expansion. To the railroads, cars were a natural complement to trains, extending their range beyond that of a horse or bicycle. Of course, soon the cars turned into competitors, once roads improved to the point of allowing longer-distance travel. But scooters, limited to 25 km/h, do not have that capability. The mode of transportation most comparable to the e-scooter, the bicycle, coexists with a solid regional and intercity rail network in the Netherlands.

Ban cars

The ultimate goal of the green movement in general and of public transit activism in particular should be to ban cars, or else get as close as possible to banning them. Modes of transportation that are not cars that provide alternative functionality to cars are almost always a good idea in this scheme.

Trains are an excellent alternative for long trips, that is out-of-neighborhood trips for such purposes as work, school, citywide social events, and intercity travel. Shorter trips are dominated by walking in transit cities. However, there are two important caveats for the idea of doing short trips on foot. First, there is a genuine in-between region in the 2-4 km range. And second, people with disabilities may not be able to walk long distances, which lowers the upper limit from the 1-2 km range to a much shorter point, perhaps 500 meters – and if their disabilities do not require the use of a wheelchair, then they may well find scooters an acceptable alternative.

In Paris itself, which dominates the survey, scooters are not replacing cars, for a simple reason: few trips in Paris are done by car in the first place. But a robust scooter network can expand out of the city into suburbs with higher present-day car usage, and those suburbs can then become ever more walkable thanks to the displacement of cars by greener modes of travel.

Assume Nordic Costs: London Edition

A month ago I made maps proposing some subway and regional rail extensions in New York and noting what they would cost if New York could build as cheaply as the Scandinavian capitals. Here is the same concept, but with London rather than New York. Here is everything in a single large map:

A full-size (74 MB) map can be viewed here.

Solid lines are existing or under construction, that is Crossrail and the Battersea extension; proposed lines are dashed. Commuter rail lines, that is Thameslink, the soon-to-open Crossrail, and four additional Crossrail tunnels labeled 2 through 5, are always depicted as having separate stations from the other modes, to avoid confusion where one Crossrail station has connections to two adjacent Tube stations (such as Farringdon-Barbican and Moorgate-Liverpool Street). It has many additional interchanges between lines and branches, including some that were left out on purpose, like a Crossrail 1 connection to Oxford Circus, omitted from the under-construction line to discourage riders from using the oversubscribed Victoria line; with four more cross-city lines, the capacity problems would be lessened substantially.

The overall picture is sparser than my New York map. The total projected cost of all of these projects, including some allocated for redoing stations on commuter branches to be given to Tube lines, is £6.8 billion, compared with $37 billion for the New York maps. The reason is that unlike New York, London already has excellent coverage thanks to extensive branching – what it needs is core capacity, which consists of city center tunnels that have high cost per kilometer but need not be long.

There is considerable overbuilding planned in London. Crossrail 2 as depicted on my map is a 6.5 km tunnel between the approach to Victoria Station and the approach to Kings Cross. But as planned, Crossrail 2 extends to a long tunnel parallel to the South West Main Line, a four-track line in a right-of-way that could if truly necessary accommodate six, as well as a long tunnel going north to take over the Lea Valley Lines, which on my map go into Crossrail 5. With gratuitous suburban tunnels and extremely high British construction costs, the budget for Crossrail 2 is around £30 billion, about 20 times what Scandinavia might spend on such a project. Even allowing for the possibility that crossing under three lines at once at Bank is more complex than crossing under two at T-Centralen, this is a difference of a full order of magnitude, counting both total required tunnel length and cost per km.

In addition, there is network simplification. On the Tube this consists of segregating the Northern line’s Bank and Charing Cross branches (already in planning pending the Battersea extension and reconstruction of Camden Town) and through breaking the Circle line into separate Metropolitan and District lines. The latter was estimated by a British blogger to cost £5 billion, based on a rubric in which the Met/District transfer at Aldgate (or Tower Hill) should by itself cost £1 billion; Crossrail and Second Avenue Subway stations cost around half that much, and the more complex T-Centralen and Odenplan stations on Citybanan cost less.

On mainline rail, the service plan is supposed to be deinterlined, as is Transport for London’s long-term goal. The slow tracks of the various mainlines feeding into Central London turn into Crossrail branches, or occasionally Underground extensions, such as Hayes and the Hounslow Loop. The fast tracks stay on the surface to avoid interfering with high-frequency regional metro service. For historic reasons Thameslink mostly stays as-is, with a combination of fast and stopping services, but the curve toward London Bridge should not be used – instead, passengers should have access to Crossrail 3 plus interchanges to the City at London Bridge and a new infill station at Southwark.

London owes it to itself to understand why its construction costs are so high that instead of solving its transport capacity problems with multiple cross-city tunnels in a decade, it’s taking multiple generations to build out such a system. There’s a lot of ongoing discussion about the last-minute delays and cost overruns on Crossrail, but the absolute costs even before the overrun were very high, the highest in the world outside New York City – and Crossrail 2 is set to break that record by a margin.

Trip Chaining, Redux

There’s been an ongoing conversation about how public transport can be used for non-work trips (and what it means for women) that makes me go back to something I wrote in 2012 about trip chaining. In that post I asserted a distinction between long and short trips, but I didn’t make it very clear. The importance of this distinction is that even though a large majority of trips are not work trips, the sort of urban layout that makes long trips (including work trips) usable by train tends to also make other trips doable on foot.

Trip length and purpose

Mobilität in Deutschland periodically reports on national travel patterns. The 2017 MiD report includes mode shares, trip lengths, and purposes, some broken down by state. Unlike in the Anglosphere or in France, the headline modal share is for all trips, not just work or school trips, and therefore the numbers for public transit look lower and those for walking and cycling look higher.

The important statistic for trip-chaining comes from a table on p. 19. There were 42 million work trips and 41 million shopping trips nationwide in 2017, but the work trips were on average more than three times as long, 16 vs. 5.3 kilometers. The only trip category longer than work was business trips, on average 19 km, including an extensive number of intercity trips, and the only category close to work trips was recreational trips, averaging 15.5 km, also including extensive intercity travel; the median work trip was by a fair margin the longest, 8 km, whereas the median shopping trip was 2 km. Likewise, errand trips were 10.2 km on average with a median of 3.6.

MiD doesn’t break down this data by region, unfortunately. So I can only speculate that if the median trip that people talk about when they talk about trip chaining is 2 km long, then the median trip in the parts of Germany with good public transit is short enough to be done on foot, probably shorter than a kilometer.

Short and long trips

I think it’s useful to collapse the distinction between trips into a binary one: short versus long. Trip length is of course a continuous variable, but a good classification scheme is “can it be done internally to a neighborhood or town?”. If the answer is yes then the trip is short, otherwise it is long.

The commute is an example of a long trip. Commuting to school is usually a long trip as well; even in an environment with school zoning and no selection or choice, a secondary school draws from too large an area to be a single neighborhood except in an extremely large and dense city. Social trips can be long as well – if I go to a gaming convention or a performance in Berlin, or if someone who cares about sports goes to see a football match, it’s a long trip.

Short trips include shopping, errands, eating out, and daycare. The common aspect to them is that they involve common activities with small draws. The supermarket draws from a community of a few thousand, as does the neighborhood restaurant. In contrast, the performance is unique – while many people go to concerts, different people are fans of different artists, so a single band may need to visit a city of millions to fill an auditorium.

Making transit useful for non-work long trips

I bring up the example of going to a sports game as a long trip because American transit agencies deal with that routinely even if they otherwise only care about work trips. Commute trips tend to happen at specific times of day, especially if you’re from the same middle class that transit managers are drawn from. Other long trips have different peaks. Leisure trips tend to happen in the evening and on weekends. Business trips within metropolitan areas tend to happen in the middle of the day during work hours. Trips to the airport depend on time zones – in New York the ones to JFK are concentrated in the afternoon peak, but it’s hard to make generalizations.

Like work trips, non-work long trips are not isotropic – people travel to specific places. A few are as a rule outside city center, such as sports stadiums and airports. Others are within city center to appeal to a wide cross-section of residents, such as event spaces for performances; conventions run the gamut, but richer and more important conventions are likelier to shell out money for city center real estate. Universities may be in or outside city center, depending on the city. Museums are usually city center or in neighborhoods just outside it, such as the Upper East and West Sides in New York or Balboa Park in San Diego.

The length means that the optimal transit network for all non-work trips is largely the same. If trains arrive at a reasonable frequency all day, every day, and form a coherent radial network, then passengers will able to use them for all long trips, even ones that are not for work. The major destinations that are outside city center should whenever possible be junctions between different branches, or get circumferential and not just radial service.

Moreover, there is little point in trying to vary modes for work and non-work trips. Surface transit that averages 15 km/h but saves you a 1-minute trip down to the subway is no more useful for going to a concert than for going to work. If poor urban planning has resulted in an airport that’s nowhere on the rail network or in regional convention centers that are impossible to serve, then buses can fill in the gap, but that’s not optimizing for non-work trips but rather fixing past design mistakes, no different from doing the same when suburban office parks are built far from the train.

The one serious change one needs to make is that the definition of city center needs to be broader than the few square blocks that comprise most American cities’ downtowns. The London Underground’s conception of Central London is not just the City, and likewise cities need to ensure that their West Ends (like, again, San Diego’s Balboa Park) are served as if they were central rather than peripheral areas.

Short trips

It is wrong for cities to try optimizing public transportation for short trips. Most short trips can be done by foot; if they can’t, something is wrong with the city’s urban design. The minimum density required for people to be able to walk to retail is not high – I have a choice of supermarkets within walking distance, and Berlin is not an especially dense city. In Paris, which unlike Berlin is especially dense, I walked to the hypermarket.

Occasionally, when a short trip needs to be done on mechanized transportation, if the city has good transit-oriented commercial development then it is doable by riding the trains a few stops. I recently bought a mattress at Hermannplatz, 3 stops away on U7, longer than most people inside the Ring have to go to such a store, and mattresses are a special case in that dragging them on the streets for a kilometer isn’t fun.

Suppression of auto use is especially valuable for short trips. The reason is that in auto-oriented areas, short as well as long trips are done by car, and if businesses locate based on automobile scale, then only transit can compete – walking and cycling take too long. A hefty proportion of the urban upper middle class prefers to own cars and drive them for short trips, which may induce short trip destinations to locate based on automobile scale even in a walkable city; when I lived in Providence, I walked to the supermarket, but it was located right next to a freeway exit and had ample parking.

Trip chaining

The concept of trip chaining – going directly between destinations in a row rather than just going back and forth between home and a destination – works best with the mode of transportation with the highest frequency and lowest access time: walking. Buying different items at different stores is so ubiquitous that shopping malls were invented specifically to make that experience more pleasant than that of chaining car trips.

Transit cities should not design themselves around trip chaining on transit, destinations for short trips are too difficult to serve. Many cluster on major corridors, but some don’t and stay on residential streets or at street corners. In walkable cities they tend to be fairly isotropic. With short average trips and no discernable centers, the optimal stop spacing on transit is extremely short, to the point of uselessness for all other purposes. If there’s trip chaining, the required frequency is so high that operating costs become unaffordable; a 5-minute wait for a bus may well be unconscionable.

Outside dense cities, suburbs should have a structure of density in which all the plausible destinations are within walking distance of the train station, permitting chaining walking trips with a transit trip. With such structure, the minimum viable density is lower, because buses can connect to the train with a timed transfer and have longer stop spacing as the destinations are all at the town center. In effect, such a structure gives the town center most of the convenience benefits of a shopping mall even without other features such as enclosure and single ownership of the real estate.

Infrastructure is scale-dependent. Public transportation makes this a lot clearer than cars – different modes are used at different scales, and the shape of the network can look visibly different as well. At the scale of short trips, the correct choice of public transportation mode is none – people can and should walk. If the city has generally viable public transit, its urban layout will equally well permit trip chaining on foot. If it doesn’t, then the priority should be to establish a transit city and not to try dragging buses every block.

Overnight Public Transit

American cities try to aim for 24/7 rail service, imitating New York. European cities except Copenhagen do not, and instead have night bus networks. Both of these options have fascinated various transit reformers, but unfortunately sometimes the reformers propose the wrong option for the specific city. This post is intended to be a set of guidelines for night buses and the possibility of 24/7 urban rail.

Maintenance windows

The reason rail service does not run 24/7 is maintenance. Tracks require regular inspections and work, which are done in multi-hour windows. Over the last century or so, the big urban rail systems of the world have standardized on doing this maintenance at night. For example, in Paris there are about 4.5-5 hours every weeknight between the last train of the night and the first train of the morning, and one hour less every weekend night. In Berlin trains run all night on weekends and have 3.5-hour windows of closure on weeknights.

The regular windows may be supplemented by long-term closures, during which passengers are told to use alternatives. Berlin occasionally closes some S-Bahn segments for a few days, and (I believe much more rarely) U-Bahn segments. Paris does so very rarely, usually for an entire summer month during which many Parisians are away on vacation and systemwide ridership is lower, and usually when there are easy alternatives, such as the RER A and Metro Line 1 substituting for each other.

The English-speaking world tends to have extensive weekend shutdowns for maintenance. London has them quite often in addition to nighttime shutdowns. New York runs trains 24/7, using the express tracks on most of its trunk lines to provide service even when the local stations on some segment are closed for maintenance. As American cities have mostly copied New York, they do not know how to wrap up maintenance during their usual nighttime windows and seek weekend closures or shorter hours as well. Thus, for example, BART has claimed that it needs 7-hour windows during weekend nights, citing the example of Paris, whose weekend night closures actually last less than 4 hours.

Flagging

I know of one city that runs its subway 24/7 without interruptions: Copenhagen. Overnight, Copenhagen single-tracks around worksites – frequency is low enough that trains can be scheduled not to conflict. As the trains are driverless, wrong-way running is quite easy. Moreover, there is ample separation between the tracks thanks to the Copenhagen Metro’s twin bore construction; thus, trains do not need to slow down next to worksites, nor must work slow down when a train runs on an adjacent track.

In New York, tracks on each line are right next to each other, with little separation between them. Thus, there are rules that are collectively called flagging under which trains must slow down to a crawl (I believe 10 miles per hour, or 16 km/h) when next to a worksite, while work must pause next to a moving train. The flagging rules apply even when there is more substantial separation between adjacent tracks, such as columns and retaining walls, provided there is any opening allowing passage between the tracks. The safety margins have been made more generous over the last 20 years, which is part of the reasons trains have slowed down, as reported separately by myself, Dan Rivoli, and Aaron Gordon. At the other end, maintenance costs in New York are very high thanks to the constant interruptions.

If it is possible to single-track at night without onerous flagging rules, then cities should go in that direction, using automated rail signaling such as CBTC, even stopping short of driverless trains. In cities with twin-bored tunnels this works provided there are regularly-spaced crossovers between tracks in opposite directions. London is generally poor in such crossovers, and installing new ones may be prohibitively expensive if blasting new connections between tunnels is required. In contrast, on Line 14 in Paris, there are almost sufficient crossovers – the longest stretch is between Bibliotheque and Madelaine, at 14 minutes one-way, and single-direction switches exist at Chatelet and Gare de Lyon, just one of which needs to upgraded to a full diamond crossover. There, 24/7 operation is plausible, though perhaps not so useful as the rest of the system is not 24/7.

Even some cut-and-cover metros can have sufficient separation between tracks for nighttime single-tracking. In Berlin the distance is adequate, at least for some stretches – the tracks are not right next to each other. Even in New York, there are segments where it is feasible to construct partitions between tracks, provided the agency changes flagging rules to permit regular operations and maintenance on adjacent tracks if a partition has been constructed. The cut-and-cover nature of these systems should facilitate this pattern since the cost of building the required crossovers is not prohibitive, just high.

Night buses

Night buses are attractive for a number of reasons. The most important is that in the after hours there is so little surface traffic that buses can match the speed of rapid transit. Moreover, ridership is usually low enough that a bus has adequate capacity. Finally, surface transit can make small detours, for example to reach a common timed transfer, since transit is dependent on both scale and mode. During the day Vancouver has a bus grid, with most buses arriving every 8-10 minutes, but at night it has a half-hourly radial network with a timed transfer, and little relationship with the shape of the SkyTrain network.

Nevertheless, not every city can make appropriate use of night buses. The important factors to consider include the following:

  1. How much does the rapid transit network follow major streets? If it mostly runs on two-way streets, as in Berlin, then running buss that duplicate the metro is easy. But if there are major deviations, especially if there are water crossings involved, then this is harder; in New York, where there are far more crossings of the East River by subway than by road, a night bus network would be virtually useless. Shuttle buses substituting for weekend trackwork are likewise complete failures whenever the subway is more direct than the streets, e.g. the Boston Red Line between Charles-MGH and Park Street.
  2. What is the expected size of the network? A minimum number of lines is required for success, and unless they are very frequent, transfers have to be timed. The half-hourly night buses in Berlin do not work well if untimed, for example.
  3. How long are the routes? This has two aspects. First, very long routes are less competitive with taxis if there are motorways. And second, a half-hourly night bus had better take around an integer number of half-hours minus turnaround time per roundtrip, to avoid wasting service hours. A 25-minute one-way trip is excellent, a 32-minute one a disaster.