Category: Urban Transit

Why is Second Avenue Subway Phase 2 So Expensive?

I am only loosely following the news about the second phase of Second Avenue Subway. The project, running from 96th Street to 125th, with a short segment under 125th to Lexington, passing under the 4, 5, and 6 trains, is supposed to be cheap. In the 1970s, work began on Second Avenue Subway before the city went bankrupt, and there are extant tunnel segments built cut-and-cover in East Harlem between the station sites. The stations need to be dug, but the plan dating back to 2003 was to build them cut-and-cover as well, with local disruption for only a few blocks around 106th, 116th, and 125th Streets. Only one part would be difficult: going deep under 125th, under the preexisting subway. And yet, costs are very high, and the design seems to be taking a wrong turn.

In the early 2000s, the cost projections were $3.7 billion for phase 1 (actual cost: $5 billion, but much of the difference is inflation), and $3.3 billion for phase 2 (projected cost: at least $6 billion). Since then, there have been changes. For about a year I heard rumors that the preliminary engineering had been done wrong, and it was impossible to use the preexisting tunnel segments. Then I heard that no, it’s actually possible to use the existing tunnels. But a few days ago I heard that even though it’s possible, the MTA is now planning to demolish the existing tunnels and build the entire project deep underground using tunnel-boring machines.

With the information generally given out at community meetings, it’s hard to know what’s exactly going on. However, the fact that the MTA is talking about this suggests extreme disinterest in cost control. Cut-and-cover construction is cheaper than TBMs, per a 1994 paper looking at French urban rail costs since the 1970s. The tradeoff is that it forces rail lines to go underneath streets, which is disruptive to pedestrians and merchants, or demolish private property. Fortunately, Second Avenue is a wide, straight throughfare, and requires no such demolitions, while the disruption would be localized to areas that are scheduled to get subway stops as part of the project. Metro extensions here and in a number of other European cities are constructing stations cut-and-cover and the tunnels between them with TBMs; Metro Line 12’s online documents state that station construction involves just 18 months of digging.

It’s possible that the need to turn to 125th Street is messing up the plan to do everything cut-and-cover. While the turn itself can be done with minimal demolitions (the inside of the curve has a few small buildings, and there’s also an alignment slightly farther east that goes under vacant land while maintaining a 90-meter curve radius), going underneath the Lexington Avenue Line requires diving deep, and then there is no advantage to cut-and-cover. Building cut-and-cover under existing lines is difficult, and in that case, TBMs are warranted.

If the problem is 125th Street, then I would propose extending phase 2 and then breaking it apart into two subphases. Phase 2.0 would be cut-and-cover and open stations at 106th, 116th, and possibly 125th and 2nd temporarily. Phase 2.5 would involve driving TBMs under 125th Street all the way to Broadway; this could be done with a large-diameter TBM, with the platforms contained within the bore and vertical access dug so as to avoid the intersecting north-south subways. 125th Street has 30,000 crosstown bus boardings according to the MTA, which would make it the busiest bus corridor in the city per km: 10,000 per km, compared with 8,000 on the busiest single route, the M86. It is a priority for subway expansion, and if it’s for some reason not possible to easily build from 96th and 2nd to 125th and Lex in one go then the entire project should be extended to 125th and Broadway, at somewhat higher cost and far higher benefits.

The reason phase 1 was so expensive is that the stations were mined from small digs, rather than built cut-and-cover as is more usual. The idea was to limit street disruption; instead there was street disruption lasting 5 years rather than 1.5, just at small bore sites at 72nd and 86th rather than throughout the station boxes’ footprints. The TBM drive and systems cost together $260 million per kilometer, compared with $125 million on Paris’s Metro Line 1 extension, but the stations cost $750 million each, compared with $110 million.

It’s crucial that the MTA not repeat this mistake in phase 2, and it’s crucial that area transit activists hold the MTA’s feet to the fire and demand sharp cost control. Even taking the existing premiums as a given, cut-and-cover stations should not cost more than $200 million each, which means phase 2 as planned should cost $600 million for stations, about $330 million for systems, and another $350 million for overheads. At $1.3 billion this still represents high cost per kilometer, about $500 million, but it’s based on actual New York cost items, which means it’s plausible today. There is no excuse for $6 billion.

Rapid Transit in Low-Density Boomtowns

Most of my thinking about public transit comes from large, dense cities, especially New York. In those cities, transit ridership is not a problem; only cost is. When such cities have decent cost control, they can build massive expansion programs, as Paris is. But most of the developed world is not New York, Paris, London, Tokyo, or other transit cities. A large and (thanks to differential national population growth rates) growing share of the developed world lives in fast-growing, low-density city regions with no public transit to speak of, such as the American Sunbelt and its counterparts in Canada and Australia.

I’ve had to intellectually grapple with public transit in two American Sunbelt cities in which current transit usage is a rounding error and the built form is wholly auto-oriented: Orlando (which I was asked about by a Twitter mutual) and Nashville (which just voted against a flawed light rail plan by an overwhelming margin). In those areas, there is no chance for any public transit, provided the urban form stays as it is – but fortunately such cities can leverage their high growth rates to change their urban form, as Calgary did in the 1980s and 90s.

Density versus growth

A few months ago I made this chart:

The density and growth demand axes are not meant to come from a single quantitative metric; density is a subjective mix of residential and job density, whereas growth demand refers to either population growth or the demand for more housing as expressed by price signal. In San Francisco, most likely the richest metro area in the world, density is middling, and growth demand is higher than even in New York and London; in the American Rust Belt, density is fairly low and there is also little demand for more; in some cities on the margin of the first world there is little demand for more growth but high preexisting density. It goes without saying that it’s easier to build new rapid transit lines on the upper right corner than on the lower left one.

The situation of the American Sunbelt, most of which goes in the bubble of Texas and Georgia, is difficult. Residential density is extremely low, so the ridership base near potential rail lines is low. Moreover, streets are usually designed exclusively around auto use, so passengers are unlikely to walk a kilometer to the train station the way they routinely do in transit cities. At the destination end, things aren’t much better – American cities have high-rise CBDs, but few jobs locate there or in surrounding dense neighborhoods.

The Orlando CBD has about 80,000 jobs, in a metro area of 2.5 million people. Disney World adds another 37,000, but is not surrounded by any serviceable residential neighborhoods, and has to be at the end of any reasonable transit service coming from the CBD. Nashville, a metro area of nearly 2 million, has a CBD with 36,000 jobs. The medical center to the southwest adds another 33,000, and this time it could plausibly lie on a rail trunk, but most of the useful urban arterials converge on the CBD and not on the medical center. In contrast, Washington, with 5.5 million people, has 280,000 people working at the CBD (from the Green and Yellow Lines to just beyond Dupont Circle and Foggy Bottom), 77,000 in the Rosslyn-Ballston corridor, and 33,000 in Crystal City and at National Airport and the Pentagon. Both the percentages and the absolute numbers (including job density) count: there is a great mass of people who would be interested in taking rail to Washington CBD jobs but not to Orlando or Nashville CBD jobs.

Can regional rail work?

No.

High-growth areas are likely to have been small a few decades ago. For the most part the metro areas in question were too small in the heyday of rail transportation to have inherited a large legacy rail network. Even the ones that did, including Atlanta and Perth, have less legacy rail than older cities of comparable size – compare Atlanta with Philadelphia, or Perth with Brisbane. And most North American boomtowns are not Atlanta. Miami has two north-south mainlines and a handful of east-west connections, none at the right place for commuter rail. Orlando has a north-south trunk with a branch to the north, and Nashville a few branches, but they’re surrounded by industrial land use and not by the sort of suburbs that developed around commuter rail in the Northeast.

A commuter rail-based network can still work, but only with extensive greenfield lines. Disney World is not on any legacy rail line, because it developed long after rail stopped being a relevant mode of transportation outside large urban areas. But even then, gaps in coverage are unavoidable, as the dense neighborhoods of such cities did not develop around legacy rail.

Can transit-oriented development work?

Sort of.

The big question about TOD is, who is it for? In Nashville specifically, the far left opposed the light rail plan, essentially because it would cannibalize funding that could go to public housing. Now, public housing could be used to beef up density along rail corridors. Stockholm built public housing simultaneously with the subway, placing housing projects on top of rail branches, and as a result has per capita ridership today that’s not much lower than the level of Paris, Berlin, or Munich.

The problem is that public housing is horrendously expensive. A house in low-cost American cities costs around $150,000, but apartments cost more, so $200,000 per household is more likely even with some economies about size. Most of this cost is impossible to recover through rent – if low-income households made enough money to pay market rent in nice apartments, they’d just rent these apartments on the open market. The American Sunbelt does not lack for developable suburban land.

Market-rate housing is much easier to construct – for one, developers make a profit on it, and so are eager to put up their own money. The problem is that in cities like Nashville and Orlando, the middle class has close to 100% car ownership, and a large majority of households have one car per adult. The real estate industry is not going to spontaneously build housing with less parking or pedestrian-oriented retail.

In San Diego, developers build more parking than the minimum at University Avenue and 30th Street, according to Duncan McFetridge of the Cleveland National Forest Foundation. University is a bus corridor and not a light rail corridor, but the bus frequency there isn’t terrible, and the area is pretty walkable for a low-density city. In Los Angeles, I’ve read analysis that blames the region’s falling transit ridership on gentrification, explaining that in gentrifying inner neighborhoods like Boyle Heights, the middle class drives whereas the working class takes transit. It’s not like here or in New York, where recent gentrifiers rarely own cars.

How did Calgary make it work?

Calgary is a metro area of somewhat more than a million people. Its economy is based on oil, and when oil prices were higher earlier this decade its average income was comparable to that of San Francisco; its politics is thoroughly conservative, which means there is no progressive impetus for walkability or green transit. Nonetheless, it built light rail lines that get about 100 million annual riders today. Its transit mode share is 16%, higher than that of any American metro area except New York (or, in the most restrictive definition, San Francisco). This is with no residential TOD to speak of: the vast majority of housing in Calgary is single-family and low-density, and from what I’ve seen there’s almost no dense residential development near the stations.

The big thing Calgary did was develop its CBD to be high-rise. In the early 1980s Calgary was a small, monocentric city, and since then it’s grown more monocentric, developing downtown parking lots as high-rise buildings. When I visited it had a more prominent high-rise downtown than Providence, a bigger and older metro area, and walking between the high-rises was reasonably pleasant.

In low-density cities with demand for more growth, the best opportunity appears to be centralizing jobs in the CBD. The straightforward application involves developing parking lots, as in Calgary, and relying on the private market to do the rest of the job. In both Nashville and Orlando, there are also more proactive approaches, specific to their urban layouts. In Nashville, the high job density at the medical center calls for developing a continuous corridor from the CBD, about 3 km long. This corridor could plausibly get an east-west subway, in contrast with the north-south subway in the rejected light rail plan. In Orlando, the Disney World cluster calls for some residential upzoning and sprawl repair around that area, which would strengthen the case for building a rail line between that area and the CBD.

Growing cities can use their growth to support more auto-oriented development (as the big American cities did in the postwar era) or to support more public transit. This is understood in cities that already have a transit-oriented core, but it’s equally true in cities that don’t really have any public transit, like the entire American Sunbelt. Calgary, starting with very low population, managed to build a decent if not great public transit network centered on its light rail system, and the same should be doable in American cities of comparable size and age.

Do Rich and Poor People Work in Different Neighborhoods?

There are workplaces where most employees are high-income, for example office towers (or office parks) hosting tech firms, law firms, or banks. There are workplaces where most employees are working-class, for example factories, warehouses, and farms. Does this lead to a difference in commuting patterns by class? I fired up OnTheMap two days ago and investigated. This is American data, so it stratifies workers by income, education, industry, or race rather than by job class. I generated maps for New York and saw the following:

There are three income classes available, and I looked at the bottom and top ones, but the middle one, still skewed toward the working class, looks the same as the bottom class. The biggest observation is that Midtown is dominant regardless of income, but is more dominant for middle-class workers (more than $40,000 a year) than for low-income ones (up to $15,000, or for that matter $15,000-40,000).

The colors are relative, and the deepest shade of blue represents much more density for middle-class workers, even taking into account the fact that they outnumber under-$15,000 workers almost four to one. Among the lowest-income workers we see more work on Queens Boulevard and in Williamsburg, Flushing, and the Hub, but these remain tertiary workplaces at most. The only place outside Midtown, Lower Manhattan, or Downtown Brooklyn (which includes all city workers in Brooklyn due to how the tool works, so it looks denser than it is) that has even the third out of five colors for low-income workers is Columbia, where the low-income job density is one-third that of Midtown, and where there is also a concentration of middle-class workers.

The same pattern – job centers are basically the same, but there’s more concentration within the CBD for the rich – also appears if we look at individual neighborhoods. Here is the Upper East Side versus East Harlem:

I chose these two neighborhoods to compare because they exhibit very large differences in average income and are on the same subway line. Potentially there could be a difference between where East Siders and West Siders work due to the difficulty of crosstown commuting, so I thought it would be best to compare different socioeconomic classes of people on the same line. With the East Side-only restriction, we see two Uptown job centers eclipse Columbia: Weill-Cornell Medical Center in Lenox Hill at the southeast corner of the Upper East Side, and Mount Sinai Hospital at the northwest corner.

One place where there is a bigger difference is the definition of Midtown. Looking at the general job distribution I’d always defined Midtown to range between 34th and 59th Street. However, there are noticeable differences by income:

For the middle class, Midtown ranges from 34th to 57th Street and peaks around 47th. For the lowest-income workers, it ranges from 28th to 49th and peaks in the high 30s. My best explanation for this is that Midtown South and Union Square are more retail hubs than office hubs, featuring department stores and shopping centers, where the rich spend money rather than earning it.

In a deindustrialized country like the US or France, the working class no longer works in manufacturing or logistics. There are a lot of truck drivers today – 3.5 million in the US – but in 1920 the American railroad industry peaked at 2.1 million employees (source, PDF-p. 15), nine times today’s total, in a country with one third the population it has today and much less mobility. Manufacturing has plummeted as a share of employment, and is decreasing even in industrial exporters like Germany and Sweden. Instead, most poor people work at places that also employ many high-skill, high-income workers, such as hospitals and universities, or at places where they serve high-income consumption, such as retail and airports.

Since the working class works right next to the middle class, the nature of bosses’ demands of workers has also changed. Low-skill works now involves far more emotional labor; in Singapore, which makes the modern-day boss-worker relationships more explicit than the Anglosphere proper, there are signs all over the airport reminding workers to smile more. Nobody cares if auto workers smile, but they’re no longer a large fraction of the working class.

With the working class employed right next to the middle class, there is also less difference in commuting. For the most part, the same transportation services that serve middle-class jobs also serve working-class jobs and vice versa. This remains true even across racially segregated communities. The patterns of white New York employment are similar to those of middle-class New York employment, and those of black, Hispanic, and Asian employment are similar to those of the working class, with small differences (Asians are somewhat more concentrated in Flushing, and blacks in Downtown Brooklyn, reflecting the fact that blacks are overrepresented in public employment in the US and all city workers in Brooklyn are counted at Court Square).

This is true provided that opportunities for transportation are available without class segregation. This is not the situation in New York today. Commuter rail actually serves working-class jobs better than middle-class jobs, since Penn Station is closer to the department stores of 34th Street than to the office towers in the 50s. However, it’s priced for the middle class, forcing the working class to take slower buses and subway trains.

When I posted the above maps on Twitter, Stephen Smith chimed in saying that, look, the poor are less likely to work in the CBD than the middle class, so everywhere-to-everywhere public transportation is especially useful for them. While Stephen’s conclusion is correct, it is not supported by this specific data. In the $40,000 and up category, 57% of city jobs are in Manhattan south of 60th Street, compared with 37% in the $15,000-40,000 and under-$15,000 categories. It’s a noticeable difference, but not an enormous one. The reason Stephen is correct about how rides crosstown transit is different: people who can afford cars are very likely to drive if the transit option is not good (which it isn’t today), whereas people who can’t are stuck riding slow crosstown buses; in contrast, for CBD-bound commutes, the subway and commuter rail work reasonably well (especially at rush hour) and driving is awful.

Instead of trying to look specifically at low-income and middle- and high-income job centers, it’s better to just plan transit based on general commute patterns, and let anyone take any train or bus. This doesn’t mean business as usual, since it requires transitioning to full fare integration. Nor does this mean ignoring residential segregation by income, which in some cases can lead to transit segregation even in the face of fare integration (for example, the crosstown buses between the Upper East Side and Upper West Side have mostly white, mostly middle-class riders). Finally, this doesn’t mean relying on middle-class transit use patterns as a universal use case, since the middle class drives in the off-hours or to off-CBD locations; it means that relying on middle-class transportation needs could be reasonable. It just means that the rich and poor have substantially the same destinations.

An even bigger implication relates to questions of redevelopment. There have been periodic complaints from the left about gentrification of jobs, in which working-class job sites are turned over to high-end office and retail complexes. For example, Canary Wharf used to be the West India Docks. In New York, Jane Jacobs’ last piece of writing before she died was a criticism of Greenpoint rezoning, in which she specifically talked up the importance of keeping industrial jobs for the working class. But since the big deindustrialization wave, developments brought about by urban renewal, gentrification, and industrial redevelopment have not had any bias against providing employment for the poor. It’s not the factory jobs that the unionized working class still culturally defines itself by, but it’s industries that are hungry for low-skill work, and in many cases are serious target of unionization drives (such as universities).

When are Express Trains Warranted? Part 2: Subways

Last week, I wrote about which regional rail lines should run local and express trains and which should only run locals. I gave various guidelines, specific to that mode of transportation. The same question makes a lot of sense for subways (or elevated lines), and is especially important for large cities building new metro networks, typically in developing countries. The key difference is that subway trains almost always run so frequently that the only way to have local and express services is to build four-track mainlines, like in New York. So really, this is a question about when it’s useful to build four-track subways instead of two-track subways.

Costs

The cost of a four-track subway is higher than that of a two-track subway. However, the difference depends on the method of construction. Cut-and-cover four-track subways do not appear to be much more expensive than two-track subways; in the 1900s, New York had little to no cost premium over London or Paris. The First Subway’s underground segments, slightly less than half of which are four-track, cost $39 million per km in today’s money, compared with about $29 million per km in Paris in the same era (see sources in this post). The Metropolitan line in London cost about the same: £1.3 million for 6 km in the early 1860s, or about $30 million per km.

In contrast, boring four tracks appears to cost twice as much as boring two. It’s hard to find examples, since four-track bores are extremely rare; the examples I do know, such as the East River Tunnels and the tunnel carrying the Lexington Avenue Line under the Harlem River, are short. There are bound to be efficiencies in engineering and sitework reducing the cost of boring, just as there are with cut-and-cover, but the majority of the cost of tunneling is the boring and the systems. The majority of the rest is stations, and the local stations can be built for not much of a premium over stations on a two-track line, but the express stations require considerably more excavation.

What this means is that cities that build cut-and-cover should probably aim to build four tracks rather than two. In retrospect, Paris should have built Metro Line 1 with four tracks: the narrowest street segment, Rue de Rivoli, runs for 3 km and is about 20-23 meters wide, which can take four tracks if there are only local platforms, and everything else is at least 30 meters and could take four tracks and express platforms. The only express station under Rivoli would probably be Chatelet, where there is a wide square where the station footprint could expand.

The question of whether to use cut-and-cover today is a separate issue. It’s easier for the first few lines than for subsequent lines, which have to cross under the old lines. Nonetheless, it’s still in use, for example in China; the lack of express tracks on Chinese subways has led to criticism on some railfan forums, particularly by Japanese railfans, who are used to the fast express trains of the JRs through urban areas. But in India, the longest underground segment in Delhi, on the Yellow Line, appears to be bored, running deep under Old Delhi. The one potential pitfall is that bored tunnels, while generally more expensive to construct than cut-and-cover tunnels if wide streets are available, are nimbler, making it easier to build lines to high standards, with wide curves.

Benefits

The two obvious benefits of express subways are speed and capacity. New York averages a decent speed, just under 30 km/h, buoyed by express trains that average about 36 km/h. When frequency on both the local and express tracks is adequate, which it regrettably isn’t most of the time in New York, it’s possible to use cross-platform local/express transfers to improve trip times even for people on the local stations.

The capacity benefits are sometimes compromised by transfers. In New York, the express tracks are consistently more crowded than the local tracks on the main lines, and the Upper West Side in particular sees the city’s most overcrowded trains on the express tracks run alongside the second least crowded on the local tracks. However, on the East Side, the local and express trains under Lexington are both quite full. The number of passengers they carry would overwhelm any two-track line: to carry the same number of passengers on just two tracks at the current peak frequency, each train would need about 2,100 passengers, more per unit of train floor area than the most crowded Tokyo Metro lines.

There are also indirect effect of four-tracking. The most distant stations are presumably express-only, or, if not, passengers will transfer to an express train at the first opportunity. This means that adding local stops does not increase trip times for passengers far out, which in turn argues in favor of tighter stop spacing on local trains, to provide more coverage. Evidently, New York has one of the smallest interstations (on local trains) of any major metro network in the world, surpassed only by Paris, which built the Metro without regard for the suburbs. Second Avenue Subway, built with just two tracks, has wider stop spacing than other Manhattan north-south mainlines, missing 79th Street, with the planned phase 2 stopping at 106th instead of 103rd and 110th.

Network effects

I have hammered repeatedly that metro systems need to avoid three pitfalls of network planning:

  1. Tangential lines, starting as radial farther out but becoming circumferential closer in rather than staying radial and serving city center.
  2. Reverse-branching: a common trunk in an outlying area splitting into branches in city center, the opposite of the more normal branching arrangement.
  3. Missed connections, in which two lines intersect without a transfer.

It is easier to miss connections when the stop spacing is wider, because city centers are so small that line 1 can easily miss the road that line 6 will later run under. The Paris Metro has just one missed connection (M5/M14), and the city made a failed effort in the 1900s to bring Line 5 to what would be the transfer station, Gare de Lyon. New York has only two missed connections among the lines built from 1900 to the 1920s (Junius/Livonia on the 3/L, Bowling Green/Whitehall on the 4-5/RW), both of which are easy to fix; the city’s tens of misses come from a deliberate decision to avoid transfers in the lines built in the 1930s. Systems with wider stop spacing have more opportunities for missed connections, such as Tokyo, Shanghai, and Moscow.

Four-track mainlines short-circuit this problem doubly. First, fewer lines are required to provide the same coverage and capacity. On the eve of the Great Depression, New York had six subway mainlines, three with four tracks and three with two, and 2 billion annual riders. Even if a city insists that all transfer stations be express (which is the case in New York among lines built before the 1930s, though at one station express platforms were only retrofitted decades later), there are fewer potential intersections; at city center, even the express lines are unlikely to have very wide stop spacing.

Moreover, it’s fine to miss transfers on express lines. The reason missed connections are so bad is that the alternative option typically requires a three-seat ride. For example, the 1 passes between Columbus Circle-59th Street and 50th Street without a connection to the E train, leaving connecting passengers with one of two options: ride to Times Square and transfer there, which is both a detour and a very long walk between the platforms, or change to the B or D at 59th and then again to the E at 53rd; the latter option is the faster one, saving about 5 minutes of in-vehicle time and 3 minutes of transfer time.

But if one of the transfers is cross-platform, then a three-seat ride is less onerous. This is especially true if this transfer is local/express on a long shared trunk line, where the transfer stations usually don’t get as crowded as between two separate trunks. This means that it’s possible, if there is no better option, to have local-only transfers. Two of the top stations in New York, 53rd/Lex and Columbus Circle, are local-only transfers.

Scale

Small cities don’t need to think about express trains very much. Transit cities with about 2 million people in their metro areas, such as Vienna, Stockholm, Prague, Budapest, and Hamburg, make do with a handful of metro lines, sometimes supplemented by regional rail. But as they grow, the number of urban rail lines they need grows to the point that a coherent two-track network is too difficult, not to mention too slow. Paris manages to make do with the RER acting as the express layer, but outside India and Pakistan, cities that are just beginning to build their metro networks don’t have large legacy commuter rail networks to leverage for express service. In Africa between the Sahara and South Africa, nearly everything has to be built from scratch, and the same is true of Bangladesh and much of Southeast Asia and Latin America.

Moreover, in developing countries, a large number of cities either are megacities or can expect to grow to that size class soon. This is less true in Latin America, nearly all of which has at- or below-replacement birth rates, already high urbanization rates, and negative net migration (thus, the main case for four-track subways in Bogota hinges on the fact that the city has absurdly wide roads for cut-and-cover, not on future scale). However, in poor countries with high birth rates and low urbanization rates, cities can expect to increase their population many times over in the next few decades. Lagos and Dhaka are already huge, and midsize cities such as Nairobi, Kampala, Dar es Salaam, Addis Ababa, Khartoum, Accra, Abidjan, Douala, and Sanaa can expect to grow to that size class within a generation, as can midsize cities in countries with lower birth rates, such as Chittagong, Hanoi, and Ho Chi Minh City. In such cities, transportation planning should presume much greater scale than may seem warranted today.

A smaller-scale version of this principle can be found in cities that are growing rapidly due to immigration, especially Singapore but also Sydney, Melbourne, Toronto, Vancouver, and Stockholm. Such cities might want to consider infrastructure investments based not on their present-day population levels, but on those that they can expect after 30 more years of high migration rates. Vancouver and Stockholm are too small for express subways no matter what, and Toronto has already built its central spines with two tracks (and is upgrading its regional rail network to act as an express layer), but Singapore, Sydney, and Melbourne should all think about how to plan for the possibility that they will have 10 million people within 50 years.

The MTA’s Bus Redesign Plan

Two weeks ago I wrote about the Brooklyn bus redesign I’m working on with Eric Goldwyn. The MTA, which is aware of our efforts, came up with its own plan. So far details are scant; there is a presentation available online, which talks about goals (“network redesign,” “higher frequency”) but no specifics (“a more gridded network,” “6-minute off-peak frequency on the main routes”).

At least so far, the goals seem solid. The MTA has the following list of improvements:

  • Redesign the network from top to bottom based on customer input, demographic changes, and travel demand analysis. Provide better connectivity and more direct service in every neighborhood
  • Optimize the existing network with community consultation by removing closely-spaced and underutilized stops and making street design changes on select corridors in coordination with NYC DOT
  • Expand off-peak service on strategic routes using a toolbox of service strategies including increased frequency and demand based service adjustments
  • Expand Traffic Signal Priority (TSP) to allow an approaching bus to hold a green light or shorten a red light
  • Seek exclusive busways on priority corridors to give buses full access in major congested areas
  • Identify opportunities for new bus lanes and queue jumps in 2018
  • Advocate for strengthened NYPD enforcement of bus lanes to keep bus stops and travel lanes clear throughout the system
  • Recommend dedicated transit-priority traffic teams to focus enforcement in key areas to ensure buses move quickly through trouble spots
  • Use Bus Lane Enforcement Cameras mounted on buses to automatically identify violations and issue tickets. Advocate for legislation to expand beyond the existing 16 authorized routes
  • Install tap readers to speed up the boarding process so buses spend less time waiting at stops
  • Introduce all-door boarding to allow riders to get on through any door of the bus
  • Explore options for a future cashless system to maximize reductions in boarding time
  • Expand fare enforcement on regular bus service to reduce evasion and restore fare revenue

The main problems only appear toward the end, with the implementation of off-board fare collection and all-door boarding. The insistence on “fare enforcement,” which could mean regular proof of payment (POP) inspections but could also mean worse, such as armed cops (not practiced in New York on SBS but practiced on some other US systems, like BART) or holding the bus during inspection (which New York does practice, unlike Berlin and other German-speaking cities). Overall I’m relatively sanguine about Andy Byford specifically – he’s not American and is not used to American levels of police militarization.

However, another aspect of the POP proposal is troubling: the connection with tap readers. The plan’s full text (which is barely more detailed than what I quote above) mentions that POP should come with the so-called New Fare Payment System, or NFPS, which New York is currently planning to roll out starting in 2019, continuing until 2023. The NFPS is based on worst industry practices cobbled from American and British ideas. Here is my second post ever, discussing the plans for smartcards in New York in 2011. New York ignored (and keeps ignoring) the smartcard implementations in a number of East Asian cities in its zeal to make people treat their credit card as a transit fare card, ensuring the agency can surveil all passengers; perhaps Americans lack the values of freedom and individual privacy of Japan and Singapore.

New York also ignored (and keeps ignoring) the POP implementations in cities with paper tickets, such as most of Central Europe. Smartcards are not required for POP: the German-speaking world has POP with paper tickets, as did Vancouver on SkyTrain and some bus lines even before the Compass Card debacle. In Singapore I saw a ticket inspection on a bus even before EZ-Link; I had a magnetic farecard at the time. Given the enormous waste coming from making passengers line up and pay the driver, it’s imperative to move toward POP as soon as possible, even if it means equipping inspectors with MetroCard readers rather than smartcard readers. MetroCard may only last for five years if the NFPS schedule doesn’t keep slipping, but handheld magnetic card readers are a cheap technology whereas making buses idle while passengers dip cards one at a time is not so cheap.

The zeal to go cash-free is the final troubling aspect of New York’s ideas about fare payment, especially when bundled with the idea that the bank card is the fare card. Not everyone has a local bank account. Tourists don’t (and even cards that are supposed to work abroad don’t always). Low-income city residents don’t, either: 11.7% of New York households have no bank account, and they disproportionately appear to be in poverty, judging by which neighborhoods they are most concentrated in. The MTA has always treated anonymous smartcards as an afterthought, and going cash-free means there is no recourse for the unbanked or even for many tourists.

Nor is cash-free operation even necessary. An on-board farebox is compatible with POP. In this system, riders can board from any door, and the driver will begin moving as soon as all passengers have boarded, even if not all passengers have paid yet. Riders with valid transfers or season passes need not do anything. Riders with a pay-per-ride smartcard and no transfer should tap their card at a validator at any bus door or bus stop (validators are cheap that blanketing the system with them is practically free). The remaining passengers should walk to the farebox and pay there; perhaps some busy stations should get fareboxes, as all SBS stops do in New York today, but if the MTA only expects a few smartcard-free, non-transfer passengers at a stop, then having them pay on board a moving bus should not be a problem.

I’d like to stress that other than the ongoing hiccups of the English-speaking world with fare payment systems (hiccups that it seems to export to Paris), the plan appears good, from what few details the MTA has released. There are plans for increasing the average distance between bus stops, adding more bus lanes, getting serious about signal preemption, raising off-peak frequency, and letting passengers board from all doors. The MTA really is noticing that its bus system is collapsing and really is making serious plans to avert a death spiral.

Buses in Brooklyn: Frequency is Freedom, but 15 Minutes isn’t Frequency

I’ve recently started working part-time on a project for the Marron Institute at NYU about bus restructuring in Brooklyn; at the end of this summer, I expect to release a proposal for service upgrades and a new map. I’m working on this with Marron scholar Eric Goldwyn, who is funded by the TWU, which is worried that ridership collapse may lead to service cuts and job losses, but I’m funded directly by Marron and not by the union.

Some of what’s likely to appear in the final report should be familiar to regular readers of this blog, or of Human Transit, or of the work TransitCenter has been doing. As I wrote in Curbed earlier this year, bus operating costs in New York are unusually high because the buses are slow, as the main operating costs of buses scale with service-hours and not service-km. Thus, it’s important to speed up the buses, which allows either providing higher frequency at the same cost or the same frequency at lower cost. A bus speedup should include systemwide off-board fare collection and all-door boarding (common in the German-speaking world but also in San Francisco), wider stop spacing, dedicated lanes wherever there is room, and signal priority at intersections; the TWU is an enthusiastic proponent of off-board fare collection, for reasons of driver safety rather than bus speed.

While bus speedups are critical, their impact is not as Earth-shattering as it might appear on paper. New York’s SBS routes have all of the above features except signal priority, and do save considerable time, but are still slow city buses at the end of the day. Brooklyn has two SBS routes: the B44 on Nostrand, averaging 15 km/h (local B44: 11.3), and the B46 on Utica, averaging 13.7 (local B46 on the shared stretch: 10.8). Their speed premiums over the local routes are toward the high end citywide, but are still 30%, not the 200% speed premium the subway enjoys. Moreover, the speed premium over non-SBS limited routes is 15-20%; put another way, between a third and a half of the speed premium comes purely from skipping some stops.

I mentioned in my last post that I met Carlos Daganzo at Berkeley. Daganzo was responsible for the Barcelona bus redesign, Nova Xarxa; you can read some details on Human Transit and follow links to the papers from there. The guiding principles, based on my conversation with Daganzo and on reading his papers on the subject, are,

  • Barcelona has high, relatively uniform density of people and jobs, so there’s no need for buses to hit one CBD. Brooklyn has about the same average residential density as Barcelona, but has a prominent CBD at one corner, but as this CBD is amply served by the subway, it’s fine for buses to form a mesh within the subway’s gaps.
  • Nova Xarxa involved widening the stop spacing in Barcelona from less than 200 meters to three stops per km, or a stop every 300-350 meters; Daganzo recommends even wider stop spacing.
  • While Barcelona’s street network is strictly gridded, the buses don’t run straight along the grid, but rather detour to serve key destinations such as metro stops. This is an important consideration for Brooklyn, where there are several distinct grids, and where subway stops don’t always serve the same cross street, unlike in Manhattan, where crosstown routes on most two-way streets are assured to intersect every north-south subway line.
  • The percentage of transfers skyrocketed after the network was implemented, standing at 26% at the end of 2015, with the model predicting eventual growth to 44%, up from 11% before the redesign.
  • The network was simplified to have 28 trunk routes, the least frequent running every 8 minutes off-peak.

The high off-peak frequency in Barcelona is a notable departure from Jarrett Walker’s American network redesigns; the evidence in Houston appears mixed – ridership is about flat, compared with declines elsewhere in the country – but the percentage of transfers does not seem to have risen. Jarrett says in his book that having a bus come every 10 minutes means “almost show-up-and-go frequency” with no need to look at schedules, but his work in Houston and more recently in San Jose involves routes running every 15 minutes.

Moreover, unreliable traffic in these car-dominated cities, in which giving buses dedicated lanes is politically too difficult, means that the buses can’t reliably run on a schedule, so the buses do not run on a clockface schedule, instead aiming to maintain relatively even headways. (In contrast, in Vancouver, a less congested street network, with priority for all traffic on the east-west main streets on the West Side, ensures that the buses on Broadway and 4th Avenue do run on a fixed schedule, and the 4th Avenue buses have a 12-minute takt that I still remember four years after having left the city.)

I’ve talked about the importance of radial networks in my posts about scale-variant transit. I specifically mentioned the problem with the 15-minute standard as too loose; given a choice between an untimed 15-minute network and a timed 30-minute network, the latter may well be more flexible. However, if the buses come every 5 minutes, the situation changes profoundly. Daganzo’s ridership models have no transfer penalty or waiting penalty, since the buses come so frequently. The models the MTA uses in New York have a linear penalty, with passengers perceiving waiting or transferring time on the subway as equivalent to 1.75 times in-motion time; bus waiting is likely to be worse, since bus stops are exposed to the elements, but if the average wait time is 2.5 minutes then even with a hefty penalty it’s secondary to in-vehicle travel time (about 18 minutes on the average unlinked bus trip in New York).

Unfortunately, that high frequently does not exist on even a single bus line in Brooklyn. Here is a table I created from NYCT ridership figures and timetables, listing peak, reverse-peak, and midday frequencies. Five routes have better than 10-minute midday frequency: the B12, the B6 and B35 limited buses, and the B44 and B46 SBSes, running every 7, 7.5, 8, 8, and 6 minutes respectively. In addition, the B41 limited and B103 have a bus every 9 and 7.5 minutes respectively on their trunks, but the B41 branches on its outer end with 18-minute frequencies per branch and the B103 short-turns half the buses. Another 14 routes run every 10 minutes off-peak, counting locals and limiteds separately.

The problem comes from the split into local and limited runs on the busiest buses. The mixture of stopping patterns makes it impossible to have even headways; at the limited stops, the expected headway in the worst case is that of the more frequent of the two routes, often about 10 minutes. The average ridership-weighted speed of Brooklyn buses is 10.75 km/h. An able-bodied passenger walking at 6 km/h with a 10-minute head start over a bus can walk 2.25 km before being overtaken, which can easily grow to 3 km taking into account walking time to and from bus stops. To prevent such situations, it’s important to run buses much more frequently than every 10 minutes, with consistent stopping patterns.

This does not mean that NYCT should stop running limited buses. On the contrary: it should stop running locals. The SBS stop spacing, every 800 meters on the B44 and B46, is too wide, missing some crossing buses such as the B100 (see map). However, the spacing on the B35 limited is every 400 meters, enough to hit crossing buses even when they run on one-way pairs on widely-spaced avenues. The question of how much time is saved by skipping a stop is difficult – not only do different Brooklyn buses give different answers, all lower than in Manhattan, but also the B35 gives different answers in different directions. A time cost of 30 seconds per stop appears like a good placeholder, but is at the higher end for Brooklyn.

The question of how many stops to add to SBS on the B44 and B46 has several potential answers, at the tight end going down to 400 meters between stops. At 400 meters between stops, the B44 would average 13 km/h and the B46 12 km/h. At the wide end, the B44 and B46 would gain stops at major intersections: on the B44 this means Avenue Z, R, J, Beverly, Eastern Parkway, Dean, Halsey, and Myrtle, for an average interstation of 570 meters and an average speed of 14 km/h, and on the B46 this means Avenue U, Fillmore, St. John’s, and Dean, for an average interstation of 610 meters an average speed of 13 km/h. Consolidating all buses into the same stopping pattern permits about a bus every 2.5 minutes peak and every 4 minutes off-peak on both routes.

On the other routes, consolidating local and limited routes required tradeoffs and cannibalizing some peak frequency to serve the off-peak. While it may seem dangerous to limit peak capacity, there are two big banks that can be used to boost off-peak frequency: time savings from faster trips, and greater regularity from consolidating stop patterns. The B82 is an extremely peaky route, running 7 limited and 10 local buses at the peak and just 6 buses (all local) for a four-hour midday period; but there is a prolonged afternoon shoulder starting shortly after noon with another 6 limited buses. Some peak buses have to be more crowded than others just because of schedule irregularity coming from having two distinct stop patterns. Consolidating to about 15 buses per hour peak and 10 off-peak, cannibalizing some frequency from the peak and some from the shoulders, should be about neutral on service-hours without any additional increase in speed.

The sixth post on this blog, in 2011, linked to frequent maps of Brooklyn, Manhattan, and Bronx buses, using a 10-minute standard. There has been some movement in the top buses since 2011 – for one, the B41 route, once in the top 10 citywide, has crashed and is now 16th – but not so much that the old map is obsolete. A good place to start would be to get the top routes from a 10-minute standard to a 6-minute standard or better, using speed increases, rationalization of the edges of the network, and cannibalization of weak or subway-duplicating buses to boost frequency.

Joe Lhota Admits Defrauding the Public About Costs

The Wall Street Journal is reporting a bombshell story about New York’s subway station renovation program. The MTA had a budget of $936 million for renovating 32 subway stations, but nearly the entire budget is exhausted after the MTA has spent it on only 19 stations. These renovations do not include accessibility, which New York is lagging on. I’m interviewing people in the disability rights community about New York’s problems in this area, but the smoking gun about Lhota is not that issue, on which he is no worse than anyone else. Rather, it’s that Lhota hid the fact of the cost overrun from the MTA board. Per the Journal:

On Monday, Carl Weisbrod, a commissioner who represents New York City, said the program was “ill-conceived,” and that he is glad it has come to an end.

“I don’t know when the MTA management realized that the program had run out of money but it would’ve been helpful to have informed the board when this matter was under discussion,” he said.

Mr. Lhota said he was aware of the increased costs last year, but he chose not to mention it until now. “I didn’t think it was relevant to the debate,” he said.

An alternative way to phrase Lhota’s own words is that he is concealing critical information from the public relevant to public spending priorities. In other words, he is defrauding the public when it comes to costs. Previously he had been merely making excuses for high construction costs (e.g. saying New York, founded in the 17th century, is old, and thus naturally has higher costs than cities founded in the Middle Ages or even in Antiquity). But now it turns out that he’s not only trying to deflect criticism, but is actively putting obstacles in front of board members, journalists, and ordinary citizens who want to discuss MTA capital expansion.

Absent democratic mechanisms for oversight of the state, the state will not engage in cost-effective projects. We know this, because the part of public policy most insulated from public criticism, the military and security in general, is the most bloated. The US is wasting a trillion and a half dollars on the F-35, and allies like Israel are wasting money buying this jet from the US military industry. It’s hard to question the costs when overconfident military commanders say “this is necessary for national security.” The intelligence community is even worse, with self-serving slogans like “our successes are private and our failures are public.”

Evidently, facing criticism over costs, domestic agencies portray their projects as necessary rather than useful, hence the weak claims that Gateway is required to avoid shutting down rail service across the Hudson. My specific criticism of the argument that Gateway is required is that the study recommending long-term shutdowns of the existing tunnels did not even attempt to provide a comparative cost of maintaining the tunnels on nights and weekends as is done today. An informed public can more easily demand an end to bad investments, and specific interest groups can highlight how they are harmed by bad spending: the Journal article mentions disability rights advocates demanding that the MTA instead spend money on putting elevators at stations to make them accessible to people in wheelchairs.

The station renovations are especially at risk of being canceled if an informed public finds their costs offensive. The benefits include better maintenance standards, but those are almost self-evidently useful but not necessary. Activists can complain about costs or demand that the money be spent elsewhere.

In Astoria, activists complain that the MTA is renovating stations at a cost of $40 million per station without even installing elevators for accessibility. In London, the cost of the Step-Free Access program is £200 million for 13 stations, or about $20 million per station, and in Paris, where only Metro Line 14 and the RER A and B are accessible, disability rights activists estimate the cost of making the remaining 300 stations accessible at €4-6 billion. This is profoundly different from the situation with tunneling costs, where London has a large premium over Paris and New York has a large premium over London. It is likely that New York can install elevators at the same cost of its top two European peers if it puts its mind to it.

However, such investments are not possible under the current leadership. If a hack like Lhota stays in charge of the MTA, there is not going to be transparency about contracting and about costs, which means that small overruns can blow out of proportion before anyone notices. In such an environment, high costs are not surprising. If New York State is interested in good, cost-effective transit, it will get rid of Lhota and replace him with an experienced transit manager with a good history regarding cost control and respect for the democratic process.

New York-Area Governments to Form a Coordinated Transportation Planning Agency

Governors Andrew Cuomo (D-NY) and Phil Murphy (D-NJ) announced that they would cooperate to form a Lower Hudson Transportation Association, or LHTA, to supersede what they described as antiquated 20th-century thinking and bring the region’s transportation into the 21st century. LHTA would absorb the transportation functions of Port Authority, which senior New York state officials speaking on condition of anonymity called “irredeemably corrupt,” and coordinate planning across the region. Negotiations with the state of Connecticut are ongoing; according to planners in New Jersey, the timing for the announcement was intended to reassure people that despite the lack of federal funding for Gateway, a lower-cost modified version of the project would go forward.

But the first order of business for LHTA is not Gateway. The governors’ announcement mentioned that LHTA would begin by integrating the schedules and fares throughout the region. By 2019, passengers will be able to transfer between the New York City Subway and PATH for free, and connect from the subway to the AirTrain JFK paying only incremental fare. Engineering studies for removing the false walls between PATH and F and M subway platforms are about to begin.

Commuter rail fare integration is also on the table. Currently, the fare on the subway is a flat $2.75. On commuter rail, it is higher even within New York City: a trip between Jamaica Station and New York Penn Station, both served by the E line of the subway, is $10.25 peak or $7.50 off-peak on the Long Island Railroad (LIRR). The governors announced that they would follow the lead of European transportation associations, such as Ile-de-France Mobilités in Paris, and eliminate this discrepancy under LHTA governance, which also includes revenue sharing across agencies. Detailed studies are ongoing, but in 2019, LHTA will cut commuter rail fares within New York City and several inner cities within New Jersey, including Newark, to be the same as the subway fare, with free transfers.

Simultaneously, LHTA will develop a plan for schedule integration, coordinating New Jersey Transit, the LIRR, Metro-North, and suburban bus agencies. In order to make it easier for suburban passengers to reach commuter rail stations, the suburban buses will be timed to just meet the commuter trains, with a single ticket valid for the entire journey. Today most passengers in the suburbs drive to the commuter rail stations, but the most desirable park-and-rides are full. Moreover, the states would like to redevelop some of the park-and-rides as transit-oriented development, building dense housing and retail right next to the stations in order to encourage more ridership.

Moreover, the LIRR and New Jersey Transit’s commuter trains currently stub-end at Penn Station in opposite directions. LHTA is studying French and German models for through-running, in which trains from one suburb run through to the other instead of terminating at city center. Planners within several agencies explain that the systems on the Long Island and New Jersey side are currently incompatible – for example, LIRR trains are electrified with a third rail whereas New Jersey Transit trains are electrified with high-voltage catenary – but reorganizing these systems for compatibility can be done in a few years, well before the Gateway project opens.

In response to a question about the cost of this reorganization, one of the planners cited the Swiss slogan, “electronics before concrete.” Per the planner, electronics include systems, electrification, and software, all of which are quite cheap to install, whereas pouring concrete on new tunnels and viaducts is costly. The planner gave the example of resignaling on the subway: the New York Times pegged the cost of modernizing subway signals at $20 billion, and this could increase capacity on most lines by 25 to 50 percent. But the cost of building the entire subway from scratch at today’s costs in New York is likely to run up to $200 billion.

But while the immediate priorities involve fare and schedule integration, LHTA’s main focus is the Gateway project. There are only two commuter rail tracks between New Jersey and Penn Station, and they are full, running a train every 2.5 minutes at rush hour. The Gateway project would add two more tracks, doubling capacity. The currently projected cost for the tunnel is $13 billion, but sources within New York said that this number can be brought down significantly through better coordination between the agencies involved. This way, it could be funded entirely out of local and state contributions, which add up to $5.5 billion. When pressed on this matter, officials and planners refused to say outright whether they expect $5.5 billion to be enough to cover the tunnel, but some made remarks suggesting it would be plausible.

Previous estimates for the costs of Gateway adding up to $30 billion include substantial extra scope that is not necessary. Sources on both sides of the Hudson report that the main impetus for the formation of LHTA was to coordinate schedules in a way that would make this extra scope no longer necessary. “With last decade’s ARC, there was a cavern under Penn Station to let trains reverse direction and go back to New Jersey,” explains one of the planners; ARC was a separate attempt to add tracks to the Hudson rail crossing to Penn Station, which Republican Governor Chris Christie canceled in 2010 shortly after his election. “With Gateway, there was the plan for Penn Station South, condemning an entire Manhattan block for the station for $7 billion. With the plans we’re developing with LHTA we don’t need either Penn South or a cavern to let trains run between stations.”

Moreover, some planners suggested reactivating plans to connect Penn Station and Grand Central as part of Gateway. They refused to name a cost estimate, but suggested that at the low end it could be funded out of already-committed state money. Under this plan, there would be through-running between not just New Jersey Transit and the LIRR but also Metro-North, serving the northern suburbs of New York and Connecticut. Sources at the Connecticut Department of Transportation said they are studying the plan and have reservations but are overall positive about it, matching the reports of sources within New York, who believe that Connecticut DOT will join LHTA within six months.

Officials are optimistic about the effects of LHTA on the region both privately and publicly. The joint press release referred to the metro area as “a single region, in which decisions made in far apart areas of New York nonetheless affect people in New Jersey and vice versa.” Planners in both states cited examples of friends and family in the other state who they would visit more often if transportation options were better. With better regional rail integration, they said, people would take more trips, improving regional connectivity, and take fewer trips by car, reducing traffic congestion and pollution.

More on Weekend Service Changes and Redundancy

I’m visiting New York again, and the subway is noticeably deteriorating in speed and frequency. But it’s not the speed I’d like to discuss (it’s been covered in the media, both by me and by others) – it’s the weekend service changes. With its 24/7 subway service, New York relies on selective closures of line segments on nights and weekends for maintenance. Expressions like “the D is running on the F and the F is running on the D” are well-known to regular subway riders. However, I don’t think the way the MTA is choosing which lines to shut down every weekend is optimal. I wrote about how different subway lines can be used to substitute for each other in Boston last year; this year, I encountered a big change in New York that, while not as destructive as what I saw in Boston in November, was avoidable.

The trip itself was between Central Harlem and Inwood. I’m staying in Harlem near the 2 and 3 trains, and was visiting friends in Inwood near the A. The most direct path would have been to walk to 125th and St. Nicholas to take the A, but this was blocked because the A was not running north of 168th. The second best option would have been to ride the 2 or 3 to 96th and change wrong-way to the 1, but this was also blocked since the 2 and 3 were not running at all on their Harlem trunk line. The route I took was to walk to 125th and St. Nicholas to take the A up to the 1, changing at 168th Street, an inconvenient transfer involving an elevator (the 1 is deep and only elevator-accessible at 168th).

It was not an especially egregious change. The trip took around 45 minutes and was all-rail; without the changes, it would have been about half an hour. In Boston, the subway shutdowns forced me onto multiple buses in mixed traffic, and a trip that should have taken 40 minutes ended up taking maybe an hour and a half. However, the extra transfer penalty and the difficulty of finding a good all-rail route are real.

In the post about Boston, I argued that even in relatively sparse rail networks, like Boston’s, rail lines are redundant with one another. In New York, this needs no argument, judging by conversations with many New Yorkers, even ones who aren’t railfans, who recognize the extent of redundancy in the system. It would be useful to design weekend service changes to take advantage of this redundancy and not shut down multiple lines that could substitute for each other. In the case of last weekend, if a full shutdown of the 2 and 3 between 96th Street and the Bronx was unavoidable, then the other north-south lines through Upper Manhattan should not be shut down.

Thus, the first principle I’d like to propose for weekend shutdowns is, if one line is shut for repairs, then parallel lines should be fully open. This should cover shutdowns as well as one-way running, in which one direction is only served by express trains and passengers wishing to access local stations are told to ride an express trains and change to a local train going in the opposite direction.

In fact, given the extent of redundancy in the core, I would propose that if local service is shut down in one direction, then it should be shut down in the other direction as well. Backtracking is cumbersome and rarely worth it: stop spacing is often close enough that walking from the express stop is faster, and in Manhattan it’s usually easier to just go on a parallel line instead.

Then, to compensate for loss of service on a line that’s being closed for repairs, there should be more service on parallel lines. Subway service changes in New York, called general orders, or GOs, fall under a labor agreement in which train operators and conductors are still paid for the time they would’ve had to work if service had run normally. The MTA should negotiate a change in which those drivers and conductors can be redistributed to nearby subway lines without this counting as overtime. If express trains on a route are closed, then there should be more local service, and if a trunk line is closed, as the 2 and 3 were last weekend, then there should be more service on parallel lines (in this case, the 1, 4, 5, A, and D) to absorb the extra ridership. With reduced service, the trains can get quite busy, more so than the crowding guidelines indicate, if my weekend trips are any indication.

Finally, the MTA should build crossovers and switches to enable more efficient single-tracking. This is unlikely to work on four-track lines, since trains would have to cross three tracks to get around a work zone, but on two-track lines, including the L, the 7, and most tails outside the Manhattan core, it would be useful, especially on lines that use island platforms rather than side platforms. On the newest lines, which use bored tunnel, it’s easy to do maintenance on one track without disturbing the other track, as long as there are crossovers at regular locations. On the older lines the situation is the opposite: trains need to slow near work zones, unless some hard barriers are built between parallel tracks, but installing new crossovers is relatively easy. More shutdowns may be required to install such switches, but the subsequent benefits to making weekend trackwork easier are substantial.

Off-Peak Subway Service in New York

New York City Comptroller Scott Stringer has a new report out about the poor state of off-peak subway service. It’s a topic I’ve talked about a lot here (e.g. here), but there’s a big difference in focus: I normally talk about midday service for efficiency reasons, and as far as I remember this is the bulk of what I discussed with report author Adam Forman, but the report itself highlights non-traditional commutes in the early morning and evening:

Traditional commuters
(depart 7-9 am)
Early morning commuters
(depart 5-7 am)
Median Income $42,300 $35,000
Bachelor’s Degree or Higher (Age 25+) 52% 31%
Foreign Born 47% 56%
Person of Color 64% 78%
Work in Healthcare, Hospitality, Retail, Food Services, or Cultural industries 36% 40%
Growth in the Last Quarter Century 17% 39%

Citywide, there are 1,888,000 commuters leaving to go to work between 7 and 9 am, and 711,000 leaving between 5 and 7. The latter group has to contend with much worse subway frequencies: the report has a table (chart 8) detailing the reduction in frequency, which is typically about half. The report does not say so, but an additional hurdle facing early-morning commuters is that some express trains run local: for example, the northbound A train only starts running express at 6 in the morning, forcing a substantial minority of early morning commuters to ride what’s effectively the C train.

The one saving grace in the early morning, not mentioned in the report, is that buses aren’t as slow. For example,  the B6 limited takes 1:11 end-to-end at 6 am, compared with 1:26 at rush hour. However, this is a 16 km route, so even the faster speed at 6 am corresponds to an average speed of 13.7 km/h, which is not competitive with a bicycle. Moreover, in practice, slow circumferentials like the B6 are used in situations where transferring between subway lines is not viable or convenient, such as early in the morning, when subway frequencies are low; this means that far from a substitute for slower rush hour buses, early morning buses have to substitute for much faster subway lines.

The report has charts about subway and bus service by the time the route begins operation. As expected, there’s a prominent morning peak, and a slightly less prominent afternoon peak. In the evening there’s a dropoff: 350 subway runs begin around 9 pm compared with just under 600 subway runs in the morning peak, a reduction of 40%. For buses, the dropoff is larger: about 1,700 versus 3,700, a 54% reduction. The most worrying trend is that the buses peak at the same time as the subway in the afternoon, starting at 4:30 or so; in reality, buses are often a first-mile rather than a last-mile connector, which means that people returning from work typically ride the subway and then the bus, so we should expect buses to peak slightly later than trains, and drop off in the evening at a slower rate. Instead, what we see is the same peak time and a faster dropoff.

Some of this can be attributed to operating costs. Buses have lower fixed costs than trains and higher marginal costs, so the economics of running them at less busy times are weaker than those of running trains. However, in reality buses and trains in New York run as a combined system; running just the subway in the evening but not the buses means that people can’t come home from work if they live in neighborhoods not connected to the subway.

Evening frequencies on many routes are low enough that they are almost certainly negatively impacting ridership. Some individual subway routes run every 11-12 minutes in the evening, including the B, C, D, W, and 5; in the every 9-10 minutes category are the 2, 3, A, F, J, N, and R. Other than the J, these are all branches sharing track with other lines, but they branch off the trunks and recombine. A Bronx-bound rider on the 2 and 3 can only ride the 2, and a Flatbush-bound rider can choose between the 2 and a 3-to-5 transfer, both of which are infrequent. Without timed transfers, the effective frequency as experienced by the rider remains low, about every 10 minutes.

This isn’t how other top metro systems work – in Paris the trains on Metro Line 9, not one of the top lines in the system, come every 7 minutes at 10 or 11 at night. The RER is less frequent on individual branches, but the individual branch points are all outside the city except on the RER C, sometimes well outside it. Other than on the RER C heading west, the branch points are at worst 6 km outside the center (at Vincennes), more typically 10 km (such as Nanterre and Bourg-la-Reine), and at best 16-18 km out (Aulnay and Villeneuve-Saint-Georges). In New York, the R and W branch at Lexington and 60th, a little more than 2 km outside Times Square, and the Q and N branch even earlier; the A-B-C-D branch and recombine at Columbus Circle, and branch again at 145th Street, 8.5 km out of Port Authority. This branching affects a majority of bedroom communities in the city, including almost the entire Bronx, much of Upper Manhattan, all of Queens except the 7, and Central and Southern Brooklyn.

To my knowledge, there is no public study of the effect of frequency on ridership. Occasionally there are ridership screens that incorporate it, but the examples I know are designed around the needs of specific project studies. There can be rules of thumb about frequency at different scales (the smaller the scale, the higher the minimum frequency is), but without more careful analysis, I can only bring up some best industry practices. It does not seem common to run metro trains every 10 minutes in the evening. On the Piccadilly line, there are 22 northbound trains departing Leicester Square between 9 and 10 in the evening, of which 19 go all the way to Cockfosters. On the Central line, 24 trains depart Oxford Circus eastbound, 9 going to Epping (in Essex, 31 km from Oxford Circus and 27 km from Bank), and another 13 serving Newbury Park, in outer East London.

Evening service also has one more complication: it serves several distinct markets. There are commuters working non-traditional hours, themselves split into shift workers and professionals who work late (I spoke to several Manhattan lawyers who told me that they work from 10 in the morning to 8 in the evening). There are tourists and local leisure travelers, some coming late from work after dinner and some coming from a non-work destination. Non-work trips don’t always have the same centers as work trips: in London, non-work trips are dominated by the West End, with little contribution from the City, whereas in New York, presumably Lower Manhattan punches below its weight while Union Square punches above its weight. New York already takes care of non-work trips in the evening, with high frequencies on the 1, L, and 42nd Street Shuttle (“GS” in chart 8), but its frequency guidelines are unfriendly to commuters who are working late.