Category: Urban Design

Meme Weeding: Rich West, Poor East

There’s a common line in global history – I think it’s popularized through Eric Hobsbawm – that there is a universal east-west divide in temperate latitude cities. The idea is that the west side of those cities is consistently richer than the east side and has been continuously since industrialization, because prevailing winds are westerly and so rich people moved west to be upwind of industrial pollution. I saw this repeated on Twitter just now and would like to push back. Some cities have this pattern, some don’t, some even have the opposite pattern. Among cities the casual urbanist reader is likely to be familiar with, about the only one where this is true is Paris.

London

London famously has a rich west and poor east. I think this is why the line positing this directional pattern as universal is so common. Unfortunately, the origin of this pattern is too recent to be about prevailing winds.

In an early example of data visualization, Charles Booth made a block by block map of London in 1889, colored by social class, with a narrative description of each neighborhood. The maps indeed show the expected directionality, but with far more nuance. The major streets were middle-class even on the East End: Mile End Road was lined with middle-class homes, hardly what one would expect based on pollution. The poverty was on back alleys. South London exhibited the same pattern: middle-class major throughfares, back alleys with exactly the kind of poverty Victorian England was infamous for. West London was different – most of it was well-off, either middle-class or wealthier than that – but even there one can find the occasional slum.

East London in truth had a lot of working poor because it had a lot of working-class jobs, thanks to its proximity to the docks, which were east of the City because ports have been moving downriver for centuries with the increase in ship size. Those working poor did not always have consistent work and therefore some slipped into non-working poverty. The rich clustered in enclaves away from the poverty and those happened to be in the west, some predating any kind of industrialization. Over time the horizontal segregation intensified, as slums were likelier to be redeveloped (i.e. evicted) in higher-property value areas near wealth, and the pattern diffused to the broader east-west one of today.

Berlin

Berlin has a rich west and poor east – but this is a Cold War artifact of when West Berlin was richer than East Berlin, and the easternmost neighborhoods of the West were poor because they were near the Wall (thus, half their walk radius was behind the Iron Curtain) and far from City West jobs.

Before WW2, the pattern was different. West of city center, Charlottenburg was pretty well-off – but so was Friedrichshain, to the east. The sharpest division in Berlin was as in London, often within the same apartment building, which would house tens of apartments: well-off people lived facing the street, while the poor lived in apartments facing internal courtyards, with worse lighting and no vegetation in sight.

Tokyo

Tokyo has a similar east-west directionality as London, but with its own set of nuances. This should not be too surprising – it’s at 35 degrees north, too far south for the westerlies of Northern Europe; the winds change and are most commonly southerly there. The directionality in Tokyo is more about the opposition between uphill Yamanote and sea-level Shitamachi (the Yamanote Line is so named because the neighborhoods it passes through – Ikebukuro, Shinjuku, and Shibuya – formed the old core of Yamanote).

What’s more, the old Yamanote-Shitamachi pattern is also layered with a rich-center-poor-outskirts pattern. Chuo, historically in Shitamachi, is one of the wealthiest wards of Tokyo, thanks to its proximity to CBD jobs and the high rents commanded in an area where businesses build office towers.

The American pattern

The most common American pattern is that rich people live in the suburbs and poor people live in the inner city; the very center of an American city tends to be gentrified, creating a poverty donut surrounding near-center gentrification and in turn surrounded by suburban wealth. Bill Rankin of Radical Cartography has some maps, all as of 2000, and yet indicative of longer-term patterns.

New York is perhaps the best example of the poverty donut model: going outside the wealthy core consisting of Manhattan south of Harlem, inner Brooklyn, and a handful of gentrified areas in Jersey City and Hoboken near Manhattan, one always encounters poor areas before eventually emerging into middle-class suburbia. Directionality is weak, and usually localized – for example, the North Shore of Long Island is much wealthier than the South Shore, but both are east of the city.

Many American cities tend to have strong directionality in lieu of or in addition to the poverty donut. In Chicago, the North Side is rich, the West Side is working-class, and the South Side is poor. Many cities have favored quarters, such as the Main Line of Philadelphia, but that’s in addition to a poverty donut: it’s silly to speak of rich people moving west of Center City when West Philadelphia is one of the poorest areas in the region.

Where east-west directionality exists as in the meme, it’s often in cities without westerly winds. Los Angeles is at 34 degrees north and famously has a rich Westside and a poor Eastside – but those cannot possibly emerge from a prevailing wind pattern that isn’t consistent until one travels thousands of kilometers north. Houston is at 30 degrees north. More likely, the pattern in Los Angeles emerges from the fact that beachfront communities have always been recreational and the rich preferred to live nearby, and only the far south near the mouth of the river, in San Pedro and Long Beach, had an active industrial waterfront.

Sometimes, the directionality is the opposite of that of the meme. Providence has a rich east and poorer west. This is partly a longstanding pattern: the rivers flow west to east and north to south, and normally you’d expect rich people to prefer to live upriver, but in Providence the rivers are so small that only at their falls was there enough water power for early mills, producing industrial jobs and attracting working-class residents. However, the pattern is also reinforced with recent gentrification, which has built itself out of Brown’s campus on College Hill, spreading from there to historically less-well off East Side neighborhoods like Fox Point; industrial areas have no reason to gentrify in a city the size of Providence, and, due to the generations-long deindustrialization of New England, every reason to decline.

How Tunneling in New York is Easier Than Elsewhere

I hate the term “apples-to-apples.” I’ve heard those exact three words from so many senior people at or near New York subway construction in response to any cost comparison. Per those people, it’s inconceivable that if New York builds subways for $2 billion/km, other cities could do it for $200 million/km. Or, once they’ve been convinced that those are the right costs, there must be some justifiable reason – New York must be a uniquely difficult tunneling environment, or its size must mean it needs to build bigger stations and tunnels, or it must have more complex utilities than other cities, or it must be harder to tunnel in an old, dense industrial metropolis. Sometimes the excuses are more institutional but always drawn to exculpate the political appointees and senior management – health benefits are a popular excuse and so is a line like “we care about worker rights/disability rights in America.” The excuses vary but there’s always something. All of these excuses can be individually disposed of fairly easily – for example, the line about worker and disability rights is painful when one looks at the construction costs in the Nordic countries. But instead of rehashing this, it’s valuable to look at some ways in which New York is an easier tunneling environment than many comparison cases.

Geology

New York does not have active seismology. The earthquake-proofing required in such cities as Los Angeles, San Francisco, Tokyo, Istanbul, and Naples can be skipped; this means that simpler construction techniques are viable.

Nor is New York in an alluvial floodplain. The hard schist of Manhattan is not the best rock to tunnel in (not because it’s hard – gneiss is hard and great to tunnel in – but because it’s brittle), but cut-and-cover is viable. The ground is not going to sink 30 cm from subway construction as it did in Amsterdam – the hard rock can hold with limited building subsidence.

The underwater crossings are unusually long, but they are not unusually deep. Marmaray and the Transbay Tube both had to go under deep channels; no proposed East River or Hudson crossing has to be nearly so deep, and conventional tunnel boring is unproblematic.

History and archeology

In the United Kingdom, 200 miles is a long way. In the United States, 200 years is a long time. New York is an old historic city by American standards and by industrial standards, but it is not an old historic city by any European or Asian standard, unless the standard in question is that of Dubai. There are no priceless monuments in its underground, unlike those uncovered during tunneling in Mexico City, Istanbul, Rome, or Athens; the last three have tunneled through areas with urban history going back to Classical Antiquity.

In addition to past archeological artifacts, very old cities also run into the issue of priceless ruins. Rome Metro Line C’s ongoing expansion is unusually expensive for Italy – segment T3 is $490 million per km in PPP 2022 dollars – because it passes by the Imperial Forum and the Colosseum, where no expense can be spared in protecting monuments from destruction by building subsidence, limited by law to 3 mm; the stations are deep-mined because cut-and-cover is too destructive and so is the Barcelona method of large-diameter bores. More typical recent tunnels in Rome and Milan, even with the extra costs of archeology and earthquake-proofing, are $150-300 million/km (Rome costing more than Milan).

In New York, in contrast, buildings are valued for commercial purposes, not historic purposes. Moreover, in the neighborhoods where subways are built or should be, there is extensive transit-oriented development opportunity near the stations, where the subsidence risk is the greatest. It’s possible to be more tolerant of risk to buildings in such an environment; in contrast, New York spent effort shoring up a building on Second Avenue that is now being replaced with a bigger building for TOD anyway.

Street network

New York is a city of straight, wide streets. A 25-meter avenue is considered narrow; 30 is more typical. This is sufficient for cut-and-cover without complications – indeed, it was sufficient for four-track cut-and-cover in the 1900s. Bored tunnels can go underneath those same streets without running into building foundations and therefore do not need to be very deep unless they undercross older subway lines.

Moreover, the city’s grid makes it easier to shut down traffic on a street during construction. If Second Avenue is not viable as a through-route during construction, the city can make First Avenue two-way for the duration. Few streets are truly irreplaceable, even outside Manhattan, where the grid has more interruptions. For example, if an eastward extension of the F train under Hillside is desired, Jamaica can substitute for Hillside during construction and this makes the cut-and-cover pain (even if just at stations) more manageable.

The straightforward grid also makes station construction easier. There is no need to find staging grounds for stations such as public parks when there’s a wide street that can be shut down for construction. It’s also simple to build exits onto sidewalks or street medians to provide rapid egress in all directions from the platform.

Older infrastructure

Older infrastructure, in isolation, makes it difficult to build new tunnels, and New York has it in droves. But things are rarely isolated. It matters what older infrastructure is available, and sometimes it’s a boon more than a bane.

One way it can be a boon is if older construction made provisions for future expansion. This is the most common in cities with long histories of unrealized plans, or else the future expansion would have been done already; worldwide, the top two cities in such are New York and Berlin. The track map of the subway is full of little bellmouths and provisions for crossing stations, many at locations that are not at all useful today but many others at locations that are. Want to extend the subway to Kings Plaza under Utica? You’re in luck, there’s already a bellmouth leading from the station on the 3/4 trains. How about going to Sheepshead Bay on Nostrand? You’re in luck again, trackways leading past the current 2/5 terminus at Flatbush Avenue exist as the station was intended to be only a temporary terminal.

Second Avenue Subway Phase 2 also benefits from such older infrastructure – cut-and-cover tunnels between the stations preexist and will be reused, so only the stations need to be built and the harder segment curving under 125th Street crossing under the 4/5/6.

Public Transportation in the Southeastern Margin of Brooklyn

Geographic Long Island’s north and south shores consist of series of coves, creeks, peninsulas, and barrier islands. Brooklyn and Queens, lying on the same island, are the same, and owing to the density of New York, those peninsulas are fully urbanized. In Southeastern Brooklyn, moreover, those peninsulas are residential and commercial rather than industrial, with extensive mid-20th century development. Going northeast along the water, those are the neighborhoods of Manhattan Beach, Gerritsen Beach, Mill Basin, Bergen Beach, Canarsie, Starrett City, and Spring Creek. The connections between them are weak, with no bridges over the creeks, and this affects their urbanism. What kind of public transportation solution is appropriate?

The current situation

The neighborhoods in the southeastern margin of Brooklyn and the southern margin of Queens (like Howard Beach) are disconnected from one another by creeks and bays; transportation arteries, all of which are currently streets rather than subway lines, go north and northwest toward city center. At the outermost margin, those neighborhoods are connected by car along the Shore Parkway, but there is no access by any other mode of transportation, and retrofitting such access would be difficult as the land use near the parkway is parkland and some auto-oriented malls with little to no opportunity for sprawl repair. The outermost street that connects these neighborhoods to one another is Flatlands, hosting the B6 and B82 buses, and if a connection onward to Howard Beach is desired, then one must go one major street farther from the water to Linden, hosting the B15.

For the purposes of this post, the study area will be in Brooklyn, bounded by Linden, the Triboro/IBX corridor, and Utica:

This is on net a bedroom community. In 2019, it had 85,427 employed residents and 39,382 jobs. Very few people both live and work in this area – only 4,005. This is an even smaller proportion than is typical in the city, where 8% of employed city residents work in the same community board they live in – the study zone is slightly smaller than Brooklyn Community Board 18, but CB 18 writ large also has a lower than average share of in-board workers.

In contrast with the limited extent of in-zone work travel, nearly all employed zone residents, 76,534, work in the city as opposed to its suburbs (and 31,685 of the zone’s 39,382 jobs are held by city residents). Where they work looks like where city workers work in general, since the transportation system other than the Shore Parkway is so radial:

Within the zone, the southwestern areas, that is Mill Basin and Bergen Beach, are vaguely near Utica Avenue, hosting the B46 and hopefully in the future a subway line, first as an extension of the 4 train and later as an independent trunk line.

To the northeast, Canarsie, Starrett City, and Spring Creek are all far from the subway, and connect to it by dedicated buses to an outer subway station – see more details on the borough’s bus map. Canarsie is connected to the L subway station named after it by the B42, a short but high-productivity bus route, and to the 3 and 4 trains at Utica by the B17, also a high-productivity route. Starrett City does not have such strong dedicated buses: it is the outer terminus of the circumferential B82 (which is very strong), but its dedicated radial route, the B83 to Broadway Junction, is meandering and has slightly below-average ridership for its length. Spring Creek is the worst: it is a commercial rather than residential area, anchored by the Gateway Center mall, but the mall is served by buses entering it from the south and not the north, including the B83, the B84 to New Lots on the 3 (a half-hourly bus with practically no ridership), the rather weak B13 to Crescent Street and Ridgewood, and the Q8 to Jamaica.

The implications for bus design

The paucity of east-west throughfares in this area deeply impacts how bus redesign in Brooklyn ought to be done, and this proved important when Eric and I wrote our bus redesign proposal.

First, there are so few crossings between Brooklyn and Queens that the routes crossing between the two boroughs are constrained and can be handled separately. This means that it’s plausible to design separate bus networks for Brooklyn and Queens. In 2018 it was unclear whether they’d be designed separately or together; the MTA has since done them separately, which is the correct decision. The difficulty of crossings argues in favor of separation, and so does the difference in density pattern between the two boroughs: Brooklyn has fairly isotropic density thanks to high-density construction in Coney Island, which argues in favor of high uniform frequency borough-wide, whereas Queens grades to lower density toward the east, which argues in favor of more and less frequent routes depending on neighborhood details.

Second, the situation in Starrett City is unacceptable. This is an extremely poor, transit-dependent neighborhood, and right now its bus connections to the rest of the world are lacking. The B82 is a strong bus route but many rush hour buses only run from the L train west; at Starrett City, the frequency is a local bus every 10-12 minutes and another SBS bus every 10-12 minutes, never overlying to produce high base frequency. The B83 meanders and has low ridership accordingly; it should be combined with the B20 to produce a straight bus route going direct on Pennsylvania Avenue between Starrett City and Broadway Junction, offering neighborhood residents a more convenient connection to the subway.

Third, the situation in Spring Creek is unacceptable as well. Gateway Center is a recent development, dating only to 2002, long after the last major revision of Brooklyn buses. The bus network grew haphazardly to serve it, and does so from the wrong direction, forcing riders into a circuitous route. Only residents of Starrett City have any direct route to the mall, but whereas Starrett City has 5,724 employed residents (south of Flatlands), and Spring Creek has 4,980 workers, only 26 people commute from Starrett City to Spring Creek. It’s far more important to connect Spring Creek with the rest of the city, which means buses entering it from the north, not the south. Our bus redesign proposal does that with two routes: a B6/B82 extension making this and not Starrett City the eastern anchor, and a completely redone B13 going directly north from the mall to New Lots and thence hitting Euclid Avenue on the A/C and Crescent Street on the J/Z.

What about rail expansion?

New York should be looking at subway expansion, and not just Second Avenue Subway. Is subway expansion a good solution for the travel needs of this study zone?

For our purposes, we should start with the map of the existing subway system; the colors indicate deinterlining, but otherwise the system is exactly as it is today, save for a one-stop extension of the Eastern Parkway Line from New Lots to the existing railyard.

Starrett City does not lie on or near any obvious subway expansion; any rail there has to be a tram. But Canarsie is where any L extension would go – in fact, the Canarsie Line used to go there until it was curtailed to its current terminus in 1917, as the trains ran at-grade and grade-separating them in order to run third rail was considered impractically expensive. Likewise, extending the Eastern Parkway Line through the yard to Gateway Center is a natural expansion, running on Elton Street.

Both potential extensions should be considered on a cost per rider basis. In both cases, a big question is whether they can be built elevated – neither Rockaway Parkway nor Elton is an especially wide street most of the way, about 24 or 27 meters wide with 20-meter narrows. The Gateway extension would be around 1.3 km and the Canarsie one 1.8 km to Seaview Avenue or 2.3 km to the waterfront. These should cost around $250 million and $500 million respectively underground, and somewhat less elevated – I’m tempted to say elevated extensions are half as expensive, but this far out of city center, the underground premium should be lower, especially if cut-and-cover construction is viable, which it should be; let’s call it two-thirds as expensive above-ground.

Is there enough ridership to justify such expansion?

Let’s start with Canarsie, which has 28,515 employed residents between Flatlands and the water. Those workers mostly don’t work along the L, which manages to miss all of the city’s main job centers, but the L does have good connections to lines connecting to Downtown Brooklyn (A/C), Lower Manhattan (A/C again), and Midtown (4/5/6, N/Q/R/W, F/M, A/C/E). Moreover, the density within the neighborhood is uniform, and so many of the 28,515 are not really near where the subway would go – Rockaway/Flatlands, Rockaway/Avenue L, Rockaway/Seaview, and perhaps Belt Parkway for the waterfront. Within 500 meters of Rockaway/L and Rockaway/Seaview there are only 9,602 employed residents, but then it can be expected that nearly all would use the subway.

The B42 an B17 provide a lower limit to the potential ridership of a subway extension. The subway would literally replace the B42 and its roughly 4,000 weekday riders; nearly all of the 10,000 riders of the B17 would likely switch as well. What’s more, those buses were seeing decreases in ridership even before corona due to traffic and higher wages inducing people to switch away from buses – and in 2011, despite high unemployment, those two routes combined to 18,000 weekday riders.

If that’s the market, then $500 million/18,000 weekday riders is great and should be built.

Let’s look at Gateway now. Spring Creek has 4,980 workers, but first of all, only 3,513 live in the city. Their incomes are very low – of the 3,513, only 1,030, or 29%, earned as much as $40,000/year in 2019 – which makes even circuitous mass transit more competitive with cars. There’s a notable concentration of Spring Creek workers among people living vaguely near the 3/4 trains in Brooklyn, which may be explained by the bus connections; fortunately, there’s also a concentration among people living near the proposed IBX route in both Brooklyn and Queens.

The area is the opposite of a bedroom community, unlike the other areas within the study zone – only 1,114 employed people live in it. Going one block north of Flatlands boosts this to 1,923, but a block north of Flatlands it’s plausible to walk to a station at Linden at the existing railyard. 51% of the 1,114 and 54% of the 1,923 earn at least $40,000 a year. Beyond that, it’s hard to see where neighborhood residents work – nearly 40% work in the public sector and OnTheMap’s limitations are such that many of those are deemed to be working at Brooklyn Borough Hall regardless of their actual commute destination.

There’s non-work travel to such a big shopping center, but there are grounds to discount it. It’s grown around the Shore Parkway, and it’s likely that every shopper in the area who can afford a car drives in; in Germany, with generally good off-peak frequency and colocation of retail at train stations, the modal split for public transit is lower for shopping trips than for commutes to work or school. Such trips can boost a Gateway Center subway extension but they’re likely secondary, at least in the medium run.

The work travel to the mall is thankfully on the margin of good enough to justify a subway at $50,000/daily trip, itself a marginal cost. Much depends on IBX, which would help deliver passengers to nearby subway nodes, permitting such radial extensions to get more ridership.

Institutional Issues: Dealing with Technological and Social Change

I’ve covered issues of procurement, professional oversight, transparency, and proactive regulations so far. Today I’m going to cover a related institutional issue, regarding sensitivity to change. It’s imperative for the state to solve the problems of tomorrow using the tools that it expects to have, rather than wallowing in the world of yesterday. To do this, the civil service and the political system both have to be sensitive to ongoing social, economic, and technological changes and change their focus accordingly.

Most of this is not directly relevant to construction costs, except when changes favor or disfavor certain engineering methods. Rather, sensitivity to change is useful for making better projects, running public transit on the alignments where demand is or will soon be high using tools that make it work optimally for the travel of today and tomorrow. Sometimes, it’s the same as what would have worked for the world of the middle of the 20th century; other times, it’s not, and then it’s important not to get too attached to nostalgia.

Yesterday’s problems

Bad institutions often produce governments that, through slowness and stasis, focus on solving yesterday’s problems. Good institutions do the opposite. This problem is muted on issues that do not change much from decade to decade, like the political debate over overall government spending levels on socioeconomic programs. But wherever technology or some important social aspect changes quickly, this problem can grow to the point that outdated governance looks ridiculous.

Climate change is a good example, because the relative magnitudes of its various components have shifted in the last 20 years. Across the developed world, transportation emissions are rising while electricity generation emissions are falling. In electricity generation, the costs of renewable energy have cratered to the point of being competitive from scratch with just the operating costs of fossil and nuclear power. Within renewable energy, the revolution has been in wind (more onshore than offshore) and utility-scale solar, not the rooftop panels beloved by the greens of last generation; compare Northern Europe’s wind installation rates with what seemed obvious just 10 years ago.

I bring this up because in the United States today, the left’s greatest effort is spent on the Build Back Better Act, which they portray as making the difference between climate catastrophe and a green future, and which focuses on the largely solved problem of electricity. Transportation, which overtook electricity as the United States’ largest source of emissions in the late 2010s, is shrugged off in the BBB, because the political system of 2021 relitigates the battles of 2009.

This slowness cascades to smaller technical issues and to the civil service. A slow civil service may mandate equity analyses that assume that the needs of discriminated-against groups are geographic – more transit service to black or working-class neighborhoods – because they were generations ago. Today, the situation is different, and the needs are non-geographic, but not all civil service systems are good at recognizing this.

The issue of TOD

Even when the problem is static, for example how to improve public transit, the solutions may change based on social and technological changes.

The most important today is the need to integrate transportation planning with land use planning better. Historically, this wasn’t done much – Metro-land is an important counterexample, but in general, before mass motorization, developers built apartments wherever the trains went and there was no need for public supervision. The situation changed in the middle of the 20th century with mass competition with the automobile, and thence the biggest successes involved some kind of transit-oriented development (TOD), built by the state like the Swedish Million Program projects in Stockholm County or by private developer-railroads like those of Japan. Today, the default system is TOD built by private developers on land released for high-density redevelopment near publicly-built subways.

Some of the details of TOD are themselves subject to technological and social change:

  • Deindustrialization means that city centers are nice, and waterfronts are desirable residential areas. There is little difference between working- and middle-class destinations, except that city center jobs are somewhat disproportionately middle-class.
  • Secondary centers have slowly been erased; in New York, examples of declining job centers include Newark, Downtown Brooklyn, and Jamaica.
  • Conversely, there is job spillover from city center to near-center areas, which means that it’s important to allow for commercialization of near-center residential neighborhoods; Europe does this better than the United States, which is why at scale larger than a few blocks, European cities are more centralized than American ones, despite the prominent lack of supertall office towers. Positive New York examples include Long Island City and the Jersey City waterfront, both among the most pro-development parts of the region.
  • Residential TOD tends to be spiky: very tall buildings near subway stations, shorter ones farther away. Historic construction was more uniformly mid-rise. I encourage the reader to go on some Google Earth or Streetview tourism of a late-20th century city like Tokyo or Taipei and compare its central residential areas with those of an early-20th century one like Paris or Berlin.

The ideal civil service on this issue is an amalgamation of things seen in democratic East Asia, much of Western and Central Europe, and even Canada. Paris and Stockholm are both pretty good about integrating development with public transit, but only in the suburbs, where they build tens of thousands of housing units near subway stations. In their central areas, they are too nostalgic to redevelop buildings or build high-rises even on undeveloped land. Tokyo, Seoul, and Taipei are better and more forward-looking.

Public transit for the future

Besides the issue of TOD, there are details of how public transportation is built and operated that change with the times. The changes are necessarily subtle – this is mature technology, and VC-funded businesspeople who think they’re going to disrupt the industry invariably fail. This makes the technology ideal for treatment by a civil service that evolves toward the future – but it has to evolve. The following failures are regrettably common:

  • Overfocus on lines that were promised long ago. Some of those lines remain useful today, and some are underrated (like Berlin’s U8 extension to Märkisches Viertel, constantly put behind higher cost-per-rider extensions in the city’s priorities). But some exist out of pure inertia, like Second Avenue Subway phases 3-4, which violates two principles of good network design.
  • Proposals that are pure nostalgia, like Amtrak-style intercity trains running 1-3 times per day at average speeds that would shame most of Eastern Europe. Such proposals try to fit to the urban geography of the world of yesterday. In Germany, the coalition’s opposition to investment in high-speed rail misses how in the 21st century, German urban geography is majority-big city, where a high-speed rail network would go.
  • Indifference to recent news relevant to the technology. Much of the BART to San Jose cost blowout can still be avoided if the agency throws away the large-diameter single-bore solution, proposed years ago by people who had heard of its implementation in Barcelona on L9 but perhaps not of L9’s cost overruns, making it by far Spain’s most expensive subway. In Germany, the design of intercity rail around the capabilities of the trains of 25 years ago falls in this category as well; technology moves on and the ongoing investments here work much better if new trains are acquired based on the technology of the 2020s.
  • Delay in implementation of easy technological fixes that have been demonstrated elsewhere. In a world with automatic train-mounted gap fillers, there is no excuse anywhere for gaps between trains and platforms that do not permit a wheelchair user to board the train unaided.
  • Slow reaction time to academic research on best practices, which can cover issues from timetabling to construction methods to pricing to bus shelter.

Probably the most fundamental issue of sensitivity to social change is that of bus versus rail modal choice. Buses are labor-intensive and therefore lose value as the economy grows; the high-frequency grid of 1960s Toronto could not work at modern wages, hence the need to shift public transit from bus to rail as soon as possible. This in turn intersects with TOD, because TOD for short-stop surface transit looks uniformly mid-rise rather than spiky. The state needs to recognize this and think about bus-to-rail modal shift as a long-term goal based on the wages of the 21st century.

The swift state

In my Niskanen piece from earlier this year, I used the expression building back, quickly, and made references to acting swiftly and the swift state. I brought up the issue of speeding up the planning lead time, such as the environmental reviews, as a necessary component for improving infrastructure. This is one component of the swift state, alongside others:

  • Fast reaction to new trends, in technology, where people travel, etc. Even in deeply NIMBY areas like most of the United States, change in urban geography is rapid: job centers shift, new cities that are less NIMBY grow (Nashville’s growth rates should matter to high-speed rail planning), and connections change over time.
  • Fast rulemaking to solve problems as they emerge. This means that there should be fewer layers of review; a civil servant should be empowered to make small decisions, and even the largest decisions should be delegated to a small expert team, intersecting with my previous posts about civil service empowerment.
  • Fast response time to civil complaints. It’s fine to ignore a nag who thinks their property values deserve state protection, but if people complain about noise, delays, slow service, poor UI, crime, or sexism or racism, take them seriously. Look for solutions immediately instead of expecting them to engage in complex nonprofit proof-of-work schemes to show that they are serious. The state works for the people, and not the other way around.
  • Constant amendment of priorities based on changes in the rest of society. A state that wishes to fight climate change must be sensitive to what the most pressing sources of emissions are and deal with them. If you’re in a mature urban or national economy, and you’re not frustrating nostalgics who show you plans from the 1950s, you’re probably doing something wrong.

In all cases, it is critical to build using the methods of the world of today, aiming to serve the needs of the world of tomorrow. Those needs are fairly predictable, because public transit is not biotech and changes therein are nowhere near as revolutionary as mRNA and viral vector vaccines. But they are not the same as the needs of 60 years ago, and good institutions recognize this and base their budgetary and regulatory focus on what is relevant now and not what was relevant when color TVs were new.

Microapartments for Students

Charlie Munger’s deservedly mocked plan for a university dorm with windowless bedrooms got me thinking about small studios for students. The size of the proposed Munger Hall – 156,000 m^2 for 4,500 students – is pretty reasonable for a large building housing students, provided the students get their own rooms with windows. But this raises interesting questions about building depths and apartment plans.

This post is best read as a companion for my posts about building depth and a high-density euroblock design. In the post on building depths, I argued that the higher ratio of apartment area to window frontage ought to be understood as an adaptation to larger apartments for wealthier people than those who lived in the cities of 100 years ago. This post can be seen as a practical demonstration, illustrating the limits of deep buildings in the use case of microapartments for students.

The parameters of student housing

Student housing has specific needs:

  • Students have little disposable income, so space per capita is likely to be limited. Microapartments of 20-30 m^2 are reasonable, and in some cases they can even be smaller.
  • University is a deracinating, equalizing institution, so a high level of uniformity of design is desirable, making modernist forms more palatable than for middle-class families. Nor is there much worry about intrusion and criminality, since the students form a community. In this sense, university is akin to the military.
  • Unlike the military, university as an institution promotes individualism, and has no need for communal barracks. Social spaces are desirable, but the priority should be on individual living space.
  • Students are young and sexually active, and in recognition of that, high levels of privacy are desirable. Not only should students get individual rooms (which is also useful for minimizing respiratory infections), but also they should have their own bathrooms, showers, and kitchen facilities.

Those requirements interact well with the high-density euroblock (or courtyard building) form I’ve pushed before. Munger speaks of fixing the mistakes made by modernist housing, name-checking Le Corbusier – but the social problems of modernist towers were specific to deracinated working-class families, and not students. When people criticize modernist design of universities, it’s not about the modernist style of student housing but about hostile architecture for class and administrative buildings designed to quell student riots.

The euroblock

The euroblock is a form of housing common in Central and Northern Europe, in which residential buildings enclose an internal courtyard. Bigger cities, like Berlin, traditionally had many interior courtyards to a block, overlooked by interior wings with a view of the courtyard but not the street; smaller and richer cities tend to have bigger courtyards and no wings, and much of Berlin has demolished the wings in the postwar era as well. Here’s a wingless example from Stockholm:

The width of the building in this case is exactly twice the ratio of apartment size to window frontage, ignoring internal corridors. This building has a width of 14.6 meters, which is pretty typical for the wingless forms; winged ones are shallower, since the corners of the wings are windowless, in all cases producing a ratio of about 7.5 m. Some higher-end buildings, including some newer North American condos using the courtyard design, go up to a width of 20 m, for a ratio of 10 m.

Populating the euroblock with student housing

The proposed Munger Hall at UCSB is to sit on a site of about 120*120 meters, so let’s start with that. Munger Hall is to be solid with no interior courtyard because the dorm rooms are windowless; to have the same floor area, we need to go taller, but that’s no obstacle for our purposes. Let’s consider both a 20 meters deep design and a winged 15 meters deep one.

The light gray at the outer corners represents social spaces with corner windows; the windowless inner corners are four elevator lobbies, the high capacity necessary due to the high density of the design and the synchronized class times. If units are 2.5*10 in theory, and closer to 2.4*9 in practice, then we get a unit per 2.5 m of window frontage, which is 288 per floor (interior sides are 80 m long, exterior ones 100 m); a total of 81% of floor area is student apartments, which is low by high-rise standards, but we’re deliberately giving the outer corners to social spaces, and with the corners added back in it’s a healthy 86%.

Note that the courtyard in the middle is massive. Any larger and half of it would be a regulation football pitch. So let’s add wings, and also add function spaces in the interior corners created by the wings, possibly sacrificing some adjacent units for windows for the function spaces.

Still at one apartment per 2.5 m of window frontage, we now have 352 units per floor, but also our efficiency has dramatically fallen – only 73%, and if we add the four exterior corners back it’s still only 77%. This is only desirable if massive function spaces are important – and those can then cannibalize the near-corner apartments for window space. This is very much an upper limit to the building depth – it averages a ratio of 11.25 m.

Let’s now look at a 15 m deep design with even more wings:

Everything is scaled down for the shallower building, but that’s okay – 7.5*7.5 still makes for a staircase with some elevators, and the four interior areas can have as big elevator banks as needed. Let’s say that, ignoring corridors, apartments are 3 1/3 m by 7.5, and in practice more like 3.2*6.7. We have three apartments per 10 m of window frontage, so a total of 340 per floor. We can even squeeze more apartments this way, by offsetting the courtyard-facing apartments by one, so that there are not six to a 20 m courtyard frontage but seven, with the outer two only having half the window space, giving 376 units, at 78% efficiency. As we will see below, window width is not the constraining factor – historically, masonry buildings had small windows. Nonetheless, the courtyards are small enough that a building of about 15 floors would have a high ratio of height to courtyard size, without much direct sunlight.

Apartment plans

To be very clear, this is austere student housing. People who are not students would only live in such conditions in situations of very high housing prices, such as what I experienced in Stockholm. Here is what I might mock up of 2.5 by 9 or 3 1/3 by 6 2/3:

The elongated floor plan turns the studio’s left side into a kind of corridor, and the longer the unit, the more space is wasted on said corridor. The version on the right can fit a mini-fridge doubling as a bedside table next to the bed; the version on the left can too but a foot-side table is less convenient (this is how my grad school dorm room was set up due to lack of alternatives). Both apartments can set up a stove and kitchen sink; the natural location is below the table (to the right from the perspective of someone sitting in the chair). But the version on the left can only do so by eating into free space to move around in, where the version on the right doesn’t.

This is a matter of length-width ratios and the long corridor forcing the door to be on the short side. This is why high-end apartments can maintain the depth on the left without a problem – a middle-class one-person apartment is 40-50 m^2, so around double the micro-unit depicted above. A building designed around such studios would have the floor plate of the wingless 20 m euroblock but with half as many apartments, and then there’s ample room for everything with enough left to move around. Such a larger unit can even be set up as a one-bedroom, with the bedroom taking half the window frontage.

Note also that this problem of elongated microapartments doesn’t affect bedrooms in family dwellings. A family dwelling can be set up with rooms fronting 2.5 m of window space but with doors on the long side coming in via a central living room, which means there’s no need for a long corridor for access to the bathroom and the bed.

I Voted, but There’s no YIMBY Politics in Germany

It’s the first time in my life I’m eligible to vote in a national election. I thought it would be faster than it was; the line took 1:10, of which the first 10 minutes were taken standing in the wrong line – there were two precincts at the same physical location. It felt weird, feeling out of place and yet knowing, approximately for the first time in my life (unless one counts the European Parliament election), that I had a right to be there no matter what.

I voted Green, up and down the ballot, which is a vote for prioritizing public transportation over cars and climate protection over coal jobs and cheap Russian natural gas, but is not a YIMBY vote. And there’s the rub: a YIMBY political party does not exist here, and neither does even a YIMBY movement.

YIMBY is not exactly a movement about more development. It’s specifically about development in the most in-demand urban areas, through infill. It’s about aggressive transit-oriented development; when YIMBYs cite a success case, it’s the TOD of Tokyo and Seoul, and to a lesser extent what’s happening in Stockholm (where the term YIMBY originates) and the Paris suburbs, and not the equally fast but exclusively suburban and auto-oriented development in the Austin area.

And this does not exist here. SPD supports building housing in Tempelhofer Feld; the Greens are against it, treating it as common parkland, where in reality the treeless field makes a poor park and is adjacent to actual wooded parks in Kreuzberg and Neukölln. So in that sense SPD is the YIMBYer party – but SPD also built a freeway cutting through Neukölln last decade, going into coalition with CDU rather than with the Greens in order to build it. The Greens, in contrast, oppose freeways and support bike lanes and road diets – but they oppose new housing, want to downscope a proposed high-rise building in Alexanderplatz, and prefer bike lanes and city center tram expansion to extending the U- and S-Bahn.

And there’s the rub. The central tenet of YIMBYism is that cities are predominantly loci of production, and people choose where to move based on work more than anything else; building more housing is the central policy proposal, in recognition that economic production is done predominantly in city centers. And this does not exist, because every political faction that wants to build more housing pairs this with more roads and more peripheral locations for new development. The idea that post-car cities represent growth rather than stagnation does not exist in German politics, at least not yet. People still think of cars as the industrial future, rather than as what people thought the future would be 70 years ago, about as relevant to the world of tomorrow as what people thought of agriculture in the 19th century was in the middle of the 20th. The Greens just want to slow that industrial future down instead of building the information future – and nobody in German politics wants to build that future, the right preferring more cars and more gas.

I suspect there’s room for such YIMBY politics in Germany, cobbled together from the most left-wing fringes of FDP, the younger and less NIMBY Greens, and sundry SPD members. Already, most Green voters in Berlin support Tempelhof redevelopment, albeit at much narrower margins than SPD, FDP, and CDU voters. At the climate march two years ago, I saw a single anti-nuclear sign carried by two older people; new nuclear is out of the question here due to costs, but it matters that younger Greens aren’t animated by Green boomers’ anti-nuclear activism. There was a bigger sign carried by a few people opposing urban development, but it was one sign, not the thousands of generic signs about climate change and many hundreds opposing coal power, oil, and cars. Up the Elbe, younger G/EFA parties like the Czech Pirates are pro-digital.

Convert Street Parking to Outdoor Seating

It’s in the public interest for cities to convert the parking lanes of their major streets to outdoor seating, with chairs and tables. On the commercial avenue of the modern city, land use at street level is in large part restaurants, bars, and cafes, and some of the remainder of the storefronts could use outdoor seating as well, for example bakeries. In contrast, street parking is of little value – it creates more car traffic.

The main benefit here is that it turns the street into an open-air food court. This has the usual benefits of shopping centers, which at any rate were invented to simulate commercial streets, without the interference of cars. But it has an additional benefit that I have not seen mentioned by urbanists: it pools seating between different cafes and restaurants, in contrast with today’s outdoor seating, where each place has its own few tables according to the width of its storefront.

Pooling seats this way means that people who buy from in-demand establishments can take adjacent seats. I saw this, by chance, during the corona lockdown, in which outdoor dining was technically banned as well as indoor dining, but some restaurants in Mitte near Alexanderplatz had permanent outdoor seating, and people would go there with food from anywhere. Even before the lockdown, when one such place was closed, some people, including myself, would colonize its seating with food from elsewhere. In effect, it reduces the rental costs of the places that make the most in-demand food and drinks, or other products.

This system of pooled seating, at the expense of parking, also has other benefits. It means people can eat different foods together. It distributes demand, which may differ by time of day or day of week, with restaurants most popular at typical lunch and dinner times (and sometimes different restaurants have different peaks), bars at night, and cafes in between. These both increase efficiency, but even at a fixed peak, this has benefits, in letting restaurants compete on food quality.

Taxes, in general, are progressive: the rich pay more than the poor as a proportion of their income. But trying to apply the same logic to small and medium enterprise regulations is wrong. It doesn’t produce any income redistribution to speak of – the redistribution occurs only among the class of business owners, who already skew wealthy, to the detriment of the customers. In the case of storefronts, letting restaurant and cafe patrons sit outside wherever they’d like means not forcing the most desirable businesses to pay more in rent to acquire more seating space; the redistribution involved in the implicit rental tax under the present-day situation is entirely among owners, and to some extent from business owners to landlords. It’s not the same as when I pay higher taxes than a minimum-wage Aldi cashier and lower taxes than a CEO who doesn’t receive lower-taxed stock options.

And then there’s the positive impact on urban transport. City boulevards as a rule have too much car traffic and this includes ones in Berlin or Paris that Americans hold up as positive examples that they compare with noisier American arterial roads. The abundance of parking especially encourages people to drive to errands rather than walking, biking, or using public transportation; the present-day situation is that restaurants sometimes put out seats, reducing sidewalk width and with it the available space for cyclists to use the streets.

So instead, public seating, in lieu of on-street car storage, has the positive effects of distributing seats better as outlined above, while also reducing the space available for people to use cars in a city that needs more quiet and cleaner air.

What City of Neighborhoods?

Here is a table of New York community boards, with their employed resident and job counts, broken down by how many people live and work in the same community board and how many in the same borough:

BoroughCBEmp. res.In same borough%In CB%JobsFrom same borough%From CB %
Manhattan1386422940976.11%722118.69%3551536061817.07%2.03%
Manhattan2482673586574.31%572511.86%1831154159622.72%3.13%
Manhattan3754414964865.81%53717.12%574461286022.39%9.35%
Manhattan4662435086076.78%749411.31%2267474999622.05%3.31%
Manhattan5355392735076.96%1577044.37%104884223703622.60%1.50%
Manhattan6738205639076.39%807310.94%2175284579221.05%3.71%
Manhattan7988887288073.70%64736.55%807732183227.03%8.01%
Manhattan81033607774975.22%1149411.12%1509753592123.79%7.61%
Manhattan9503263245064.48%613312.19%564372055836.43%10.87%
Manhattan10598083703061.91%19213.21%27069658224.32%7.10%
Manhattan11544613298960.57%34656.36%597851385923.18%5.80%
Manhattan12887565399460.83%55856.29%422151119126.51%13.23%
Brooklyn1938582377125.33%1166912.43%950394370145.98%12.28%
Brooklyn2658431260519.14%48157.31%1681836106336.31%2.86%
Brooklyn3755502212429.28%24373.23%303751497149.29%8.02%
Brooklyn4530471336525.19%20373.84%20681880042.55%9.85%
Brooklyn5801842622432.70%41355.16%366921553742.34%11.27%
Brooklyn6596201285921.57%30605.13%446652382553.34%6.85%
Brooklyn7539122756051.12%41057.61%519851824135.09%7.90%
Brooklyn8501341332126.57%10172.03%14092787555.88%7.22%
Brooklyn9507981757534.60%24374.80%218751213455.47%11.14%
Brooklyn10601782108435.04%45647.58%268911471054.70%16.97%
Brooklyn11761933326843.66%65348.58%413842349156.76%15.79%
Brooklyn12674533535252.41%1492922.13%822745021261.03%18.15%
Brooklyn13418412041548.79%36858.81%311891757856.36%11.82%
Brooklyn14769183183741.39%42875.57%371032210859.59%11.55%
Brooklyn15675273280548.58%890913.19%513033266463.67%17.37%
Brooklyn16381471309934.34%8892.33%16258793248.79%5.47%
Brooklyn17746782978839.89%19932.67%231331154749.92%8.62%
Brooklyn18960694000941.65%51245.33%380472121355.75%13.47%
Queens11012881899118.75%70316.94%750982766736.84%9.36%
Queens2649751222918.82%34895.37%987293155531.96%3.53%
Queens3666031909828.67%29304.40%243031173748.29%12.06%
Queens4680521922128.24%27224.00%343471452042.27%7.93%
Queens5890742293725.75%59696.70%417151776742.59%14.31%
Queens6592481419423.96%42037.09%514132306244.86%8.17%
Queens71114243937235.34%1885616.92%961044940051.40%19.62%
Queens8662092103731.77%34135.15%372001773547.67%9.17%
Queens9683502217132.44%35435.18%360751664446.14%9.82%
Queens10570421939934.01%28555.01%18793939850.01%15.19%
Queens11518701760533.94%31456.06%326471620149.62%9.63%
Queens121026523666435.72%59915.84%416691987247.69%14.38%
Queens13955512813429.44%42324.43%468511848439.45%9.03%
Queens14463681253827.04%483710.43%20989974446.42%23.05%
Bronx140292882221.90%21515.34%381601507939.52%5.64%
Bronx220271491224.23%13956.88%286311171340.91%4.87%
Bronx331085743823.93%8362.69%16020646940.38%5.22%
Bronx4622331261920.28%20103.23%22887849137.10%8.78%
Bronx5526391130821.48%16883.21%18509860846.51%9.12%
Bronx632209781124.25%12573.90%21646853439.43%5.81%
Bronx7567701325623.35%28124.95%370471532841.37%7.59%
Bronx844353909320.50%27736.25%22587914340.48%12.28%
Bronx9715621674923.40%28463.98%23935993141.49%11.89%
Bronx10520051281324.64%28765.53%329781345640.80%8.72%
Bronx11479661321327.55%34767.25%414111859044.89%8.39%
Bronx12675971749925.89%27174.02%21584886241.06%12.59%
SI1801162048525.57%971912.13%408701872245.81%23.78%
SI2604861449823.97%754812.48%481362291547.60%15.68%
SI3722081987127.52%753210.43%253381322752.20%29.73%

Notes:

  1. The data uses the all-jobs filter on OnTheMap, which assigns a lot of public-sector jobs in the city to City Hall or Brooklyn Borough Hall. The actual number of workers in Brooklyn CB 2 is lower than stated, by perhaps 60,000. The definition of CBs also excludes a few parts of the city with jobs, including the airports. Finally, Marble Hill is in Manhattan but is in the Bronx CB 8; it is counted in Manhattan throughout in same-borough job counts but as part of the Bronx CB 8 in CB job and resident counts.
  2. Very few people work in the same community board they live in. Citywide, it’s 7.8%. The numbers are only high in Manhattan CB 5, which consists of Midtown and is so expensive to live in that people live there if they’re high-income commuters choosing a short walking commute. And yet, local politics is dominated by those 7.8%, who think owning a business near where they live makes them more moral than the rest of the city.
  3. Even working and living in the same borough is not that common, only 38.7% citywide. It’s only a majority in Manhattan and a bare majority in two Outer Borough CBs, Brooklyn 7 and 12 (Sunset Park and Borough Park).
  4. Staten Island, which has a strong not-the-rest-of-the-city political identity, relies on the rest of the city’s economy. Only 25.8% of employed residents work within the borough, and 55.6% work in the other four boroughs, the remaining working in the suburbs. Slightly more Staten Island residents work in Manhattan than on Staten Island.
  5. The majority of people working in New York live outside the borough they work in, and this is true even excluding Manhattan, only 45.7% of outer-borough workers living in the borough they work in.
  6. The Bronx CB 2 is on net a job center and not a bedroom community, due to industrial jobs in Hunts Point.

European Urbanism and High-Speed Rail

Europe has a number of strong national high-speed rail networks, providing much inspiration internally as well as abroad, including in the United States. With Americans looking at an infrastructure bill including high-speed rail funding, there’s a lot of discussion about what can port, hence my proposal map. That said, caution is required when doing naive comparisons with Europe. European urbanism doesn’t work the same as American urbanism, in two ways. First, European cities are more compact and transit-oriented than most American cities, which is why I somewhat discount American lines unless at least one city connected has public transit. And second, Europe has more, smaller cities than the rest of the urbanized world. This post concerns the second issue.

French and American urbanism: an example

A few months ago I poked around European and East Asian metro area lists. The upshot is that whereas in the three East Asian democracies 70% of the population lives in metropolitan areas larger than 1 million, in France only 33% does, and the median resident sorted by metro area size lives in a metro region of 350,000.

We can apply the same analysis to the United States. At the CSA level, the median American lives in Sacramento, population 2.6 million, and 68% live in metro areas of at least 1 million; at the MSA level, the median is Milwaukee, population 1.6 million, and 56% live in metro areas of at least 1 million. American metropolitan areas are unusually weakly-centered, especially at the CSA level, but otherwise they’re pretty typical of the urbanized world; it’s Europe that’s unusual in having such small cities.

The upshot is that people who are not used to this peculiarity of Europe who look at a map of European cities focus on million-plus metro areas, which are not the whole story here, especially not in France. This makes Europe look emptier than it is, which can lead people to overrate how much ridership a high-speed rail network would have at a fixed population.

France and the Midwest

Scott Hand posted a map on Twitter superimposing France on the Midwest with Chicago taking the place of Paris, arguing that they are similar in population and area:

This is a good sanity check: your Midwestern network should be of comparable magnitude to the TGV network, rather than much larger. It’s easy to say, Lyon has 2.5 million people, Detroit has 5 million people, so clearly a line to Detroit is twice as good as one to Lyon, right? But no: French urbanism supplies many more small cities, which must be accounted for as well. At the end of the day, the populations are similar, even though, in addition to Chicago, the map has three cities (Detroit, St. Louis, Cleveland) with larger metro areas than Lyon and six more larger than Marseille (Milwaukee, Indianapolis, Nashville, Cincinnati, Columbus, Pittsburgh).

The LGV Sud-Est

It’s tempting to compare Paris-Lyon to Chicago-St. Louis. Yonah Freemark did this in 2009, and Jarrett Walker already pointed out in comments that the LGV Sud-Est was always about much more than this. On hindsight, I’ll add that even that sells the LGV Sud-Est short. High-speed rail between Paris and Lyon unlocked fast service from Paris to not just Lyon but also the following metro areas, all with 2016 populations:

  • Dijon (385,000), demoted from the PLM mainline to a branch but still served
  • Grenoble (688,000)
  • Saint-Etienne (520,000)
  • Chambéry (225,000)
  • Annecy (236,000)
  • Valence (187,000)
  • Vienne (115,000)
  • Bourg-en-Bresse (128,000), not on any direct train but still close enough by regional connection or car

What’s more, TGVs would branch from Part-Dieu along legacy lines to serve these smaller cities, albeit at low frequency. Now, with the LGV extending as far south as Marseille, Valence has a through-station on an LGV just outside the built-up area. There’s also Lyria service to thee major Swiss cities; Geneva, a metro area of 1 million, lies on a low-speed extension of the LGV Sud-Est, 3:11 from Paris.

Other than Geneva, which is invisible on the map because it is farther away, the other cities listed are all very small. In the United States, people don’t usually think of metropolitan areas of such size as urban, because they are extremely dispersed and socially identify as not-urban, and because metropolitan America operates at much larger size classes. But they have recognizable urban cores and their populations must be put into any ridership model trying to train data on TGV ridership. In fact, a gravity model with exponent 0.8 predicts that the combined TGV ridership from Paris to all the above cities, excluding Lyon, is nearly twice the ridership on Paris-Lyon.

And in this context, Chicago-St. Louis simply doesn’t compare. St. Louis is somewhat larger than Lyon, yes, but within 60 km, within which radius Lyon has independent Saint-Etienne, Vienne, Bourg, and Mâcon, St. Louis only has its own exurbs. To find a proper Midwestern comparison for the LGV Sud-Est and its extensions toward Marseille, one must go east of Chicago, toward Detroit and Cleveland. Within 60 km Detroit too only has its own CSA plus Windsor, but that CSA has 5 million people, and the same line also reaches Cleveland (CSA population 3.5 million), Toledo (900,000), and Pittsburgh (2.6 million) and points east.

What this means

Having fewer, larger cities doesn’t make it harder to build high-speed rail. On the contrary – it’s easier to serve such a geography. Asia lives off of such geography; Japan and Taiwan serve nearly their entire populations on just a single line, and Korea does on one mainline with a branch. An Asianized France would be able to serve nearly its entire population on the LGV network as-is without needing low-frequency branches to Chambéry- and Valence-scale cities, and an Asianized Germany would be able to just build an all-high-speed network and connect nearly everyone and not just half the population.

There are small cities that happen to lie on convenient corridors between larger cities, the way Valence is between Lyon and Marseille, or Augsburg and Ulm are between Stuttgart and Munich. Other small cities are close enough to large cities that they’re decently-served by a large city-focused rail network, like Saint-Etienne. Those cities are compact, so a large share of the population has access to the train – this is the explanation for the 0.8 exponent in the gravity model of ridership. But overall, most cities of that scale are strewn haphazardly around the country: examples include Limoges, Amiens, and Caen in France, and Osnabrück, Chemnitz, and Rostock here.

However, this doesn’t mean that, in analyzing the impact of population on ridership, we should just pretend the small cities don’t exist. They do, and they supply extra ridership that isn’t visible if one thinks city = metro area of 1 million or more. It’s an understandable way of thinking, but Europe has a lot of ridership generated from intermediate cities and from cities that have a regional rail connection to a big city or a less frequent direct intercity train, and the models have to account for it.

So yes, that the US has so many large-by-European-standards cities means high-speed rail would work well there. However, it equally means that a naive model that just says “this looks like the LGV Sud-Est” would underperform. A better model has to account for specific city pairs. American city pairs still look okay, even with extreme levels of sprawl at the outer ends, but ultimately this means the US can have a network of approximately the same scope of the LGV network, rather than one that is much denser.

Marketing Public Transport is Unlike Marketing Cars

I’ve written before about how planning public transport differs from planning cars, and how the macroeconomics of producing good public transport differ from that of exporting cars. Another difference between the two modes is marketing. I don’t usually like talking about marketing – I prefer making things to selling them – but it’s relevant, because private-sector marketing is a huge industry, and sometimes marketers end up making decisions about public transportation, and some of those lead to counterproductive planning.

The main difference is that public transportation does not have competition the way private industry does. In many travel markets, for example rush hour travel to city center, it is a monopoly. In others, it isn’t, but it remains fundamentally different from the competition, whereas private-sector marketing generally involves competition between fairly similar products, such as different brands of cars or computers or supermarkets. This also means that trying to turn public transit into a competition between similar providers is overrated: it is bad from the perspective of good planning, but it turns the industry into something private-sector marketers are more familiar with, and is therefore at risk of being adopted (for example, with EU competition mandates) despite being counterproductive.

Brand identity

Companies that make products that are very similar to their competition engage in extensive marketing. Coke vs. Pepsi is the most cliché example, but different brands of cookies, fast food, cars, computers, and smartphones do the same. The differences between these brands are never zero: I can generally tell different brands of bottled water by taste, Samsung- and Sony-made Androids have some differences (let alone iPhones), and so on. But it’s not large either.

Objectively, the cost of switching firms is small, so marketers first of all spend enormous amounts of money on advertising, and second of all aim to create identity markers to impose an emotional cost on customers who switch: “I am a Mac.” If the small differences involve differences in price point, then this can include a marker of class identity; even if they don’t, there’s no shortage of ways to tell people what brand of alcohol or food or video game best fits their microidentity. Establishing brand identity also involves loyalty programs, like airline miles and hotel points: why compete when you can lock passengers into your airline alliance?

This can even bleed into product development to some extent. Microsoft’s embrace, extend, exterminate strategy was designed around getting people to switch to Microsoft products from competitors. This was not a marketing gimmick – the people who developed Excel made sure everything that Lotus 1-2-3 users were used to would also feature in Excel in order to reduce the cost of switching to Microsoft, before using Windows’ power to lock people into Office.

Mass transit is not like this

Public transportation competes with cars as a system. It has a monopoly in certain travel markets, namely rush hour travel to city center, but the existence of those markets itself comes from real estate competition, in which it is necessary to entice companies to choose to locate in city center rather than in a suburban office park. Of note, the following features, all unusual for private-sector competition, apply:

  • Competition is for the most part binary: public transportation versus cars. (Bikes complement transit.)
  • The public transit side of the competition has economies of scale because of the importance of frequency of arrival, and thus is harmed by any internal competition, whereas the car industry has different automakers and works just fine that way.
  • The service has very little customization – everyone rides the same trains. Attempts to introduce product differentiation are harmful because of the frequency effect.
  • The product is completely different from the competition – useful at different times of day, in different neighborhoods, for different destinations. Switching incurs costs of similar magnitude to those of migration.
  • Much of the competition is not for customers, but for development – city center development is good for public transit, sprawl is good for cars.
  • There is competition over public resources, which cannot be divorced from the mode even in an environment of privatization – someone still has to build roads and finance subways.

The consequences of mass transit Fordism

Public transportation is and remains a Fordist product – no product differentiation, highly regimented worker timetables, one-size-fits-all construction, vertical integration. The vertical integration aspects go even farther than early-20th century industry, covering infrastructure, timetables, the equipment, and development. User choice is extensive regarding where to go within the system – I have access to far more variety of products as a consumer and jobs as a worker in Berlin (and had even more in Paris) than I would have driving in a sprawl environment, but I can’t choose what brand of train to use.

This is particularly important when preferences are heterogeneous. Different users have different walking speeds, transfer penalties, idiosyncrasies about access to wifi on board, etc. Planning has to use averages, and for the most part this works without too many seams, but it means that the standard way private businesses use product differentiation doesn’t work.

Of note, this Fordism also exists for the road network, if not for the cars themselves. It’s just far less visible. Drivers may have different preferences that translate to different costs and benefits for a cloverleaf versus a four-level interchange, but engineers can’t have two sets of interchanges, they just build one based on criteria of traffic density. However, the experience of driving on the interchange is not visible as part of the system to the drivers, who occasionally grumble about traffic at a particular intersection but don’t see it as clearly as transit riders see specific transfer stations or modal questions like streetcar vs. subway.

How private-sector marketing can harm transit

Because mass transit is a single system for everyone, standard private-sector marketing schemes involve changes to service that harm the overall system.

Creating brand identification with a specific subgroup of users, such as when some private buses market themselves to tech workers with wifi and USB chargers and charge higher fares, and still can’t make money. Public transportation has to work on an any vehicle, any place, any time principle. Only a handful of hyper-frequent routes can take multiple brands without losing passengers due to the lower frequency of each brand, but on those routes the only reliable way to timetable service is to run on headway management in which case any vehicle can substitute for any vehicle, which means you can’t brand.

This is especially bad when the brands are different modes: bus, bike, streetcar, subway, commuter train. When some modes are marketed to the rich and others are to the poor, capacity is wasted and frequency within each class is lower. Moreover, infrastructure planning is weaker with such differentiation, because often a region or subclass will be close to the wrong mode, forcing expensive additional construction. The United States fails by running commuter rail just for the rich while subways are for the rest, while India fails by doing the exact opposite; both countries build unnecessary infrastructure and underinvest in intermodal integration as a result.

Less harmful but still likely to suck oxygen out of the planning room are various gimmicks, especially at the political level. For example, a program in the mold of cash-for-clunkers to pay people to sell their car and ride public transportation is a waste of money – the main cost of switching from cars to transit or vice versa is that in either case the set of destinations one can easily travel to changes.

Finally, because public transportation is a complex system, trading the need for inter-organization and interdepartmental organization for much lower overall provision costs, people who come into it from consumer product markets may miss some of the required connections. This is especially true of development – people who sell consumer products, including cars, don’t need to think how urban design has to look for their product to succeed. Even people who have heard of transit-oriented development may get it wrong; in the United States, it is common to build some apartment buildings next to a train station but neglect retail and local services, and YIMBY as a movement is at best indifferent to city center office towers.