Category: Good Transit

Density and Subway Stop Spacing

Normally, the best interstation distance between subway or bus stops does not depend on population density. To resurrect past models, higher overall density means that there are more people near a potential transit stop, but also that there are more people on the train going through it, so overall it doesn’t influence the decision of whether the stop should be included or deleted. Relative density matters, i.e. there should be more stops in areas that along a line have higher density, for example city centers with high commercial density, but absolute density does not. However, there is one exception to the rule that absolute density does not matter, coming from line spacing and transfer placement. This can potentially help explain why Paris has such tight stop spacing on the Métro and why New York has such tight stop spacing on the local subway lines.

Stop spacing and line spacing

The spacing between transit stops interacts with that between transit lines. The reason is that public transportation works as a combined network, which requires every intersection between two lines to have a transfer. This isn’t always achieved in practice, though Paris has just one missed connection on the Métro (not the RER), M5/M14 near Bastille; New York has dozens, possibly as many as all other cities combined, but the lines built before 1930 only have one or two, the 3/L in East New York and maybe the 1/4-5 around South Ferry.

The upshot is that the optimal stop spacing depends on the line spacing. If the line spacing is tight – say this is Midtown Manhattan and there is a subway line underneath Lex/Park, Broadway, 6th, 7th, and 8th – then crossing lines have to have tight stop spacing in order to connect to all of these parallel lines. In the other direction, there were important streetcars on so many important cross-streets that it was desirable to intersect most or ideally all of them with transfers. With so many streetcar lines extending well past Midtown, it is not too surprising that there had to be frequent subway stops.

So why would denser cities have tighter line spacing?

Line spacing and density

The intuitive relationship between line spacing and density is that denser cities need more capacity, which requires them to build more rail lines.

To see this a bit more formally, think of an idealized city on a grid. Let’s say blocks are 100*100 meters, and the planners can figure out the target density in advance when designing the subway network. If the city is very compact, then the subway could even be a grid, at least locally. But now if we expect a low-density city, say 16 houses per block, then the subway grid spacing should be wide, since there isn’t going to be much traffic justifying many lines. As the city densifies, more subway is justifiable: go up to missing middle, which is around 30-40 apartments per block; then to the Old North of Tel Aviv, which would be around 80; then to a mid-rise euroblock, which is maybe 30-40 per floor and 150-200 per block; then finally a high-rise with maybe 500-1,000 apartments.

Each time we go up the density scale, we justify more subway. This isn’t linear – an area that fills 500 apartments per block, which is maybe 100,000 people per km^2, does not get 20 times the investment of an area on the dense side of single-family with 16 houses per block and 5,000 people per km^2. Higher density justifies intensification of service, with bigger and more frequent trains, as well as more crowding. With more subway lines, there are more opportunities for lines to intersect, leading to more frequent stop spacing.

Even if the first subway lines are not planned with big systems in mind, which New York’s wasn’t, the idea of connections to streetcar lines was historically important. A stop every 10 blocks, or 800 meters, was not considered on the local lines in New York early on; however, stops could be every 5 blocks or every 7, depending on the spacing of the major crosstown streets.

Dense blobs and linear density

Line spacing is important to stop spacing not on parallel lines, but crossing lines. If a bunch of lines go north-south close to one another, this by itself says little about the optimal spacing on north-south lines, but enforces tight spacing on east-west lines.

This means that high density encourages tight stop spacing when it is continuous in a two-dimensional area and not just a line. If large tracts of the city are very dense, then this provides justification for building a grid of subway, since the crosstown direction is likely to fill as well; in New York, 125th Street is a good candidate for continuing Second Avenue Subway Phase 2 as a crosstown line for this reason.

In contrast, if dense development follows a linear corridor, then there isn’t much justification for intense crosstown service. If there’s just one radial line, then the issue of line spacing is moot. Even if there are two closely parallel radial lines in the same area, a relatively linear development pattern means there’s no need for crosstown subways, since the two lines are within walking distance of each other. The radial urban and suburban rail networks of Tokyo and Seoul do not have narrow interstations, nor do they have much crosstown suburb-to-suburb service: density is high but follows linear corridors along rapid transit. Dense development in a finger plan does not justify much crosstown service, because there are big low-density gaps, and suburb-to-suburb traffic is usually served efficiently by trips on radial lines with a transfer in city center.

We Ran a Conference About Rail Modernization

The Modernizing Rail (Un)Conference happened last Sunday. We’re still gathering all the materials, but here are video uploads, including the keynote by Michael Schabas.

We will also have slides as given by presenters who used them. But for now, here are the slides used by the keynote. You may notice that the recording does not begin on the first slide; we missed Schabas’s introduction and some remarks on his background, detailing his 40 years of experience designing public transit systems in a number of countries, mainly Britain and Canada but also elsewhere in the developed world.

My session on construction costs was slide-free (and was not recorded), since I mostly just showed people around our under-construction cost dataset and answered a lot of questions. Some of those questions were annoying, by which I mean they questioned my thinking or brought up a point I haven’t considered before. I am not talking too much about it partly because I was mostly (mostly) repeating things I’ve said here, and the full database should be out later this summer, with all the mistakes I’ve made in currency conversion rates and in not updating for cost overruns fixed.

After my breakout, I was uncertain between which of two sessions to attend – one on HSR-legacy rail compatibility by María Álvarez, and one on equity issues in rail planning, by Grecia White and Ben She. I ended up going to the latter, which featured interesting discussions of inclusion of low-income people and minorities, both as riders (that is, serving people who are not middle-class whites better on regional rail) and as workers (that is, diversifying planning and engineering departments).

It went well in that there was no monopolization of discussion by people who have more a comment than a question, or any open racism or sexism; but it was somewhat frustrating in that while there was a lot of productive discussion of racial equality in rail planning, there was very little of gender equality even though we did intend to talk about both; Grecia was specifically interested in discussing these, for example women’s perceptions of public safety. This is in line with conference demographics – the organizing team and the breakout presenters were each one-third people of color, in line with US demographics; but the organizing team had 2/18 active women and the presenters 3/15. TransitMatters is similar in that regard – racial diversity is comparable to that of the Boston region, and the proportion of regulars who are queer is enormous, but there are very few women.

Finally, I hosted a session on how to set up a transport association, a.k.a. Verkehrsverbund. Christof Spieler did the most talking, and German attendees explained a lot about the difference between a transport association and agency amalgamation. But for the most part that session felt like an ersatz conclusion to the entire conference; it technically lasted an hour, but once the hour had lapsed, people from other sessions came to the room and the conversation continued naturally, talking a bit about different transit planning issues in Germany and a bit about applicability to rail reform in the Northeastern US.

More on the Deutschlandtakt

The Deutschlandtakt plans are out now. They cover investment through 2040, but even beforehand, there’s a plan for something like a national integrated timetable by 2030, with trains connecting the major cities every 30 minutes rather than hourly. But there are still oddities that are worth discussing, especially in the context of what Germans think trains are capable of and what is achieved elsewhere.

The key is the new investment plans. The longer-term plans aren’t too different from what I’ve called for. But somehow the speeds are lower. Specifically, Hamburg-Hanover is planned to be a combination of legacy rail (“ABS”) and newly-built high-speed rail (“NBS”), dubbed the Alpha-E project, with trains connecting the two cities in 63 minutes.

The point of an integrated takt timetable is that trains should connect major nodes (“knots”) in just less than an integer number of half-hours for hourly service, or quarter-hours for half-hourly service. Trains connect Zurich and Basel in 53 minutes and each of these two cities with Bern in 56 minutes, so that passengers can change trains on the hour and have short connections to onward destinations like Biel, St. Gallen, and Lausanne. To that effect, Switzerland spent a lot of money on tunnels toward Bern, to cut the trip time from somewhat more than an hour to just less than an hour. So the benefits of cutting trip times from 63 minutes to just less than an hour are considerable.

What’s more, it is not hard to do Hamburg-Hanover in less than an hour. Right now the railway is 181 km long, but the planned Alpha-E route is shorter – an alignment via the A 7 Autobahn would be around 145 km long. The Tokaido Shinkansen’s Hikari and Nozomi trains run nonstop between Nagoya and Kyoto, a distance of 134 km, in 34 minutes. Kodama trains make two additional stops, with long dwell times as there are timed overtakes there, and take 51 minutes. Shinkansen trains have better performance characteristics than ICE trains, but the difference in the 270-300 km/h range is around 25 seconds per stop, and the Tokaido Shinkansen is limited to 270 km/h whereas an Alpha-E NBS would do 300. So doing Hamburg-Hanover in less than 40 minutes is eminently possible.

Of course, major cities have slow approaches sometime… but Hamburg is not a bigger city than Kyoto or Nagoya. It’s about comparable in size to Kyoto, both city proper and metro area, and much smaller than Nagoya. Hanover is a lot smaller, comparable to cities served by Hikari but not Nozomi, like Shizuoka and Hamamatsu. Hamburg-Hanover has 12 km between Hamburg and Harburg where trains would be restricted to 140 km/h, and around 6 in Hanover where trains would be restricted to 130 km/h; in between they’d go full speed, which at the performance characteristics of the next-generation Velaro would be a little more than 35 minutes without schedule padding and maybe 38 minutes with. This fits well into a 45-minute slot in the takt, permitting both Hanover and Hamburg to act as knots.

Moreover, if for some reason a full NBS is not desirable – for example, if NIMBY lawsuits keep delaying the project – then it’s possible to built a partial NBS to fit into an hourly time slot, trains taking around 53 minutes. The cost per minute saved in this context is fairly consistent, as this is a flat area and the legacy line is of similar quality throughout the route; if for some reason the cost per minute saved is too high, e.g. if nuisance lawsuits raise construction costs above what they should be on such a route, which is around 15-20 million euros per kilometer, then going down only to 53 minutes is fine as it makes the hourly takt work well.

And yet, it’s not done. The biggest cities are not planned to have regular half-hourly knots, because there’s too much traffic there. But Hanover is in fact a perfect place for a knot, with trains going east to Berlin, west to the Rhine-Ruhr, north to Hamburg, and south to Frankfurt and the cities of Bavaria. Hamburg is at the northern margin of the country, with trains going mostly south to Hanover, but having some timed connection with trains continuing north to Kiel and eventually Copenhagen is not a bad idea.

For some reason, German rail activists, including presumably the ones who pushed the Deutschlandtakt from the bottom up while the ministry of transport was run by pro-car conservatives, are just too conservative about the capabilities of trains. I’ve seen one of the D-Takt groups, I forget which one, criticize plans to build an NBS between Hanover and Bielefeld, a segment on which the existing line is fairly slow, on the grounds that it could never fit into a knot system. It is not possible to do the roughly 100 km between Hanover and Bielefeld (actually closer to 95 km) in less than half an hour to fit a knot, they say – average speeds higher than 200 km/h are only found on very long nonstop stretches of high-speed rail, as in France, they insist. Shinkansen trains achieve such speeds over such segments every day, and even with the slightly lower performance characteristics of the next-generation Velaro, Hanover-Bielefeld in 24 technical minutes and 26 minutes with 7% pad (and the Shinkansen only has 4% pad) is feasible.

I genuinely don’t know why there is such conservatism among German rail planners and advocates. It could be that Europeans don’t like learning from Asia, just as Americans don’t like learning from Europe. There are examples of faster trains than in Germany within Europe, but maybe German advocates discount French and Spanish examples because of genuine problems with French and Spanish rail operations, leading them to also make excuses like “the trains run nonstop for 500 km and that’s why they’re fast” to avoid adopting the things where France and Spain are genuinely superior to Germany.

Nothing about the integrated timed transfer schedule idea impedes high speeds. On the contrary, in some cases, like Hanover-Hamburg but also the planned Frankfurt-Stuttgart line (already in place south of Mannheim), high speeds are necessary to make the desired knots. Moreover, where distances between cities are long compared with desired frequency, as on Berlin-Hanover, it’s possible to build 300 km/h lines and cut entire half hours or even full hours from trip times. Germany could innovate in this and build such a network for an amount of money well within the limits of the corona recovery package, which includes €50 billion for climate mitigation.

But either way, Germany is about to make mistakes of underinvestment because it’s not quite willing to see where the frontier of rail transport technology is. This is not the American amateur hour, it’s not the sort of situation where I can spend a few hours with maps and come up with better timetables myself, but even so, the plans here are far too timid for Germany’s medium- and long-term transportation needs.

The D-Takt is a step forward, don’t get me wrong. None of the investments I’m seeing is bad. But it’s a small, hesitant step forward rather than a firm, bold walk toward direction of intercity rail modernization. A country that expects intercity rail ridership to double, putting Germany’s per capita intercity rail ridership in the vicinity of Japan’s, should have something similar to the Shinkansen network, with a connected network of NBS links between the major cities averaging 200-250 km/h and not 120-160 km/h.

The French Way of Building Rapid Transit

It’s been a while since I last wrote this series, where I covered the American, Soviet, and British traditions of building urban rail. I’d like to return by focusing attention on the French tradition, which has been influential not just within France itself but also to some extent former French colonies, especially Quebec.

An issue I hope to return to soon is the extent to which France has not truly decolonized; former French colonies in Africa, especially the Maghreb, rely on French technical expertise for construction, and often outsource their monetary policy (as with the CFA franc, but Morocco too has a peg to a dollar and euro mix). This matters, because this means the French way of building urban transit is influential in former French colonies in Africa, whereas the British tradition’s impact on India, Nigeria, and so on is limited.

The history of Paris

Like Britain, the USSR, and the US, France has a dominant financial center that its smaller cities aim to imitate. This imitation has been much more extensive than in the US and UK – to the extent that secondary French cities diverge in design principles from the capital, they do things that were fashionable in Paris at the time they built out their rail networks rather than things that were fashionable in Paris when Paris built the Métro. Thus, it is especially valuable to look at the history of urban rail in Paris.

The Paris Métro opened in 1900, as the world’s fifth metro system. Already then, it had a critical feature that the previous four (London, Budapest, Chicago, Glasgow) lacked: it was a centrally planned multi-line system. The city planned a coordinated system of what would become Lines 1-6, in the shape of a # in a circle: Lines 1 and 3 would run east-west, Lines 4 and 5 would run north-south, and Line 2, eventually split into Lines 2 and 6, would run the trace of the wall that delineated the city’s pre-1860 boundary.

The Métro was a municipal effort run by the municipal CMP, designed around the city’s needs, which included not just good transportation but also separation from the working-class suburbs. Whereas the London Underground was mostly technologically compatible with the mainline system, the Métro was deliberately designed not to be, to protect the urban middle class from transport integration with the suburban poor. This led to the following features:

  • The trains are extremely narrow, 2.4-2.44 meters wide, compared with about 2.9 m on the mainline; the deep Tube trains in London, held to have the narrowest loading gauge on a standard-gauge railway, are 2.68 m wide.
  • The interstation distance is very short, 562 meters on average. Paris is compact and dense and the short interstations are only a real problem in the suburbs.
  • The trains run on the right, like French road traffic, whereas French trains run on the left.
  • No legacy lines were incorporated into the system, unlike in New York and London, and thus the shape of the network looks much more like how one would design a metro network from scratch and less like how old West London branches or Brooklyn excursion lines looked.

Like New York and Berlin and unlike London, Paris built the Métro cut-and-cover. The lines built before the 1990s all closely follow streets except when they cross the river – and in the 1900s the Line 4 river crossing was the hardest part of the system to build, opening in 1908 whereas the rest of the network had opened by 1906. This was done entirely by hand, forcing the lines to curve where the streets did, which led to two notable warts. First, while most of the system had a design standard of 60 meter curve radii, Line 1 goes down to 40 at Bastille. And second, Line 5, which crosses the Seine on a bridge, cannot serve Gare de Lyon; the engineers could not get it to curve that way while still running through to Gare d’Austerlitz and the Left Bank, so instead the transfer point between Lines 1 and 5 is Bastille, and more recently the RER A and Line 14 both cross Line 5 without a transfer as they run express from Gare de Lyon to Châtelet.

That said, the missed connection between Lines 5 and 14 is the only one in the system, though two more are under construction on Line 14 extensions. Only one among the major metro systems of the world runs entirely without missed connections, the Mexico City Metro, which has unusually low line density in the core and unusually many tangential lines.

The suburbs and the RER

The Métro’s deliberate exclusion of the suburbs made sense from the point of view of a middle-class Parisian in 1900 who was mortally afraid of the working class. But by the 1930s, it was leading to serious design constraints. Further Métro extensions both densified the network and extended it outward, and in the 1930s, lines began to extend past city limits, to such suburbs as Lilas, Issy, Neuilly, and Montreuil. The short interstations made longer extensions infeasible, and some solution involving regional rail was needed.

In 1938, CMP bought and electrified the Ligne de Sceaux, which alone among the Paris commuter lines had reached close to city center, terminating at Jardin du Luxembourg rather than at the farther away rail stations, which are located at or just inside the M2/M6 ring. Then after the war, as suburbanization intensified and commuter traffic at Gare Saint-Lazare grew increasingly congested, CMP’s successor RATP collaborated with SNCF on connecting regional rail branches to form an express system, that is the RER; the Ligne de Sceaux became the southern half of the RER B, while a similar branch going east paired with one of the Saint-Lazare lines to form the RER A. Through-service opened in 1977, roughly at the same time as the German S-Bahn through-tunnels, but the system grew much larger as Paris was and remains far larger than any German city.

But it is not exactly correct to view the RER as identical to a German S-Bahn, or to one of the RER’s inspirations, the Tokyo through-running system. A number of features characterize it, some shared with other urban regional rail systems, some not:

  • There are multiple trunk lines through the city, which form something like a coherent network among themselves, and do not share rolling stock. The biggest warts are that the RER B and D share tracks (but no platforms) on one interstation, and that the RER C mostly stays on the Left Bank, legacy of when planning in Paris conceived of the area around Saint-Michel as a central area to be served, where in reality it is decidedly secondary to the CBD stretching from Les Halles to Champs-Elysées.
  • It runs largely, though not entirely, on separate tracks from non-RER lines.
  • It is locally viewed as deficient to Métro service – researchers who use the RER B to get to IHES think of it as lower-quality, lower-class service than the Métro in the city and its immediate suburbs. I suspect that this is why Grand Paris Express is designed around Métro standards rather than as intensification of RER service, while RER expansion has fallen to the wayside.
  • RER-Métro integration is imperfect: the fares are integrated but there are still barriers between RER and Métro platforms, and there are many missed RER-Métro connections, whereas in Berlin the S-Bahn and U-Bahn have only one missed connection between them.
  • The interstation is around 2-3 km, but it’s actually slightly longer on the new urban tunnels build for the RER A, B, D, and E than on the legacy lines in the inner suburbs; this feature also exists in a much more extreme form in the United States, but in Berlin and Tokyo it is completely absent.

Exporting Parisian ideas

Parisian metro planning influenced Montreal, Mexico City, and the smaller French cities, in chronological order. We see any of the following features in those cities:

  • Rubber-tired metros. This technology was in vogue in postwar Paris, which converted Lines 1, 4, and 11 to it figuring this was just better than steel wheels, and also Line 6, figuring that an elevated line would benefit from a quieter propulsion system.
  • Non-radial network design. London and the systems inspired by it, including all Eastern bloc systems, have radial design, with nearly all lines entering a relatively small city center. Paris expanded its #-in-a-circle system to a combination of a radial network and a grid, with a large number of pairs of parallel lines. Mexico City, the largest system inspired by Paris, is rich in tangential lines but has only three lines serving city center, which are by far the three busiest.
  • Short interstations, though this is truer domestically than in Montreal and Mexico City.
  • Driverless operations. This technology became popular in the 1980s, starting with the Lille Metro, and France has used it on new lines in Paris (M14) and elsewhere (Lyon Line D, both lines in Toulouse), also innovating in converting manual lines to automatic on Paris M1 and now M4. While the Parisian lines are full-size metro lines, the other ones are light metro running shorter vehicles, often with extensive elevated service.
  • Separation between regional rail and metro service. Montreal is sufficiently North American to have given up on regional rail entirely, but Lyon and Marseille are investing in better regional rail, run separately from the local urban transit system but with some degree of integration.
  • Light rail. France’s modern light rail systems do not originate in Paris – Nantes opened its system in 1985, suburban Paris only in 1992 – but Paris has a notable feature that isn’t common elsewhere in Western Europe: it is a mixed system with some Métro lines and some tram lines filling in the gaps. This mixed system is also present in Lyon, Marseille, and Toulouse, whereas Bordeaux, Strasbourg, and Nice have entirely tram-centric systems. But in no case is there any subway-surface running as in the United States or Germany: lines are either clearly trams or clearly metros, rather than mixtures, and it is the system that is mixed, not the individual line.

Has France decolonized?

Like Britain, France did not take its geopolitical disempowerment at the end of World War Two easily. Both countries have maintained superpower pretensions, decolonizing but trying to treat their former colonies as their spheres of influence as much as possible. In Britain, this relationship broke down – the ex-colonies were being too loud in the Commonwealth, leading the country to seek to join the EU instead. In France, this relationship remains in Africa, and notable not in Southeast Asia, where Vietnam is buildings its urban rail networks with Chinese and Japanese financing.

But France is not just providing financing to infrastructure projects in its former (or current?) African colonies. It has a permanent presence. In researching Arab rail infrastructure, Anan Maalouf has noted that Alstom has had a subsidiary operating in Algeria since 2002, which does not exist elsewhere in the Arab world. This way, French firms maintain close knowledge of the situation in the Maghreb, where incomes and productivity levels are much lower than in France, so that different methods are optimal from those common in rich countries.

Nonetheless, what they build remains noticeably French. For example, the Sfax tramway does not look too different from what Bordeaux or Nice has. The Tunis Métro looks rather like a French tramway system too, despite the name; of note, even though the Tunis Métro branches, and has some underground segments, those segments are not on line trunks and thus the system does not form a subway-surface or Stadtbahn network.

I haven’t gone too much into intercity rail, but it is worth mentioning that Morocco has a high-speed rail system, built with French technical assistance and running TGV equipment.

Does this work?

Yes and no.

The Paris system works. It is not perfect, and in particular the integration between the Métro and the RER could be better; at least one tram line should be a full metro line (a completed T3 ring), and suburban extensions should generally use the RER, with more investment in RER capacity within the city as well. That said, public transport usage is higher in Paris than in its closest comparison, that is London; Paris’s system is also superior in both overall usage and future prospects to that of another megacity in Europe, Moscow. Only Istanbul could potentially do better in the future, in the context of extremely low construction costs.

That said, Paris is a giant that casts a long shadow, which doesn’t always work well for secondary cities. Lyon, Marseille, Toulouse, and the other secondary French cities aren’t too different in modal split from similar-size British cities, and are behind Vancouver, a North American city with extensive postwar growth. German cities in the Lyon size class do a lot better. See for example data here and here.

The weird features of France, like the love for rubber tires, are not that relevant overall, but do point out that France is relatively insular, and mostly adopts domestic ideas developed in Paris rather than ideas from elsewhere in Europe, let alone Asia. (Yes, I know about Japanese influence on the initial RER; however, there have been 50 years of divergence since, same as with German tram-trains and American light rail.) This has been especially problematic with regional rail. France does not have frequent takts anywhere – even Paris only has takt timetables off-peak, running a separate schedule at rush hour, whereas the German takt plan is repeated throughout the day and the peak can only have supplemental service.

The issue is that Paris does not need to think in terms of repeating schedules, because it is so big that the RER trunks run every 5 minutes off-peak. It thinks of the RER as mostly separate trunk lines with dedicated fleets, because the primary problem is train capacity through city center. In Lyon, let alone smaller cities, this is not the main issue. There do exist a handful of individual lines running an off-peak takt elsewhere in France, but integration with urban rail remains imperfect and a comparison with Vienna, Copenhagen, Zurich, Stuttgart, and Hamburg would not be favorable. It matters that, like Britain, France has such a dominant capital that it doesn’t know how to scale down to provide rail service in a metropolitan area where if the transfers aren’t perfectly timed, people won’t ride.

Modernizing Rail Unconference

On Sunday the 12th of July, a few of us public transit activists are going to hold a conference online called Modernizing Rail, focusing on better service and integration in the Northeastern United States. Our keynote speaker will be Vukan Vuchic, the Serbian-American UPenn transportation professor who imported German rail modernization schemas from the 1970s, including the concept of regional rail; he will speak about the history of this in the context of SEPTA, which built much of the S-Bahn infrastructure (e.g. S-Bahn through-running tunnel) but has not done many other important things such as fare integration and coordinated planning with urban transit.

Update 2020-07-04: due to a family health emergency, Vuchic cannot make it. Therefore we will have an alternate keynote address by Michael Schabas, entitled Using Business Case Analysis to Design Better Railways.

Schabas has been finding ways to make railways deliver more and cost less for 40 years, shaping urban, intercity, and high speed rail projects in Canada, England, and the USA, and operating passenger and freight railways in England and Australia. He is the author of The Railway Metropolis – how planners, politicians and developers shaped Modern London. Since 2014 he has been advising Toronto’s Metrolinx on the $20 billion upgrading and electrification of the GO Rail system, and the $28.5 billion expansion of Toronto’s subway system. Michael is a Partner in FCP, a rail strategy boutique based in the UK advising clients on rail developments and projects around the world

The keynote will be between 11 am and noon Eastern time.

After the keynote, we will hold unconference-style sessions. For people who have not seen this style before, this means that we solicit ideas from the entire body of attendees for breakout sessions, and then by consensus, depending on the number of attendees and what they are interested in, split into rooms for further discussion of the selected topics. There will be three slots for breakouts: 1-2, 2:15-3:15, 3:30-4:30 pm, all Eastern time; the number of breakouts will depend greatly on the number of attendees, which at this point we are uncertain about. The breakouts may include pure discussions or presentations, and we also solicit expressions of interest in presenting if there’s an issue you have particular interest and expertise in.

There will be more information available on social media, but to register, please complete this form. You can create an account on Journey for this if you’d like, in which case you can save your progress and come back later, but this is not a long form and you can complete it in one go without registration.

The conference will be held on Zoom, with link emailed shortly before the event takes place.

Update 2020-07-11: here is the timetable. Email us at modernizing.rail@gmail.com for the Zoom password if you’ve registered.

Some Notes About Northeast Corridor High-Speed Rail

I want to follow up on what I wrote about speed zones a week ago. The starting point is that I have a version 0 map on Google Earth, which is far from the best CAD system out there, one that realizes the following timetable:

Boston 0:00
Providence 0:23
New Haven 1:00
New York 1:40
Newark 1:51
Philadelphia 2:24
Wilmington 2:37
Baltimore 3:03
Washington 3:19

This is inclusive of schedule contingency, set at 7% on segments with heavy track sharing with regional rail, like New York-New Haven, and 4% on segment with little to no track haring, like New Haven-Providence. The purpose of this post is to go over some delicate future-proofing that this may entail, especially given that the cost of doing so is much lower than the agency officials and thinktank planners who make glossy proposals think it should.

What does this entail?

The infrastructure required for this line to be operational is obtrusive, but for the most part not particularly complex. I talked years ago about the I-95 route between New Haven and southern Rhode Island, the longest stretch of new track, 120 km long. It has some challenging river crossings, especially that of the Quinnipiac in New Haven, but a freeway bridge along the same alignment opened in 2015 at a cost of $500 million, and that’s a 10-lane bridge 55 meters wide, not a 2-track rail bridge 10 meters wide. Without any tunnels on the route, New Haven-Kingston should cost no more than about $3-3.5 billion in 2020 terms.

Elsewhere, there are small curve easements, even on generally straight portions like in New Jersey and South County, Rhode Island, both of which have curves that if you zoom in close enough and play with the Google Earth circle tool you’ll see are much tighter than 4 km in radius. For the most part this just means building the required structure, and then connecting the tracks to the new rather than old curve in a night’s heavy work; more complex movements of track have been done in Japan on commuter railroads, in a more constrained environment.

There’s a fair amount of taking required. The most difficult segment is New Rochelle-New Haven, with the most takings in Darien and the only tunneling in Bridgeport; the only other new tunnel required is in Baltimore, where it should follow the old Great Circle Tunnel proposal’s scope, not the four-track double-stack mechanically ventilated bundle the project turned into. The Baltimore tunnel was estimated at $750 million in 2008, maybe $1 billion today, and that’s high for a tunnel without stations – it’s almost as high per kilometer as Second Avenue Subway without stations. Bridgeport requires about 4 km of tunnel with a short water crossing, so figure $1-1.5 billion today even taking the underwater penalty and the insane unit costs of the New York region as a given.

A few other smaller deviations from the mainline are worth doing at-grade or elevated: a cutoff in Maryland near the Delaware border in the middle of what could be prime 360 km/h territory, a cutoff in Port Chester and Greenwich bypassing the worst curve on the Northeast Corridor outside major cities, the aforementioned takings-heavy segment through Darien continuing along I-95 in Norwalk and Westport, a short bypass of curves around Fairfield Station. These should cost a few hundred million dollars each, though the Darien-Westport bypass, about 15 km long, could go over $1 billion.

Finally, the variable-tension catenary south of New York needs to be replaced with constant-tension catenary. A small portion of the line, between New Brunswick and Trenton, is being so replaced at elevated cost. I don’t know why the cost is so high – constant-tension catenary is standard around the world and costs $1.5-2.5 million per km in countries other than the US, Canada, and the UK. The Northeast Corridor is four-track and my other examples are two-track, but then my other examples also include transformers and not just wires; in New Zealand, the cost of wires alone was around $800,000 per km. Even taking inflation and four tracks into account, this should be maybe $700 million between New York and Washington, working overnight to avoid disturbing daytime traffic.

The overall cost should be around $15 billion, with rolling stock and overheads. Higher costs reflect unnecessary scope, such as extra regional rail capacity in New York, four-tracking the entire Providence Line instead of building strategic overtakes and scheduling trains intelligently, the aforementioned four-track version of the Baltimore tunnel, etc.

The implications of cheap high-speed rail

I wrote about high-speed rail ridership in the context of Metcalfe’s law, making the point that once one line exists, extensions are very high-value as a short construction segment generates longer and more profitable trips. The cost estimate I gave for the Northeast Corridor is $13 billion, the difference with $15 billion being rolling stock, which in that post I bundled into operating costs. With that estimate, the line profits $1.7 billion a year, a 13% financial return. This incentivizes building more lines to take advantage of network effects: New Haven-Springfield, Philadelphia-Pittsburgh, Washington-Virginia-North Carolina-Atlanta, New York-Upstate.

The problem: building extensions does require the infrastructure on the Northeast Corridor that I don’t think should be in the initial scope. Boston-Washington is good for around a 16-car train every 15 minutes all day, which is very intense by global standards but can still fit in the existing infrastructure where it is two-track. Even 10-minute service can sometimes fit on two tracks, for example having some high-speed trains stop at Trenton to cannibalize commuter rail traffic – but not always. Boston-Providence every 10 minutes requires extensive four-tracking, at least from Attleboro to beyond Sharon in addition to an overtake from Route 128 to Readville, the latter needed also for 15-minute service.

More fundamentally, once high-speed rail traffic grows beyond about 6 trains per hour, the value of a dedicated path through New York grows. This is not a cheap path – it means another Hudson tunnel, and a connection east to bypass the curves of the Hell Gate Bridge, which means 8 km of tunnel east and northeast of Penn Station and another 2 km above-ground around Randall’s Island, in addition to 5 km from Penn Station west across the river. The upshot is that this connection saves trains 3 minutes, and by freeing trains completely from regional rail traffic with four-tracking in the Bronx, it also permits using the lower 4% schedule pad, saving another 1 minute in the process.

If the United States is willing to spend close to $100 billion high-speed rail on the Northeast Corridor – it isn’t, but something like $40-50 billion may actually pass some congressional stimulus – then it should spend $15 billion and then use the other $85 billion for other stuff. This include high-speed tie-ins as detailed above, as well as low-speed regional lines in the Northeast: new Hudson tunnels for regional traffic, the North-South Rail Link, RegionalBahn-grade links around Providence and other secondary cities, completion of electrification everywhere a Northeastern passenger train runs

Incremental investment

I hate the term “incremental” when it comes to infrastructure, not because it’s inherently bad, but because do-nothing politicians (e.g. just about every American elected official) use it as an excuse to implement quarter-measures, spending money without having to show anything for it.

So for the purpose of this post, “incremental” means “start with $15 billion to get Boston-Washington down to 3:20 and only later spend the rest.” It doesn’t mean “spend $2 billion on replacing a bridge that doesn’t really need replacement.”

With that in mind, the capacity increases required to get from bare Northeast Corridor high-speed rail to a more expansive system can all be done later. The overtakes on Baltimore-Washington would get filled in to form four continuous tracks all the way, the ones on Boston-Providence would be extended as outlined above, the bypasses on New York-New Haven would get linked to new tracks in the existing right-of-way where needed, the four-track narrows between Newark and Elizabeth would be expanded to six in an already existing right-of-way. Elizabeth Station has four tracks but the only building in the way of expanding it to six is a parking garage that needs to be removed anyway to ease the S-curve to the south of the platforms.

However, one capacity increase is difficult to retrofit: new tracks through New York. The most natural way to organize Penn Station is as a three-line system, with Line 1 carrying the existing Hudson tunnel and the southern East River tunnels, including high-speed traffic; Line 2 using new tunnels and a Grand Central link; and Line 3 using a realigned Empire Connection and the northern East River tunnels. The station is already centered on 32nd Street extending a block each way; existing tunnels going east go under 33rd and 32nd, and all plans for new tunnels continuing east to Grand Central or across the East River go under 31st.

But if it’s a 3-line system and high-speed trains need dedicated tracks, then regional trains don’t get to use the Hell Gate Line. (They don’t today, but the state is spending very large sums of money on changing this.) Given the expansion in regional service from the kind of spending that would justify so much extra intercity rail, a 4-line system may be needed. This is feasible, but not if Penn Station is remodeled for 3 lines; finding new space for a fourth tunnel is problematic to say the least.

Future-proofing

The point of integrated timetable planning is to figure out what timetable one want to run in the future and then building the requisite infrastructure. Thus, in the 1990s Switzerland built the tunnels and extra tracks for the connections planned in Bahn 2000, and right now it’s doing the same for the next generation. This can work incrementally, but only if one knows all the phases in advance. If timetable plans radically change, for example because the politicians make big changes overruling the civil service to remind the public that they exist, then this system does not work.

If the United States remains uninterested in high-speed rail, then it’s fine to go ahead with a bare-bones $15 billion system. It’s good, it would generate good profits for Amtrak, it would also help somewhat with regional-intercity rail connectivity. Much of the rest of the system can be grafted on top without big changes.

But then it comes to Penn Station. It’s frustrating, because anything that brings it into focus attracts architects and architecture critics who think function should follow form. But it’s really important to make decisions soon, get to work demolishing the above-ground structures starting when the Madison Square Garden lease runs out, and move the tracks in the now-exposed stations as needed based on the design timetable.

As with everything else, it’s possible not to do it – to do one design and then change to another – but it costs extra, to the tune of multiple billions in unnecessary station reconstruction. If the point is to build high-speed rail cost-effectively, spending the same budget on more infrastructure instead of on a few gold-plated items, then this is not acceptable. Prior planning of how much service is intended is critical if costs are to stay down.

Train and Bus Cleaning

Well before the coronavirus struck, I noticed how trains in Asia were cleaner than in Europe, which are for the most part cleaner than in the United States. There are overlaps: the elevated BTS in Bangkok is similar to the cleaner cities in Europe, like London (but the underground MRT is similar to Singapore and Taipei), while the Berlin U-Bahn is similar to the cleaner American cities, like maybe Washington. But for the most part, this holds. The issue of cleanliness is suddenly looking more important now in a pandemic.

How much cleaning is necessary overall?

It is unclear. Singapore has 56,000 registered cleaners and Taipei has 5,000; even assuming Taipei just refers to the city proper, Singapore has five times as many per capita. When I visited Taipei in December it was visibly messier, and Taipei City Mall felt more lived-in than comparable underpasses in Singapore, but the City Mall was not dirty, and the Taipei MRT did not feel any dirtier than the Singapore MRT. The infection rates in both countries are very low – Taiwan’s are much lower per capita nowadays, though this has other explanations, such as higher mask usage and less international travel.

How much cleaning is necessary for specific tasks?

In Singapore, SBS Transit announced increased cleaning levels on January 30th. Cleaners disinfect vehicles and stations at the following rates:

  • Trains: every day
  • Buses: every week
  • Train stations: three times a day
  • Bus stations: every two hours

In Japan, JR East’s Shinkansen trains are cleaned at Tokyo Station in 7 minutes. There are many pieces on the subject, describing how a crew of 22, comprising one cleaner per second-class car and two to three per first-class car (“green car”), sweeps an entire train so fast. Many of the tasks are not required for metro service, but passenger density is higher in metro service than in intercity service.

One advantage of regular cleaning, say once per roundtrip, is that there hasn’t been so much time for the train (or bus) to become grimy. Two hours’ dirt is easier to pick up, sweep, or water and dry than a day’s dirt.

How much does all of this cost?

Cleaner wages track local working-class wages, and differ greatly; a city with the per capita income of New York, Paris, or London will have to pay more than one with that of Berlin or Tokyo. On top of what the English-speaking middle class thinks is an appropriate wage for an unskilled worker the agency will need to pay a premium to account for the fact that fast cleaning is a difficult job even if the required education level for it isn’t high.

What is more controllable and comparable is staffing needs. The sources for JR East’s cleaning crew productivity differ, but the reasonable ones say it’s 20 trains per day. This already accounts for downtime, so if trains aren’t quite frequent enough for there to always be some train to occupy a cleaning crew, an agency is probably still capable of squeezing 20 trains per daily crew shift. If a roundtrip with turnaround time is two hours, then this means about one cleaning crew is needed per 2.5 trainsets operated in regular service, rising to about one cleaning crew per 1.8 trainsets taking weekend days into account; this can be adjusted if a train runs peak-only, since part-time shifts are common in this sector.

How can equipment be made easier to clean?

Some materials are easier to clean than others. Transit agencies should use these in future procurement, and look into emergency orders to retrofit existing trains and buses. Metal poles are easier to clean than leather straps, and hard plastic and metal seats are easier to clean than padded ones. I suspect that bench seating is easier to clean than bucket seating, since it is possible to run a mop down the entire bench.

As with schedule planning, cleaning planning should integrate operating and capital expense optimization. That is, public transportation agencies should budget for cleaning whenever they buy a bus or train or build a train station, and make decisions on layout and materials that reduce the spread of disease and increase the efficiency of cleaning as well as maintenance and other operating costs.

What else can be done?

Hand sanitizer! Taipei and Singapore both distribute it at stations, and if I remember correctly, so does Bangkok. It made me feel less grimy, especially after long walks in Taipei or any exposure to the outdoor air pollution of Bangkok.

In addition, fomite removal is a good idea, which means any of the following:

  • Barrier-free train stations, or if not then automatic fare barriers like those of Taipei or Singapore or London rather than ones requiring pushing by hand as in New York and Paris.
  • Automatic train doors, since implemented on newer trains in Berlin and I think in the rest of Europe as an emergency measure, without requiring button pushing.
  • Disposable chopsticks for pressing buttons on elevators, as in South Korea.

Do passengers care?

Yes. I’ve taken the Berlin U-Bahn a few times in the last few weeks, to view apartments and most recently (earlier today) to buy matzos from a kosher grocery store far from my neighborhood. I don’t sit anymore, not trusting even the hard metal seats at the stations, let alone the padded cloth ones on the trains. Neither do many other riders, so there’s about the usual number of standees on the trains, trying to distribute ourselves as evenly as possible inside the train and avoid loud or space-taking passengers, even as many seats stay empty.

Would I sit if this were Singapore? Probably. As of the small hours of 2020-04-08 Europe time, Singapore has 1,500 infections and Berlin has 4,000 on two thirds the population, but a big share of Singapore’s cases are imports, and the MRT is vastly cleaner than the U- and S-Bahn here. And then there’s Taiwan, with 400 cases on a population of 24 million.

Why is this not done already?

Managers love metrics, and the costs of cleaning are much easier to quantify than the benefits. Therefore, they cut cleaning whenever there is a budget crunch. Within the English-speaking world, Singapore is a standout in cleanliness, because Lee Kuan Yew decided it was important and launched a campaign to sweep public spaces. In Japan, one of the articles about the seven-minute cleaning process talks about the history of how JR East hired a new manager who has previously been at the safety division – within the company of course, this is Japanese and not American business culture – and said manager, Teruo Yabe, improved morale by taking worker suggestions and promoting line workers to supervisory roles.

I don’t want to dunk on Anglo business culture here too much – London has cleaner trains than Berlin, and is about comparable to Paris. Nor is this quite a cultural cleave between the West and Asia, since Singaporean business culture pilfers the most authoritarian aspects of Japan (long hours, face-time culture) and the Anglosphere (at-will employment, no unions to speak of) and melds them together.

My suspicion is that low standards in the US in particular come from a sense of resignation among managers who don’t really use their own systems, and view the passengers in contempt. New York has an added sense of grit, in which people romanticize the 1970s and 80s and think enduring trash on the street, high crime rates (no longer high), delayed trains, cockroaches, rats, and drivers who play Carmageddon is part of what makes one a Real New Yorker. Consider how the New York- (and London-)suffused urban discourse treats “antiseptic” as a pejorative, viewing Singapore as a less real city because it isn’t killing thousands of its people, soon to be tens of thousands, from coronavirus.

Can Western cities get better?

Absolutely! Especially New York, which has nowhere to go but up.

Most of the positive aspects of Continental Western Europe that awe Americans, like convenient urban public transportation and six weeks of paid vacation per year, are recent, rarely going farther back than the 1970s and 80s. The Swiss planning maxims I repeat to Americans as mantras were invented in the 1980s and implemented in the 1990s and 2000s.

This is even truer of East Asia – in the 1960s Japan was middle-income and the rest of East Asia was very poor; the Shinkansen opened in 1964, but the speed and efficiency standards as we know them only go back to the 300 Series, put into service in 1992. Moreover, the state of Shinkansen cleaning was not so good 15 years ago, before JR East put Yabe in charge. The high cleanliness levels are a recent success, not some ingrained feature that goes back to the 7th century and can’t possibly be replicated elsewhere.

New York needs to look at itself in the mirror now, when it is the global center of a pandemic with death toll that will most likely surpass even the highest-end estimates of those of Wuhan. Is “antiseptic” really a bad trait for a city? If cleaning is a priority, see above for what it takes to do it right. And if it isn’t, I’m sure New York will be more than happy to have another pandemic in the future.

Mixing and Matching

In public transportation as in many other aspects, an important fact of improvement is being able to mix-and-match things that work from different sources. It’s rare to have a situation in which exact importation of one way of doing things is the best in every circumstance (and the Covid-19 crisis appears to be one of these rare situations, Korea being the best). More commonly, different comparison cases, whether they’re companies in private-sector consulting or countries in public-sector policy research, will do different things better. Knowing how to mix-and-match is an important skill in competently learning from the best.

Non-transport examples

I put this up first, but want to emphasize that this is outside my skill set so I am less certain about the examples here than in transport; I bring them up because some of the sanity checks are cleaner here.

Secondary education: high-income Asia consistently outperforms the West in international math and science tests. However, two important caveats complicate “just be like Asia” reform ideas, like the popularity of Singapore math textbooks in some segments of the American middle class. The first is that Japan, South Korea, and Taiwan are a lot more monolingual than European countries like Germany and France, let alone smaller European countries like the Netherlands. And the second is that many things that are common to East Asia (and Singapore and Vietnam), like high social distance between hierarchs and subordinates or teachers and students, are completely absent from Finland, which is nearly the only Western country with math scores matching those of Asia. So the actual thing to learn from Asia is likely to be more technical and less about big cultural cleaves like making students wear uniforms and be more obsequious toward teachers.

Public health: whereas the Covid-19 crisis specifically still looks like a clean Asia vs. West cleave, overall public health outcomes do not. Japan has the world’s highest life expectancy, but then Mediterranean Europe follows it closely. The United States, which overall has poor health outcomes, near-ties Singapore and Sweden for lowest first-world smoking rate – and even though Singapore and Sweden both have good outcomes, they both have rather unhealthy diets by (for example) Levantine standards. Public health is a more complex issue than transportation, one that unfortunately low-life expectancy developed countries like Germany and Britain, let alone the US, aren’t meaningfully trying to learn in – and it’s not even clear how easy it is to import foreign ideas into such a complex mostly-working system, in contrast with the near-tabula rasa that is American public transportation.

Transportation in cities of different sizes

Alexander Rapp’s excellent list of metro areas ranked by what he calls frequent rapid transit ridership – that is, trains and buses that run every 20 minutes or better and are either grade separated or have absolute crossing priority with gates – showcases patterns that vary by population.

On the one hand, Tokyo is far and away the highest-ridership city in the world, even per capita. It has around 400 annual rail trips per capita. My recollection, for which I don’t really have a reliable source, is that 60% of work trips in the Tokyo region are done by rail (this data may be here but copy-paste for translation doesn’t work), a higher share than in major European capitals, which mostly top in the 40s.

On the other hand, this situation flips for smaller cities, in the 2-5 million metro population range. Sapporo appears to have maybe 120 annual trips per capita, and Fukuoka probably even less. In Korea, likewise, Seoul has high ridership per capita, though not as high as Paris, let alone Tokyo, but Busan has 100 trips per capita and Daegu 65. In contrast, Stockholm approaches 200 trips per capita (more including light rail), Vienna maybe 180 (growing to 220 with a much wider definition including trams), Hamburg 170, Prague 200 (more like 300 with trams), Munich maybe 230.

This doesn’t seem to be quite a West vs. Asia cleave. There is probably a shadow-of-giants effect in Japan leading smaller cities to use methods optimized for Tokyo; it’s visible in Britain and France, where Stockholm- and Munich-size cities like Birmingham, Manchester, and Lyon have far weaker transit systems. The US has this effect too – New York underperforms peer megacities somewhat, but smaller cities, imitating New York in many ways, are absolutely horrendous by the standards of similar-size European or East Asian cities. Nonetheless, the shadow of giants is not an immutable fact making it impossible for a Sapporo or Birmingham or Lyon to have the rail usage of a Stockholm – what is necessary is to recognize this effect and learn more from similar-size success stories than from the far larger national capital.

Construction costs and benefits

Construction costs are not a clean cleave across cultural regions. The distinction between the West and Asia is invisible: the worst country in the world is the United States, but the second worst appears to be Singapore. Excluding the English-speaking countries, there is a good mix on both sides: Korea, Spain, Italy, and the Nordic countries all have low costs, while Taiwan and the Netherlands have particularly high ones.

Moreover, countries that are good at construction are not always good at operations. As far as I can tell from deanonymizing CoMET data, Madrid has slightly higher metro operating costs than London, Paris, and Berlin, PPP$7/car-km vs. PPP$6, with generally high-construction cost Tokyo appearing to hit $5.

This is not even just costs, but also the ability to build lines that people ride. Tokyo is pretty good at that. Spain is not: the construction costs of the high-speed rail network are consistently lower than anywhere else in the world, but ridership is disappointing. There is no real integration between the AVE network and legacy trains, and there is a dazzling array of different trains each with separate fares, going up to seven incompatible categories, a far cry from the national integration one sees in Switzerland.

There is likely to be a clear answer to “who is best at optimizing construction costs, operating costs, and ridership?”: the Nordic countries. However, even there, we see one worrying issue: for one, Citybanan is expensive by the standards of the Eje Transversal (though not by those of the RER E or especially the second Munich S-Bahn tunnel), which may indicate difficulty in building the kind of multistory tunneling that bigger cities than Stockholm must contend with. Thus, while “be like Sweden” is a good guideline to costs, it is not a perfect one.

Optimizing frequency

The world leader in high-frequency public transportation is Paris. Its driverless Métro lines, M1 and M14 and soon to be M4, run a train every 85 seconds in actual service at rush hour. This is an artifact of its large size: M1 has such high ridership, especially in comparison with its length, that it needs to squeeze every last train out of the signaling system, unlike Berlin or Milan or Madrid or Stockholm. London and Moscow run at very high frequency as well for the same reason, reaching a train every 100 seconds in London and one every 92 in Moscow.

Tokyo, sadly, is not running so frequently. Its trains are packed, but limited to at best one every 120 seconds, many lines even 150, like New York. One possible explanation is that trains in Tokyo are so crowded that peak dwell times must be long, limiting throughput; long dwell times have led to reductions in RER A frequency recently. However, trains and platforms in Tokyo have good interior design for rapid boarding and alighting. Moreover, one can compare peak crowding levels in Tokyo by line with what we know is compatible with a train every 100 seconds in London, and a bunch of Tokyo subway lines aren’t more crowded than London’s worst. More likely, the issue is that Japanese signaling underperforms European systems and is the process of catching up; another aspect of signaling, automation, is also more advanced in France than in Japan (although Seoul, Taipei, and Singapore all have driverless metros).

This way, cities that are either extremely expensive to build in, like London and Moscow, or about average, like Paris, show the way forward in ways that cities that do other things better do not. It’s important to thus simultaneously learn the insights of small cities in reducing operating and construction costs and maintaining high-ridership systems, like the Nordic capitals, and those of megacities in automation and increasing throughput.

Can mixing and matching work?

Why not? In small cities with successful systems, it can’t be due to some deeply-ingrained culture – what do Stockholm, Zurich, Prague, Munich, and Budapest even have in common, other than being European? They’re not all national capitals or even all national primate cities, a common excuse New Yorkers give for why New York cannot have what London and Paris have.

Likewise, what exactly about French culture works to equip Métro lines with signals allowing 42 trains per hour per direction that cannot be adopted without also adopting real problems France has with small-city regional rail, fare integration, or national rail scheduling?

These are, ultimately, technical details. Some are directly about engineering, like Parisian train frequency. Some involve state institutions that lead to low construction costs in Spain, Korea, and the Nordic countries – but on other metrics, it’s unclear these three places have state capacity that is lacking in high-cost Taiwan, Germany, and the Netherlands. So even things that aren’t exactly about engineering are likely to boil down to fairly technical issues with how contracts are written up, how much transit agencies invest in in-house engineering, and so on.

There’s a huge world out there. And an underperforming transit agency – say, any in the United States – had better acquire all the knowledge it can possibly lay its hands on, because so many problems have already been solved elsewhere. The role of the locals is not to innovate; it’s to figure out how to imitate different things at once and make them work together. It’s not a trivial task, but every pattern suggests to me it’s doable given reasonable effort.

Public Transport and Infectious Diseases

This is a rough set of guidelines for how to make public transport networks more resilient to infectious diseases. While this post is inspired by the Covid-19 pandemic, some of what I’m going to discuss here is relevant to infections in general, both seasonal flu and future generational epidemics.

I’m aiming mainly at people who work for public transport authorities and can act to epidemic-proof their systems in the future, but some of the guidelines may be helpful for riders. The key takeaway is that public officials probably should not want to shut down the system or discourage people from riding it; thus, as a rider you probably shouldn’t avoid the trains except insofar that you should avoid most places you’d take them to, like crowded offices and events.

Finally, let me be clear: my expertise on public health approaches zero. I have a fair amount of general knowledge of how different urban rail systems operate, but more about network design and costs than public health. To the extent I’m ahead of anyone else on this issue, it’s that I’ve seen so much wanton incuriosity in the West (especially the US) toward Asian practices, and therefore asked around for East Asian practices rather than trying to learn worst industry practices from Europe and North America.

The scope of this post

The scope of what best industry practices are on epidemic prevention is, roughly, the high-income major cities of East Asia, plus Singapore. China is excluded on purpose: a country that arrests doctors for telling the public about the coronavirus isn’t really where you want to get disease prevention tips from. Instead, the low infection rates so far in Taiwan, Hong Kong, and Singapore, and South Korea’s ability to control the infection through mass testing after the explosion in cases at the Shincheonji church, suggest that those countries should be the models. Japan may be a good example as well, but the state is undertesting, so the full extent, while apparently lower than in Western countries, may be understated.

I have talked to people in Singapore, Hong Kong, and Seoul to understand the situation on the ground there. In Taipei and the cities of Japan I have not, and am relying on media report; I know I have commenters who live in Japan, so if you have anything to say about the efforts there then please do speak up and contribute, regarding both the measures taken and current infection rates.

This is necessarily a volatile situation. It’s possible that in a month, Germany and France will have controlled the infection while the rich countries of Asia will look as dire as Lombardy looks right now. I don’t think such an inversion is at all likely, but ultimately, I am describing the best information available as of 2020-3-11.

Do people need to stop taking mass transit?

Probably not. I emphasize probably because the different in-scope cities are reacting differently, and we don’t yet know for certain whether avoiding the trains is correlated with greater safety from infection.

In Singapore, life goes on. I have family there; I’m told that the MRT is not less crowded than the usual at rush hour, but the buses are definitely less crowded. The estimate I heard is that 1/3 to 1/2 of the population on the street is wearing surgical masks. Instead of shutting down schools and offices, the state imposed a mandatory quarantine on people arriving from early-infected countries including China, and went as far as revoking the green card of a permanent resident who violated the quarantine.

Update 2020-3-12: my sibling reports that, first, the mask-wearers are largely Chinese, not ethnic minorities like Malays and Indians, and second, ridership on the MRT is noticeably down at rush hour, with some empty seats where normally trains are standing-room only.

In Hong Kong, it is exactly the opposite. The state is not terribly relevant – the population does not trust it. There was early caution due to social memory of SARS, leading to rapid social distancing, closing down schools, offices, and public events. I’ve asked Lyman Stone and Trey Menefee for their impressions. They both said the MTR is empty nowadays, and Lyman reminded me that ridership was down even before the epidemic on account of a popular boycott in response to the company’s collaboration with regime security. The total social distancing means people travel little, but when they do, it’s often by TNC, leading to a lot of Uber traffic; drivers even put hand sanitizer in the back of their cars and make an effort to clean the interior well, to attract passengers afraid of catching the disease.

In Seoul, the situation is different, in that there was a big flare of the epidemic thanks to the so-called patient 31, a member of Shincheonji, who transmitted the virus around the group. Until a few days ago, Korea was the #2 country in the world in confirmed cases, after China, but Italy and Iran have since overtaken it and the US is poised to overtake it soon too. But new infections are down thanks to an aggressive regime of testing. Public transportation is still in operation – Min-Jae Park, an NYU student from Korea who has been working with me and Eric Goldwyn on our construction costs project, said that there is noticeably less ridership according to family but also,

Yesterday, there has been a group of confirmed cases in a same workplace including commuters via transit to and from Seoul. The government did declare that it is almost impossible track back individual patients to show if transit is a hazardous environment. However, since the early stages, the national and local  transit authorities has been aggressively sanitized the public realm especially in transit. Additionally, the ridership of the transit decreased overall, as the remote working culture started to become naturalized.

So far, there has not been a substantial case that proves that transit needs to be reduced or shut down, but we shall see how the yesterday’s case turns out. I will update to you if any policy change comes up relating to the virus, but I think that is probably the last thing the government want to do in scale of national lockdown Italy did.

My other source on Korea’s response is Nick Plott, a.k.a. Tasteless, a popular esports caster. In a short video about the virus and its effect on esports, he mentions the effect on Korea, and says that public transport in Seoul is deserted. My hunch is that Min-Jae’s take, although second-hand, is more accurate than Tasteless’s, and public transport in Seoul still has a fair amount of ridership, if not nearly so much as before the pandemic.

Update 2020-3-12: Min-Jae clarifies that as of the morning of the 13th Korea time, there is a shift to private transport even though the government says public transport is safe; he guesses ridership is down 20-30%.

In the big cities of Japan, ridership is down, though not by much relative to the magnitude of the crisis. The media quotes 10-20% declines in ridership on the Yamanote Line and on lines around Osaka, and 20-30% declines in ridership on the Nagoya subway. Maciej Ceglowski is visiting Japan and reports that the trains in Kyoto “are not crowded at all,” adding that about 3/4 of the people wear masks. Japanese office culture is resistant to working from home, as is I think office culture elsewhere in Asia-Pacific, and this has hampered social distancing efforts.

Finally, in Taipei, I do not have any information regarding public transport usage during the pandemic. That said, some circumstantial evidence that it is still going on is that the region has just opened a new circumferential line, the Yellow Line, and even let passengers ride for free for the first month, getting more than a million riders in 25 days, which is low but not outrageously so for a new circumferential line.

How can mass transit be made less infectious in the future?

There are two ways passengers can infect other passengers in public. The first is directly, through coughing, sneezing, or casual touching combined with touching one’s own face. The second is through intermediate surfaces, called fomites in epidemiology, such as poles, seats, door handles. Neither disease vector can be eliminated, but there are design elements that can greatly reduce both.

Infrared sensors for temperature checks

It’s possible to take people’s temperatures passively using infrared sensors. Taipei installed such sensors at one MRT station and is about to do so at six additional central stations. People with fever above 38 degrees will not be allowed into the station, and people with temperature between 37.5 and 38 degrees will have to undergo an ear temperature check to confirm that they do not have a fever. I saw this system at the airport when I visited Taipei three months ago, where it was used to screen passengers with fever.

This system requires all station entrances to be staffed. This may be expensive in smaller cities, but as a temporary measure during an epidemic, it’s fully justified. If you’re the government, you can afford to bust the budget in an emergency to make sure people can travel around the city without contracting a fatal disease.

Temperature checks will miss asymptomatic cases, but this is fine. The epidemiologist-turned-data-scientist Maria Ma summarizes the best available research on Covid-19: while asymptomatic transmission is possible, it requires much closer contact than being together on a train.

Hand sanitizer

Every station entrance should have hand sanitizer in sufficient quantities for the expected passenger traffic. Some office and university buildings already have this solution, even in the West; this is especially common in Singapore. My recollection of Taipei is that it had hand sanitizer at stations even in December, but I am not completely certain this was from Taipei and not Singapore or Bangkok.

Fomite reduction

Seoul offers disposable chopsticks for pressing elevator buttons. In the short run, transit agencies that use button-operated doors, such as those of Berlin and Paris, should do the same at stations and inside train cars, space permitting. In the long run, European agencies should be more like Asian (or North American) ones and have automatic doors opening at every stop.

In the long run, it’s also beneficial to design train interiors to inhibit the spread of viruses and bacteria. Some materials catch bacterial and viral infections more than others – for example, a 2015 study by Biranjia-Hurdoyal, Deerpaul and Permal finds that synthetic purses have far more bacteria than leather or cloth ones; this should be equally true of train seats. Moreover, the poles should be coated with copper, as it has biocidal and antiviral properties – a 2013 study by Salgado et al finds that coating ER surfaces with copper reduces the risk hospital-acquired infections, from 12.3% to 7.1% when all infections are included or from 8.1% to 3.4% excluding MRSA and VRE.

Fare barriers and station entrances should be designed to minimize fomites. The best option here is not used in Asia: no fare barriers at all, with proof-of-payment fare enforcement. But the smartcard systems and automatic fare barriers so common around Asia are a good second best, as they do not involve physical contact with foreign objects. The worst options are metal turnstiles that passengers turn with their hands, cage-style turnstiles, or heavy doors that passengers must push on their way out; these are found in New York and Paris, and should be replaced to reduce the spread of disease in the future.

Regular cleaning

Transport companies should clean their vehicles and stations regularly. This may not be realistic at bus stops, but is realistic on buses and trains and at all train stations. That ten-year-old piece of gum stuck to the floor of your New York subway station is not by itself a vector for a virus that only spread to humans three months ago, but if it’s still there, then so is the tissue thrown yesterday by someone who just got sick.

Seoul is using drones to spray disinfectant on hard-to-reach surfaces, such as playgrounds. This can also be used at railyards and elevated rail stations to speed up the process.

Employee safety

The guidelines above are designed for passenger safety. What about employee safety? This, I believe, is a smaller problem, at least in countries that are advanced enough to have good sick leave. It is notable that even in Hong Kong, trains are running, albeit the buses run at lower frequency as people are staying home.

A train driver works sitting alone in a cab separated from where passengers are is not at great risk, and neither is a bus driver separated by a glass screen. There is risk of worker-to-worker infection, especially if drop-in crews are common to control turnaround times, but it’s easier to test workers for fever and send sick ones home with pay than to deploy infrared sensors at every station entrance. As an additional layer of safety on top of temperature checks and generous sick leave, agencies should clean train and bus driver cabs between every crew change.

It’s workers who are together all the time who should not be going to work – that is, the head office. Planners, schedulers, managers, and clerical workers can work remotely, albeit at reduced productivity. Making regular plans to reduce infections during flu season, and planning how to respond to bigger epidemic threats in advance, is therefore useful since it doesn’t stress planning capacity at a time when productivity is the lowest.

What Europe Can Learn From Asia

Most of what I write about is what North America can learn from Europe, but the rich countries of Asia are extremely important as well. But what’s more interesting is knowledge sharing between Western Europe and the rich countries of East Asia. These two centers of passenger rail technology have some reciprocal exchange programs, but still learn less from each other than they should.

The ongoing coronavirus outbreak made the topic of Western learning from East Asia especially important. To be clear, none of the examples I’m going to talk about in this post is about the virus itself or at all about public health. But the sort of reaction in democratic East Asia that’s staved off the infection, compared with the failure of the West to do much in time, is instructive. When the virus was just in China, nobody in the West cared. I went to a comedy night in Berlin a month ago and it was the Asian comic who joked about how all they needed was to cough and the white people gave them space; it was still viewed as an exclusively Asian epidemic. By the same token, Korea’s success in reducing infections has made it to parts of Western media, but implementation still lags, leading to an explosion of deaths in Italy and perhaps soon France and the US. Hong Kong (from the bottom up) and Taiwan (with government assistance) have limited infection through social distancing and mask wearing, and the West refuses to adopt either.

If it’s Asian, Europeans as well as Americans view it as automatically either inferior or irredeemably foreign. Whatever the reasoning is, it’s an excuse not to learn. Unlike the United States, Europe has pretty good public transportation in the main cities, and a lot of domestic innovations that are genuinely better than what Japan, South Korea, and Taiwan do; thus, it can keep going on like this without visible signs of stagnation. Nonetheless, what Japan has, and to some extent the other rich Asian countries, remains a valuable lesson, which good public transport advocates and managers must learn to adopt to the European case.

Urban rail and regional rail: network design

Tokyo and Seoul both have stronger S-Bahn networks than any European city. This is not just an artifact of size. Paris and London are both pretty big, even if they’re still only about a third as big as Tokyo. In Tokyo, the infrastructure for urban and regional rail is just far better-integrated, and has been almost from the start. Among the 13 Tokyo subway lines, only three run as pure metro lines, separate from all other traffic: Ginza, Marunouchi, Oedo. The other 10 are essentially S-Bahn tunnels providing through-service between different preexisting commuter lines: the Asakusa Line connects the Keisei and Keikyu systems, the Hibiya Line connects the Tobu Skytree Line with Central Tokyo and used to through-run to the Tokyu Toyoko Line, etc.

This paradigm of cross-regional traffic is so strong that on lines that do not have convenient commuter lines to connect to, there are suburban tails built just to extend them farther out. The Tozai Line hooks into a reverse-branch of the Chuo Line to the west, but to the east has little opportunity for through-service, and therefore most trains continue onto an extension called the Toyo Rapid Railway.

On the JR East network, there are a few subway connections to, but for the most part the network has its own lines to Central Tokyo. This is an early invention of mainline rail through-running, alongside the Berlin S-Bahn; the Yamanote ring was completed in 1925. Further investment in through-service since then has given more lines dedicated tracks through Central Tokyo, for capacity more than anything else.

The issue is not just that there are many through-running lines. Tokyo has 15-16 through-running trunks, depending on how one counts, and Paris, a metro area about one third the size, will soon have 4.5. It’s not such a big difference. Rather, Tokyo’s through-running lines function well as a metro within the city in ways the Berlin S-Bahn, the Paris RER, the Madrid Cercanías, and any future London Crossrail lines simply don’t.

What’s more, future investment plans in Europe do not really attempt to turn the commuter rail network into a useful metro within the city. Berlin has a strong potential northwest-southeast S-Bahn route forming a Soviet triangle with the two existing radial trunks, but it’s not being built, despite proposals by online and offline advocates; instead, current S21 plans call for duplicating north-south infrastructure. In Paris, the RER C doesn’t really work well with the other lines, the RER E extension plans are a mess, and most of the region’s effort for suburban rail expansion is spent on greenfield driverless metro and not on anything with connections to legacy mainlines. In London, the subsurface Underground lines are historically a proto-S-Bahn, with some mainline through-service in the 19th century, but they are not really used this way today even though there is a good proposal by railfans.

While Europe generally does the longer-distance version of regional rail better than Japan, the vast majority of ridership is S-Bahn-type, and there, Japan absolutely crushes. What’s more, Korea has learned from Japan’s example, so that the Seoul Subway Line 1 is an S-Bahn and many other lines are very long-range; Seoul’s per capita rail ridership is much lower than Paris’s, but is increasing fast, as South Korea is a newly-industrialized country still building its infrastructure at low cost to converge to Western incomes.

Rolling stock

Tokyo outdoes the closest things to its peers in the West in S-Bahn network design. Japan is equally superior when it comes to the rolling stock technology itself. It has all of the following features:

  • Low cost. Finding information about rolling stock costs in Japan is surprisingly hard, but Wikipedia claims the 10000 Series cost 1.2 billion yen per 10-car, 200-meter train, which is around $60,000/meter, compared with a European range that clusters around $100,000.
  • Low weight – see table here. European trains are heavier, courtesy of different buff strength regulations that are not really needed for safety, as Japanese trains have lower death tolls per p-km than European ones thanks to accident avoidance.
  • All-MU configuration – Japan has a handful of locomotives for passenger service for the few remaining night trains, and runs all other trains with EMUs and sometimes DMUs. Parts of Europe, like Britain, have made this transition as well, but Zurich still runs locomotives on the S-Bahn.

The one gap is that Europe is superior in the long-range regional rail segment with a top speed of 160-200 km/h. But Japanese trains are better at the more urban end up to 100 km/h thanks to their low cost and weight and at the high-speed end of 300+ km/h thanks to low cost and weight (again) and better performance.

Shinkansen equipment is also more technically advanced than European high-speed trains in a number of ways, in addition to its lower mass and cost. The N700-I has a power-to-weight ratio of 26.74 kW/t, whereas European trains are mostly in the low 20s. Japanese train noses are more aerodynamic due to stringent noise regulations and city-center stations, and the trains are also better-pressurized to avoid ear popping in tunnels. As a result, the Shinkansen network builds single-bore double-track tunnels hardly bigger than each individual bore in a twin-bore European rail tunnel, helping reduce cost relative to Japan’s heavily mountainous geography. The EU should permit such trains on its own tracks to improve service quality.

The Shinkansen

The Shinkansen works better than European high-speed rail networks in a few ways, in addition to rolling stock. Some of it is pure geographic luck: Japanese cities mostly lie on a single line, making it easy to have a single trunk serve all of them. However, a few positive decisions improve service beyond what pure geography dictates, and should be studied carefully in Britain, Germany, and Italy.

  • Trains run through city centers with intermediate stops rather than around them. This slightly slows down the trains, because of the stop penalty at a city, and sometimes a slightly slowdown for an express train. This is especially important in Britain, which is proposing an excessively branched system for High Speed 2, severely reducing frequency on key connections like London-Birmingham and London-Manchester.
  • Trains run on dedicated tracks, apart from the Mini-Shinkansen. This was enforced by a different track gauge, but a sufficiently strong national network should run on dedicated tracks even with the same gauge. This is of especial importance in Germany, which should be building out its network to the point of having little to no track-sharing between high-speed and legacy trains, which would enable high-speed trains to run more punctually.
  • Train stations are through-stations (except Tokyo, which is almost set up to allow through-service and errs in not having any). If the legacy station is a terminal, like Aomori, or is too difficult to serve as a through-station, like Osaka, then the train will serve a near-downtown station a few km away, like Shin-Aomori 4 km from Aomori and Shin-Osaka 4 km from Osaka. Germany does this too at Kassel and has long-term plans to convert key intermediate terminals into through-stations, but France and Italy both neglect this option even when it is available, as in Tours and Turin.
  • Rolling stock is designed for high capacity, including fast egress. There is no cafe car – all cars have seats. There are two wide door pairs per car, rather than just one as on the TGV. There is full level boarding with high platforms. Express trains dwell even at major stations for only about a minute, compared with 5 minutes on the TGV and even slower egress at the Paris terminals. Trains turn at the terminals in 12 minutes, reducing operating expenses.
  • Pricing is simple and consistent, without the customer-hostile yield management practices of France, Spain, and much of the rest of Europe.

Reliability

Japan is renowned for its train punctuality. As far as I can tell, this comes from the same place as Switzerland: system design is centered around eliminating bottlenecks. Thus it’s normal in both Japan and Switzerland to leave some key commuter lines single-track if the frequency they run allows timed meets; both countries also employ timed overtakes between local and express trains on double track.

Where I think Japan does better than Switzerland is the use of track segregation to reduce delays. Captive trains are easier to control than highly-branched national rail networks. In Switzerland, there is no room for such captive trains – the entire country has fewer people than Tokyo, and the city of Zurich has fewer people than many individual Tokyo wards. But a big country could in effect turn long lines into mostly separated systems to improve punctuality. This goes against how the S-Bahn concept works in the German-speaking world, but the Tokyo and Seoul lines are in effect metros at a larger scale, even more so than the RER A and B or the Berlin S-Bahn. France, Germany, Spain, Italy, and Britain could all learn from this example.

The heavy emphasis on punctuality in Japanese railroad culture has been blamed for a fatal rail accident. But even with that accident, Japanese rail safety far surpasses Europe’s, approaching 80 billion passenger-km per on-board passenger fatality where Europe appears to be in the low teens.

Is this everything?

Not quite. I will write a companion piece about what Asia can learn from Europe eventually. For one, East Asia appears to optimize its rail operating culture to huge cities, much like France and Britain, and thus its smaller cities have less per capita rail usage than similar-size Central European ones; on this list, compare Fukuoka, Busan, and Sapporo with Stockholm, Prague, Vienna, Munich, Stuttgart, Rome, Frankfurt, Barcelona, and Hamburg. Europe is also better when it comes to 160-200 km/h regional rail.

However, the bulk of intercity rail traffic even in Europe is on high-speed trains, an area in which Europe has more to learn from Japan than vice versa. Similarly, the bulk of individual boardings on trains are on metro and short-range S-Bahn trains even in the German-speaking world; there there is a lot of learning to be done in both directions, but at the end of the day, Tokyo has higher rail usage than Paris and London.