Category: Good Transit

Transit and Scale Variance Part 2: Soviet Triangles

Continuing with my series on scale-variance (see part 1), I want to talk about a feature of transit networks that only exists at a specific scale: the Soviet triangle. This is a way of building subway networks consisting of three lines, meeting in a triangle:

The features of the Soviet triangle are that there are three lines, all running roughly straight through city center, meeting at three distinct points forming a little downtown triangle, with no further meets between lines. This layout allows for interchanges between any pair of lines, without clogging one central transfer point, unlike on systems with three lines meeting at one central station (such as the Stockholm Metro).

The name Soviet comes from the fact that this form of network is common in Soviet and Soviet-influenced metro systems. Ironically, it is absent from the prototype of Soviet metro design, the Moscow Metro: the first three lines of the Moscow Metro all meet at one point (in addition to a transfer point one station away on Lines 1 and 3). But the first three lines of the Saint Petersburg Metro meet in a triangle, as do the first three lines of the Kiev Metro. The Prague Metro is a perfect Soviet triangle; Lines 2-4 in Budapest, designed in the communist era (Line 1 opened in 1896), meet in a triangle. The first three lines of the Shanghai Metro have the typology of a triangle, but the Line 2/3 interchange is well to the west of the center, and then Line 4 opened as a circle line sharing half its route with Line 3.

Examples outside the former communist bloc are rarer, but include the first three lines in Mexico City, and Lines 1-3 in Tehran (which were not the first three to open – Line 4 opened before Line 3). In many places subway lines meet an even number of times, rather than forming perfect diameters; this is especially bad in Spain and Japan, where subway lines have a tendency to miss connections, or to meet an even number of times, going for example northwest-center-southwest and northeast-center-southeast rather than simply crossing as northwest-southeast and northeast-southwest.

But this post is not purely about the Soviet triangle. It’s about how it fits into a specific scale of transit. Pure examples have to be big enough to have three subway lines, but they can’t be big enough to have many more. Moscow and Saint Petersburg have more radial lines (and Moscow’s Line 5 is a circle), but they have many missed connections, due to poor decisions about stop spacing. Mexico City is the largest subway network in the world in which every two intersecting lines have a transfer station, but most of its lines are not radial, instead connecting chords around city center.

Larger metro networks without missed connections are possible, but only with many three- and four-way transfers that create crowding in corridors between platforms; in Moscow, this crowding at the connection between the first three lines led to the construction of the Line 5 circle. In many cases, it’s also just difficult to find a good high-demand corridor that intersects older subway lines coherently and is easy to construct under so much older infrastructure.

The result is that the Soviet triangle is difficult to scale up from the size class of Prague or Budapest (not coincidentally, two of the world’s top cities in rail ridership per capita). It just gets too cumbersome for the largest cities; Paris has a mixture of radial and grid lines, and the Metro still undersupplies circumferential transportation to the point that a circumferential tramway that averages 18 km/h has the same ridership per km as the New York City Subway.

It’s also difficult to scale down, by adapting it to bus networks. I don’t know of any bus networks that look like this: a handful of radial lines meeting in the core, almost never at the same station, possibly with a circular line providing crosstown service. It doesn’t work like this, because a small-city bus network isn’t the same as a medium-size city subway network except polluting and on the surface. It’s scaled for minimal ridership, a last-resort mode of transportation for the poorest few percent of workers. The frequency is a fraction of the minimum required to get even semi-reasonable ridership.

Instead, such networks work better when they meet at one city center station, often with timed transfers every half hour or hour. A crosstown line in this situation is useless – it cannot be timed to meet more than one radial, and untimed transfers on buses that come every half hour might as well not even exist. A source who works in planning in Springfield, Massachusetts, a metro area of 600,000, explained to me how the Pioneer Valley Transit Authority (PVTA) bus system works, and nearly all routes are radial around Downtown Springfield or else connect to the universities in the area. There are two circumferential routes within Springfield, both with horrifically little ridership. Providence, too, has little to no circumferential bus service – almost every RIPTA bus goes through Kennedy Plaza, except some outlying routes that stay within a particular suburb or secondary city.

The principle here is that the value of an untimed transfer depends on the frequency of service and to some extent on the quality of station facilities (e.g. shelter). Trains in Prague come every 2-3 minutes at rush hour and every 4-10 minutes off-peak. When the frequency is as low as every 15 minutes, transferring is already questionable; at the typical frequency of buses in a city with a bus-based transportation network, passengers are extremely unlikely to do it.

This raises the question, what about denser bus networks? A city with enough budget for 16 buses running at once is probably going to run 8 radii (four diameters) every half hour, with a city-center timed transfer, and service coverage extending about 24 minutes out of the center in each direction. But what happens if there’s enough budget for 60 buses? What if there’s enough budget for 200 (about comparable to RIPTA)?

Buses are flexible. The cost of inaugurating a new route is low, and this means that there are compelling reasons to add more routes rather than just beef up frequency on every route. It becomes useful to run buses on a grid or mesh once frequency rises to the point that a downtown timed transfer is less valuable. (In theory the value of a timed transfer is scale-invariant, but in practice, on surface buses without much traffic priority, schedules are only accurate to within a few minutes, and holding buses if one of their connections is late slows passengers down more than not bothering with timing the transfers.)

I know of one small city that still has radial buses and a circular line: Växjö. The frequency on the main routes is a bus every 10-15 minutes. But even there, the circular line (bus lines 2 and 6) is a Yamanote-style circle and not a proper circumferential; all of the buses meet in the center of the city. And this is in a geography with a hard limit to the built-up area, about 5-6 km from the center, which reduces the need to run many routes in many different directions over longer distances (the ends of the routes are 15-20 minutes from the center).

There’s also a separate issue, different from scale but intimately bundled with it: mode share. A city with three metro lines is capable of having high transit mode share, and this means that development will follow the lines if it is given the opportunity to. As the three lines intersect in the center, the place for commercial development is then the center. In the communist states that perfected the Soviet triangle, buildings were built where the state wanted them to be built, but the state hardly tried to centralize development. In Stockholm, where the subway would be a triangle but for the three lines meeting at one station, the lack of downtown skyscrapers has led to the creation of Kista, but despite Kista the region remains monocentric.

There is no chance of this happening in a bus city, let alone a bus city with just a handful of radial lines. In a first-world city where public transit consists of buses, the actual main form of transportation is the car. In Stockholm, academics are carless and shop at urban supermarkets; in Växjö, they own cars and shop at big box stores. And that’s Sweden. In the US, the extent of suburbanization and auto-centricity is legendary. Providence has some inner neighborhoods built at pedestrian scale, but even there, car ownership is high, and retail that isn’t interfacing with students (for example, supermarkets) tends to be strip mall-style.

With development happening at automobile scale in smaller cities with smaller transit networks, the center is likely to be weaker. Providence has more downtown skyscrapers than Stockholm, but it is still more polycentric, with much more suburban job sprawl. Stockholm’s development limits in the center lead to a smearing of commercial development to the surrounding neighborhoods (Spotify is headquartered two stops on the Green Line north of T-Centralen, just south of Odengatan). In Providence, there are no relevant development limits; the tallest building in the city is empty, and commercial development moves not to College Hill, but to Warwick.

With a weaker center, buses can’t just serve city center, unless the operating budget is so small there is no money for anything else. This is what forces a bus network that has money for enough buses to run something that looks like a transit network but not enough to add rail to have a complex everywhere-to-everywhere meshes – grids if possible, kludges using available arterial streets otherwise.

This is why bus and rail networks look so profoundly different. Bus grids are common; subway grids don’t exist, except if you squint your eyes in Beijing and Mexico City (and even there, it’s much easier to tell where the CBD is than by looking at the bus map of Chicago or Toronto). But by the same token, the Soviet triangle and near-triangle networks, with a number of important examples among subway network, does not exist on bus networks. The triangle works for cities of a particular size and transit usage intensity, and only in rapid transit, not in surface transit.

Transit and Scale Variance Part 1: Bus Networks

I intend to begin a series of posts, about the concept of scale-variance in public transit. What I mean by scale-variance is that things work dramatically differently depending on the size of the network. This can include any of the following issues, roughly in increasing order of complexity:

  • Economies and diseconomies of scale: cars display diseconomies of scale (it’s easier to build freeway lanes numbers 1-6 than lanes 14-20), transit displays the opposite (there’s a reason why the world’s largest city also has the highest per capita rail ridership).
  • Barriers to entry: a modern first-world transit network, or an intercity rail network, requires vast capital investment, beyond the ability of any startup, which is why startup culture denigrates fixed-route transit and tries to find alternatives that work better at small scale, and then fails to scale them up.
  • Network design: the optimal subway network of 500 km looks different from the optimal network of 70 km, and its first 70 km may still look different from the optimal 70 km network. Bus networks look different from both, due to differences in vehicle size, flexibility, and right-of-way quality (surface running vs. grade separations).
  • Rider demographics: the social class of riders who will ride half-hourly buses is different from the class who will ride the subway, and the network design should account for that, e.g. by designing systems that the middle class will never ride to destinations that are useful to the working class. But then marginal rider demographics are profoundly different – sometimes the marginal rider on a low-usage bus network is a peak suburban commuter, leading to design changes that may not work in higher-volume settings.

For a contrasting example of scale-invariance, consider timed transfers: they underlie the Swiss intercity rail network, but also some small-town American bus systems and mid-size night bus networks such as Vancouver’s. I wrote about it in the context of TransitMatters’ NightBus proposal for Boston, giving a lot of parallels between buses and trains that work at many scales.

However, night buses themselves are an edge case, and usually, bus network design is different at different scales. In this post I’d like to go over some cases of changes that work at one scale but not at other scales.

Brampton

The trigger for this post was a brief Twitter flamewar I had earlier today, about Brampton. TVO just published an article praising Brampton Transit for its rapid growth in bus ridership, up from 9 million in 2005 to 27 million in 2017. Brampton is a rapidly growing suburb of 600,000 people, but transit ridership has grown much faster than population. The bone of contention is that current ridership is only 45 annual bus trips per capita, which is weak by the standard of even partly transit-oriented places (Los Angeles County’s total annual bus and rail ridership is about 40 per capita), but is pretty good by the standard of auto-oriented sprawl. The question is, is Brampton’s transit success replicable elsewhere? I’d argue that no.

First, Brampton’s transit ridership growth is less impressive than it looks, given changing demographics. Fast growth masks the extent of white flight in the city: it had 433,000 visible minorities in 2016, up from 246,000 in 2006 and 130,000 in 2001, and only 153,000 whites, down from 185,000 in 2006 and 194,000 in 2001. The TVO article points to racial divisions about transit, in which the white establishment killed a light rail line over concerns about traffic, whereas the black and South Asian population (collectively a majority of the city’s population) was supportive. Ridership per nonwhite resident is still up, but not by such an impressive amount. Brampton’s population density, 2,200 per square kilometer, is high for a North American suburb, and a change in demographics could trigger ridership growth – this density really is okay for both transit and driving, whereas very high density (e.g. New York) favors transit and very low density (e.g. most of the US Sunbelt) favors driving regardless of demographics.

But even with demographic changes, Brampton has clearly gotten something right. I compare ridership today to ridership in 2005 because that’s when various bus improvements began. These improvements include the following:

  • A bus grid, with straighter routes.
  • More service to the airport.
  • Free transfers within a two-hour window.
  • New limited-stop buses on the major trunks, branded as Züm.

The bus grid is not especially frequent. The Züm routes have variants and short-turns, with routes every 10-12 minutes on some trunks and every 20-25 on branches and the lower-use trunk lines.

This isn’t the stuff high ridership is made of. Most importantly, this is unlikely to be the stuff higher ridership in Brampton could be made of. The Toronto region is electrifying commuter rail in preparation for frequent all-day service, called the RER. One of Brampton’s stations, Bramalea, will get 15-minute rail frequency all day; but Brampton Station itself, at the intersection of the two main Züm routes, will still only have hourly midday service. With fast service to Toronto, the most important thing to do with Brampton buses is to feed the RER (and get the RER to serve Downtown Brampton frequently), with timed transfers in Downtown Brampton if possible.

The express buses are specifically more useful for low-transit cities than for high-transit ones. In low-transit cities, the travel market for transit consists of poor people, and commuters who want to avoid peak traffic. Poor people benefit from long transfer windows and from a grid network, whereas commuters only ride at rush hour and only to the most congested areas; in Brampton, where city center doesn’t amount to much, this underlies the express bus to the airport, and the trains that run to Downtown Toronto today.

The marginal rider in Brampton today is either a working-class immigrant who can’t afford Toronto, or a car-owning commuter who drives everywhere except the most congested destinations, such as Downtown Toronto at rush hour, or the airport. Brampton has catered to these riders, underlying fast bus ridership growth. But they’re not enough to lead to transit revival.

Bus grids

The value of a bus grid in which passengers are expected to transfer to get to many destinations rises with the frequency of the trunk lines. In Vancouver and Toronto, the main grid buses come every 5-10 minutes off-peak, depending on the route, and connect to subway lines. Waiting time is limited compared with the 15-minute grids common in American Sunbelt cities with bus network redesigns, such as San Jose and Houston.

The difference between waiting 15 minutes and waiting 7.5 minutes may seem like a matter of degree and not of kind, but compared with bus trip length, it is substantial. Buses are generally a mode of transportation for short trips, because they are slow, and people don’t like spending all day traveling. The average unlinked bus trip in Houston is 24 minutes according to the National Transit Database. In San Jose, it’s 27 minutes. Breaking one-seat rides into two-seat rides, with the bus schedules inconsistent (“show up and go”) and the connections not timed, means that on many trips the maximum wait time can be larger than the in-vehicle travel time.

The other issue coming from scale is that frequent bus network don’t work in sufficiently large cities. Los Angeles can run frequent bus lines on key corridors like Vermont and Western and even them them dedicated lanes, but ultimately it’s 37 km from San Pedro to Wilshire and an hourly bus on the freeway will beat any frequency of bus on an arterial. There’s a maximum size limit when the bus runs at 20 km/h in low-density cities (maybe 30 in some exceptional cases, like low-density areas of Vancouver with not much traffic and signal priority), and cars travel at 80 km/h on the freeway.

This has strong implications to the optimal design of bus networks even in gridded cities. In environments without grids, like Boston, I think people understand that buses work mostly as rail feeders (it helps that Boston’s public transit is exceptionally rail-centric by the standards of other US cities with similar transit use levels, like Chicago or San Francisco). But in sufficiently large cities, buses have to work the same way even with grids, because travel times on surface arterials are just too long. The sort of grid plan that’s used for buses in Chicago and Toronto is less useful in the much larger Los Angeles Basin.

Quick Note: U-Shaped Lines

Most subway lines are more or less straight, in the sense of going north-south, east-west, or something in between. However, some deviate from this ideal: for example, circular lines. Circular lines play their own special role in the subway network, and the rest of this post will concern itself only with radial lines. Among the radials, lines are even more common, but some lines are kinked, shaped like an L or a U. Here’s a diagram of a subway system with a prominently U-shaped line:

Alert readers will note the similarity between this diagram and my post from two days ago about the Washington Metro; the reason I’m writing this is that Alex Block proposed what is in effect the above diagram, with the Yellow Line going toward Union Station and then east along H Street.

This is a bad idea, for two reasons. The first is that people travel in lines, not in Us. Passengers going from the west end to the east end will almost certainly just take the blue line, whereas passengers going from the northwest to the northeast will probably drive rather than taking the red line. What the U-shaped layout does it put a one-seat ride on an origin-and-destination pair on which the subway is unlikely to be competitive no matter what, while the pairs on which the subway is more useful, such as northeast to southwest, require a transfer.

The second reason is that if there are U- and L-shaped lines, it’s easy to miss transfers if subsequent lines are built:

The purple line has no connection to the yellow line in this situation. Were the yellow and red line switched at their meeting point, this would not happen: the purple line would intersect each other subway line exactly once. But with a U-shaped red line and a yellow line that’s not especially straight, passengers between the purple and yellow lines have a three-seat ride. Since those lines are parallel, origin-and-destination pairs between the west end of the purple line and east end of the yellow line or vice versa require traveling straight through the CBD, a situation in which the subway is likely to be useful, if service quality is high. This would be perfect for a one-seat or two-seat ride, but unfortunately, the network makes this a three-seat ride.

The depicted purple line is not contrived. Washington-based readers should imagine the depicted purple line as combining the Columbia Pike with some northeast-pointing route under Rhode Island Avenue, maybe with an additional detour through Georgetown not shown on the diagram. This is if anything worse than what I’m showing, because the purple/red/blue transfer point is then Farragut, the most crowded station in the city, with already long walks between the two existing lines (there isn’t even an in-system transfer between them.). Thus the only direct connection between the western end of the purple line (i.e. Columbia Pike) and what would be the eastern end of the yellow line (i.e. H Street going east to Largo) requires transferring at the most crowded point, whereas usually planners should aim to encourage transfers away from the single busiest station.

When I created my Patreon page, I drew an image of a subway network with six radial lines and one circle as my avatar. You don’t need to be a contributor to see the picture: of note, each of the two radials intersects exactly once, and no two lines are tangent. If the twelve ends of six lines are thought of as the twelve hours on a clock, then the connections are 12-6, 1-7, 2-8, 3-9, 4-10, and 5-11. As far as possible, this is what subway networks should aspire to; everything else is a compromise. Whenever there is an opportunity to build a straight line instead of a U- or L-shaped lines, planners should take it, and the same applies to opportunities to convert U- or L-shaped lines to straight ones by switching lines at intersection points.

What Washington Metro Should Build

I’ve been thinking intermittently about how to relieve the capacity crunch on the Washington Metro. The worst peak crowding is on the Orange Line heading eastbound from Arlington to Downtown Washington, and this led to proposals to build a parallel tunnel for the Blue Line. Already a year ago, I had an alternative proposal, borrowing liberally from the ideas of alert reader Devin Bunten, who proposed a separate Yellow Line tunnel instead. Matt Yglesias’s last post about it, using my ideas, made this a bigger topic of discussion, and I’d like to explain my reasoning here.

Here is the map of what I think Metro needs to do:

Existing stations have gray fill, new ones have white fill. The Yellow Line gets its own route to Union Station, either parallel to the Orange Line and then north via the Capitol (which is easier to build) or parallel to the Green Line (which passes closer to the CBD), and then takes over the route to Glenmont. The rump Red Line then gets a tunnel under H Street, hosting the busiest bus in the city, and then takes over the current Blue Line to Largo, with an infill station in Mayfair for a transfer to the Orange Line and another at Minnesota Avenue for bus connections.

The Blue Line no longer presents a reverse-branch. It is reduced to a shuttle between the Pentagon and Rosslyn. Matt mistakenly claims that reducing the Blue Line to a shuttle is cost-free; in fact, it would need dedicated tracks at Rosslyn (if only a single track, based on projected frequency), an expensive retrofit that has also been discussed as part of the separate Blue Line tunnel project. At the Pentagon, initially shared tracks would be okay, since the Yellow Line is still a branch combined with the Green Line today; but the separate Yellow Line tracks would then force dedicated turnback tracks for the Blue Line at the Pentagon as well. Frequency should be high all day, and at times of low frequency (worse than about a train every 6 minutes), the lines in Virginia should be scheduled to permit fast transfers between both the Yellow and Orange Lines and the Blue Line.

The reverse branch today limits train frequency at the peak, because delays on one line propagate to the others. Peak capacity on Metro today is 26 trains per hour. I don’t know of anywhere with reverse-branching and much higher capacity: the London Underground lines that reverse-branch, such as the Northern line, have similar peak traffic, whereas ones that only conventionally branch (Central) or don’t branch at all (Victoria) are capable of 35-36 peak trains per hour. This means that my (and Devin’s, and Matt’s) proposed system allows more capacity even in the tunnel from Rosslyn to Foggy Bottom, which gets no additional connections the way 14th Street Bridge gets to feed a new Yellow Line trunk.

The big drawback of the plan is that the job center of Washington is Farragut, well to the west of the Yellow and Green Lines. WMATA makes origin-and-destination data publicly available, broken down by period. In the morning peak, the top destination station for each of the shared Blue and Yellow Line stations in Virginia is either the Pentagon or Farragut; L’Enfant Plaza is also high, and some stations have strong links to Gallery Place-Chinatown. Metro Center is actually faster to reach by Yellow + Red Line than by taking the Blue Line the long way, but Farragut is not, especially when one factors in transfer time at Gallery Place. The saving grace is that eliminating reverse-branching, turning Metro into four core lines of which no two share tracks, allows running trains more frequently and reliably, so travel time including wait time may not increase much, if at all.

This is why I am proposing the second alternative for the route between L’Enfant Plaza and Union Station. Devin proposed roughly following the legacy rail line. In the 1970s, it would have been better for the region to electrify commuter rail and add infill stops and just run trains on the route, and today a parallel route is appealing; Matt even proposed using the actual rail tunnel, but, even handwaving FRA regulations, that would introduce schedule dependency with intercity trains, making both kinds of trains less reliable. This route, the southeastern option among the two depicted in dashed lines, is easier to build, in that there are multiple possible streets to dig under, including C and E Streets, and giant parking lots and parks where the tracks would turn north toward the Capitol and Union Station. It also offers members of Congress and their staffers a train right to the officeUnfortunately, it forces Farragut-bound riders to transfer to the Orange Line at L’Enfant Plaza, slowing them down even further.

The second alternative means the Yellow Line stays roughly where it is. Four-tracking the shared Yellow and Green Line trunk under 7th Street is possible, but likely expensive. Tunneling under 8th Street is cheaper, but still requires passing under the Smithsonian Art Museum and tunneling under private property (namely, a church) to turn toward H Street. Tunneling under 6th Street instead is much easier, but this is farther from 7th Street than 8th Street is, and is also on the wrong side for walking to Metro Center and points west; the turn to H Street also requires tunneling under a bigger building. By default, the best route within this alternative is most likely 8th Street, then.

A variant on this second alternative would keep the Red Line as is, and connect the Yellow Line to the subway under H Street and to Largo. This is easier to construct than what I depict on my map: the Yellow Line would just go under H Street, with a Union Station stop under the track and new access points from the tracks to a concourse at H Street. This would avoid constructing the turns from the Red Line to H Street next to active track. Unfortunately, the resulting service map would look like a mess, with a U-shaped Red Line and an L-shaped Yellow Line. People travel north-south and east-west, not north-north or south-east.

Under either alternative, H Street would provide subway service to most of the remaining rapid transit-deprived parts of the District west of the Anacostia River. Some remaining areas near the Penn and Camden Lines could benefit from infill on commuter rail, and do not need Metro service. The big gaps in coverage in the District would be east of the river, and Georgetown.

Georgetown is the main impetus for the Blue Line separation idea; unfortunately, there’s no real service need to the east, along K Street, so the separate Blue Line tunnel would be redundant. In the 1970s it would have been prudent to build a Georgetown station between Foggy Bottom and Rosslyn, but this wasn’t done, and fixing it now is too much money for too little extra ridership; Bostonian readers may notice that a similar situation arises at the Seaport and BCEC, which should be on the Red Line if it were built from scratch today, but are unserved since the Red Line did not go there in the 1900s and 10s, and attempting to fix it by giving them their own subway line is a waste of money.

East of the river, the Minnesota Avenue corridor would make a nice circumferential rapid bus. But there are no strong radial routes to be built through it; the strongest bus corridor, Pennsylvania Avenue, serves a small node at the intersection with Minnesota and thereafter peters out into low-frequency branches.

This means that if the Yellow Line separation I’m proposing is built, all parts of the District that could reasonably be served by Metro will be. If this happens, Metro will have trunk lines with frequent service, two not branching at all and two having two branches on one side each; with passengers from Alexandria riding the Yellow Line, the Orange crush will end. The main issue for Metro will then be encouraging TOD to promote more ridership, and upgrading systems incrementally to allow each trunk line to carry more trains, going from 26 peak trains per hour to 30 and thence 36. Washington could have a solid rapid transit skeleton, which it doesn’t today, and then work on shaping its systems and urban layout to maximize its use.

RPA Fourth Regional Plan: LaGuardia Airport and the Astoria Line

This is the second post based on a Patreon poll about the RPA Fourth Regional Plan. See the first post, about Third Avenue, here.

The most worrisome part of the RPA Fourth Regional Plan is the LaGuardia Airport connector. The regional rail system the RPA is proposing includes some truly massive wastes of money, but what the RPA is proposing around LaGuardia showcases the worst aspects of the plan. On Curbed I explained that the plan has an unfortunate tendency to throw in every single politically-supported proposal. I’d like to expand on what I said in the article about the airport connector:

The most egregious example is another transit project favored by a political heavyweight: the LaGuardia AirTrain, championed by Governor Andrew Cuomo. Though he touts it as a one-seat ride from Midtown to LaGuardia, the vast majority of airport travelers going to Manhattan would have to go east to Willets Point (a potential redevelopment site) before they could go west. Even airport employees would have to backtrack to get to their homes in Jackson Heights and surrounding neighborhoods. As a result, it wouldn’t save airport riders any time over the existing buses.

Once again, it’s proven unpopular with transit experts and advocates: [Ben] Kabak mocked the idea as vaporware, and Yonah Freemark showed how circuitous this link would be. When Cuomo first proposed this idea, Politico cited a number of additional people who study public transportation in the region with negative reactions. Despite its unpopularity—and the lack of an official cost for the proposal—the AirTrain LaGuardia is included in the RPA’s latest plan.

But there is an alternative to Cuomo’s plan: an extension of the N/W train, proposed in the 1990s, which would provide a direct route along with additional stops within Astoria, where there is demand for subway service. Community opposition killed the original proposal, but a lot can change in 15 years; Astoria’s current residents may well be more amenable to an airport connector that would put them mere minutes from LaGuardia. Cuomo never even tried, deliberately shying away from this populated area.

And the Fourth Plan does include a number of subway extensions, some of which have long been on official and unofficial wishlists. Those include extensions under Utica and Nostrand avenues (planned together with Second Avenue Subway, going back to the 1950s), which also go under two of the top bus routes in the city, per [Jarrett] Walker’s maxim [that the best argument for an urban rail line is an overcrowded bus line, as on Utica and Nostrand].

There is also an extension of the N/W trains in Astoria—though not toward LaGuardia, but west, toward the waterfront, where it would provide a circuitous route to Manhattan. In effect, the RPA is proposing to stoke the community opposition Cuomo was afraid of, but still build the easy—and unsupported—airport connector Cuomo favors.

My views of extending the Astoria Line toward LaGuardia have evolved in the last few years, in a more positive direction. In my first crayon, which I drew in 2010, I didn’t even have that extension; I believed that the Astoria Line should be extended on Astoria Boulevard and miss the airport entirely, because Astoria Boulevard was the more important corridor. My spite map from 2010, give or take a year, connects LGA to the subway via a shuttle under Junction, and has a subway branch under Northern, a subway extension that I’ve been revising my views of negatively.

The issue, to me, is one of branching and capacity. The Astoria Line is a trunk line on the subway, feeding an entire tunnel to Manhattan, under 60th Street; the Queens Boulevard Line also feeds the same tunnel via the R train, but this is inefficient, since there are four trunk lines (Astoria, Flushing, and Queens Boulevard times two since it has four tracks), four tunnels (63rd, 60th, 53rd, Steinway/42nd), and no way to get from the Astoria Line to the other tunnels. This was one of my impetuses for writing about the problems associated with reverse-branching. Among the four trunks in Queens, the Astoria Line is the shortest and lowest-ridership, so it should be extended deeper into Queens if it is possible to do so.

The RPA is proposing to extend the Astoria Line, to its credit. But its extension goes west, to the waterfront. This isn’t really a compelling destination. Development isn’t any more intense than farther east, and for obvious reasons it isn’t possible to extend this line further; the RPA’s proposal would only add one stop to the subway. In contrast, an eastern extension toward LGA could potentially rebuild the line to turn east on Ditmars (with some takings on the interior of the curve at Ditmars and 31st), with stops at Steinway and Hazen before serving the airport. The intensity of development at Steinway is similar to that at 31st and Ditmars or at 21st, and Hazen also has some housing, albeit at lower density. Then, there is the airport, which would be about 8 minutes from Astoria, and 26 minutes from 57th and 7th in Manhattan. This is a different route from that proposed in the Giuliani administration, involving going north above 31st and then east farther out, running nonstop to the airport (or perhaps serving a station or two) through less residential areas, but I believe it is the best one despite the added impact of running elevated on Ditmars.

LGA is not a huge ridership generator; total O&D ridership according to the Consumer Airfare Report is around 55,000 per day, and 33% mode share is aspirational even with fast direct service to Manhattan hotels and an easy connection to the Upper East Side. But it still provides ridership comparable to that of Astoria Boulevard or Ditmars on the line today, and Steinway and Hazen are likely to add more demand. If the MTA closes the 11th Street Connection, taking the R from 60th Street Tunnel to the Queens Boulevard Line, in order to reduce the extent of reverse-branching, then the Astoria Line will run under capacity and need this additional demand. The total number of boardings at all stations, including Queensboro Plaza, is 80,000 per weekday today, plus some transfer volumes from the 7, which empties at Queensboro Plaza as 60th Street Tunnel provides a faster route to most Manhattan destinations than the Steinway Tunnel. An LGA extension should add maybe 40,000 or 50,000 weekday riders, without much of a peak since airport travel isn’t peaky, and make it easier to isolate the Astoria Line from the other Queens lines. This is not possible with a short extension to the waterfront as the RPA proposes.

I’ve seen someone suggest somewhere I don’t remember, perhaps on Twitter, that the reason the RPA plan involves an extension of the Astoria line to the west is to insidiously get the correct extension to LGA passed. If the RPA can propose an el in Astoria and not be killed by NIMBYs, then it will prove to Cuomo that NIMBYism is not a problem and thus he can send the subway to the airport directly, without the circuitous air train project that even less acerbic transit writers like Ben and Yonah hate.

I disagree with this line, on two different grounds. The first is that the RPA has two other reasons to support a western extension of the Astoria Line: it connects to the waterfront (which, following de Blasio and his support for the waterfront tramway, the RPA wants to develop further), and it got a station on Triboro in the Third Regional Plan, in the 1990s. I can no longer find the map with the stations on Mike Frumin’s blog, but the plan was to have a station every 800 meters, with a station to the west of Ditmar/31st still in Queens, around 21st Street; only in the more recent plan did the RPA redesign the idea as Crossboro, with much wider stop spacing.

The second grounds for disagreement is that the RPA presented a long-term vision. If Cuomo’s flawed LGA connector is there, then it will embolden him to find money to build this connection, even though it’s slower than taking a bus to the subway today. It will not embolden anyone to look for funding for the extension of the Astoria Line to the west, since there is no force clamoring for such extension – not the neighborhood, and not even the RPA, which includes this line on a long list of proposals.

As I said on Curbed, the RPA has been around for 90 years. Cuomo is just a governor, not even the leader of a real political movement (unlike Bernie Sanders, who seems to be interested in his leftist agenda more than in himself). There is no reason for an organization so venerable to tether itself to a politician who isn’t likely to be around for more than a few more years. On the contrary, it can provide cover for Cuomo to change his plan, if it does some legwork to prove that people in Astoria actually are interested in subway expansion to the east.

I Gave a Talk About Regional Rail

I expect there will be writeups about the talk (e.g. on Streetsblog). But meanwhile, here are my slides (warning: 17 MB, because of pictures). These are identical to what was shown at the talk, with two differences: I fixed one small mistake (Fordham Road vs. Pelham Parkway), and I consolidated the pauses, so each slide is a page, rather than a few pages, each page adding a line.

There were light fantasy maps in the talk. Because of size, I’m not embedding them in the post. But there are links:

Yellow highlights around a line indicate it’s new; Gateway is highlighted in one direction since it’s an existing two-track line to be four-tracked. On the infill map, solid circles are existing stations, gray circles are planned stations, white circles are my suggestions for additional infill.

Fix DeKalb Avenue

In New York, there are two dedicated subway tracks on the Manhattan Bridge offering a bypass of Lower Manhattan. Between DeKalb Avenue in Brooklyn and Canal Street in Chinatown in Manhattan, Q trains run nonstop for 3.5 km, while the R train goes the long way, taking 5.5 km and making 2 intermediate stops in Downtown Brooklyn and 4 in Lower Manhattan. The N skips DeKalb Avenue, with a 4.5 km nonstop segment between Canal Street and the Atlantic/Pacific/Barclays station complex.

The Q and N should be immense time savers. Instead, the Q does the trip in 8 minutes and the N in 10, both of which average 26-27 km/h. The subway’s overall average speed, weighed down by local trains stopping every 700 meters, is 29 km/h. The Q and N are still time savers, though, because the R does the 5.5 km in 18 minutes, an average speed of 16 km/h – far less than the systemwide average, and even less than the slowest Paris Metro line, Line 4 with its 500-meter interstations and 20 km/h average speed. Between DeKalb and Pacific, about 800 meters, the R takes 3 minutes. Unfortunately, New York City Transit is not taking any measures that would fix this, and when I asked about one possibility, I got excuses.

There are two reasons why this part of the subway is so slow. The first is something called signal timers. Timers are devices installed at frequent intervals on long interstations, such as the bridges and tunnels connecting Manhattan with Brooklyn and Queens, limiting train speed. These timers have always been around, but after fatal accidents in the 1990s, New York City Transit tightened them, reducing speed further; for some more background, see my Vox piece from last summer. The timers are more safety theater than safety. The biggest conclusion I reached from looking at the accident postmortem on the NTSB and some NYCT information was “make sure your trains’ brakes work as intended”; NYCT derated the trains’ service and emergency braking rates later in the 90s, which marginally reduces maintenance costs but is bad for safety and brutal for train speed.

The second reason is the switches at DeKalb Avenue. DeKalb is a six-track station, with four tracks feeding the Manhattan Bridge and two feeding the tunnel through Lower Manhattan. The two tunnel tracks then continue to the south as local tracks on the Fourth Avenue Line, carrying the R; this is the least used of all subway trunk lines into Manhattan, because the detour and low speed make it useless for most Midtown-bound passengers. The four bridge tracks include two express tracks at DeKalb going to the Brighton Line, and two super-express tracks skipping DeKalb continuing to the south as express Fourth Avenue tracks. Today, there is a splitting and recombining of branches. The B and D run together from Sixth Avenue to the Manhattan Bridge, and the N and Q run together from Broadway, but just north of DeKalb they recombine as B and Q running to Brighton, and D and N running super-express down Fourth Avenue.

This recombination at DeKalb slows down trains considerably, in two ways. First, the interlocking is complex. You can see it on this map on NYCSubway.org; in addition to splitting and recombining the B, D, N, and Q, it also has a non-revenue connection allowing R trains to serve the Brighton Line. Trains on diverging turnouts go at glacial speeds. And second, trains from four lines influence one another’s schedules, and delays propagate. Supervising train movements is thus difficult, and control center has to have a camera watching the trains enter the interlocking to ensure they adhere to schedule; timetables have to take the resulting delays into account.

When I first complained about reverse-branching in New York, I talked about capacity limits imposed by having more trunk lines than branches, a situation that is still to some extent true going north and east of Midtown. At DeKalb, there are six tracks going in and six going out, but the recombination makes things slower, and should be removed. NYCT should make a decision between having B and D trains run on the Brighton Line and the N and Q on Fourth Avenue, or the reverse. The interlocking permits either option, with entirely grade-separated junctions, allowing the trains on the two lines to no longer interfere with each other’s operations.

I in fact asked NYCT about it by proxy. NYCT dismissed the idea, on the grounds that transfer volumes between the B/D and N/Q would be too big. At Atlantic/Pacific, the Pacific side has a cross-platform transfer between the local R and express D/N, but going between the Pacific side and the Atlantic side (the B/Q, and separately the 2/3/4/5) involves a lot of walking. NYCT believes that passengers would flood the corridors looking for a train to their preferred destination, and the transfer volumes would require trains to have long dwell times. NYCT said nothing about whether the overall speed would actually fall, but I believe that based on the large transfer volumes NYCT predicts, passenger trip times (including transfer times) would rise. The only problem: I don’t believe NYCT’s prediction is true at all.

The B and D trains go express up Sixth Avenue, making stops at Grand Street in Chinatown, Broadway-Lafayette on Houston Street, West Fourth Street in the Village, and Herald Square. The N and Q trains go express up Broadway, serving Canal Street in Chinatown, Union Square, and Herald Square. North of Herald Square the two lines are never more than one long block apart until they leave Midtown. Passengers going toward Midtown are unlikely to have strong opinions about which of the two lines they would prefer.

Passengers going to destinations between Manhattan Bridge and Midtown might register stronger preferences. Union Square is the fourth busiest subway station in New York, and is quite far from the B and D. The closest alternative using the B and D is to change cross-platform to the M or F at West Fourth, and get off at 14th Street and Sixth Avenue, two long blocks from Union Square. Three more stations are potential concerns: Canal Street ranks 18th, West Fourth ranks 21st, and Broadway-Lafayette ranks 25th. Getting to Broadway-Lafayette from the N or Q is easy: the station and Canal Street are both on the 6, and passengers can transfer to the 6 at Canal.

West Fourth and Canal remain concerns, but they are not huge ones; they are secondary destinations. Canal is only a major destination for Chinese-New Yorkers, and in Brooklyn they cluster in Sunset Park along Fourth Avenue, suggesting that the Fourth Avenue express tracks should carry the N and Q and the Brighton tracks should carry the B and D. The urban geography of Chinese-New Yorkers is changing due to the combination of fast immigration and fast integration and migration to the suburbs, but this is a service decision, not an infrastructure investment; it can be reversed if demographics change.

Moreover, as a destination, West Fourth is predominantly used for NYU. The Village is a dense residential neighborhood, and West Fourth allows its residents to easily reach Lower Manhattan, Downtown Brooklyn, and two different four-track trunk lines through Midtown. But it has few jobs, outside NYU, which lies mostly between Sixth Avenue and Broadway. Union Square can adequately serve people going toward NYU, and stations on the R and 6 to the south can serve people going to NYU even better. The one problem is that the transfer between the R and the N/Q at Canal Street is not cross-platform; the cross-platform transfers start at Union Square. But with coverage of multiple stations walkable to NYU, the loss of the one-seat ride to West Fourth is not fatal. Even the transfer to the A, C, and E trains at West Fourth has alternative options: passengers from the N or Q going to the E can transfer to the F or M at Herald Square and reach the same stations, and passengers going to the A or C can transfer to the 1 at Times Square and to the A or C at Columbus Circle, both of which transfers are not much harder than climbing two flights of stairs at West Fourth.

With so many options, not many riders would be connecting at Atlantic/Pacific, and trains could keep dwell times short. If anything, dwell times might be shorter, because missing a train would be less fatal: the next train on the same track would serve the same destinations in Midtown, so riders would only need to wait about 3 minutes at rush hour, and 5 minutes off-peak. The gain in speed would be substantial, with the interlocking imposing fewer operational constraints.

NYCT might need to slightly rework the switches, to make sure the chosen matching of the lines in Manhattan and Brooklyn takes the straight and not the diverging direction at the turnouts; typically, the straight direction imposes no speed limit (up to full line speed on high-speed rail lines), but the diverging direction is slow. A matching in which the B and D go on Brighton and the N and Q on Fourth Avenue express to my understanding already involves only one diverging move, if I am reading the track map linked on NYCSubway.org correctly. At the same time, NYCT could fix the switches leading to the R: there was through-service from the Brighton Line to the tunnel tracks the R uses today, but there no longer is, so this out-of-service connection should get diverging and not straight moves. But even with the R, the capital investment involved is minimal.

I do not know the potential travel time gains between DeKalb and Canal Street (or Grand Street) with no timers or reverse-branching. With straight tracks across Manhattan Bridge, and wide curves toward Grand Street, 3.5-minute trips are aspirational, 4-minute trips are still possible, and 5-minute trips should be easy. From Pacific Street, add one more minute, corresponding to cruising at 50 km/h, a speed limit the subway routinely attains even on local tracks. This saves passengers from DeKalb about 4 minutes, and passengers from Pacific about 5. The average trip across the system is about 21 minutes, and the average delay (“excess journey time“) is 3 minutes. The saving would be immense, and contribute to both more casual ridership between Brooklyn and Manhattan, and lower operating costs coming from faster trips.

NYCT should not make excuses for this. The timers may have been originally justified as a safety improvement, but reducing train braking rates had the opposite effect. And, uniquely among the various reverse-branch points in New York, DeKalb feeds two Manhattan trunks that are very close to each other, especially in Midtown, to the point that one-seat rides to every stop have limited value. It should make a decision about whether to run the B/D together on Fourth Avenue and the N/Q on Brighton (switching the Q and D) or the reverse (switching the B and N), based on origin-and-destination data. Some passengers might bemoan the loss of one-seat rides, but most would cheer seeing their trips sped up by 4-5 minutes.

Little Things That Matter: Vertical Circulation

Chatelet-Les Halles has a problem with passenger circulation. It has exceedingly wide platforms – the main platforms, used by the RER A and B, are 17 meters wide – but getting between the platform level and the rest of the station runs into a bottleneck. There are not enough stairs and escalators between the platform and the mezzanine, and as a result, queues develop after every train arrival at rush hour. Similar queues are observed at the Gare du Nord RER platforms. The situation at Les Halles is especially frustrating, since it’s not a constrained station. The platforms are so wide they could very easily have four or even six escalators per access point flanking a wide staircase; instead, there are only two escalators, an acceptable situation at most stations but not at a station as important as Les Halles.

This is generally an underrated concern in the largest cities. In smaller cities, the minimum number of access points required for coverage (e.g. one per short subway platform, two per long platform) is enough even at rush hour. But once daily ridership at a station goes into the high five figures or the six figures, a crunch is unavoidable.

There are two degrees of crunch. The first, and worse, is when the capacity of the escalators and stairs is not enough to clear all passengers until the next train arrives. In practice, this forces trains to come less often, or to spread across more platforms than otherwise necessary; Penn Station’s New Jersey Transit platforms are that bad. The situation at Les Halles and Gare du Nord is a second, less bad degree of crunch: passengers clear the platform well before the next train arrives, but there’s nonetheless a significant queue at the bottom of the escalator pits. This adds 30-60 seconds to passenger trip times, a nontrivial proportion of total trip time (it’s a few percent for passengers within the city and inner suburbs). Avoiding even the less bad crunch thus has noticeable benefits to passengers.

The capacity of a horizontal walkway is 81 passengers per minute per meter of width (link, p. 7-10). This is for bidirectional travel. Unidirectional capacity is a little higher, multidirectional capacity a little lower. Subway platforms and passages are typically around 5 meters wide, so they can move 400 passengers per minute – maybe a little more since the big crunch is passengers heading out, so it’s unidirectional with a few salmons (passengers arrive at the station uniformly but leave in clumps when the train arrives). Busier stations often have exits at opposite ends of the platform, so it’s really 400*2 = 800. Queues are unlikely to form, since trains at best arrive 2 minutes apart, and it’s uncommon for a train to both be full and unload all passengers at one station.

An escalator step can be 60 cm, 80 cm, or 1 meter wide, with another 60 cm of handrail and gear space on both sides. On public transit, only the widest option is used, giving 1.6 meters of width. The theoretical capacity is 9,000 passengers per hour, but the practical capacity is 6,000-7,000 (link, p. 13), or 100-120 per minute. This is more than pedestrian walking capacity per unit of step width, but less per unit of escalator pit width. So a pedestrian walkway ending in a battery of escalators will have a queue, unless the width of the escalator bank is more than that of the walkway leading to it.

Moreover, escalators aren’t just at the end of the station. The busiest train stations have multiple access points per platform, to spread the alighting passengers across different sections of the platform. But mid-platform access points have inherently lower capacity, since they compete for scarce platform width with horizontal circulation. It appears that leaving around 2 meters on each side, and dedicating the rest to vertical circulation, is enough to guarantee convenient passenger access to the entire platform; in a crunch, most passengers take the first access point up, especially if there’s a mezzanine (which there is at Les Halles).

Should New York invest in better commuter rail operations, it will face a bigger risk of queues than Paris has. This is for two reasons. First, New York has much higher job density in Midtown than Paris has anywhere, about 200,000/km^2 vs. perhaps 100,000 around La Defense and the Opera (my figures for both areas in Paris have huge fudge factors; my figure for New York comes from OnTheMap and is exact). And second, Manhattan’s north-south orientation makes it difficult to spread demand across multiple CBD stations on many commuter rail lines. One of the underrated features of a Penn Station-Grand Central connection is that through-trains would have passengers spread across two CBD stops, but other through-running regional rail lines would not have even that – at best they’d serve multiple CBDs, with one Midtown stop (e.g. my line 4 here).

When I computed the needs for vertical circulation at a Fulton Street regional rail station in this post, I was just trying to avoid the worse kind of crunch, coming up with a way to include 16 platform-end escalators (12 up, 4 down in the morning peak) and 16 mid-platform escalators (8 up, 8 down) on a 300-meter long two-level station. It’s likely that the escalator requirement should be higher, to avoid delaying passengers by 1-1.5 minutes at a time. With four tracks (two on a Grand Central-Staten Island line, two on a Pavonia-Brooklyn line) and 12-car trains arriving every 2 minutes, in theory the station could see 240,000 incoming passengers per hour, or 4,000 per minute. In reality, splitting passengers between Grand Central and the Financial District on what I call line 4 means that a sizable majority of riders wouldn’t be getting off in Lower Manhattan. When I tried to compute capacity needs I used a limit passenger volume of 120,000 per hour, and given Midtown’s prominence over Lower Manhattan, even 90,000 is defensible.

90,000 per hour is still 1,500 per minute, or 3,000-4,000 if we are to avoid minute-long queues. A single up escalator is limited to about 100-120 people per minute, which means that twenty up escalators is too little; thirty or even forty are needed. This requires a wider platform, not for horizontal passenger circulation or for safety, but purely for escalator space, the limiting factor. I proposed an 8-meter platform, with space for four escalators per end (two ends per platform, two platforms on two different levels), but this suggests the tube diameter should be bigger, to allow 10-meter platforms and six escalators per end, giving four up escalators per end. This is 16 up escalators. Another 16-20 up escalators can be provided mid-platform: the plan for eight up escalators involved eight access points interspersed along the platform, and 10-meter platforms are wide enough width to include three escalators (two up, one down) per bank and on the border of allowing four (three up, one down).

The situation at the Midtown stations in New York is less constrained. Expected volumes are higher, but Grand Central and Penn Station both spread passengers among multiple platforms. In the near term, Penn Station needs to add more vertical circulation at the New Jersey Transit platforms. The LIRR remodeled its section of the station to add more access points in the 1990s (e.g. West End Concourse), but New Jersey Transit is only doing so now, as part of phase 1 of Moynihan Station, and it’s still not adding as many, since its platforms are shorter and don’t extend as far to the west.

Nonetheless, given the number of proposals out there for improving Penn Station, including ReThinkNYC and Penn Design’s plan, it’s important to think of longer-term plans for better vertical circulation. When I proposed eliminating Penn Station’s above-ground infrastructure, I came up with a design for six approach tracks (including a new Hudson tunnel connecting to Grand Central), each splitting into two platform tracks facing the same platform; the six platforms would each be 15 meters wide, but unlike Les Halles, each of six access points would have six escalators, four up and two down in the morning peak, or alternatively four escalators and a wide staircase (the climb is 13 meters, equivalent to a five-floor walkup). There would be ample capacity for anything; emptying a full 12-car train would take forty seconds, and it’s unlikely an entire 12-car train would empty.

Suspended Railways

Suspended railways are not a common mode of transportation. In Europe, the best-known example is the Wuppertal Suspension Railway, opened in 1901. Two examples exist in Japan, which is more willing to experiment with nonstandard rail technology. With essentially just these three examples in normal urban rail usage, it is hard to make generalizations. But I believe that the technology is underrated, and more cities should be considering using it in lieu of more conventional elevated or underground trains.

The reason why suspended trains are better than conventional ones is simple: centrifugal force. Train cars are not perfectly rigid – they have a suspension system, which tolerates some angle between the bogies and the carbody. Under the influence of centrifugal force, the body leans a few degrees to the outside of each curve:

 

If the train is moving away from you, and is turning left, then the outside of the curve is to your right; this is where the body leans in the image on the right. This is because centrifugal force pushes everything to the right, including in particular the carbody. This increases the centrifugal force felt by the passengers – the opposite of what a tilt system does. A train is said to have soft suspension if this degree of lean is large, and rigid suspension if it is small. The depicted image is rotated 3 degrees, which turns 1 m/s^2 acceleration in the plane of the tracks into 1.5 m/s^2 felt by the passengers; this is the FRA’s current limit, and is close to the maximum value of emergency deceleration. There are no trains with perfectly rigid suspension, but the most recent Shinkansen trains have active suspension, which provides the equivalent of 1-2 degrees of tilt.

On a straddling train, this works in reverse. A straddling train moving away from you turning left will also suspend to the right:

 

It’s almost identical, except that now the floor of the train leans toward the inside of the curve, rather than to the outside. So the suspension system reduces the lateral acceleration felt by the passengers, rather than increasing it. By softening the suspension system, it’s possible to provide an arbitrarily large degree of tilt, limited only by the maximum track safety value of lateral acceleration, which is not the limiting factor in urban rail.

This is especially useful in urban rail. Longer-distance railroads can superelevate the tracks, especially high-speed tracks, where trains have to be reliable enough for other reasons that they never have to stop in the middle of a superelevated curve. Some urban rail lines have superelevation as well, but not all do. Urban rail lines with high crowding levels routinely stop the trains in the middle of the track to maintain sufficient spacing to the train ahead; this is familiar to my New York readers as “we are being delayed because of train traffic ahead of us,” but the same routinely happens in Paris on the RER. This makes high superelevation dicey: a stopped train leans to the inside of the curve, which is especially uncomfortable for passengers. High superelevation on urban rail is also limited by the twist, i.e. the rate at which the superelevation increases per linear meter (in contrast, on intercity rail, the limiting factor is jerk, expressed in superelevation per second).

Another reason why reducing curve radius is especially useful in urban rail is right-of-way constraints. It’s harder to build a curve of radius 200 meters in a dense city (permitting 60 km/h with light superelevation) than a curve of radius 3 km outside built-up areas (permitting 250 km/h with TGV superelevation and cant deficiency). Urban rail systems make compromises about right-of-way geometry, and even postwar systems have sharp curves by mainline rail standards; in 1969, the Journal of the London Underground Railway Society listed various European limits, including Stockholm at 200 meters. The oldest lines go well below that – Paris has a single 40-meter curve, and New York has several. Anything that permits urban rail to thread between buildings (if above ground), building foundations (if underground), and other lines without sacrificing speed is good; avoiding curves that impose 30 km/h speed limits is important for rapid transit in the long run.

Suspended railways are monorails, so they run elevated. This is not inherent to the technology. Monorails and other unconventional rail technologies can go underground. The reason they don’t is that a major selling point for monorails is that their sleek structures are less visually obtrusive when elevated. But underground they can still use the same technology – if anything, the difficulty of doing emergency evacuation on an elevated suspended monorail is mitigated on an underground line, where passengers can hop to the floor of the tunnel and walk.

I’d normally say something about construction costs. Unfortunately, the technology I am plugging has three lines in regular urban operation, opened in 1901, 1970, and 1988. The 1988 line, the Chiba Monorail, seems to have cost somewhat more per km than other contemporary elevated lines in Japan, but I don’t want to generalize from a single line. Underground there should not be a cost difference. And ultimately, cost may well be lower, since, at the same design speed, suspended monorails can round tighter curves than both conventional railroads and straddle monorails.

Despite its rarity, the technology holds promise in the most constrained urban environments. When they built their next new metro lines, disconnected from the older network, cities like New York, London, Paris, and Tokyo should consider using suspended railroads instead of conventional subways.

Fare Integration

I said something on my Patreon page about fare integration between buses and trains, in the context of an article I wrote for the DC Policy Center about improving bus service, and got pushback of the most annoying kind, that is, the kind that requires me to revise my assumptions and think more carefully about the subject. The controversy is over whether fare integration is the correct policy. I still think it is, but there’s a serious drawback, which the positive features have to counterbalance.

First, some background: fare integration means that all modes of public transit charge the same fare within the same zone, or between the same pair of stations. Moreover, it means transfers are free, even between modes. Fare integration between city buses and urban rail seems nearly universal; big exceptions include Washington (the original case study) and London, and to a lesser extent Chicago. Fare integration between urban rail and regional rail is ubiquitous in Europe – London doesn’t quite have it, but it’s actually closer than fare integration between buses and the Underground – but does not exist in North America. In Singapore there is fare integration. In Tokyo, there are about twelve different rail operators, with discounted-but-not-free transfers between two (Tokyo Metro and Toei) and full-fare transfers between any other pair.

The reason North American commuter rail has no fare integration with other forms of transit is pure tradition: railroaders think of themselves as special, standing apart from mere urban transit. We can dispense with the idea that it is a seriously thought-out fare system. However, lack of integration between buses and trains in general does have some thought behind it. In London, the stated reason is that the Underground is at capacity, so its fares are jacked up to avoid overcrowding, while the buses remain cheap. In Washington, it’s that Metro is a better product than the buses, so it should cost more, in the same way first-class seats cost more than second-class seats on trains. Cap’n Transit made a similar point about this in the context of express buses.

There are really three different questions about fare integration: demand, supply, and network effects. The first one, as noted by Patreon supporters, favors disintegrated fares. The other two favor fare integration, for different reasons.

Demand just means charging more for a product that has higher demand. This is about revenue maximization, assuming fixed service provision: people will pay more for the higher speed of rapid transit, so it’s better to charge each mode of transportation the maximum it can bear before people stop taking trips altogether, or choose to drive instead. It’s related to yield management, which maximizes revenue by using a fare bucket system, using time of booking as a form of price discrimination; SNCF uses it on the TGV, and in its writeups for American high-speed rail from 2009, it said it boosted revenue by 4%. In either case, you extract from each passenger the maximum they can pay by making features like “don’t get stuck in traffic” cost extra.

Supply means giving riders incentives to ride the mode of transportation that’s cheaper to provide. In other words, here we don’t assume fixed (or relatively fixed) service provision, but variable service provision and relatively fixed ridership. Trains nearly universally have lower marginal operating costs than buses per passenger-km; in Washington the buses cost 40% more per vehicle-km, and perhaps 2.5 times as much per unit of capacity (Washington Metro cars are long). Using the fare system to incentivize passengers to take the train rather than the bus allows the transit agency to shift resources away from expensive buses, or perhaps to redeploy these resources to serve more areas. If anything, the bus should cost more. There are shades of this line in incentives some transit agencies give for passengers to switch from older fare media to smart cards: the smart card is more convenient and thus in higher demand, but it also involves lower transaction costs, and thus the agency incentivizes its use by charging less.

The network effect means avoiding segmenting the market in any way, to let passengers use all available options. The fastest way to get between two points may be a bus in some cases and a train in others, or a combined trip. This fastest way is often also the most direct, which both minimizes provision cost to the agency and maximizes passenger utility. This point argues in favor of free transfers especially, more so than fare integration. Tokyo fares are integrated in the sense that the different railroads charge approximately the same for the same distance; but transfers are not free, and monthly passes are station to station, with no flexibility for passengers who live between two parallel (usually competing) lines.

The dominant reason to offer integrated fares is network effects, more so than supply. Evidently, I am not aware of transit agencies that charge more for buses than for trains, only in the other direction. That fare integration allows transit agencies to reduce operating costs mitigates the loss of revenue coming from ending price discrimination; it is not the primary reason to integrate fares.

The issue at hand is partly frequency, and partly granularity. A typical transit corridor, supporting a reasonably frequent bus or a medium-size subway station, doesn’t really have the travel demand for multiple competing lines, even if it’s a parallel bus and a rail line. Fare disintegration ends up reducing the frequency on each option, sometimes beyond the point where it starts hurting ridership.

In Washington it’s especially bad, because of reverse-branching. The street network makes it hard for the same bus to serve multiple downtown destinations (or offer transfers to other buses for downtown service). Normally, riders would be able to just take a bus to the subway station and get to their destination, but Washington plans buses and trains separately, so two of the trunk routes, running on 14th an 16th Streets, reverse-branch. The hit to frequency (16-18 minutes per destination off-peak) is so great that even without fare integration it’s worthwhile to prune the branches. But such situations are not unique to Washington, and can occur anywhere.

The required ingredients are a city center that is large enough, or oriented around a long axis, with a street network that isn’t a strict grid and isn’t oriented around the axis of city center. New York is such a city: if it didn’t have fare integration, buses would need to reverse-branch from the north to serve the East Side and West Side, and from anywhere to serve Midtown and Lower Manhattan.

The granularity issue is that there isn’t actually a large menu of options for riders with different abilities to pay. This is especially a problem in American suburbs, with nothing between commuter rail (expensive, infrequent off- and reverse-peak, assumes car ownership) and the bus (in the suburbs, a last-ditch option for people below the poverty line). I wrote about this for Streetsblog in the context of Long Island; there’s also a supply angle – different classes of riders travel in opposite directions, so it’s more efficient to put them on one vehicle going back and forth – but this is fundamentally a problem of excessive market segmentation.

This also explains how Tokyo manages without fare integration between different rail operators. Its commuter rail lines are not the typical transit corridor. With more than a million riders per day (not weekday) on many lines, there is enough demand for very high frequency even with disintegrated fares. A passenger between two competing lines can only get a monthly pass on one, but it’s fine because the one line is frequent and the trains run on time.

The rest of the world is not Tokyo. Branches in Outer London and the Paris suburbs aren’t terribly frequent, and only hit one of the city centers, necessitating free transfers to distribute passengers throughout the city. They also need to collect all possible traffic, without breaking demand between different modes. If RER fares were higher than Metro fares, some areas would need to have a Metro line (or bus line) paralleling the RER, just to collect low-income riders, and the frequency on either line would be weaker.

The demand issue is still real. Fare integration is a service, and it costs money, in terms of lost revenue. But it’s a service with real value for passengers, independently of the fact that it also reduces operating costs. The 99.5% of the world that does not live in Tokyo needs this for flexible, frequent transit choices.