Category: Cars

Celebrate Birthdays, not Holidays

To the transportation user, holidays are nothing but pain. Synchronized travel leads to traffic jams and very high rail and air fares, and synchronized shopping by car leads to parking pain. American commercial parking minimums are designed around the few busiest days of the year (source, endnote #8), timed for the Christmas rush. In France, synchronized travel at the beginning and end of school holidays is so bad that each region begins and ends its winter and spring breaks on different dates. There’s so much travel pain, and associated waste in designing transportation around it, that it’s worth asking why even bother.

The travel pain is even worse than mere congestion. When I visited London in early July, Eurostar broke in both directions. This was not a pair of random delays. French holiday travel is synchronized even though there are two months of summer break and only about one month of paid vacation net of the other holidays: traditionally people from all over the country and the world visit Paris in July, and then Parisians visit other places in August.

With slow boarding at the stations courtesy of security theater and manual ticket checks with just two access points per train, it takes longer than usual to board the trains when they are full. With full trains throughout the day, the delays cascaded, so by afternoon the trains were hours off schedule. Eurostar let passengers on trains on practically a first-come, first-served basis: people with tickets on a train got to ride the next available train. I had a ticket on an 11:39 train, and got to ride the train that was nominally the 11:13 (there were a few available seats) but departed at 12:58, and my nominally-11:39 train departed even later.

Eurostar’s inability to deal with crowds that occur annually, at a time when revenue is highest, is pure incompetence. But even if that particular problem is resolved, the more fundamental problem of unnecessary swings in travel volumes remains. On domestic TGVs it’s seen in wild price swings. Today is the 8th. In two weeks, a one-way TGV ticket from Paris to Marseille costs 72-74 on Thursday the 22nd or Friday the 23rd (Friday is the traditional peak weekend travel date and increasingly Thursday joins it) and about 62 on Saturday the 24th. But next month, on the 23rd, I see tickets for about 150, and even the low-comfort OuiGo option, which usually has 10 tickets (from the suburbs, not Paris proper), shoots up to 100; even with these prices, most trains are sold out already.

In some cultures, common holidays serve a religious or otherwise traditional purpose of bringing the extended family together. This is the case for Chinese New Year, which causes overcrowding on the mainline rail network at the beginning and end of the holiday as urban workers visit their families back home, often in faraway interior provinces. The same tradition of extended families occurs on Passover, but Israel has little travel pain, as it is so small that Seder travel is the same as any other afternoon rush hour.

However, there is no religious or social value to synchronized school holidays, nor is there such value to Western holidays. Western Christian civilization has centered nuclear families over extended families for around a millennium. In modern-day American culture, people seem to spend far more time complaining about the racist uncle than saying anything positive about catching up with relatives.

Christmas has religious significance, but much of the way it is celebrated in rich countries today is recent. The emphasis on shopping is not traditional, for one. The travel peak is probably unavoidable, since Christmas and New Year’s are at a perfect distance from each other for a week-long voyage, but everything else is avoidable. A source working for a bookstore in Florida, located strategically on the highway between Disneyland and the coast, told me of two prominent peaks. In the summer there would be a broad peak, consisting mostly of European tourists with their long paid vacations. But then there would be a much sharper peak for the holiday season between Thanksgiving and Christmas, in which the store would fill every cashier stall and pressure employees, many of whom temps working seasonally, to work overtime and get customers through as quickly as possible.

Some holidays have political significance, such as various national days, but those do not have to create travel peaks or shopping peaks. Bastille Day doesn’t.

Finally, while it’s accepted in Western countries today that summer is the nicest season to travel, this was not always the case, and even today there are some exceptions. The Riviera’s peak season used to be winter, as the English rich fled England’s dreary winters to the beaches; Promenade des Anglais in Nice is named after 19th century winter vacationers. When I lived in Stockholm, I was more excited to visit the Riviera in the winter, fleeing 3 pm sunsets, than in the summer. Today, Japan has a peak for the cherry blossom in the spring, while in New England (and again in Japan) there is a tradition of leaf peeping in the fall.

Instead of centering synchronized holidays, it’s better for states to spread travel as well as shopping behavior throughout the year as much as possible. Different people have different preferences for seasonality, and this is fine.

For bigger shopping seasons, the best thing to do is to emphasize birthdays. Instead of trying to fix major holidays, the way Lincoln did for Thanksgiving, it’s better to encourage people to make their biggest trips and biggest shopping around birthdays, anniversaries, saint days in Catholic countries, and idiosyncratic or subculturally significant days (such as conventions for various kinds of geeks). There are already well-placed traditions of birthday and anniversary gifts. In academia it’s also normal to extend conference trips into longer vacations, when they don’t conflict with teaching schedules.

The impact on labor is reduced seasonality, and far less peak stress. With less seasonal employment, the natural rate of unemployment may also end up slightly lower. The impact on transportation is a large reduction in travel peaks, which would make it easier to run consistent scheduled service year-round, and to maintain car travel and parking capacity at its average day level rather than building parking lots that go unused 364 days out of every year.

How Transit and Green Tech Make Economic Geography More Local

The theme of winners and losers has been on my mind for the last few months, due to the politics of the Brooklyn bus redesign. In a rich country, practically every social or political decisions is win-lose, even if the winners greatly outnumber the losers. It’s possible to guarantee a soft landing to some of the losers, but sometime even the soft landing is disruptive, and it’s crucial that backers of social change be honest with themselves and with the public about this. Overall, a shift from an auto-oriented society to a transit-oriented one and from dirty energy to clean energy is positive and must be pursued everywhere, but it does have downsides. In short, it changes economic geography in ways that make certain regions (like Detroit or the Gulf Cooperation Council states) redundant; it reorients economies toward more local consumption, so oil, gas, and heavy industry jobs would not be replaced with similar manufacturing or mining clusters but with slightly more work everywhere else in the world.

Dirty production is exportable

The United States has the dirtiest economy among the large developed countries, so it’s convenient to look at average American behavior to see where the money that is spent on polluting products goes.

Nationally, about 15.9% of consumer spending is on transportation. The vast majority of that is on cars, 93.1% (that is, 14.7% of total consumer spending). The actual purchase of the car is 42% of transportation spending, or 6.7% of household spending. This goes to an industry that, while including local dealerships (for both new and used cars), mostly consists of auto plants, making cars in suburban Detroit or in low-wage Southern states and exporting them nationwide.

In addition to this 6% of consumer spending on cars, there’s fuel. Around 3% of American household spending is on fuel for cars. Overall US oil consumption in 2017 was 7.28 billion barrels, which at $52/barrel is 5% of household spending; the difference between 5 and 3 consists of oil consumed not by households. This is a total of about 2% of American GDP, which includes, in addition to household spending, capital goods and government purchases. This tranche of the American economy, too, is not local, but rather goes to the oil industry domestically (such as to Texas or Alaska) or internationally (such as to Alberta or Saudi Arabia).

Historically, when coal was more economically significant, it was exportable too. Money flowed from consumers, such as in New York and London, to producers in the Lackawanna Valley or Northeast England; today, it still flows to remaining mines, such as in Wyoming.

The same is true of much of the supply chain for carbon-intensive products. Heavy industry in general has very high carbon content for its economic value, which explains how the Soviet Union had high greenhouse gas emissions even with low car usage (15.7 metric tons per capita in the late 1980s) – it had heavy industry just as the capital bloc did, but lagged in relatively low-carbon consumer goods and services. The economic geography of steel, cement, and other dirty products is again concentrated in industrial areas. In the US, Pittsburgh is famous for its historical steel production, and in general heavy manufacturing clusters in the Midwestern parts of the Rust Belt and in transplants in specific Southern sites.

All of these production zones support local economies. The top executives may well live elsewhere – for example, David Koch lives in New York and Charles Koch in Wichita (whose economy is based on airplane manufacturing and agriculture, neither of which the Kochs are involved in). But the working managers live in city regions dedicated to servicing the industry, the way office workers in the oil industry tend to live in Houston or Calgary, and of course the line workers live near the plants and mines.

Clean alternatives are more local

The direct alternatives to oil, gas, and cars are renewable energy and public transportation. These, too, have some components that can be made centrally and exported, such as solar panel and rolling stock manufacturing. However, these components are a small fraction of total spending.

How small? Let’s look at New York City Transit. Its operating costs are about $9.1 billion a year as of 2016, counting both the subway and buses. Nearly all of this is wages, salaries, and benefits: $7.3 billion, compared with only $500 million for materials and supplies. This specifically excludes vehicle purchases, which in American transit accounting are lumped as capital costs. The total NYCT fleet is about 6,400 subway cars, which cost around $2.3 million each and last 40+ years, and 5,700 buses, which cost around $500,000 each and last 12 years, for a total depreciation charge of around $600 million a year combined.

Compare this with cars: New York has about 2 million registered cars, but at the same average car ownership rate as the rest of the US, 845 per 1,000 people, it would have 7.3 million cars. These 5.3 million extra cars would cost $36,500 each today, and last around 20 years, for a total annual depreciation charge of $9.7 billion.

Put another way, total spending on vehicles at NYCT is one sixteenth what it would take to raise the city’s car ownership rate to match the national average. Even lumping in materials and supplies that are not equipment, such as spare parts and fuel for buses, the total, $1.1 billion, is one ninth as high as buying New Yorkers cars so that they can behave like Americans outside the city, and that’s without counting the cost of fuel. In particular, there is no hope of maintaining auto plant employment by retraining auto workers to make trains, as Michael Moore proposed in 2009.

The vast majority of transit spending is then local: bus and train operations, maintenance, and local management. The same is true of capital spending, which goes to local workers, contractors, and consultants, and even when it is outsourced to international firms, the bulk of the value of the contract does not accrue to Dragados or Parsons Brinckerhoff.

Clean energy is similarly local. Solar panels can be manufactured centrally, but installing them on rooftops is done locally. Moreover, the elimination of carbon emissions coming from buildings has to come not just from cleaner electricity but also from reducing electricity consumption through passive solar construction. Retrofitting houses to be more energy-efficient is a labor-intensive task comprising local builders sealing gaps in the walls, windows, and ceilings.

Low-carbon economic production can be exported, but not necessarily from Detroit

A global shift away from greenhouse gas emissions does not mean just replacing cars and oil with transit and solar power. Transit is cheaper to operate than cars: in metro New York, 80.5% of personal transportation expenditure is still on cars, and the rest is (as in the rest of the country) partly on air travel and not transit fare, whereas work trip mode shares in the metropolitan statistical area are 56% car, 31% transit. With its relatively high (for North America) transit usage, metro New York has the lowest share of household spending going to transportation, just 11.4%. This missing consumption goes elsewhere. Where does it go?

The answer is low-carbon industries. Consuming less oil, steel, and concrete means not just consuming more local labor for making buildings more efficient and running public transit, but also shifting consumption to less carbon-intensive industries. This low-carbon consumption includes local purchases, for example going out to eat, or hiring a babysitter to look after the kids, neither of which involves any carbon emissions. But it also includes some goods that can be made centrally. What are they, and can they be made in the same areas that make cars and steel or drill for oil and gas?

The answer is no. First, in supply regions like the Athabascan Basin, Dammam, and the North Slope of Alaksa, there’s no real infrastructure for any economic production other than oil production. The infrastructure (in the case of North America) and the institutions (in the case of the Persian Gulf) are not suited for any kind of manufacturing. Second, in real cities geared around a single industry, like Detroit or Houston, there are still lingering problems with workforce quality, business culture, infrastructure, and other necessities for economic diversification.

Take the tech industry as an example. The industry itself is very low-carbon, in the sense that software is practically zero-carbon and even hardware has low carbon content relative to its market value. Some individual tech products are dirty, such as Uber, but the industry overall is clean. A high carbon tax is likely to lead to a consumption shift toward tech. And tech as an industry has little to look for in Detroit and Houston. Austin has booming tech employment, but Houston does not, despite having an extensive engineering sector courtesy of the oil industry as well as NASA. The business culture in the space industry (which is wedded to military contracting) is alien to that of tech and vice versa; the way workers are interviewed, hired, and promoted is completely different. I doubt the engineers oil and auto industries are any more amenable to career change to software.

On the level of line workers rather than engineers, the situation is even worse. A manufacturing worker in heavy industry can retrain to work in light industry, or in a non-exportable industry like construction, but light industry has little need for the massive factories that churn out cars and steel. And non-manufacturing exports like tech don’t employ armies of manufacturing workers.

In Germany the situation is better, in that Munich and Stuttgart may have little software, but they do have less dirty manufacturing in addition to their auto industries. It’s likely that if global demand for cars shifts to a global demand for trains then Munich will likely keep thriving – it’s the home of not just BMW and Man but also Siemens. However, the institutions and worker training that have turned southern Germany into an economically diverse powerhouse have not really replicated outside Germany. Ultimately, in a decarbonizing world, southern Germany will be the winner among many heavy industrial regions, most of which won’t do so well.

There’s no alternative to shrinkage in some cities

A shift away from fossil fuel and cars toward green energy and public transit does not have to be harsh. It can aim to give individual workers in those industries a relatively soft landing. However, two snags remain, and are unavoidable.

The first is that some line workers have deliberately chosen poor working conditions in exchange for high wages; the linked example is about oil rig workers in Alaska, but the same issue occurs in some unionized manufacturing and services, for example electricians get high wages but all suffer hearing loss by their 50s. It’s possible to retrain workers and find them work that’s at the same place on the average person’s indifference curve between pay and work conditions, but since those workers evidently chose higher-pay, more dangerous jobs, their personal preference is likely to weight money more than work conditions and thus they’re likely to be unhappy with any alternative.

The second and more important snag is the effect of retraining on entire regions. Areas that specialize to oil, gas, cars, and to some extent other heavy industry today are going to suffer economic decline, as the rest of the world shifts its consumption to either local goods (such as transit operations) or different economic sectors that have no reason to locate in these areas (such as software).

Nobody will be sad to see Saudi Arabia crash except people who are directly paid by its government. But the leaders of Texas and Michigan are not Mohammad bin Salman; nonetheless, it is necessary to proceed with decarbonization. It’s not really possible to guarantee the communities a soft landing. Governments all over the world have wasted vast amounts of money trying and failing to diversify from one sector (e.g. oil in the GCC states) or attract an industry in vogue (e.g. tech anywhere in the world). If engineering in Detroit and Houston can’t diversify on its own, there’s nothing the government can do to improve it, and thus these city regions are destined to become much smaller than they are today.

This is bound to have knock-on regional effects. Entire regions don’t die quietly. Firms specializing in professional services to the relevant industries (such as Halliburton) will have to retool. Small business owners who’ve dedicated their lives to selling food or insurance or hardware to Houstonians and suburban Detroit white flighters will need to leave, just as their counterparts in now-dead mining towns or in Detroit proper did. Some will succeed elsewhere, just as many people in New Orleans who were displaced by Katrina found success in Houston. But not all will. And it’s not possible to guarantee all of them a soft landing, because it’s not possible to guarantee that every new small business will succeed.

All policy, even very good policy, has human costs. There are ways to reduce these costs, through worker retraining and expansion of alternative employment (such as retrofitting older houses to be more energy-efficient). But there is no way to eliminate these costs. Some people who are comfortable today will be made precarious by any serious decarbonization program; put another way, these people’s entire livelihood depends on continuing to destroy the planet, and most of them are not executives at oil and gas companies. It does not mean that decarbonization should be abandoned or even that it should be pursued more hesitantly; but it does mean climate activists, including transit activists, have to be honest about how it affects people in and around polluting industries.

Trust and Environmentalism

I’m at Ecomodernism 2018, a conference by the Breakthrough Institute in exurban Northern Virginia. It’s not much of an infrastructure or transportation conference (although Breakthrough tells me they are getting interested in these subjects), so I instead went to a breakout session about nuclear power. The session was better than other parts of the conference, but was still not great in the sense that what I saw of it made me less sympathetic to nuclear power than I was before. I want to describe my thought process here, not because nuclear power is a relevant subject to this blog (whatever opinion on it I hold is tepid) but because it showcases how trust works and how people in power need to listen to critics.

Before I go further, I want to make it clear that I did not go to the entire session. It was a two-hour discussion in a circle; an hour in I had to run to the bathroom, and while there I discovered that my flight back to Paris got canceled due to airline bankruptcy and had to run to my room to look for alternatives. So it’s entirely possible my concerns were addressed in the second hour, although judging by where the discussion was going when I left, I doubt it.

What I saw at the discussion concerned technical issues regarding costs and regulations. As far as I remember, everyone at the 19-person discussion other than me had some ties to nuclear advocacy or the industry, except possibly one law professor who was involved in the debate over nuclear regulations. People with background in the industry talked about how American regulations are excessively cautious about safety zones (and in response to my question told me the rest of the world mostly follows American regulations). The law professor asked if modernizing the regulations would always mean loosening controls or if there were places where tightening was required; two people gave convoluted replies that basically said they were only talking about loosening rules without explicitly saying so.

Missing from the entire discussion as far as I could see was the issue of trust. Nuclear power requires immense personal trust in the firms building the plants and in the state. Nuclear advocates keep explaining that first-world regulatory regimes are a lot stronger than whatever the Soviet Union had during Chernobyl. But it’s hard to understand to what extent this is true without very deep ties to the conversation. On a car or a train, it’s easy for a passenger to feel that something is wrong – that there is a lot of sway, that the train driver is overrunning platforms, that the road is visibly in poor condition, etc. There’s no need to trust that the system is safe because passengers can readily see that it is safe. A nuclear plant is different: one minute it’s working, the next minute it’s blowing up.

In cultural theory, trust is mostly an egalitarian issue. To the egalitarian, the exact details of the regulations don’t matter nearly as much as the population’s ability to trust that the regulators are honest. Producing this kind of honesty is hard.

Even hierarchical institutions are full of folklore about people in power being stupid or dishonest. World War Two, the epitome of hierarchy, still produced Catch-22 and copious enlisted folklore about obstructive officers. Even my grandfather at one point asked if the anonymous commander of his resistance group in the ghetto was helping dig shelters or whether he was just telling grunts to do so (later he learned that the person he was asking this question of, while they dug the shelters together, was the anonymous commander). Even at their best, hierarchical organizations are necessarily compartmentalized and secret, and never immune to the occasional social climber, narcissist, or asshole (in fact the word “asshole” came out of WW2 lexicon referring to obstructive officers).

To the extent there is a direct connection to transportation, the mode of transportation that elicits the biggest trust concerns is the self-driving car. The airplane elicits a similar fear, but the airline industry has spent the last few decades ruthlessly prioritizing safety over anything else – cost, comfort, flexibility, speed, fuel efficiency. In contrast, the tech industry’s “move fast and break things” ethos not only causes visible accidents (such as Tesla’s occasional crashes or Uber’s fatal AV crash) but also reminds the public that to the industry, safety is a secondary concern to world domination.

This problem gets worse when the industry or the state does not understand it has a trust deficit. In France, I’m pro-nuclear. In the US, I’m more skeptical, because of the morass of conflicting federal and state regulations, local NIMBYism, and industry efforts; at the discussion, when someone brought up financing, I explicitly asked about the state-built plants of South Korea, which the moderator had brought up in a report about nuclear plant costs, and was told that this is not on the agenda for the US.

French regulators have proven themselves more trustworthy to me than American ones, so when Macron calls for expanding nuclear energy I react more positively than when third way American thinktanks do. Similarly, France simultaneously implements or at least tries to implement parallel green policies, such as building more public transit, which helps convince me that Macron’s vision of the future treats decarbonization as a priority. In contrast, Ecomodernism 2018 saw fit to treat “is climate change a serious problem?” as a debate that reasonable people may disagree about, and treats oil and gas expansion as a respectable minority opinion within the movement, which helps convince me its support of nuclear is about pissing off the mainstream green movement and not about providing an extra tool for base load power to avoid the intermittency problem of renewable energy.

If the people who are responsible for implementing such technology misunderstand that they have a trust deficit, they will not do anything about it. At worst, they will talk about how to market the technology, as if the problem is about convincing the public that they’re trustworthy and not about actually putting safety first.

In rationalism, there is something called “steelmanning.” To steelman a position is to find the strongest possible argument for it, even if it is not what one’s interlocutor exactly said. This contrasts with strawmanning, i.e. finding the weakest possible argument and attacking it as unreasonable. Ecomodernism 2018’s first proper session, a discussion with people who changed their minds on environmental issues, brought this term up as a positive, contrasting it with partisan polarization.

As far as I saw at the discussion, the discussion of nuclear power did not steelman the anti-nuclear movement and its emphasis on trust and (in Germany and Japan) the issue of American military involvement.

That said, I don’t believe in steelmanning, because if a movement recurrently fails to make what I think the strongest arguments for its position is, I reserve the right to use it to judge what it considers important. This way I dismiss movement libertarians’ opposition to public transit, because they seem indifferent to cost comparisons; those are a free shot at many US transit projects, but make transit look like a reasonable proposition in some circumstances and suggest improvements that would make it cost-effective, conflicting with Wendell Cox’s maximalist attitude that cars are always superior.

But by the same token, I am compelled to dismiss the ecomodernist line about nuclear energy, which I was sympathetic to until the conference began. There are strong arguments in favor of nuclear power: its safety record in developed countries in the last few decades has been positive, it is less intermittent than solar power, and Germany’s decommissioning of nuclear plants without adequate renewable replacement has not been great for its carbon footprint. On the bus shuttle from Washington to the conference I sat next to someone who convincingly made some of these arguments, explaining that solar costs per watt are understated due to intermittency. But at least the first half of the discussion I attended today neither brought them up (except in the context of the desirability of loosening regulations) nor adequately wrestled with the opposition.

In public transit and urbanism, the same issue sometimes occurs. It’s not as stark as with nuclear plants because people can see changes more readily, but getting people to trust public transit authorities that have recurrently proven themselves incompetent or dishonest is not a trivial task. It is imperative that people who support good transit make it clear that everything has tradeoffs: cost-effective subway lines involve surface disruption (which can be reduced but not eliminated), regional rail modernization means people at some suburban stations will no longer be guaranteed a seat and will definitely not be guaranteed first-class status elevated over the urban working class, fare integration usually comes with an increase in base fares for people who don’t transfer, bus network redesigns make some people’s trips longer and are net negative for passengers with especially high transfer and walking penalties.

Transit is a world of heterogeneous preferences. An optimal network is necessarily a compromise between many different people’s personal weights on reliability, walking time, in-vehicle travel time, etc. As a compromise, it will piss some people off, and it’s necessary to make it very clear what is happening, as agencies reform themselves from the swamp of most American operators to proper transport associations. Trust is critical: just as passengers’ trust in the schedule is crucial to ensure they wait for the bus or train rather than driving or forgoing the trip, people’s trust in the authority to make good decisions is crucial to ensure they participate in and respect the process rather than checking out and treating transportation as an imposition to be avoided whenever possible.

Safer Streets: Design is Better Than Enforcement

As some American cities are attempting to reduce the number of car accident fatalities, under the umbrella of Vision Zero, the growing topic is one of traffic enforcement. Streetsblog has long documented many instances in which the police treats any case in which a car runs over a pedestrian as a no-fault accident, even when the driver was committing such traffic violations as driving on the sidewalk. In addition to enforcement, there’s emphasis on reducing the speed limit in urban areas, from 30 to 20 miles per hour, based on past campaigns in Europe, where speeds were reduced from 50 km/h to 30. Unfortunately, street design for lower speeds and greater traffic safety has taken a back seat. This is not the best way to improve street safety, and is not the standard practice in the countries that have reduced car accident rates the most successfully, namely the UK and the Scandinavian countries.

On high-speed roads, one of the most important causes of fatal accidents is the combination of driver fatigue and sleepiness. For some studies on this problem, see here, here, and here. The second link in particular brings up the problem of monotony: if a road presents fewer stimuli to the driver, the driver is more likely to become less vigilant, increasing the probability of an accident. One study goes on and shows that higher speed actually increases monotony, since drivers have less time to register such stimuli as other cars on the road, but this was obtained in controlled conditions, and its literature review says that most studies find no effect of speed. I emphasize that this does not mean that lower speed limits are ineffective: there’s evidence that reducing highway speed limit does reduce accident rates, with multiple studies collected in a Guardian article, and lower accident rates in France since the state installed an extensive system of speed cameras.

But while speed limit reductions offer useful safety benefits, it is important to design the roads to be slower, and not just tell drivers to go slower. Road monotony is especially common in the United States; per the second study again,

While comparing self-reported driving fatigue in the US and Norway, Sagberg (1999) suggests that the higher prevalence of self reported drowsy driving found in the US may be due to differences in road geometry, design and environment, as well as exposure. He argues that the risk of falling asleep is higher on straight, monotonous roads in situations of low traffic, where boredom is likely to occur. This type of roads is more common in the US than in Norway.

The studies I have consulted look primarily at highways and rural roads; I have not found comparable literature on urban roads, except one study that, in a controlled simulation, shows that drivers are better at gauging their own alertness levels on urban arterials than on rural roads. That said, urban arterials share many design traits that lead to monotony, especially in the United States and Canada:

  • They are usually straight, forming a grid rather than taking haphazard routes originating from premodern or early-industrial roads.
  • They are wide: 4-6 lanes at a minimum, often with a median. Lanes are likely to be wide, closer to 3.7 meters than the more typical urban 3 meters.
  • Development on them usually does not form a strong enclosure, but instead commercial developments are only 1-2 stories, with setbacks and front and side parking lots.

Such roads are called stroads in the language of Charles Marohn, who focuses on issues of their auto-centric, pedestrian-hostile nature. Based on the studies about monotony, I would add that even ignoring pedestrians entirely, they are less safe than slower roads, which prime drivers to be more alert and to speed less. It is better to design roads to have more frequent stimuli: trees, sidewalks with pedestrians, commercial development, residential development to the extent people are willing to live on top of a busy road.

Regarding lane width, one study finds that roads are the safest when lanes are 3-3.2 meters wide, because of the effects of wider lanes on driver speeds. A CityLab article on the same subject from two years ago includes references to several studies that argue that wide lanes offer no safety benefit for drivers, but are hostile to pedestrians and cyclists.

This approach, of reducing speed via road design rather than enforcement, is common in Scandinavia. Stockholm has a few urban freeways, but few arterials in the center, and many of those arterials have seen changes giving away space from cars to public transit and pedestrians. Thus, Götgatan is partly pedestrianized, and Odengatan has center bus lanes and only one moving car lane in each direction; the most important of Stockholm’s streets, Sveavägen, has several moving car lanes in each direction, but is flanked on both sides by medium-rise buildings without setbacks, and speeds are rarely high.

When enforcement happens, the great successes, for example in France under the Sarkozy administration, involve automation. Red light cameras have a long history and are controversial, and in France, Sarkozy lowered the speed limits on many roads and stepped up speed camera enforcement. The UK has extensive camera enforcement as well. Human enforcement exists, but is less common than speed cameras. Thus, the two main policy planks Vision Zero should fight for in the US are,

  1. Road redesign: narrower lanes, wider sidewalks, trees, and dedicated bus and bike lanes in order to reduce the number of car lanes as well as provide more room for alternatives. Zoning laws that mandate front setbacks should be repealed, and ideally so should commercial height limits on arterials. In central cities, some road segments should be closed off to cars, if the intensity of urban activities can fill the space with pedestrians.
  2. Lower speed limits in the cities, enforced by cameras; fines should be high enough to have some deterrent effect, but not so high that they will drive low-income drivers bankrupt.

It is especially important to come up with solutions that do not rely on extensive human enforcement in the US, because of its longstanding problem with police brutality and racism. The expression “driving while black” is common in the US, due to bias the police in the US (and Canada) exhibits against black people. In Europe, even when bias against certain minorities is as bad as in the US, overall police brutality levels are lower in the US by factors ranging from 20 to 100 (see for example data here). In my Twitter feed, black American urbanists express reluctance to so much as call the police on nonviolent crime, fearing that cops would treat them as suspects even if they are the victims. When it comes to urban traffic safety – and so far, Vision Zero in the US is an urban movement – this is compounded by the fact that blacks and other minorities are overrepresented in the cities.

This means that, in the special conditions of US policing, it’s crucial to prevent Vision Zero from becoming yet another pretext for Driving While Black arrests. As it happens, it does not require large changes from best practices in Europe, because those best practices do not involve extensive contact between traffic police and drivers.

Recall last year’s post by Adonia Lugo, accusing Vision Zero of copying policy from Northern Europe and not from low-income American minority communities. As I said a year ago, Adonia is wrong – first in her belief that foreign knowledge is less important than local US knowledge, and second in her accusation that US Vision Zero advocates copy European solutions too much. To the contrary, what I see is that the tone among US street safety advocates overfocuses on punitive enforcement of drivers who violate the speed limit or break other law. Adapting a problem that in Europe is solved predominantly with street design and technology (speed cameras don’t notice the driver’s skin color), they instead call for more policing, perhaps because mainstream (i.e. white) American culture is used to accepting excessive police presence.

Greenbelts Help Cars

A number of major cities, most notably London, have designated areas around their built-up areas as green belts, in which development is restricted, in an attempt to curb urban sprawl. The towns within the green belt are not permitted to grow as much as they would in an unrestricted setting, where the built-up areas would merge into a large contiguous urban area. Seeking access to jobs in the urban core, many commuters instead live beyond the greenbelt and commute over long distances. There has been some this policy’s effect on housing prices, for example in Ottawa and in London by YIMBY. In the US, this policy is less common than in Britain and Canada, but exists in Oregon in the form of the urban growth boundaries (UGBs), especially around Portland. The effect has been the same, replacing a continuous sprawling of the urban area with discontinuous suburbanization into many towns; the discontinuous form is also common in Israel and the Netherlands. In this post, I would like to explain how, independently of issues regarding sprawl, such policies are friendlier to drivers than to rail users.

Let us start by considering what affects the average speed of cars and what affects that of public transit. On a well-maintained freeway without traffic, a car can easily maintain 130 km/h, and good cars can do 160 or more on some stretches. In urban areas, these speeds are rarely achievable during the day; even moderate traffic makes it hard to go much beyond 110 or 120. Peak-direction commutes are invariably slower. Moreover, when the car gets off the freeway and onto at-grade arterial roads, the speed drops further, to perhaps 50 or less, depending on density and congestion.

Trains are less affected by congestion. On a well-maintained, straight line, a regional train can go at 160 km/h, or even 200 km/h for some rolling stock, even if headways are short. The busiest lines are typically much slower, but for different reasons: high regional and local traffic usually comes from high population density, which encourages short stop spacing, such that there may not be much opportunity for the train to go quickly. If the route is curvy, then high density also makes it more difficult to straighten the line by acquiring land on the inside of the curves. But by and large, slowdowns on trains come from the need to make station stops, rather than from additional traffic.

Let us now look at greenbelts of two kinds. In the first kind, there is legacy development within the greenbelt, as is common around London. See this example:

greenbelt1

 

The greenbelt is naturally in green, the cities are the light blue circles with the large central one representing the big city, and the major transportation arteries (rail + freeway) are in black. The towns within the greenbelt are all small, because they formed along rail stops before mass motorization; the freeways were built along the preexisting transportation corridors. With mass motorization and suburbanization, more development formed right outside the greenbelt, this time consisting of towns of a variety of sizes, typically clustering near the freeways and railways for best access to the center.

The freeways in this example metro area are unlikely to be very congested. Their congestion comes from commuters into the city, and those are clustered outside the greenbelt, where development is less restricted. Freeways are widened based on the need to maintain a certain level of congestion, and in this case, this means relatively unimpeded traffic from the outside of the green belt right up until the road enters the big city. Under free development, there would be more suburbs closer to the city, and the freeway would be more congested there; travel times from outside the greenbelt would be longer, but more people would live closer to the center, so it would be a wash.

In contrast, the trains are still going to be slowed down by the intermediate stops. The small grandfathered suburbs have no chance of generating the rail traffic of larger suburbs or of in-city stops, but they still typically generate enough that shutting them down to speed traffic is unjustified, to say nothing of politically impossible. (House prices in the greenbelt are likely to be very high because of the tight restrictions, so the commuters there are rich people with clout.) What’s more, frequency is unlikely to be high, since demand from within the greenbelt is so weak. Under free development, there might still be more stops, but not very many – the additional traffic generated by more development in those suburbs would just lead to more ridership per stop, supporting higher frequency and thus making the service better rather than worse.

Let us now look at another greenbelt, without grandfathered suburbs, which is more common in Canada. This is the same map as before, with the in-greenbelt suburbs removed:

greenbelt2

In theory, this suburban paradigm lets both trains and cars cruise through the unbuilt area. Overall commutes are longer because of the considerable extra distance traveled, but this distance is traversed at high speed by any mode; 120 km/h is eminently achievable.

In practice, why would there be a modern commuter line on any of these arteries? Commuter rail modernization is historically a piecemeal program, proceeding line by line, prioritizing the highest-trafficked corridors. In Paris, the first commuter line to be turned over to the Metro for operation compatible with city transit, the Ligne de Sceaux, has continuous urban development for nearly its entire length; a lightly-trafficked outer edge was abandoned shortly after the rest of the line was electrified in 1938. If the greenbelt was set up before there was significant suburbanization in the restricted area, it is unlikely that there would have been any reason to invest in a regional rail line; at most there may be a strong intercity line, but then retrofitting it to include slower regional traffic is expensive. Nor is there any case for extending a high-performing urban transit line to or beyond a greenbelt. Parts of Grand Paris Express, namely Lines 14 and 11, are extended from city center outward. In contrast, in London, where the greenbelt reduces density in the suburbs, high investment into regional rail focuses on constructing city-center tunnels in Crossrail and Crossrail 2 and connecting legacy lines to them. In cities that do not even have the amount of suburban development of the counties surrounding London, there is even less justification for constructing new transit.

Now, you may ask, if there’s no demand for new urban transit lines, why is there demand for new highways? After all, if there was not much regional travel into these suburbs historically, why would there be enough car traffic to justify high investment into roads? The answer is that at low levels of traffic, it’s much cheaper to build a road than to build and operate a railway. This example city has no traffic generators in the greenbelt, except perhaps parks, so roads are cheap to build and have few to no grade crossings to begin with, making it easier to turn them into full freeways. The now-dead blog Keep Houston Houston made this point regarding a freeway in Portland, which was originally built as an arterial road in a narrow valley and had few at-grade intersections to be removed. At high levels of demand, the ability to move the same number of people on two tracks as on fourteen lanes of freeway makes transit much more efficient, but at low demand levels, rail still needs two tracks or at least one with passing sidings, and high-speed roads need four lanes and in some cases only two.

The overall picture in which transit has an advantage over cars at high levels of density is why high levels of low-density sprawl are correlated with low transit usage. But I stress that even independently of sprawl, greenbelts are good for cars and bad for transit. A greenbelt with legacy railway suburbs is going to feature trains going at the normal speed of a major metro area, and cars going at the speed of a more spread out and less populated region. Even a greenbelt without development is good urban geography for cars and bad one for transit.

As a single exception, consider what happens when a greenbelt is reserved between two major nodes. In that specific case, an intercity line can more easily be repurposed for commuting purposes. The Providence Line is a good example: while there’s no formal greenbelt, tight zoning restrictions in New England even in the suburbs lead to very low density between Boston and Providence, which is nonetheless served by good infrastructure thanks to the strength of intercity rail travel. The MBTA does not make good use of this infrastructure, but that’s beside the point: there’s already a high-speed electrified commuter line between the two cities, with widely spaced intermediate stops allowing for high average speeds even on stopping trains and overtakes that are not too onerous; see posts of mine here and here. What’s more, intercity trains can be and are used for commutes from Providence to Boston. For an analogous example with a true greenbelt, Milton Keynes plays a role similar to Providence to London’s Boston.

However, this exception is uncommon. There aren’t enough Milton Keyneses on the main intercity lines to London, or Providences on the MBTA, to make it possible for enough transit users to suburbanize. In cities with contiguous urban development, such as Paris, it’s easier. The result of a greenbelt is that people who do not live in the constrained urban core are compelled to drive and have poor public transportation options. Once they drive, they have an incentive to use the car for more trips, creating more sprawl. This way, the greenbelt, a policy that is intended to curb sprawl and protect the environment, produces the exact opposite results: more driving, more long-distance commuting, a larger urban footprint far from the core.

Several European Countries to Follow Norway’s Lead, Ban Fuel-Powered Cars

Following plans by the government of Norway to ban cars fueled by petrol or diesel by 2025, several other countries in Europe are formulating similar programs to phase out fuel-powered transportation. Moreover, sources close to the European Parliament say that once multiple member states pass such a ban as is expected later this year, the European Union will attempt to enforce these rules throughout its territory.

In Sweden, the office of Åsa Romson, minister for the environment and co-spokesperson for the Green Party, released a statement saying that a ban on the internal combustion engine is a necessary step to reduce pollution and carbon emissions. In Sweden, only about 3% of electricity production comes from fossil fuels, and plans made by the Persson cabinet in 2005, Making Sweden an Oil-Free Society, already call for a phaseout of the use of oil for heating. The Löfven cabinet has nowhere else to cut in its program to make Sweden a carbon-neutral society by 2050. The Social Democrats-Green minority government is expected to work with the more moderate parties in the opposition Alliance; the Centre Party has already endorsed the move, but the Liberals have yet to make a statement.

In France and Germany, the ban is expected to be far more contentious. Auto manufacturers in both countries have condemned the moves by their respective governments to ban the internal combustion engine, saying that it would make the economy less competitive. European automakers have lagged behind Japanese and American ones in both hybrid and all-electric car technology, as conventional European petrol and diesel cars already have high fuel economy. In response to so-called range anxiety, in which an electric car’s limited range may leave the driver stranded on the motorway, the Hollande administration is expected to pair the proposed phaseout with national investment into charging stations as well as additional investment into TGV lines, to make it easier to travel long distances in France without a car.

Demands by BMW and Volkswagen for Germany to commit to spending money on R&D for improved battery range and charging and battery swap stations on the highway network have run into budgetary problems. While Chancellor Angela Merkel is reported to be interested in implementing a phaseout, in order to attract Green support into a possible future grand coalition and reduce EU dependence on oil imports from Russia, Finance Minister Wolfgang Schäuble has openly rejected any package that would raise the budget deficit, and the allied Christian Social Union has rejected the proposed ban on principle. Opposition from far-right populist parties, including the Alliance for Germany (AfD) and France’s National Front (FN), is likely to be significant, and sources close to Hollande and Merkel say that both have ruled out tax increases to pay for the program.

In France the calls for a phaseout of the internal combustion engine are especially loud in the Paris region, where high levels of particulate pollution from diesel vehicles led to recent restrictions on car use. The mayor of Paris, the Socialist Anne Hidalgo, previously proposed to ban diesel vehicles from the city entirely, and has endorsed the state’s plans to phase out fuel-powered vehicles, adding that given Paris’s pollution crisis, a local ban on diesel vehicles should be implemented immediately. The president of the regional council, Valérie Pécresse of the Republicans (LR), is said to support the phaseout as well, and to push LR behind the scenes not to oppose it. Conversely, opposition from FN is especially acute. The party leader, Marine le Pen, quipped that France would not need any additional reductions in greenhouse gas emissions if it had not taken in non-European immigrants since the 1960s, and noted that the immigrants are especially likely to settle in Paris, where the problems are the most acute.

Elsewhere in Europe, Belgium, Switzerland, and the Netherlands are said to be considering a phaseout by 2030. Within Belgium, Saudi support of mosques preaching radical interpretations of Islam is said to have influenced the country’s liberal parties, the Francophone Reformist Movement (MR) and the Flemish Liberals and Democrats (VLD), to support a phaseout. However, the Flemish nationalist parties remain opposed, and the New Flemish Alliance (N-VA) issued a statement saying that this solution may work within Brussels but is inappropriate for Flanders. In contrast, the Netherlands is expected to pass the phaseout without any political problems. In Switzerland, a referendum is planned for next year, and early polling suggests that it is supported by 55-60% of the population.

Governments outside Europe are said to be watching the development closely, especially in France and Germany, which are perceived as more reliable bellwethers of European opinion than Sweden. In Japan, home to the world’s top-selling electric car, the Nissan Leaf, political support for a phaseout appears high. Prime Minister Shinzo Abe has called climate change a “defining issue of our time,” and is working on a national infrastructure plan. Sources close to Abe say it will pair subsidies for so-called city cars, short-range electric vehicles, with investments into the country’s rail network outside major metropolitan areas, to make it easier for people living outside the biggest cities to travel on public transport.

In the US, both the Obama administration and Hillary Clinton’s presidential campaign refused to comment, saying that it is an internal European affair. However, sources close to the administration say that it is already planning to use the Environmental Protection Agency’s executive power to restrict the sale of new fuel-powered cars to emergency needs. The sources speculate that an executive order is planned for shortly after the presidential election this November, provided Clinton wins, in order to avoid creating backlash among key swing constituencies, including the automakers and the exurban lower middle class. Donald Trump’s presidential campaign’s response is unprintable.

Dispersing Expensive Centers: Edge City Version

This is somewhat of an addendum to my post before about dispersal of urban networks toward cheaper cities. I addressed the question of dispersal from rich, expensive metro areas, especially San Francisco, to cheaper ones, as a way of dealing with high housing prices. But more common is dispersal within metro areas: gentrification spilling from a rebounding neighborhood to adjacent neighborhoods that remain cheaper, and office space spilling from the primary CBD to the edge cities. I am going to address the latter issue in this post.

CBDs are expensive. They have intense demand for office space, as well as high-end retail and hotels. In many cities, there’s demand for office space even at the construction costs of supertall skyscrapers, going up to about $5,000-6,000 per square meter in privately-built New York towers. Zoning regimes resist the height required to accommodate everyone, and this is worse in Europe than in North America and high-income East Asia. Paris proper has many towers just above the 100 meter mark, but only three above 120. On a list of the tallest buildings in Sweden, not a single one above 100 meters is in central Stockholm, and the tallest within the zone are not in the CBD but in Södermalm; compare this with Vancouver, a metro area of similar size. But in the US, too, expanding CBDs is difficult in the face of neighborhood opposition, even in Manhattan.

The solution many cities have adopted is to put the skyscrapers in edge cities. Paris famously built La Defense, which has far more skyscrapers than the city proper does; Stockholm is building skyscrapers in Kista; London built Canary Wharf; Washington, the major US city with the tightest CBD height limits, sprouted skyscraper clusters in several suburbs in Maryland and Virginia. Ryan Avent proposed this as one solution to NIMBYism: in new-build areas, there are few residents who could oppose the new development. In contrast, near zoning-constrained CBDs, not only are there many residents, but also the land is so desirable that they are typically high-income, which means they have the most political power to oppose new development.

The problem with this solution is that those secondary CBDs are not public transit hubs. In Paris, this has created an east-west disparity, in which people from (typically wealthy) western suburbs can easily reach La Defense, whereas people from poorer ones need to take long RER trips and often make multiple transfers. In every transit city, the CBD is unique in that it can be reached from anywhere. To give similar accessibility to a secondary center, massive investment is required; Paris is spending tens of billions of euros on circumferential regional rail lines to improve suburb-to-suburb connectivity, expand access in the eastern suburbs, and ameliorate the east-west imbalance (see for example isochrones on PDF-pp. 20-21 of the links here). Those lines are going to be well-patronized: the estimate is 2 million daily passengers. And yet, the east-west imbalance, if nothing else, would be a lesser problem if instead of building La Defense, Paris had built up Les Halles.

The situation in other cities is similar. Kista is on one branch of one subway line, two stops away from its outer terminus. Living in Central Stockholm, my coworkers and I can get to KTH on foot or by bike, but a coworker who teaches at KTH’s satellite campus in Kista has a long commute involving circumferential buses (taking the subway and changing at T-Central would be even longer because of the detour). While many individual sub-neighborhoods of Central Stockholm are quite dense, the overall density in the center is not particularly high, certainly not by the standards of Paris or New York. A similar problem happens in Washington, where the biggest edge city cluster, Tysons Corner, is traditionally auto-oriented and was only just connected to Metro, on a branch. This always affects poorer people the worst, as they can’t afford to live in the CBD, where there is easy access to all secondary destination, and often are pushed to suburbs with long commutes.

There is a political economy problem here, as is usually the case with zoning. (Although in the largest cities skyscraper heights are pushing beyond the point of constant marginal costs, purchase prices at least in New York are much higher than construction costs.) The people living near CBDs, as noted before, are usually rich. The displacement of office space to the suburbs affects them the least, for three reasons. First, if they desire work within walking distance or short subway distance, they can have it, since their firms typically make enough money to afford CBD office rents. Second, since they live in the transit hub, they can access suburban jobs in any direction. And third, if the transit options are lacking, they can afford cars, although of course traffic and parking remain problematic. Against their lack of incentive to support CBD office space, they have reasons to support the status quo: the high rents keep it exclusive and push poor people away, and often the traditional mid-rise buildings are genuinely more aesthetic than skyscrapers, especially ones built in modernist style.

These concerns are somewhat muted in the US, where rich people decamped for the suburbs throughout the 20th century, and have supported zoning that mandates single-family housing in the suburbs, instead of staying in the city and supporting zoning that keeps the city mid-rise. This may have a lot to do with the formation of high-rise downtowns in American cities of such size that in Europe they’d be essentially skyscraper-free.

However, what’s worse in the US is the possibility of short car-free commutes to the edge cities. Where La Defense is flanked by suburbs with high residential density, and Kista’s office blocks are adjacent to medium-density housing projects for working- and middle-class people, American edge cities are usually surrounded by low-density sprawl, where they are easily accessible by car but not by any other mode of transportation. This is because the American edge cities were usually not planned to be this way, but instead arose from intersections of freeways, and developed only after the residential suburbs did. As those edge cities are usually in rich areas, the residents again successfully resist new development; this is the point made in Edgeless Cities, which notes that, in major US metro areas, growth has been less in recognizable edge cities and more in lower-density edgeless cities.

As with the possibility of dispersing innovation clusters from rich, expensive metro areas to poorer and cheaper ones, the already-occurring dispersal from city centers to edge and subsequently edgeless cities has negative effects. It lengthens transit commutes. Although in Tokyo, long commutes first arose as a problem of a monocentric CBD, and the city developed secondary CBDs as a solution, the situation in European cities an order of magnitude smaller is very different. It worsens housing segregation: the development of an edge city tends to be in the direction of the favored quarter, since that’s where the senior managers live, and conversely, higher-income workers can choose to move nearby for the short commute. Although nearly all metro areas have favored quarters, decentralization of jobs thus tends to lengthen the commutes of poor people more than those of rich people.

This is not quite the same as what happens when entire metro areas are forced to disperse due to housing cost. The agglomerations generally stay intact, since an entire industry can move in the same direction: smaller cities have just one major favored quarter with edge cities, and larger ones still only have a few, so that industries can specialize, for example in New York, biotech and health care cluster in the Edison-Woodbridge-New Brunswick edge city. Moreover, the specialized workers are usually high-income enough that they can stay in the central city or migrate to the favored quarter. San Francisco’s programmers are not forced to move individually to faraway poor neighborhoods; they move in larger numbers to ones near already gentrifying ones, spurring a new wave of gentrification in the process; were they to move alone, they’d lose the access to the tech shuttles. The negative effects are predominantly not on richer people, but on poorer people.

The problem is that even among the poor, there is little short-term benefit from supporting upzoning. If Paris, London, and Stockholm liberalize housing and office construction, the first towers built of both kinds will be luxury, because of the large backlogs of people who would like to move in and are willing to pay far in excess of construction costs. I am going to develop this point further in two posts, on what is best called NITBYism – Not In Their Backyard – but this means that the incentive for poor and peripheral populations is not to care too much about development in rich centers. The marginal additional building in a rich city center is going to go to the upper middle class; sufficient construction would trickle to the middle class; only extensive construction would serve the working class, and then not all of it.

In the US, the marginal additional building may actually displace poor people, if no new construction is allowed, simply by removing low-income apartments. It may even create local demand for high-income housing, for example by signaling that the neighborhood has improved. In San Francisco, this is compounded by the tech shuttles, as a critical mass of Silicon Valley-bound residents can justify running shuttles, creating demand for more high-income housing.

The amount of construction required to benefit the bottom half of the national income distribution is likely to be massive. This is especially true in France and the UK, which have sharp income differences between the capital and the rest of the country; their backlogs of people who would like to move to the capital are likely in the millions, possibly the high millions. Such massive construction is beyond the pale of political reality: the current high-income resident population is simply not going to allow it – when forced to share a building with the working class, it pushes for poor doors, so why would it want zoning that would reduce the market-rate rent to what the working class would afford? The only political possibility in the short run is partial plans, but these are not going to be of partial use to the working class, but of no use to it, benefiting the middle class instead. As a result, there is no push by the working class and its social democratic political organs to liberalize construction, nor by the small-is-beautiful green movement.

Ultimately, the attempt to bypass restrictions on urban CBD formation by building edge cities, like every other kludge, is doomed to failure. The fundamental problem of rich people making it illegal to build housing nearby is not solved, and is often made even worse. The commutes get worse, and the inequality in commutes between the rich and the poor grows. Office space gets built, where otherwise it would spread along a larger share of the medium-rise CBD, but for most workers, this is not an improvement, and the environmental effects of more driving have negative consequences globally. And once city center is abandoned to the rich, there is no significant political force that can rectify the situation. What seems like a workaround and an acceptable compromise only makes the situation worse.

Quick Note: Are Freeways Safer?

Freeways are, in principle, much safer than roads with at-grade crossings. With postwar design standards, they eliminate the frictions that are responsible to a vast majority of accidents: grade crossings, left turns, opposite traffic (since they have medians by design), and so on. They also maintain higher design speeds and capacity than less safe local streets. But a more interesting question for policy purposes than “are freeways safer?” is “does the construction of freeways increase road safety?”

For some evidence that the answer is no, see PDF-page 3 of a John Adams paper from 1987 arguing for the continued primacy of Smeed’s Law. Traffic deaths per unit of vehicle distance driven had declined in both the US and UK at a rate following a multi-decade log-linear trend: 3.3% per year in the US, 4.7% in the UK. Regardless of whether Adams’ theory is correct, we can compare actual death rates to the trendline to see what happened. In the US, where the data goes farther back, the greatest period of freeway construction started in the mid-1950s and ended in about 1970; this was also a period in which traffic deaths increased, even more than the trendline based on the explosive growth in driving predicts. Of course the Interstate system also led to traffic growth on at-grade arterials, but the greatest construction growth was in freeways, and on top of this suburban sprawl meant more people would be driving on both the new freeways and the older parkways.

The Smeed’s Law explanation of this is as follows: drivers compensate for the greater safety of freeways by driving more carelessly, on both the freeways and the connecting local roads. The freeways are still safer, but the presence of any safety-improving technology will translate entirely to higher speed and capacity (i.e. drivers keep less distance than they would otherwise), and more careless driving.

There may be other explanations out there – for example, the construction of more roads will cause more dangerous vehicles to start circulating that would not otherwise. These include heavy trucks, and also cars piloted by poor drivers who would not have driven if the construction of an expansive highway had redirected development in such a way that more driving would be needed.

But in either case, what this means is that even though a freeway upgrade of a notoriously unsafe road will make it safer, it will not make the overall road network safer. To argue by analogy with congestion pricing, it is possible that the only way to bend the curve and accelerate the downward trend of vehicle deaths, beyond reducing driving, is to make it more expensive to drive unsafely. For example, insurance requirements could be raised from $25,000 to the rough insurance value of human life in the US, which is in the millions. (The same should be true of any transportation system, but buses and trains are much safer for their passengers than cars.)

The Urban Geography of Park-and-Rides

The urban geography of transit cities and of car cities is relatively well-understood. In a transit city, there will be a strong CBD surrounded by residences with spiky secondary centers, all quite small geographically but dense, centered around train stations and junctions; because density is high throughout, minor trips are done on foot. In a car city, all trips are done by car, the core is weak, and most employment is in suburban edge cities and edgeless cities.

What I haven’t seen is an explanation of how urban geography works in mixed metro areas: there are those in which short trips are done on foot and long ones in cars, such as new urbanist developments, and those in which short trips are done by car and long ones on transit, such as park-and-ride-oriented commuter suburbs. It is the latter that I want to address in this post.

The first feature of park-and-rides is that of all combinations of modes of transportation, they are the fastest and enable suburbs to sprout the farthest from the center. This is because the segment of the trip done in a car is uncongested and so driving is faster than transit, while the segment done on a train parallels a congested road, and conversely makes few stops so that average speeds are high.

On top of this, because intra-suburban trips are done by car, the density in the suburbs is very low, comparable to proper car cities (see the lower end of the density profiles of the New York, Chicago, and Boston metro areas), and this forces sprawl to go outward. New York is the world’s most sprawling city measured in total built-up area; the only other city of comparable size that’s not a transit city or a bus/jitney city is Los Angeles, which is forced to have denser suburbs because of the mountains. Of course Houston and Dallas sprawl even more relative to size, but because they lack New York’s transit-oriented core, there’s an inherent limit to their size.

The other feature is that there’s a definite socioeconomic history to the development of the auto-oriented commuter suburbs of transit cities. First, people move to the suburbs and commute into the city, almost always by train due to road congestion (or, as in the earliest New York suburbs, because mass motorization hasn’t arrived yet). The mass exodus into these suburbs comes from cars rather than commuter rail, and so the local services for people living in those suburbs are built at automobile scale, rather than at the walkable town center scale of 1910.

In North America there’s also a definite class element here – the early movers are the rich rather than the poor. Historically this was partly because poor people couldn’t afford regular train fare, and partly because the impetus for suburbanization was idyllic country homes with access to urban jobs rather than cheap housing for the poor. If I’m not mistaken, this wasn’t the case in Australian cities’ suburbanization, leading to a more urban transit-style mode of running mainline rail. The result of this class distinction is that North American commuter rail styles itself as for the rich: agencies make an effort to ensure everyone has a seat and downplay comfortable standing space, and the expectation is that transit is a last-ditch mode of transportation for when cars just don’t have the capacity to get people downtown, and so nobody needs to take the trains in the off-peak or take a bus to the train.

The result is that the park-and-ride city will still have a strong core with high-capacity transportation, and the primary CBD will maintain its supremacy for high-income jobs. Establishing edge cities in the direction of the favored quarter can happen, but there’s still a congested city nearby, and so from many directions it’s impossible to drive, and taking transit is impossible. Thus jobs in White Plains and Stamford are not nearly as high-paying as jobs in Manhattan.

There can even be secondary CBDs, if the inner part of the metro area, where people take transit more regularly than the suburban commuters do, is large enough. But those secondary CBDs are frequently quite auto-oriented. Brooklyn’s mode share for jobs is only 42-39 in favor of transit (for residents, it’s 60-25), and all other counties in the New York region except Manhattan have more workers driving than taking transit, a situation that is not true if one looks at residents. Those secondary CBDs then have mixed characteristics: they are dense and fairly walkable, as can be expected based on their history and location, but also have plentiful parking and a large share of drivers demanding even more. They can accommodate multiple modes of transportation, but driving is more convenient, and from the suburbs the commuter rail system isn’t always geared to serve them.

Surreptitious Underfunding

One third of the MBTA’s outstanding debt, about $1.7 billion, comes from transit projects built by the state as part of a court-imposed mitigation for extra Big Dig traffic; interest on this debt is about two-thirds the agency’s total present deficit. Metra was prepared to pay for a project to rebuild rail bridges that would increase clearance below for trucks and cut the right-of-way’s width from three to two tracks. Rhode Island is spending $336 million on extending the Providence Line to Wickford Junction, with most of the money going toward building parking garages at the two new stations; Wickford Junction, in a county whose number of Boston-bound commuters is 170, is getting 1,200 parking spaces.

Supporters of transportation alternatives talk about the inequity between highway and transit funding in the US, but what they’re missing is that the transit funding bucket includes a lot of things that are manifestly not about transit. At their best, they are parking lots and other development schemes adjacent to train stations, which would’ve been cheap by themselves. At their worst, they are straight highway projects, benefiting road users only.

The situation in Boston, while unique in its brazenness, is not unique in concept. In the US, where there are no pollution taxes on fuel, the only way to mitigate air pollution is by regulation and by building alternatives simultaneously. Put another way, combined highway and transit construction is in most cases not really a combined project; it’s a highway project, plus required mitigation. Requiring the transit agency to shoulder the debt and the operating subsidies is exactly requiring transit users to pay for highways. It’s equivalent to charging transit multiple dollars per gallon of gas saved from any mode shift. And it may get even worse: the proposed House transportation bill includes a provision to allow spending national air pollution control funds on regular highway widening, in addition to the current practice of spending them on carpool lanes.

Historically, the diversion of funding from transit to roads took such insidious forms. For an instructive example from Owen Gutfreund’s book, roads advocates fought to get driver’s license fees and even inspection fees for fuel trucks recognized as road user fees, whose proceeds must be diverted toward roads. For another example from the same book, in Denver, the streetcar system was required to cover 25% of the cost of road maintenance on one-way streets and 50% on two-way streets, and as car traffic rose, streetcars both became slower and had to send over more money toward roads.

Another instructive case study is grade separations. It is to my knowledge universal that expressways and high-speed railroads, both of which must be grade-separated, pay for their own grade separations. In all other cases, who pays is determined by which mode is more powerful, and in the US, this is roads. As the national highway system was built in the 1920s, interurban railroads were required to pay for grade-separations, even when the rail came first. The practice continues today: in Kentucky, the railroad has to shoulder the full cost if it’s from 1926 or newer (Statute 177.110), and half the construction cost and the full planning cost if it’s older (177.170). In contrast, in Japan, grade separations are considered primarily a road project, and so the Chuo Line track elevation project was paid 85% by the national and city governments and only 15% by JR East (page 36). The segment in question of the Chuo Line was built in 1889; I believe, but do not know, that new rail construction in Japan is always grade-separated, at the railroad’s expense.

The situation in the US today is a surreptitious underfunding of transit, and at the same time a surreptitious overfunding of roads. It is not subject to democratic debate or even to the usual lobbyist funding formulas, but, like the obscure regulations that impede good passenger rail, hidden in rules nobody thinks to question. To pay for road mitigations and for parking, transit agencies will cut weekend service and reduce frequency. It’s bad enough when done in the open, but it’s done while claiming that transit is too expensive to provide.