Category: Urbanism

Meme Weeding: Rich West, Poor East

There’s a common line in global history – I think it’s popularized through Eric Hobsbawm – that there is a universal east-west divide in temperate latitude cities. The idea is that the west side of those cities is consistently richer than the east side and has been continuously since industrialization, because prevailing winds are westerly and so rich people moved west to be upwind of industrial pollution. I saw this repeated on Twitter just now and would like to push back. Some cities have this pattern, some don’t, some even have the opposite pattern. Among cities the casual urbanist reader is likely to be familiar with, about the only one where this is true is Paris.

London

London famously has a rich west and poor east. I think this is why the line positing this directional pattern as universal is so common. Unfortunately, the origin of this pattern is too recent to be about prevailing winds.

In an early example of data visualization, Charles Booth made a block by block map of London in 1889, colored by social class, with a narrative description of each neighborhood. The maps indeed show the expected directionality, but with far more nuance. The major streets were middle-class even on the East End: Mile End Road was lined with middle-class homes, hardly what one would expect based on pollution. The poverty was on back alleys. South London exhibited the same pattern: middle-class major throughfares, back alleys with exactly the kind of poverty Victorian England was infamous for. West London was different – most of it was well-off, either middle-class or wealthier than that – but even there one can find the occasional slum.

East London in truth had a lot of working poor because it had a lot of working-class jobs, thanks to its proximity to the docks, which were east of the City because ports have been moving downriver for centuries with the increase in ship size. Those working poor did not always have consistent work and therefore some slipped into non-working poverty. The rich clustered in enclaves away from the poverty and those happened to be in the west, some predating any kind of industrialization. Over time the horizontal segregation intensified, as slums were likelier to be redeveloped (i.e. evicted) in higher-property value areas near wealth, and the pattern diffused to the broader east-west one of today.

Berlin

Berlin has a rich west and poor east – but this is a Cold War artifact of when West Berlin was richer than East Berlin, and the easternmost neighborhoods of the West were poor because they were near the Wall (thus, half their walk radius was behind the Iron Curtain) and far from City West jobs.

Before WW2, the pattern was different. West of city center, Charlottenburg was pretty well-off – but so was Friedrichshain, to the east. The sharpest division in Berlin was as in London, often within the same apartment building, which would house tens of apartments: well-off people lived facing the street, while the poor lived in apartments facing internal courtyards, with worse lighting and no vegetation in sight.

Tokyo

Tokyo has a similar east-west directionality as London, but with its own set of nuances. This should not be too surprising – it’s at 35 degrees north, too far south for the westerlies of Northern Europe; the winds change and are most commonly southerly there. The directionality in Tokyo is more about the opposition between uphill Yamanote and sea-level Shitamachi (the Yamanote Line is so named because the neighborhoods it passes through – Ikebukuro, Shinjuku, and Shibuya – formed the old core of Yamanote).

What’s more, the old Yamanote-Shitamachi pattern is also layered with a rich-center-poor-outskirts pattern. Chuo, historically in Shitamachi, is one of the wealthiest wards of Tokyo, thanks to its proximity to CBD jobs and the high rents commanded in an area where businesses build office towers.

The American pattern

The most common American pattern is that rich people live in the suburbs and poor people live in the inner city; the very center of an American city tends to be gentrified, creating a poverty donut surrounding near-center gentrification and in turn surrounded by suburban wealth. Bill Rankin of Radical Cartography has some maps, all as of 2000, and yet indicative of longer-term patterns.

New York is perhaps the best example of the poverty donut model: going outside the wealthy core consisting of Manhattan south of Harlem, inner Brooklyn, and a handful of gentrified areas in Jersey City and Hoboken near Manhattan, one always encounters poor areas before eventually emerging into middle-class suburbia. Directionality is weak, and usually localized – for example, the North Shore of Long Island is much wealthier than the South Shore, but both are east of the city.

Many American cities tend to have strong directionality in lieu of or in addition to the poverty donut. In Chicago, the North Side is rich, the West Side is working-class, and the South Side is poor. Many cities have favored quarters, such as the Main Line of Philadelphia, but that’s in addition to a poverty donut: it’s silly to speak of rich people moving west of Center City when West Philadelphia is one of the poorest areas in the region.

Where east-west directionality exists as in the meme, it’s often in cities without westerly winds. Los Angeles is at 34 degrees north and famously has a rich Westside and a poor Eastside – but those cannot possibly emerge from a prevailing wind pattern that isn’t consistent until one travels thousands of kilometers north. Houston is at 30 degrees north. More likely, the pattern in Los Angeles emerges from the fact that beachfront communities have always been recreational and the rich preferred to live nearby, and only the far south near the mouth of the river, in San Pedro and Long Beach, had an active industrial waterfront.

Sometimes, the directionality is the opposite of that of the meme. Providence has a rich east and poorer west. This is partly a longstanding pattern: the rivers flow west to east and north to south, and normally you’d expect rich people to prefer to live upriver, but in Providence the rivers are so small that only at their falls was there enough water power for early mills, producing industrial jobs and attracting working-class residents. However, the pattern is also reinforced with recent gentrification, which has built itself out of Brown’s campus on College Hill, spreading from there to historically less-well off East Side neighborhoods like Fox Point; industrial areas have no reason to gentrify in a city the size of Providence, and, due to the generations-long deindustrialization of New England, every reason to decline.

Growth Without Urbanization

Last year, I poked around developing-country urbanization rates. The starting point is that in 2000-20, India grew from 28% urban to 35% urban. This is an anemic growth rate: it’s lower in absolute numbers than in the United States, which took not 20 years to grow at this rate but 10, from 1880 to 1890. And this is especially offensive in the context of a high-growth developing country – India has high economic growth, and by one measure in the 19 years before corona went from the GDP per capita the US had in 1847 to that the US had in 1899. In 19 years, it caught up with 52 years of US growth, but not quite 10 years of US urbanization. Why?

Is it unavoidable in developing countries?

No. Urbanization rates in East Asia were healthy during its period of catchup growth, which is still to a large extent happening in China. South Korea and China both took seven years to grow from 28% urban to 35%.

There’s been a lot of historical rewriting in the last 10 or so years, treating East Asia as always having been developed or at least having had the state capacity to grow, in contrast with laggards elsewhere in the world. This is often bundled with racism positing East Asians as a peer master race to white people, contrasted with Southeast Asia (for example, in Garett Jones), South Asia, and of course Africa. But in the last third of the 20th century, people commenting on East Asian growth did not distinguish East and Southeast Asia, and until the 1997 financial crisis, anti-communist autocracies Indonesia and the Philippines weren’t obviously different from South Korea and Taiwan; the divergence has been mostly in the last 25 years.

In urbanization, at any rate, Southeast Asia has been mostly showing rapid historic growth as well. Indonesia took the same 7 years as South Korea and China to grow from 28% to 35% urban, and its urbanization rate has grown from 42% to 57% since 2000. This is slower than China (36-61%), but in the context of weaker post-1997 growth, it’s moderate growth and moderate urbanization, rather than growth without urbanization as in India. Vietnam has fast growth and fast urbanization – 24-38% over the same period that India grew 28-35%, with similar per capita income trajectory as India. Thailand has exploded from 31% to 52% since 2000.

In Indian discourse, a growing comparison case is Bangladesh. It’s right nearby, it’s famous for being extremely poor, and in reality it’s barely any poorer than India. Moreover, it has the relatively unregulated labor-intensive manufacturing growth that Indian neoliberals wish India had, and less strict urban zoning restrictions. Well, Bangladesh has grown from 24% urban in 2000 to 39% last year, with exactly the same GDP per capita growth as India – 4.7%/year from 2000 to 2021 vs. 4.6% in India, albeit with India suffering a setback during corona and better-masked Bangladesh maintaining positive growth in 2020.

Is it unique to India?

Not exactly. The thread linked in the lede brings examples from all over Asia and Africa; Pakistan has even slower urbanization than India, albeit in a context of weak income growth. Africa is hard to compare with India because it has both low economic growth for how poor it is and slow urbanization, and its faster-growing states don’t necessarily urbanize fast, for example Sudan. The African country most discussed as a growth case in neoliberal English-language media, Ghana, has had a decent pace of urbanization – 44-58% since 2000 – but the accolades one sees to it must be viewed as drawing a target around where the arrow landed. To round up the English-speaking African states, Nigeria and Tanzania have had fairly healthy urbanization growth as well, but Kenya and Uganda have not.

So it’s not exactly just an Indian problem. But it’s a problem that does appear worse in India (and perhaps Pakistan) than in other developing countries, especially in contrast with India’s truly fast pace of income growth.

Why?

One answer is strict zoning. The density in Indian cities is very high (due to overcrowding), but it’s still lower than in the most direct comparison case, Dhaka.

But this is not a satisfying answer, and I worry that Indian urbanists overfocus on the maximum floor area ratio. Anup Malani, a Chicago law professor with economics background, tweeted a graphic summarizing the maximum floor area ratios (FARs)/floor space indices (FSIs) in various cities, showing how much Indian cities fall short. I picked this example because I saw it a week ago but it’s typical of Indian urbanist discourse to say something like “Mumbai permits a maximum FSI of about 4, New York permits 12.” But this is not quite accurate – Indian urban FSI limits tend to apply citywide, or at least in very large swaths of the city, whereas North American FARs apply at the level of the individual block; little of New York permits residential FAR 12, largely just the avenues and two-way streets on the Upper East and West Sides, and the vast majority of residential land permits FAR 1.5-3.

In this way, Indian zoning is more like traditional European zoning, which assumes high uniform density, with FARs of about 2.5-3.5 in the larger cities. It’s not quite the same because Parisian zoning prefers regulating height to regulating FAR, and Indian urban housing in the recently-built formal sector is much more likely to be tall-and-thin (as in, say, Vancouver) than mid-rise-and-thick as in Europe, but in terms of the pattern of density, India unwittingly tries to be Europe.

What’s true is that housing construction rates in India are lagging. A report by Knight Frank looked at new housing completions (“launches”) in the eight largest cities in 2018 and 2019. Relative to 2011 census population, in 2019, housing construction per 1,000 people reached 6.4 units in Mumbai, 8.9 in Pune, 4 in Bangalore, 1.4 in Delhi, 2 in Hyderabad, 1.6 in Chennai, 1.4 in Ahmedabad, and 1.3 in Kolkata. Maharashtra liberalized its zoning in the late 2010s, boosting Mumbai FSI from 1.33 to about 4, and this might be why Mumbai’s housing growth rate was not so bad (that is, it’s about comparable with that of Ile-de-France or Stockholm County and still lags Seoul and Tokyo), but elsewhere growth rates are extremely low. Government-funded housing heavily favors rural areas even more than their share of the population, but Mumbai rents are such that privately-funded housing should be viable at much higher rates than 80,000 units a year (in a city of 12.5 million).

How Tunneling in New York is Easier Than Elsewhere

I hate the term “apples-to-apples.” I’ve heard those exact three words from so many senior people at or near New York subway construction in response to any cost comparison. Per those people, it’s inconceivable that if New York builds subways for $2 billion/km, other cities could do it for $200 million/km. Or, once they’ve been convinced that those are the right costs, there must be some justifiable reason – New York must be a uniquely difficult tunneling environment, or its size must mean it needs to build bigger stations and tunnels, or it must have more complex utilities than other cities, or it must be harder to tunnel in an old, dense industrial metropolis. Sometimes the excuses are more institutional but always drawn to exculpate the political appointees and senior management – health benefits are a popular excuse and so is a line like “we care about worker rights/disability rights in America.” The excuses vary but there’s always something. All of these excuses can be individually disposed of fairly easily – for example, the line about worker and disability rights is painful when one looks at the construction costs in the Nordic countries. But instead of rehashing this, it’s valuable to look at some ways in which New York is an easier tunneling environment than many comparison cases.

Geology

New York does not have active seismology. The earthquake-proofing required in such cities as Los Angeles, San Francisco, Tokyo, Istanbul, and Naples can be skipped; this means that simpler construction techniques are viable.

Nor is New York in an alluvial floodplain. The hard schist of Manhattan is not the best rock to tunnel in (not because it’s hard – gneiss is hard and great to tunnel in – but because it’s brittle), but cut-and-cover is viable. The ground is not going to sink 30 cm from subway construction as it did in Amsterdam – the hard rock can hold with limited building subsidence.

The underwater crossings are unusually long, but they are not unusually deep. Marmaray and the Transbay Tube both had to go under deep channels; no proposed East River or Hudson crossing has to be nearly so deep, and conventional tunnel boring is unproblematic.

History and archeology

In the United Kingdom, 200 miles is a long way. In the United States, 200 years is a long time. New York is an old historic city by American standards and by industrial standards, but it is not an old historic city by any European or Asian standard, unless the standard in question is that of Dubai. There are no priceless monuments in its underground, unlike those uncovered during tunneling in Mexico City, Istanbul, Rome, or Athens; the last three have tunneled through areas with urban history going back to Classical Antiquity.

In addition to past archeological artifacts, very old cities also run into the issue of priceless ruins. Rome Metro Line C’s ongoing expansion is unusually expensive for Italy – segment T3 is $490 million per km in PPP 2022 dollars – because it passes by the Imperial Forum and the Colosseum, where no expense can be spared in protecting monuments from destruction by building subsidence, limited by law to 3 mm; the stations are deep-mined because cut-and-cover is too destructive and so is the Barcelona method of large-diameter bores. More typical recent tunnels in Rome and Milan, even with the extra costs of archeology and earthquake-proofing, are $150-300 million/km (Rome costing more than Milan).

In New York, in contrast, buildings are valued for commercial purposes, not historic purposes. Moreover, in the neighborhoods where subways are built or should be, there is extensive transit-oriented development opportunity near the stations, where the subsidence risk is the greatest. It’s possible to be more tolerant of risk to buildings in such an environment; in contrast, New York spent effort shoring up a building on Second Avenue that is now being replaced with a bigger building for TOD anyway.

Street network

New York is a city of straight, wide streets. A 25-meter avenue is considered narrow; 30 is more typical. This is sufficient for cut-and-cover without complications – indeed, it was sufficient for four-track cut-and-cover in the 1900s. Bored tunnels can go underneath those same streets without running into building foundations and therefore do not need to be very deep unless they undercross older subway lines.

Moreover, the city’s grid makes it easier to shut down traffic on a street during construction. If Second Avenue is not viable as a through-route during construction, the city can make First Avenue two-way for the duration. Few streets are truly irreplaceable, even outside Manhattan, where the grid has more interruptions. For example, if an eastward extension of the F train under Hillside is desired, Jamaica can substitute for Hillside during construction and this makes the cut-and-cover pain (even if just at stations) more manageable.

The straightforward grid also makes station construction easier. There is no need to find staging grounds for stations such as public parks when there’s a wide street that can be shut down for construction. It’s also simple to build exits onto sidewalks or street medians to provide rapid egress in all directions from the platform.

Older infrastructure

Older infrastructure, in isolation, makes it difficult to build new tunnels, and New York has it in droves. But things are rarely isolated. It matters what older infrastructure is available, and sometimes it’s a boon more than a bane.

One way it can be a boon is if older construction made provisions for future expansion. This is the most common in cities with long histories of unrealized plans, or else the future expansion would have been done already; worldwide, the top two cities in such are New York and Berlin. The track map of the subway is full of little bellmouths and provisions for crossing stations, many at locations that are not at all useful today but many others at locations that are. Want to extend the subway to Kings Plaza under Utica? You’re in luck, there’s already a bellmouth leading from the station on the 3/4 trains. How about going to Sheepshead Bay on Nostrand? You’re in luck again, trackways leading past the current 2/5 terminus at Flatbush Avenue exist as the station was intended to be only a temporary terminal.

Second Avenue Subway Phase 2 also benefits from such older infrastructure – cut-and-cover tunnels between the stations preexist and will be reused, so only the stations need to be built and the harder segment curving under 125th Street crossing under the 4/5/6.

Vancouver, Stockholm, and the Suburban Metro Model

I was asked by an area advocate about SkyTrain, and this turned into a long email with various models to compare Vancouver with. In my schema contrasting suburban metro systems and S-Bahns, Vancouver is firmly in the first category: SkyTrain is not commuter rail, and Vancouver’s commuter rail system, the West Coast Express, is so weak it might as well not exist. The suburban metro model forces the region to engage in extensive transit-oriented development, which Vancouver has done. Has it been successful? To some extent, yes – Vancouver’s modal split is steadily rising, and in the 2016 census, just before the Evergreen Line opened, was 20%; supposedly it is 24% now. But it could have done better. How so?

Could Vancouver have used the S-Bahn model?

No.

There is a common line of advocacy; glimpses of it can be found on the blog Rail for the Valley, by a writer using the name Zweisystem who commented on transit blogs like Yonah and Jarrett‘s in the 2000s. Using the name of Karlsruhe’s tram-train as inspiration, Zwei has proposed that Vancouver use existing commuter rail corridors in suburban and exurban areas and streetcars in the urban core.

The problem with this is that Vancouver has very little legacy mainline rail infrastructure to work with. There are two mainlines serving city center: the Canadian Pacific, and Canadian National. The CP line hugs the coast, full of industrial customers; the CN line is farther inland and has somewhat more fixable land use, but the Millennium Line partly parallels it and even after 20 years its ridership is not the strongest in the system. Most of the urban core is nowhere near a rail mainline.

This is completely unlike the Central European S-Bahn-and-streetcars systems, all of which have legacy commuter lines radiating in all directions, and use legacy streetcars rather than newly-built light rail lines. In the last generation they’ve expanded their systems, building connections and feeding rapid transit, but none of these is a case of completely getting rid of the streetcars and then restoring them later; the busiest system that’s entirely new, that of Paris, is largely orbitals and feeders for the Métro and RER.

Vancouver did in fact reuse old infrastructure for the suburban metro concept. The Expo Line involved very little greenfield right-of-way use. Most of the core route between the historic core of Vancouver and New Westminster is in the private right-of-way of a historic BC Electric interurban; this is why it parallels Kingsway but does not run elevated over it. The tunnel in Downtown Vancouver is a disused CP tunnel; this is why the tracks are stacked one over the other rather than running side by side – the tunnel was single-track but tall enough to be cut into two levels. This limited the construction cost of the Expo Line, which the largely-elevated Millennium Line and the partly underground, partly elevated Canada Line could not match.

The Stockholm example

In my post about S-Bahns and suburban metros, I characterized Stockholm as an archetypal suburban metro. Stockholm does have an S-Bahn tunnel nowadays, but it only opened 2017, and ridership so far, while rising, is still a fraction of that of the T-bana.

Stockholm’s choice of a full metro system in the 1940s, when it had about a million people in its metro area, had its critics at the time. But there wasn’t much of a choice. The trams were fighting growing traffic congestion, to the point that some lines had to be put in a tunnel, which would later be converted for the use of the Green Line as it goes through Södermalm. Working-class housing was overcrowded and there was demand for more housing in Stockholm, which would eventually be satisfied by the Million Program.

And there were too few commuter lines for an S-Bahn system. Swedes were perfectly aware of the existence of the S-Bahn model; Berlin and Hamburg both had S-Bahns running on dedicated tracks, and Copenhagen had built its own system, called S-Tog in imitation of the German name. But they didn’t build that. None of this was the integrated Takt timetable that Munich would perfect in the 1970s, in which branches could be left single-track or shared with intercity trains provided the regular 20-minute headways could be scheduled to avoid conflicts; the track sharing required in the 1940s would have been too disruptive. Not to mention, Stockholm had too few lines, if not so few as Vancouver – only two branches on each of two sides of city center, with most of the urban core far from the train.

So Stockholm built the T-bana, with three highly branched lines all meeting at T-Centralen, the oldest two of the three having a cross-platform transfer there and at the two stations farther south. The roughly 104 km system (57 km underground) cost, in 2022 US dollars, $3.6 billion. Stockholm removed all the regular streetcars; a handful running all or mostly in private rights-of-way were retained with forced transfers at outlying T-bana stations like Ropsten, as was the narrow-gauge Roslagsbana (with a forced transfer at KTH, where I worked for two years).

At the same time the T-bana was under construction, the state built the Million Program, and in the Stockholm region, the housing projects were designed to be thoroughly oriented around the system. The pre-Million Program TOD suburb of Vällingby was envisioned as part of a so-called string of pearls, in which towns would radiate from each T-bana station, with local retail and jobs near the station surrounded by housing. In 2019, the T-bana had 1,265,900 riders per workday, Citybanan had 410,300, and the remaining lines 216,100; Sweden reports modal split for all trips and not just work trips, but the commute modal split appears to be 40% or a little higher, a figure that matches Paris, a metro area of 13 million that opened its first metro line in 1900.

So why is Stockholm better?

There are parallels between Stockholm and Vancouver – both are postwar cities with 2.5 million people in their metropolitan areas with rapid growth due to immigration. Their physical geographies are similar, with water barriers inhibiting the contiguous sprawl of many peers. Both extensively employed TOD to shape urban geography around the train: Stockholm has Vällingby and other, less famous examples of TOD; Vancouver has Metrotown and smaller examples of residential TOD along the Expo Line, alongside a famously high-rise downtown. But the T-bana has more than twice the annual ridership of SkyTrain, and Stockholm has around twice the modal split of Vancouver – this is not a matter of Canadians riding buses more than Europeans do. So what gives?

Part of it is about TOD models. Stockholm is an exceptionally monocentric city, and this has created a lot of demand for urban rail to Central Stockholm. But Vancouver’s high-rise city center has a lot of jobs, and overall, around 30% of Metro Vancouver jobs are in the city or the University Endowment Lands (that is, UBC), and the proportion of Stockholm County jobs within an equivalent area is similar. Vancouver has never built anything as massive as the Million Program, but its housing growth rate is one of the highest in the world (around 11 gross units/1,000 people per year in the 2010s), and much of that growth clusters near the Expo Line and increasingly also near the worse-developed Millennium and Canada Lines.

I suspect that the largest reason is simply the extent of the systems. SkyTrain misses the entire West Side of Vancouver west of Cambie, has poor coverage in Surrey and none in Langley, and does not cross the Burrard Inlet. The T-bana has no comparable lacunae: Roslag is served by Roslagsbanan, and the areas to be served by the under-construction extensions are all target TOD areas with much less present-day density than North Vancouver, the cores of Fairview and Kitsilano, or the town centers in Surrey other than Whalley.

What’s more, Stockholm’s construction costs may be rising but those of Vancouver (and the rest of Canada) are rising even faster and from a higher base. Nya Tunnelbanan is currently budgeted at $3.6 billion in PPP terms – 19 underground km for about the same cost as the existing 104 – but Vancouver is building half of the most critical SkyTrain extension, that under Broadway, for C$2.83 billion (US$2.253 billion in PPP terms) for just 5 km, not all underground. The projected cost per rider is still favorable, but it’s less favorable for the planned extension to Langley, and there’s no active plan for anything to the North Shore.

The silver lining for Vancouver is that the West Side is big and underdeveloped. The region has the money to extend SkyTrain not just to Arbutus as is under construction but all the way to UBC, and the entire swath of land between Central Broadway and UBC screams “redevelop me.” The current land use is a mix of mid-rise, townhouses (“missing middle”), and single-family housing; Shaughnessy, whose northern end is within a kilometer of under-construction SkyTrain stations, is single-family on large lots, and can be redeveloped as high-rise housing alongside closer-in areas. Canada does not have Europe’s allergy to tall buildings, and this is a resource that can be used to turn Vancouver into a far more transit-oriented city along the few corridors where it can afford to build. The suburban metro is always like this: fewer lines, more development intensity along them.

Public Transportation in the Southeastern Margin of Brooklyn

Geographic Long Island’s north and south shores consist of series of coves, creeks, peninsulas, and barrier islands. Brooklyn and Queens, lying on the same island, are the same, and owing to the density of New York, those peninsulas are fully urbanized. In Southeastern Brooklyn, moreover, those peninsulas are residential and commercial rather than industrial, with extensive mid-20th century development. Going northeast along the water, those are the neighborhoods of Manhattan Beach, Gerritsen Beach, Mill Basin, Bergen Beach, Canarsie, Starrett City, and Spring Creek. The connections between them are weak, with no bridges over the creeks, and this affects their urbanism. What kind of public transportation solution is appropriate?

The current situation

The neighborhoods in the southeastern margin of Brooklyn and the southern margin of Queens (like Howard Beach) are disconnected from one another by creeks and bays; transportation arteries, all of which are currently streets rather than subway lines, go north and northwest toward city center. At the outermost margin, those neighborhoods are connected by car along the Shore Parkway, but there is no access by any other mode of transportation, and retrofitting such access would be difficult as the land use near the parkway is parkland and some auto-oriented malls with little to no opportunity for sprawl repair. The outermost street that connects these neighborhoods to one another is Flatlands, hosting the B6 and B82 buses, and if a connection onward to Howard Beach is desired, then one must go one major street farther from the water to Linden, hosting the B15.

For the purposes of this post, the study area will be in Brooklyn, bounded by Linden, the Triboro/IBX corridor, and Utica:

This is on net a bedroom community. In 2019, it had 85,427 employed residents and 39,382 jobs. Very few people both live and work in this area – only 4,005. This is an even smaller proportion than is typical in the city, where 8% of employed city residents work in the same community board they live in – the study zone is slightly smaller than Brooklyn Community Board 18, but CB 18 writ large also has a lower than average share of in-board workers.

In contrast with the limited extent of in-zone work travel, nearly all employed zone residents, 76,534, work in the city as opposed to its suburbs (and 31,685 of the zone’s 39,382 jobs are held by city residents). Where they work looks like where city workers work in general, since the transportation system other than the Shore Parkway is so radial:

Within the zone, the southwestern areas, that is Mill Basin and Bergen Beach, are vaguely near Utica Avenue, hosting the B46 and hopefully in the future a subway line, first as an extension of the 4 train and later as an independent trunk line.

To the northeast, Canarsie, Starrett City, and Spring Creek are all far from the subway, and connect to it by dedicated buses to an outer subway station – see more details on the borough’s bus map. Canarsie is connected to the L subway station named after it by the B42, a short but high-productivity bus route, and to the 3 and 4 trains at Utica by the B17, also a high-productivity route. Starrett City does not have such strong dedicated buses: it is the outer terminus of the circumferential B82 (which is very strong), but its dedicated radial route, the B83 to Broadway Junction, is meandering and has slightly below-average ridership for its length. Spring Creek is the worst: it is a commercial rather than residential area, anchored by the Gateway Center mall, but the mall is served by buses entering it from the south and not the north, including the B83, the B84 to New Lots on the 3 (a half-hourly bus with practically no ridership), the rather weak B13 to Crescent Street and Ridgewood, and the Q8 to Jamaica.

The implications for bus design

The paucity of east-west throughfares in this area deeply impacts how bus redesign in Brooklyn ought to be done, and this proved important when Eric and I wrote our bus redesign proposal.

First, there are so few crossings between Brooklyn and Queens that the routes crossing between the two boroughs are constrained and can be handled separately. This means that it’s plausible to design separate bus networks for Brooklyn and Queens. In 2018 it was unclear whether they’d be designed separately or together; the MTA has since done them separately, which is the correct decision. The difficulty of crossings argues in favor of separation, and so does the difference in density pattern between the two boroughs: Brooklyn has fairly isotropic density thanks to high-density construction in Coney Island, which argues in favor of high uniform frequency borough-wide, whereas Queens grades to lower density toward the east, which argues in favor of more and less frequent routes depending on neighborhood details.

Second, the situation in Starrett City is unacceptable. This is an extremely poor, transit-dependent neighborhood, and right now its bus connections to the rest of the world are lacking. The B82 is a strong bus route but many rush hour buses only run from the L train west; at Starrett City, the frequency is a local bus every 10-12 minutes and another SBS bus every 10-12 minutes, never overlying to produce high base frequency. The B83 meanders and has low ridership accordingly; it should be combined with the B20 to produce a straight bus route going direct on Pennsylvania Avenue between Starrett City and Broadway Junction, offering neighborhood residents a more convenient connection to the subway.

Third, the situation in Spring Creek is unacceptable as well. Gateway Center is a recent development, dating only to 2002, long after the last major revision of Brooklyn buses. The bus network grew haphazardly to serve it, and does so from the wrong direction, forcing riders into a circuitous route. Only residents of Starrett City have any direct route to the mall, but whereas Starrett City has 5,724 employed residents (south of Flatlands), and Spring Creek has 4,980 workers, only 26 people commute from Starrett City to Spring Creek. It’s far more important to connect Spring Creek with the rest of the city, which means buses entering it from the north, not the south. Our bus redesign proposal does that with two routes: a B6/B82 extension making this and not Starrett City the eastern anchor, and a completely redone B13 going directly north from the mall to New Lots and thence hitting Euclid Avenue on the A/C and Crescent Street on the J/Z.

What about rail expansion?

New York should be looking at subway expansion, and not just Second Avenue Subway. Is subway expansion a good solution for the travel needs of this study zone?

For our purposes, we should start with the map of the existing subway system; the colors indicate deinterlining, but otherwise the system is exactly as it is today, save for a one-stop extension of the Eastern Parkway Line from New Lots to the existing railyard.

Starrett City does not lie on or near any obvious subway expansion; any rail there has to be a tram. But Canarsie is where any L extension would go – in fact, the Canarsie Line used to go there until it was curtailed to its current terminus in 1917, as the trains ran at-grade and grade-separating them in order to run third rail was considered impractically expensive. Likewise, extending the Eastern Parkway Line through the yard to Gateway Center is a natural expansion, running on Elton Street.

Both potential extensions should be considered on a cost per rider basis. In both cases, a big question is whether they can be built elevated – neither Rockaway Parkway nor Elton is an especially wide street most of the way, about 24 or 27 meters wide with 20-meter narrows. The Gateway extension would be around 1.3 km and the Canarsie one 1.8 km to Seaview Avenue or 2.3 km to the waterfront. These should cost around $250 million and $500 million respectively underground, and somewhat less elevated – I’m tempted to say elevated extensions are half as expensive, but this far out of city center, the underground premium should be lower, especially if cut-and-cover construction is viable, which it should be; let’s call it two-thirds as expensive above-ground.

Is there enough ridership to justify such expansion?

Let’s start with Canarsie, which has 28,515 employed residents between Flatlands and the water. Those workers mostly don’t work along the L, which manages to miss all of the city’s main job centers, but the L does have good connections to lines connecting to Downtown Brooklyn (A/C), Lower Manhattan (A/C again), and Midtown (4/5/6, N/Q/R/W, F/M, A/C/E). Moreover, the density within the neighborhood is uniform, and so many of the 28,515 are not really near where the subway would go – Rockaway/Flatlands, Rockaway/Avenue L, Rockaway/Seaview, and perhaps Belt Parkway for the waterfront. Within 500 meters of Rockaway/L and Rockaway/Seaview there are only 9,602 employed residents, but then it can be expected that nearly all would use the subway.

The B42 an B17 provide a lower limit to the potential ridership of a subway extension. The subway would literally replace the B42 and its roughly 4,000 weekday riders; nearly all of the 10,000 riders of the B17 would likely switch as well. What’s more, those buses were seeing decreases in ridership even before corona due to traffic and higher wages inducing people to switch away from buses – and in 2011, despite high unemployment, those two routes combined to 18,000 weekday riders.

If that’s the market, then $500 million/18,000 weekday riders is great and should be built.

Let’s look at Gateway now. Spring Creek has 4,980 workers, but first of all, only 3,513 live in the city. Their incomes are very low – of the 3,513, only 1,030, or 29%, earned as much as $40,000/year in 2019 – which makes even circuitous mass transit more competitive with cars. There’s a notable concentration of Spring Creek workers among people living vaguely near the 3/4 trains in Brooklyn, which may be explained by the bus connections; fortunately, there’s also a concentration among people living near the proposed IBX route in both Brooklyn and Queens.

The area is the opposite of a bedroom community, unlike the other areas within the study zone – only 1,114 employed people live in it. Going one block north of Flatlands boosts this to 1,923, but a block north of Flatlands it’s plausible to walk to a station at Linden at the existing railyard. 51% of the 1,114 and 54% of the 1,923 earn at least $40,000 a year. Beyond that, it’s hard to see where neighborhood residents work – nearly 40% work in the public sector and OnTheMap’s limitations are such that many of those are deemed to be working at Brooklyn Borough Hall regardless of their actual commute destination.

There’s non-work travel to such a big shopping center, but there are grounds to discount it. It’s grown around the Shore Parkway, and it’s likely that every shopper in the area who can afford a car drives in; in Germany, with generally good off-peak frequency and colocation of retail at train stations, the modal split for public transit is lower for shopping trips than for commutes to work or school. Such trips can boost a Gateway Center subway extension but they’re likely secondary, at least in the medium run.

The work travel to the mall is thankfully on the margin of good enough to justify a subway at $50,000/daily trip, itself a marginal cost. Much depends on IBX, which would help deliver passengers to nearby subway nodes, permitting such radial extensions to get more ridership.

Quick Note: How to Incentivize Transit-Oriented Development

The Biden administration recently put out a statement saying that it would work to increase national housing production. It talks about the need to close the housing shortfall, estimated at 1.5 million dwellings, and proposes to use the Bipartisan Infrastructure Law (BIL) to dole out transport funding based on housing production. This is a welcome development, and I’d like to offer some guidelines for how this can be done most effectively.

Incentives mean mistrust

You do not need to give incentives to trustworthy people. The notion of incentives already assumes that the people who are so governed would behave poorly by themselves, and that the governing body, in this case the federal government, surveils them loosely so as to judge them by visible metrics set in advance. Once this fundamental fact is accepted – the use of BIL funding to encourage housing production implies mistrust of all local government to build housing – every other detail should be set up in support of it.

Demand conflict with community

Federal funding should, in all cases, require state and local governments to discipline community groups that fight housing and extract surplus from infrastructure. Regions that cannot or do not do so should receive less funding; the feds should communicate this in advance, stating both the principle and the rules by which it will be judged. For example, a history of surrender to local NIMBYs to avoid lawsuits, or else an unwillingness to fight said lawsuits, should make a region less favored for funds, since it’s showing that they will be wasted. In contrast, a history of steamrolling community should be rewarded, showing that the government is in control and prioritizes explicit promises to the feds and the voters over implicit promises to the local notables who form the base of NIMBYism.

Spend money in growth regions

In cities without much housing demand, like Detroit and Cleveland, the problem of housing affordability is one of poverty; infrastructure spending wouldn’t fix anything. This means that the housing grant should prioritize places with growth demand, where current prices greatly exceed construction costs. These include constrained expensive cities like New York and San Francisco, but increasingly also other wealthy cities like Denver and Nashville, whose economic booms translate to population increase as well as income growth, but unfortunately housing growth lags demand. Even poorer interior cities are seeing rent increases as people flee the high prices of richer places, and encouraging housing growth in their centers is welcome (but not in their suburbs, where housing is abundant and not as desirable).

Look at residential, not commercial development

In the United States, YIMBY groups have focused exclusively on residential development. This is partly for political reasons: it’s easier to portray housing as more moral, benefiting residents who need affordable housing even if the building in question is market-rate, than to portray an office building as needing political support. In some cases it’s due to perceived economic reasons – the two cities driving the American YIMBY discourse, New York and San Francisco, have unusually low levels of job sprawl for the United States, and in both cities YIMBY groups are based near city center, where jobs look especially plentiful. At the local and state level, this indifference to commercial YIMBY is bad, because it’s necessary to build taller in city center and commercialize near-center neighborhoods like the West Village to fight off job sprawl.

However, at the federal level, a focus on residential development is good. This is a consequence of the inherent mistrust assumed in the incentive system. While economically, American cities need city centers to grow beyond the few downtown blocks they currently occupy, politically it’s too easy for local actors to bundle a city center expansion with an outrageously expensive urban renewal infrastructure plan. In New York, this is Penn Station redevelopment, including some office towers in the area that are pretty useful and yet have no reason to be attached to the ill-advised Penn Station South project digging up an entire block to build new tracks. Residential development is done at smaller scale and is harder to bundle with such unnecessary signature projects; the sort of projects that are bundled with it are extensions of urban rail to new neighborhoods to be redeveloped, and those are easier to judge on the usual transport metrics.

Institutional Issues: Who is Entrusted to Learn?

I know I’ve been on hiatus in the last few weeks; here is the continuation of my series on institutional factors in public transportation. I have harped for more than 10 years about the need to learn best practices from abroad, and today I’d like to discuss the issue of who gets to learn. Normally it should be a best practices office or various planners who are seconded to peer agencies or participate in exchange programs, but the United States does things differently, leading to inferior outcomes.

The American pattern is that senior officials revel in junket trips while ordinary civil servants are never sent abroad. Any connections they make are sporadic: if they go to Europe on vacation at their own expense then they are allowed to attend professional conferences. This is the exact opposite of how good learning happens. A few days of a junket trip teach nothing, while long-lasting connections at the junior and middle levels of the bureaucracy facilitate learning.

This is connected with the issue of downward trust. When I confront Americans with the above pattern and explain why it is problematic, the response I get is always the same: senior officials do not trust junior ones. This is often further elaborated in terms of low- versus high-trust societies, but it is not quite that. It’s not about whether people trust their leaders, but whether the leaders, that is the layer of political appointees and senior managers, trust the people who they have parachuted to oversee. If they see themselves as mentors and guides and their charges as competent people to be coordinated, the institutional results will be superior to if they see themselves as guards and scourges and their charges as competitors.

Some examples

New York City Mayor-Elect Eric Adams, for example, spent much of the second half of this year flying over to Europe to experience urbanism outside the United States. He is not the only elected official to have done so. Mike Bloomberg reveled in his personal connections with Ken Livingstone in the 2000s, leading to his attempt to import London’s congestion pricing system into New York.

Below the mayoral level, senior officials engage in the same behavior. They fly to the Netherlands, France, Denmark, or any other country they seek to learn from for a few days, experience the system as a tourist, and come back with little more knowledge than when they left but a lot more self-assurance in their knowledge.

This is called the junket trip, because to the general public, it’s viewed as just a taxpayer-funded vacation. It isn’t quite that, because at least the ones who I’ve spoken to who engage in such behavior genuinely believe that they learn good practices out of it. But realistically, it has the same effects as a vacation. Spending a week in a city where you are an important person meeting with other important people who are trying to impress you will not teach you much.

My pedestrian observations

I would travel regularly before corona. Some of my early blog posts are literally called Pedestrian Observations from [City], describing my first impressions of a place; the name of this blog comes from a photo album I took in 2011 a few months before I started blogging, called Pedestrian Observations from Worcester.

Those observations were always a mixed bag, which I was always aware of. Overall, I think they’ve held up reasonably well – my pedestrian observations from Providence were mostly in accordance with how I would experience the city later after I moved there. But there were always big gaps; in my Providence post, note that in my first visit to the East Side I named Wickenden and South Main as the major commercial streets, missing the actual main drag, Thayer, which I only discovered during my next visit.

The same is true of transit observations. Shortly before corona, I spent a week in Taipei. I took the MRT everywhere, and was impressed with its cleanliness and frequency, but there isn’t too much more I could say about the system from personal experience. I could only tell you how it deep-cleaned the system in early 2020, when people thought corona was spread by fomites rather than aerosols, from a report sent to me by long-term resident Alex Garcia of Taipei Urbanism. I knew construction costs were high because I looked them up, but that’s not the same as personal experience, and I only have a vague understanding of why, coming from both Alex and papers I would later read on the subject.

In Berlin, at a queer meetup in 2019 on a Friday night, months into living here, I was expressing worry around midnight that I might miss the last train. One of the people there chided me. I was working in the transit industry, broadly speaking – how could I not know that trains here run overnight on weekends? I knew, but had forgotten, and I needed that person to remind me.

Secondment and exchange

The short junket trip reveals nothing. But this does not mean learning from abroad is impossible – quite to the contrary. The path forward is to take these trips but go for months rather than days. There are journalists who do this: Alec MacGillis, a Baltimore-based journalist, spent months in Germany to study how the country is dealing with economic and environmental issues, and when I met him toward the end of his stay, he could tell me things I did not know about the coal industry in Germany.

Within Europe and East Asia, there are exchange programs. DB sends its planners abroad on exchange missions for a few weeks to a few months at a time, not just within Western Europe but also to Japan and Russia – even in those countries enough people speak English that it’s possible to do this. The people who take these trips are ordinary middle-class civil servants and not a class of overlords; the locals who they interact with are their peers and will correct them on errors, just as my queer meetup friend corrected me when I forgot that Berlin trains run overnight on weekends.

This program must also include routine connections at conferences. These are short trips, but a planner who goes on one makes connections with planners abroad and hears about advances in the field, from a peer who will have a discussion as an equal about their own experience and expertise. Over many trips the attendees can then figure out patterns to travel, notice changes, and come up with their own suggestions. This is no different from the academic process, in which research groups across multiple continents would regularly meet to discuss their work, and form connections to produce joint papers.

This way, it’s possible to learn details. This includes consumer-level details, similar to how I learn a city by taking public transit there many times and finding out hidden gems like Berlin’s timed transfer stations at Mehringdamm and Wuhletal. But this also includes the back end of how planning is done, what assumptions everyone makes that may differ from one’s home country’s, and so on.

The United States has done this before, by accident. Veteran and planner R. W. Rynerson has long pointed out that first-generation light rail in North America, covering such systems as Edmonton, Calgary, San Diego, and Portland, was planned by veterans who’d served in Germany during the Cold War and were familiar with ongoing trends here. Army tours of duty abroad last years, and soldiers are often happy to extend them to offer their families stability.

This way, American light rail bears striking similarities to the German Stadtbahn concept. It exhibits convergent evolution with tram-trains, modified to avoid track-sharing with mainline rail. The vehicles used were developed for German Stadtbahn systems, and the concept of having a streetcar system that runs faster than a traditional streetcar came out of this history as well. However, the generation of vets has retired, and today American planners no longer keep up with European advances in the field. Civilian connections through conferences, secondments, and exchange programs do not really exist, and the militarization levels of the 1960s and 70s are a thing of the past.

Downward trust

When I confront Americans with the distinction between valuable but uncommon long-term, routine international links for ordinary engineers and planners and worthless but all too common executive junket trips, the excuses for the pattern all fall into the same family: executives just do not trust their workers. Senior management in this industry in the United States views the people they oversee as little devils to be constantly disciplined, and never supported.

Based on this pattern, the peons do not get professional development – only the executives do. If tabloid media criticizes European conferences as vacation trips then it is used as an excuse to prohibit civil servants from going, but somehow the executives still go on junket trips, figuring that someone at Eric Adams’ level can just ride out the media criticism.

Likewise, the civil servants do not get to develop any knowledge that the executives don’t have. If they come with prior knowledge – say, Hispanic immigrants who work in New York and keep abreast of developments in their country of origin – then they must be broken down. They are peons, not advisors, and the layer of political appointees parachuting to oversee them are scourges and not mentors.

I focus on mentorship because good advisors understand that their advisees’ success reflects positively on them. In academia, professors who successfully place their students at tenure-track research positions are recognized as such behind the scenes and the rumor mill will inform new students that they should seek them out as advisors; there is a separate whisper network for women to discuss which advisors are abusive to them.

And this mentorship requires a minimum level of downward trust. Academia, for all of its toxicity and drama, has it, but somehow the American public-sector planning field does not. This is especially bad considering that the American public sector has set up its benefits system to ensure that people stay at the same workplace for life, which environment is perfect for investing in the junior employees. And yet, senior management does not deem $60,000/year planners with lush pensions important enough to pay $1,500 to send them to a conference abroad.

A high-trust environment is not one where the broad public trusts the elite. Germany has a culture of incessant complaints about everything; every middle-class German is certain they can do better than the state in many fields, and regrettably, many are correct. No: a high-trust environment is one where the elite trusts both the broad public and its own subordinates. This is what European public transit agencies have to varying extents, the ones that are more trusting of the riders generally having better outcomes than the ones that are less trusting, and what American ones lack.

Institutional Issues: Dealing with Technological and Social Change

I’ve covered issues of procurement, professional oversight, transparency, and proactive regulations so far. Today I’m going to cover a related institutional issue, regarding sensitivity to change. It’s imperative for the state to solve the problems of tomorrow using the tools that it expects to have, rather than wallowing in the world of yesterday. To do this, the civil service and the political system both have to be sensitive to ongoing social, economic, and technological changes and change their focus accordingly.

Most of this is not directly relevant to construction costs, except when changes favor or disfavor certain engineering methods. Rather, sensitivity to change is useful for making better projects, running public transit on the alignments where demand is or will soon be high using tools that make it work optimally for the travel of today and tomorrow. Sometimes, it’s the same as what would have worked for the world of the middle of the 20th century; other times, it’s not, and then it’s important not to get too attached to nostalgia.

Yesterday’s problems

Bad institutions often produce governments that, through slowness and stasis, focus on solving yesterday’s problems. Good institutions do the opposite. This problem is muted on issues that do not change much from decade to decade, like the political debate over overall government spending levels on socioeconomic programs. But wherever technology or some important social aspect changes quickly, this problem can grow to the point that outdated governance looks ridiculous.

Climate change is a good example, because the relative magnitudes of its various components have shifted in the last 20 years. Across the developed world, transportation emissions are rising while electricity generation emissions are falling. In electricity generation, the costs of renewable energy have cratered to the point of being competitive from scratch with just the operating costs of fossil and nuclear power. Within renewable energy, the revolution has been in wind (more onshore than offshore) and utility-scale solar, not the rooftop panels beloved by the greens of last generation; compare Northern Europe’s wind installation rates with what seemed obvious just 10 years ago.

I bring this up because in the United States today, the left’s greatest effort is spent on the Build Back Better Act, which they portray as making the difference between climate catastrophe and a green future, and which focuses on the largely solved problem of electricity. Transportation, which overtook electricity as the United States’ largest source of emissions in the late 2010s, is shrugged off in the BBB, because the political system of 2021 relitigates the battles of 2009.

This slowness cascades to smaller technical issues and to the civil service. A slow civil service may mandate equity analyses that assume that the needs of discriminated-against groups are geographic – more transit service to black or working-class neighborhoods – because they were generations ago. Today, the situation is different, and the needs are non-geographic, but not all civil service systems are good at recognizing this.

The issue of TOD

Even when the problem is static, for example how to improve public transit, the solutions may change based on social and technological changes.

The most important today is the need to integrate transportation planning with land use planning better. Historically, this wasn’t done much – Metro-land is an important counterexample, but in general, before mass motorization, developers built apartments wherever the trains went and there was no need for public supervision. The situation changed in the middle of the 20th century with mass competition with the automobile, and thence the biggest successes involved some kind of transit-oriented development (TOD), built by the state like the Swedish Million Program projects in Stockholm County or by private developer-railroads like those of Japan. Today, the default system is TOD built by private developers on land released for high-density redevelopment near publicly-built subways.

Some of the details of TOD are themselves subject to technological and social change:

  • Deindustrialization means that city centers are nice, and waterfronts are desirable residential areas. There is little difference between working- and middle-class destinations, except that city center jobs are somewhat disproportionately middle-class.
  • Secondary centers have slowly been erased; in New York, examples of declining job centers include Newark, Downtown Brooklyn, and Jamaica.
  • Conversely, there is job spillover from city center to near-center areas, which means that it’s important to allow for commercialization of near-center residential neighborhoods; Europe does this better than the United States, which is why at scale larger than a few blocks, European cities are more centralized than American ones, despite the prominent lack of supertall office towers. Positive New York examples include Long Island City and the Jersey City waterfront, both among the most pro-development parts of the region.
  • Residential TOD tends to be spiky: very tall buildings near subway stations, shorter ones farther away. Historic construction was more uniformly mid-rise. I encourage the reader to go on some Google Earth or Streetview tourism of a late-20th century city like Tokyo or Taipei and compare its central residential areas with those of an early-20th century one like Paris or Berlin.

The ideal civil service on this issue is an amalgamation of things seen in democratic East Asia, much of Western and Central Europe, and even Canada. Paris and Stockholm are both pretty good about integrating development with public transit, but only in the suburbs, where they build tens of thousands of housing units near subway stations. In their central areas, they are too nostalgic to redevelop buildings or build high-rises even on undeveloped land. Tokyo, Seoul, and Taipei are better and more forward-looking.

Public transit for the future

Besides the issue of TOD, there are details of how public transportation is built and operated that change with the times. The changes are necessarily subtle – this is mature technology, and VC-funded businesspeople who think they’re going to disrupt the industry invariably fail. This makes the technology ideal for treatment by a civil service that evolves toward the future – but it has to evolve. The following failures are regrettably common:

  • Overfocus on lines that were promised long ago. Some of those lines remain useful today, and some are underrated (like Berlin’s U8 extension to Märkisches Viertel, constantly put behind higher cost-per-rider extensions in the city’s priorities). But some exist out of pure inertia, like Second Avenue Subway phases 3-4, which violates two principles of good network design.
  • Proposals that are pure nostalgia, like Amtrak-style intercity trains running 1-3 times per day at average speeds that would shame most of Eastern Europe. Such proposals try to fit to the urban geography of the world of yesterday. In Germany, the coalition’s opposition to investment in high-speed rail misses how in the 21st century, German urban geography is majority-big city, where a high-speed rail network would go.
  • Indifference to recent news relevant to the technology. Much of the BART to San Jose cost blowout can still be avoided if the agency throws away the large-diameter single-bore solution, proposed years ago by people who had heard of its implementation in Barcelona on L9 but perhaps not of L9’s cost overruns, making it by far Spain’s most expensive subway. In Germany, the design of intercity rail around the capabilities of the trains of 25 years ago falls in this category as well; technology moves on and the ongoing investments here work much better if new trains are acquired based on the technology of the 2020s.
  • Delay in implementation of easy technological fixes that have been demonstrated elsewhere. In a world with automatic train-mounted gap fillers, there is no excuse anywhere for gaps between trains and platforms that do not permit a wheelchair user to board the train unaided.
  • Slow reaction time to academic research on best practices, which can cover issues from timetabling to construction methods to pricing to bus shelter.

Probably the most fundamental issue of sensitivity to social change is that of bus versus rail modal choice. Buses are labor-intensive and therefore lose value as the economy grows; the high-frequency grid of 1960s Toronto could not work at modern wages, hence the need to shift public transit from bus to rail as soon as possible. This in turn intersects with TOD, because TOD for short-stop surface transit looks uniformly mid-rise rather than spiky. The state needs to recognize this and think about bus-to-rail modal shift as a long-term goal based on the wages of the 21st century.

The swift state

In my Niskanen piece from earlier this year, I used the expression building back, quickly, and made references to acting swiftly and the swift state. I brought up the issue of speeding up the planning lead time, such as the environmental reviews, as a necessary component for improving infrastructure. This is one component of the swift state, alongside others:

  • Fast reaction to new trends, in technology, where people travel, etc. Even in deeply NIMBY areas like most of the United States, change in urban geography is rapid: job centers shift, new cities that are less NIMBY grow (Nashville’s growth rates should matter to high-speed rail planning), and connections change over time.
  • Fast rulemaking to solve problems as they emerge. This means that there should be fewer layers of review; a civil servant should be empowered to make small decisions, and even the largest decisions should be delegated to a small expert team, intersecting with my previous posts about civil service empowerment.
  • Fast response time to civil complaints. It’s fine to ignore a nag who thinks their property values deserve state protection, but if people complain about noise, delays, slow service, poor UI, crime, or sexism or racism, take them seriously. Look for solutions immediately instead of expecting them to engage in complex nonprofit proof-of-work schemes to show that they are serious. The state works for the people, and not the other way around.
  • Constant amendment of priorities based on changes in the rest of society. A state that wishes to fight climate change must be sensitive to what the most pressing sources of emissions are and deal with them. If you’re in a mature urban or national economy, and you’re not frustrating nostalgics who show you plans from the 1950s, you’re probably doing something wrong.

In all cases, it is critical to build using the methods of the world of today, aiming to serve the needs of the world of tomorrow. Those needs are fairly predictable, because public transit is not biotech and changes therein are nowhere near as revolutionary as mRNA and viral vector vaccines. But they are not the same as the needs of 60 years ago, and good institutions recognize this and base their budgetary and regulatory focus on what is relevant now and not what was relevant when color TVs were new.

Microapartments for Students

Charlie Munger’s deservedly mocked plan for a university dorm with windowless bedrooms got me thinking about small studios for students. The size of the proposed Munger Hall – 156,000 m^2 for 4,500 students – is pretty reasonable for a large building housing students, provided the students get their own rooms with windows. But this raises interesting questions about building depths and apartment plans.

This post is best read as a companion for my posts about building depth and a high-density euroblock design. In the post on building depths, I argued that the higher ratio of apartment area to window frontage ought to be understood as an adaptation to larger apartments for wealthier people than those who lived in the cities of 100 years ago. This post can be seen as a practical demonstration, illustrating the limits of deep buildings in the use case of microapartments for students.

The parameters of student housing

Student housing has specific needs:

  • Students have little disposable income, so space per capita is likely to be limited. Microapartments of 20-30 m^2 are reasonable, and in some cases they can even be smaller.
  • University is a deracinating, equalizing institution, so a high level of uniformity of design is desirable, making modernist forms more palatable than for middle-class families. Nor is there much worry about intrusion and criminality, since the students form a community. In this sense, university is akin to the military.
  • Unlike the military, university as an institution promotes individualism, and has no need for communal barracks. Social spaces are desirable, but the priority should be on individual living space.
  • Students are young and sexually active, and in recognition of that, high levels of privacy are desirable. Not only should students get individual rooms (which is also useful for minimizing respiratory infections), but also they should have their own bathrooms, showers, and kitchen facilities.

Those requirements interact well with the high-density euroblock (or courtyard building) form I’ve pushed before. Munger speaks of fixing the mistakes made by modernist housing, name-checking Le Corbusier – but the social problems of modernist towers were specific to deracinated working-class families, and not students. When people criticize modernist design of universities, it’s not about the modernist style of student housing but about hostile architecture for class and administrative buildings designed to quell student riots.

The euroblock

The euroblock is a form of housing common in Central and Northern Europe, in which residential buildings enclose an internal courtyard. Bigger cities, like Berlin, traditionally had many interior courtyards to a block, overlooked by interior wings with a view of the courtyard but not the street; smaller and richer cities tend to have bigger courtyards and no wings, and much of Berlin has demolished the wings in the postwar era as well. Here’s a wingless example from Stockholm:

The width of the building in this case is exactly twice the ratio of apartment size to window frontage, ignoring internal corridors. This building has a width of 14.6 meters, which is pretty typical for the wingless forms; winged ones are shallower, since the corners of the wings are windowless, in all cases producing a ratio of about 7.5 m. Some higher-end buildings, including some newer North American condos using the courtyard design, go up to a width of 20 m, for a ratio of 10 m.

Populating the euroblock with student housing

The proposed Munger Hall at UCSB is to sit on a site of about 120*120 meters, so let’s start with that. Munger Hall is to be solid with no interior courtyard because the dorm rooms are windowless; to have the same floor area, we need to go taller, but that’s no obstacle for our purposes. Let’s consider both a 20 meters deep design and a winged 15 meters deep one.

The light gray at the outer corners represents social spaces with corner windows; the windowless inner corners are four elevator lobbies, the high capacity necessary due to the high density of the design and the synchronized class times. If units are 2.5*10 in theory, and closer to 2.4*9 in practice, then we get a unit per 2.5 m of window frontage, which is 288 per floor (interior sides are 80 m long, exterior ones 100 m); a total of 81% of floor area is student apartments, which is low by high-rise standards, but we’re deliberately giving the outer corners to social spaces, and with the corners added back in it’s a healthy 86%.

Note that the courtyard in the middle is massive. Any larger and half of it would be a regulation football pitch. So let’s add wings, and also add function spaces in the interior corners created by the wings, possibly sacrificing some adjacent units for windows for the function spaces.

Still at one apartment per 2.5 m of window frontage, we now have 352 units per floor, but also our efficiency has dramatically fallen – only 73%, and if we add the four exterior corners back it’s still only 77%. This is only desirable if massive function spaces are important – and those can then cannibalize the near-corner apartments for window space. This is very much an upper limit to the building depth – it averages a ratio of 11.25 m.

Let’s now look at a 15 m deep design with even more wings:

Everything is scaled down for the shallower building, but that’s okay – 7.5*7.5 still makes for a staircase with some elevators, and the four interior areas can have as big elevator banks as needed. Let’s say that, ignoring corridors, apartments are 3 1/3 m by 7.5, and in practice more like 3.2*6.7. We have three apartments per 10 m of window frontage, so a total of 340 per floor. We can even squeeze more apartments this way, by offsetting the courtyard-facing apartments by one, so that there are not six to a 20 m courtyard frontage but seven, with the outer two only having half the window space, giving 376 units, at 78% efficiency. As we will see below, window width is not the constraining factor – historically, masonry buildings had small windows. Nonetheless, the courtyards are small enough that a building of about 15 floors would have a high ratio of height to courtyard size, without much direct sunlight.

Apartment plans

To be very clear, this is austere student housing. People who are not students would only live in such conditions in situations of very high housing prices, such as what I experienced in Stockholm. Here is what I might mock up of 2.5 by 9 or 3 1/3 by 6 2/3:

The elongated floor plan turns the studio’s left side into a kind of corridor, and the longer the unit, the more space is wasted on said corridor. The version on the right can fit a mini-fridge doubling as a bedside table next to the bed; the version on the left can too but a foot-side table is less convenient (this is how my grad school dorm room was set up due to lack of alternatives). Both apartments can set up a stove and kitchen sink; the natural location is below the table (to the right from the perspective of someone sitting in the chair). But the version on the left can only do so by eating into free space to move around in, where the version on the right doesn’t.

This is a matter of length-width ratios and the long corridor forcing the door to be on the short side. This is why high-end apartments can maintain the depth on the left without a problem – a middle-class one-person apartment is 40-50 m^2, so around double the micro-unit depicted above. A building designed around such studios would have the floor plate of the wingless 20 m euroblock but with half as many apartments, and then there’s ample room for everything with enough left to move around. Such a larger unit can even be set up as a one-bedroom, with the bedroom taking half the window frontage.

Note also that this problem of elongated microapartments doesn’t affect bedrooms in family dwellings. A family dwelling can be set up with rooms fronting 2.5 m of window space but with doors on the long side coming in via a central living room, which means there’s no need for a long corridor for access to the bathroom and the bed.

Rapid Transit as an Amenity

An urban rapid transit system needs to be understood as both a consumption amenity and a production amenity. As a consumption amenity, it lets people have access to more of the city, for work as well as recreational travel; people pay a premium to live close to the subway. As a production amenity, it makes it easier to build dense office clusters and expect that people can get to work without too much traffic; businesses pay a premium to locate in city center. This means that such infrastructure is generally good for the city’s economy and the well-being of the people in it, without prominent distributional impact.

City center and rapid transit

I wrote a thread two years ago about CBD job concentration. The thread looks at the total number of jobs in the central 100 km^2 of a metro area, which figure is used because it’s about the land area of Paris plus La Défense and INSEE data only exists at the level of the commune or arrondissement (see for example here). Pointing out that Dallas and Atlanta’s central 100 km^2 have only about as many jobs as Vancouver’s and half as many as San Francisco’s, I talked about the need to build bigger CBDs to entice higher transit ridership.

This looks weird to people who immediately associate European cities with short buildings and polycentricity and American ones with tall buildings and monocentricity. But at the scale of 100 km^2, European cities are far more centralized. Paris has 2.2 million jobs in the central 100 km^2, the Bay Area 850,000, Dallas and Atlanta 400,000 each.

And as I threaded about this, it was pointed out to me that Dallas does not have very strong demand for office space in city center. Parisian commercial rents in the 8th are very high, indicating demand for taller buildings than Europeans find acceptable; Texan commercial rents in city centers indicate no such pent-up demand, and the Dallas CBD has high vacancy rates. In Los Angeles, the center is weak as well – in a metro region 50% larger than Paris, the most gerrymandered central blob, not at all centered on Downtown Los Angeles but rather reaching from Downtown to Century City and UCLA, has around 800,000 jobs. The highest pent-up demand in Downtown LA is residential and not commercial.

I bring this up because this indicates rapid transit is a strong amenity for producers: they pay a premium to locate in city center, provided a large system exists to feed commuters to their offices. This is the case in New York, Paris, and other transit cities, but notably not in large auto-oriented cities like Los Angeles and Dallas.

…but it’s not just about work

Transit cities are not just places of production. The city is simultaneously a production amenity and a consumption amenity. Pure production amenities, like the quality of the harbor, the location relative to logistics facilities, and the tax rate on businesses, do not draw in people except insofar as they lead to higher wages. But transit cities do draw people in – residential rents are higher where job access is better and even where general access to non-work destinations is better.

This effect happens at several levels. The highest level is the regional one: a transit city is less polluted than an auto-oriented alternative of the same size, and clean air is a consumption amenity. The lowest level is the block: the construction of rapid transit raises property values near stations. In between, there are the benefits of access, which like the regionwide benefits are diffuse; it’s hard to point out an exact set of winners and losers.

This is not just a matter of job access. A transit city is good at access to special amenities, of the type that people do not go to very regularly. Ones that people do go to regularly do not require public transit: an auto-oriented medium-size metropolitan region can perfectly well provide high-quality retail choices with plenty of variety. I don’t recall missing anything at the shopping centers of the French Riviera, nor hearing complaints about same from Americans in similar-size regions.

But once the options get more specialized, size and transit accessibility become important. Los Angeles notably has amazing restaurants from just about every ethnic and regional tradition on the planet and also it takes two hours to drive to them because they’re strewn about five counties with no fast transit options. It’s nothing like New York and Paris, which have plentiful options as well but they’re within 30-60 minutes by train.

Specialized restaurants are a convenient example – they won’t cluster in city center because that’s expensive, but they’d like to be in near-center areas, perhaps in the central 100 or 200 or 500 km^2 but not the central 5 or 10 km^2. But the same issue occurs for everything else: museums, visits to friends throughout the region, etc.

The implication of dual amenities

Rapid transit is annoying to analyze in that it doesn’t break down neatly as for one group or another. It’s incredibly diffuse, and the only definitive interest group that benefits from its existence more than anyone else, the providers, is small and doesn’t always benefit from making it more efficient. There are no distributional impacts to mitigate or take advantage of; the environmental impacts are uniformly positive because of the competition with cars and auto-oriented development; the local benefits of access are real but require building an expansive system with hundreds of stations each generating local benefits in a small radius.

The result is that it bores people who enjoy conflict. There is not much there for the marketer to bite on – transit as a product is optimized when everyone uses it. The upshot of the fact that rapid transit is simultaneously a production amenity and a consumption amenity is that there is nothing there for people who enjoy dwelling on class conflict or on postmaterialist New Left notions of conflict, either. Socialist states have built great transit systems once things have settled down and it’s time to rebuild, but would-be socialist revolutionaries in non-socialist states find it boring. Likewise, New Left green politics is much more interested in pure consumption amenities like bike paths and street redesign than in dual amenities like rapid transit, which also benefits the staid corporations green voters define themselves against. From the other direction, people whose political identity is indifference to the needs of anyone who’s not a business don’t find transit interesting, even though it clearly benefits business, because it doesn’t offer opportunity to engage in right-populist or Thatcherite politicking: it’s possible to run the system like a business, but actually kicking out visibly poor people fragments the market and reduces frequency.