Category: High-Speed Rail
Reason Releases Fraudulent Report Criticizing XpressWest
In response to the forthcoming FRA loan application by XpressWest (the rebranded Desert Xpress) for its high-speed rail line from the edge of the Los Angeles metro area to Las Vegas, Reason published a report claiming the project would fail. Coauthors Wendell Cox, who cowrote a fraudulent report about Florida HSR, and Adrian Moore, argue that costs will be higher and ridership lower than expected, leading to operating losses and bankruptcy. I still have some doubts about XpressWest’s business plan, but Cox and Moore skirt or ignore the real problems, and instead choose to attack it using numbers that are distorted and at times completely made up.
The smoking gun that something nefarious is going on is the attempt to remodel ridership in terms of competition with cars and planes. In table 2 on PDF-page 20, the report shows door-to-door travel times by the different modes to Las Vegas from various origins in Southern California, including Victorville itself, Riverside (80 km and a mountain pass away), and Los Angeles (130 km away). The assumption, which is for the most part correct, is that passengers drive to the airport or train station and need to factor in congestion, and the explicit assumptions on access time are spelled out in table A-1. The zinger is that while station and airport access times are computed by taking the free-flow Google Maps travel time and adding a congestion cushion, the assumed door-to-door travel times for people driving assume free-flow travel – and even this required me to pick a particular (albeit reasonable) location on the Strip that is closer in than the Google Maps point labeled Las Vegas.
For examples, the travel times by car given from Victorville, Riverside, and Los Angeles are 2:56, 3:47, and 4:20. Those are approximately equal to the free-flow travel times to the Palazzo on the Strip. Needless to say, traffic is not free-flow in Southern California. As of this writing, on Friday at 4:15 pm Pacific Time, Google Maps gives me a travel time of 4:23 from Los Angeles to the Palazzo free-flow but 5:13 in current traffic; figure the extra 50 minutes make it 5:10 over the 4:20 given in the study. The door-to-door travel time for a train from Los Angeles is given as 5:04 to Vegas and 4:04 from Vegas, the difference coming from not needing to budget as much time for the possibility of traffic and arrive extra-early. In other words, including realistic rush-hour conditions, driving is not 14 minutes faster than the train on average in each direction, but 36 minutes slower.
In addition, the report slightly overstates the train’s travel time, as 1:40. The environmental impact statement claims, on PDF-page 39 of FEIS chapter 2, that 150 mph electric trains (the alternative that has since been selected) will take 1:24. While this is an ambitious average speed for this top speed, it is achievable for a nonstop train. Subtract 16 minutes from train time and now driving all the way from Los Angeles is 52 minutes slower than the train. As an additional check on the model, Cox and Moore assume travelers must arrive at the train station 20 minutes before departure, in addition to the congestion cushion. This is not observed in HSR systems in such countries as France and Germany, where open station design means people can arrive a few minutes before departure. Figure 5 minutes and now driving is 1:07 slower than the train.
Let us now step back and examine the general argument of the report. Cox and Moore argue the following: there is a tendency for costs to escalate (as examined by Bent Flyvbjerg) and for ridership to fall short of predictions (they call it the International Average Error Forecast but supply no reference and give no indication of the computation involved, and given the above zinger regarding travel time nobody should trust this). The ridership model has flaws, and a series of sanity checks argue that ridership will fall far short while costs will escalate. It is therefore better, they claim, to expand I-15 instead to deal with rush hour capacity.
At every step of the way, the report makes substantial errors. Cox seems aggressively uninterested in the actual causes of cost escalation and ridership shortfalls, following Flyvbjerg’s note in his original paper that cost escalation can come from many sources but it is fairly certain that there will be some cost escalation in a megaproject.
We can do better, and examine recent HSR projects. In Spain, some meet projections and some do not. For example, the Madrid-Barcelona corridor was 25% below projections in 2010, and appears to have fallen farther behind in 2011 – but in 2008 the line was only 4% behind projections, and with a deep recession and 20% unemployment, Spain can be excused for having less economic activity than projected at the height of its bubble. Likewise, in Taiwan and South Korea the HSR lines have fallen far below projections made in the 1990s, when their economic growth was extremely fast – but even those projections failed a sanity check: Korea thought it would get more HSR riders than the Sanyo Shinkansen, which looks reasonable based on city sizes until one remembers that the Sanyo Shinkansen also connects to Tokyo at one end and the KTX does not; Taiwan had estimated similar ridership, even though its largest city, Taipei, had not many more people than the Sanyo Shinkansen’s distant-second largest city and only one third as many as Sanyo’s largest, Osaka. In contrast, French lines tend to overshoot projections, as can be seen in the above link for Taiwan.
In all cases it can take a few years for ridership to build up: Taiwan took 2 years to achieve profitability after depreciation but before interest (and is now profitable even after interest after a refinancing at a lower interest rate), which Cox and Moore spin as “The project suffered an accumulated loss of two-thirds of its private investment in the first 2.5 years of operation.”
Las Vegas did have a bubble, and is slowing down now, although it is nowhere near the level of depression Spain is in. The report in fact mentions that growth in hotel rooms and travel to Las Vegas has stalled (although part of it is due to the national recession, rather than a Nevada-specific crash). It comes close to mark, but even here it fails to note possible similarities and differences with case studies of shortfalls. However, since the report attacks not just projected 2035 growth but also base-case ridership for 2012, it does not deserve this charity, even as here it skirted a real problem rather than completely missing it.
To criticize the actual model, on PDF-page 34 Cox and Moore attack it for surveying a sample of 400 people and asking them if they would ride the train. They attack the general approach of stated-preference, without giving any reference for why it is bad (they include one sentence of criticism), and then offer the following platitude: “It would seem that a prediction of ridership using a ‘less than trainload’ sample would be insufficient on which to make multibillion dollar decisions.” This is not serious analysis; this is the same criticism that led people to disbelieve that George Gallup could forecast elections by polling just a few thousand voters. The relevant paragraph from the ridership model that they could does mention that 400 riders means they results are “less precise than the reported analysis indicates,” but the same passage says later, which they do not quote, that the problem comes from having polled only 51 air travelers, where they would like 150-200 people per mode. Fortunately they polled 300 drivers, and it is auto/rail mode split forecast that is hard, while air/rail is a fairly straightforward function of travel time – see figure 1 of an EU air/rail report.
Now, in lieu of the ridership model that the report criticizes, it offers sanity checks. These are normally a useful check on wildly inaccurate estimates, and if done in the 1990s would have made it clear Taiwan was not going to have 180,000 riders a day, and even its present-day traffic of 110,000 is a miracle. Cox and Moore offer two sanity checks. First is the aforementioned comparison to car and airplane travel time; that one can be disposed of due to fraudulent numbers. Another is a comparison to the Acela between New York and Washington. If the Acela only gets 2 million riders per year, they argue on page 35, how can Victorville-Las Vegas get 9 million?
Of course, people who have taken Amtrak know that the Acela is only about one-third of the ridership on the Northeast Corridor, and the time travel difference between Acela and Regional trains is small enough that the distinction is one of branding and service class. Amtrak claims on PDF-page 41 of its Northeast Corridor Master Plan that 70% of the corridor’s riders (of whom there are 11 million) are on the New York-Washington segment, so that’s already nearly 8 million, not 2 million. Further, the Acela is a slow train – its average speed, 130 km/h south of New York, is not much better than that of the legacy express trains that the TGV replaced; the average speed of the Regional is worse. To argue that XpressWest is just like Acela, Cox and Moore do not offer a serious model of the effect of access and egress times on ridership, but instead issue platitudes about a train that stops 40 miles outside the city.
To see how professionals model ridership, see for example Reinhard Clever’s thesis (the relevant pages are 26-33) as well as a short note of his regarding last-mile connectivity. Transfers, he argues, are less onerous at the origin end of the trip than at the destination end: if they must transfer, 55% of riders prefer to do so at the origin end, 22% in the middle, and 22% at the end. Likewise, commuters in auto-oriented suburbs of transit cities (the example given is Toronto) drive long distances to park-and-rides, but balk at transferring from the city-center station to the subway. Normally the origin end is likely to be the smaller city, but in the case of XpressWest, Las Vegas is the destination rather than the origin. As a result, it is unrealistic to expect significant ridership from Las Vegas residents traveling to Los Angeles (and XpressWest is not assuming any), but quite realistic to expect riders to go in the opposite direction.
Finally, the cost overrun projection is fraudulent. As Cox did in the report about Florida, on PDF-page 40 he is comparing a simple line in a freeway median to the Central Valley segment of California HSR, a line with substantial viaducts and grade separations. To his credit, he no longer includes the 11-point rubric of his Florida report, which overemphasized relatively small components of the cost like electrification and underemphasized civil infrastructure. Instead, the report just says it’s unrealistic to expect cost to be lower than in the Central Valley, without further explanation except that the Central Valley is flat; the need for plenty of grade separations and viaducts is not mentioned.
This could be attributed to a simple mistake, but in fact footnote 76 argues based on the simplicity of the terrain and the ample space in the median that widening I-15 will be cheap, only $1.6-2.5 million per lane-km ($2.6-3.9 million per lane-mile) in both directions. No connection is made with the fact that a grade-separated median is not available to California HSR. In fact California is planning to widen Route 99 from 4 lanes to 6 at $6 billion (PDF p. 22); it is unclear to me how long of a stretch of 99 is under consideration, but the full length including segments north of Sacramento is 640 km, of which about 240 appears to be already 6-lane, which would make the cost $15 $7.5 million (it would include freeway conversion, but the same issue with grade separations is true of California HSR and has been the primary driver of cost overruns in the Central Valley). The construction cost difference between the Central Valley and XpressWest is a factor of 2; perhaps it’s Cox and Moore who, in assuming one ninth to one sixth one fifth to one third the per-km cost of CA 99’s Interstate conversion, are lowballing costs for their own favored project, and not XpressWest. (Update: I misread the footnote, and the cost contained therein is $1.6-2.5 million per unidirectional lane-km.)
No other argument is presented that costs will run over, except that according to Flyvbjerg they might. Since the projected costs are well within California’s per-km cost if one omits the viaducts, tunnels, and grade separations, we can assume that costs are likely to stay under control. In fact the cost escalations on international HSR lines have typically come from heavy tunneling, which is less predictable than at-grade construction. The at-grade lines in France have stayed within budget. In Norway the 50% cost overrun of the airport train was centered on a difficult tunnel. German lines run over too, but have significant tunneling as well, and the recent overruns in Korea (subtracting the first phase, comparing cost projections from 2010 and 2000 shows a 40% overrun) were in the nearly-50%-in-tunnel second phase. But in Japan, as far as I can tell recent Shinkansen construction is on-budget despite heavy tunneling, and the same is true of AVE construction in Spain. Tunnels, we can conclude, are riskier than at-grade construction; in fact the biggest risk for at-grade construction, as seen in the California HSR project, is that viaducts or tunnels will be needed due to further engineering or environmental work, and running alongside a freeway minimizes the chance.
Because the study’s attempts to model cost and ridership are so weak, it should not be considered a serious challenge to XpressWest. Cox has had a troubled relationship with the truth in the past, and there is no argument he won’t make, no matter how ridiculous, to argue for the superiority of car travel over rail and mass transit. It’s actually the strong arguments that he fails to make – for example, regarding a possible comparison between Las Vegas and overheated East Asian Tiger economies. (For the record, I think Las Vegas is going to come out solid in such comparison.)
It is in reality quite easy for HSR to make enough money to cover above-the-rail expenses, and even track maintenance is quite cheap at about $125,000 per double track-km, but covering interest expenses is harder. Despite the canard that only the LGV Sud-Est and the Tokaido Shinkansen have paid back their interest, sourced to as far as I can tell just one person and reproduced by Cox and Moore on PDF-page 43, in reality multiple intercity railroads are profitable even including interests. This includes all three main island Shinkansen operators in Japan, SNCF, and DB. The belief that they are not comes from two sources: in Europe, conflation of subsidized commuter lines with profitable intercity lines, which are usually run by the same national railroads, and in Japan, the fact that the government wiped the accumulated operating deficit debt of Japan National Railways after splitting and privatizing it, but not Shinkansen construction debt (see references here).
So if Reason is so wrong, and XpressWest will likely meet both ridership and cost projections, what are my problems? In one word: uncertainty. Projected XpressWest revenue, on PDF-page 54 of the ridership model, is about $500 million per year in today’s money. Long-term inflation-protected federal debt is unusually cheap right now and this could make XpressWest a prudent investment – as of the time of this writing, the US can sell 30-year inflation-protected bonds at an interest rate of 0.5%, or $32 million on a $6.5 billion loan. HSR margins in Europe are low, but in Taiwan the margin in 2009, excluding interest, was 25%, which is enough (that said, despite falling far short of expectations, Taiwan HSR has very high ridership for what it is, and of course lower ridership means lower margins independently of interest rates).
But 0.5% interest is for safe investments, and infrastructure is not a safe investment. The claims that costs would run over and ridership would fall short are probably going to be proven wrong if construction goes through, making the project a success, though not a smashing success. But if the reduction in Las Vegas’s growth proves permanent and not just one recession, or if casino gambling declines, or if station access time proves more important than previously assumed in the model, or one of many other things that could go wrong, operating profits will decline.
This is what Cox fails to understand when quoting Flyvbjerg. Flyvbjerg talks about an average cost overrun – but more than that, he is concerned with risk. Many projects stay within budget or run over just a little, but a few cost several times as much as the original estimate. Telling the Big Digs and East Side Accesses apart from the Madrid Metro extensions is hard, and this is why it’s not appropriate to compute interest rates based on the borrowing costs available to the federal government.
At a riskier rate of return, things are troubling, as Paul Druce notes: he compared revenue estimates to the 30-year T-bill interest rates as of last year (3.75%), and found that operating margins would need to be above 25% until 2031 to maintain profitability. XpressWest is now looking for a larger loan than Paul assumed, but at a real rate of return of 2 or 3%, interest would indeed bite into the cost. If the project is that risky, it should therefore not be funded. That said, European transit projects tend to go ahead with a benefit-cost ratio higher than 1.2, which is certainly true of this project.
So the question is twofold. First, whether it’s sensible to lock in low interest rates and fund projects that would not be able to pay back their loans at the interest rates of a fast-growing economy. Second, how risky the project is. The first question is easier: on a pure cost-benefit analysis, the federal government can afford to lose a few billion dollars on a small number of bad investments, as long as it makes it up with enough successes, and this makes the net financial cost of the project to the government low (but positive, since it bears downside risk but does not benefit from the upside except indirectly through taxes); on top of this, precisely because the High Desert and Nevada are in deep recession, this project has additional economic benefit. The recession won’t last forever, but it exists now and will probably continue for the duration of construction.
I believe the answer to the second question is that it’s of moderate to high risk. The risk of cost escalations is low because the right-of-way is already secured and there is no difficult civil infrastructure. The risk of ridership shortfalls is more substantial – ridership estimates, especially of road/rail mode shares, have an inherent uncertainty, and on top of that the recession could cause permanent damage to Las Vegas. In addition, the strong Friday peak of travel to Las Vegas means that more rolling stock and station infrastructure will be needed relative to ridership than elsewhere, driving down operating margins.
The most troubling part of the project is that growing ridership will require a connection to Los Angeles, and because it requires a difficult mountain crossing, XpressWest is not interested in paying for it. Its current plan is to wait until California HSR opens to the LA Basin, and then link up with a line from Victorville to Palmdale. This is the real cost risk, and not the notion that at-grade rail construction is going to present the same difficulties as urban viaducts and mountain tunnels. In particular, California HSR will need to reconsider how to get from the Central Valley to Los Angeles, and the alternative that links with XpressWest goes through Palmdale, which appears to be more expensive by a few billion dollars than a straighter route through the Grapevine and Tejon Pass.
Since there is no hope for fast enough recovery that interest rates will rise, forcing early investment, it’s fine to wait. I would seriously suggest that the FRA delay decision until after the election, and if the Democrats win control of both the White House and Congress, wait a few more months until there is or is not a federal bill to fund HSR. The important thing to do is avoid biasing California toward an alternative that costs it several billion more dollars for the benefits of the XpressWest operation. Although California seems set on Palmdale, it is feasible that the amount of money Congress will make available for it in six months is enough for an initial operating segment if and only if it switches to the cheaper Grapevine alignment, and then the plan should be to try connecting XpressWest to the LA Basin much later, through tunnels through Cajon Pass. (In fact, if there is any way to get a cost estimate quickly, I would propose that, to see if it’s a reasonable alternative to Palmdale.)
If it’s a yes or no decision then I’m leaning toward yes, but not at any cost. If there is serious competition for other rail projects with higher or less risky benefits, then they should be funded ahead of XpressWest. If the decision biases California against the Grapevine, and the amount of funding available to it (from a separate pot of money, as it’s not asking for an FRA loan) is such that Palmdale would force unconscionable compromises elsewhere, then to protect the more important California HSR project XpressWest should be delayed even at the cost of potentially missing the window in which it can be funded.
But despite my doubts, it’s not a high-speed train to nowhere. It’s a high-speed train from the edge of a large metro area to a major leisure travel destination, and the cost of borrowing is so low that the federal government can expect to make its money back in ordinary circumstances. There is enough cushion against a ridership shortfall that the ordinary uncertainties expected are a small deal, and although a very large shortfall is likelier than for, say, the Northeast Corridor, it’s not probable enough to warrant denying a loan application. If Reason succeeds in canceling the line, it will join Florida HSR as a line that could have had great promise but succumbed to lobbying and fraud.
High-Speed Rail’s Role in Decongesting Airports
One common argument for building HSR is that it will help decongest airports, by displacing high-volume short-distance flights. This can result in a permanent reduction in air travel, reducing environmental impact, or a diversion of capacity to longer-distance flights, or perhaps a combination of both. The question is then how much air travel can be diverted.
The main source I’m using for this is the Office of Aviation Analysis’s master table of all lower-48 origin-and-destination city pairs with at least 10 passengers per day (table 6, 3rd quarter of ’11). The data is less than perfect, because passengers connecting from a domestic flight to an international flight count as O&D passengers, but for our purposes it is good enough.
As a first filter, we can see that out of a million passengers per day, 206,000 are flying distance of up to 500 miles, and 390,000 are flying up to 773, the New York-Chicago distance. Those 39% of travelers constitute a much smaller portion of emissions than 39% but a larger portion of planes. Furthermore, not all can be realistically moved to trains: at the upper end of this range, HSR can compete with air but not decimate service the way it can on shorter trips, and on top of that many city pairs are not located on any realistic HSR corridor.
So as a second filter, let us construct a table, by major city (i.e. the top 7 O&D cities minus Las Vegas), of what the total volume of travel is to HSR-viable markets:
| City | <2.5h | <3h | <3.5h | <4h | <4.5h | <5h |
| New York (153386) | 7.4% | 10.7% | 15.7% | 17.6% | 20.6% | 32.2% |
| LA Area (132556) | 11.6% | 26.4% | 26.4% | 26.4% | 26.4% | 26.4% |
| Bay Area (103752) | 0% | 18.1% | 18.4% | 18.4% | 30.5% | 33.3% |
| Chicago (103540) | 9.5% | 16.5% | 16.7% | 19.9% | 22.8% | 34.1% |
| Was.-Bal. (97234) | 5.4% | 16.7% | 22.5% | 23.2% | 29% | 31.3% |
| Boston (75329) | 8.7% | 21.3% | 23.3% | 26.7% | 28.6% | 31.8% |
Although HSR can get nontrivial mode share against air even if it takes 5 hours, it does not reduce air traffic at this range, but instead induces demand. So although HSR can produce competition for almost a third of the air traffic coming into the largest US cities, it cannot divert as much air traffic. Meaningful diversion occurs at much shorter range, perhaps 3 hours, and even that diversion is incomplete. When the 3-hour Eurostar opened, Paris-London air traffic was permanently halved, from 4.3 million per year before the Chunnel opened to about 2 million after; once the travel time was further reduced to 2:15 with the opening of High Speed 1, it further decreased, to about 1.3 million on the dominant Heathrow/CDG airport pair.
What this means is that for decongesting airports, the meaningful column is the second from the left, for trips up to 3 hours. We immediately see that HSR can only have a small effect on New York, but conversely can do a great deal in Los Angeles. New York is at a further penalty since the hub system ensures it will remain an international gateway, and so traffic between two different cities still needs to pass through.
For New York, the best things that can be done then are to use larger planes on domestic flights, and find relief airports. In Japan, the domestic flights use widebodies, sometimes even 747s, and this has enabled Tokyo-Sapporo to grow to become the world’s highest-capacity air city pair. In the US there are more airlines and the city pairs are less thick, but there is still room for larger planes than 737s and 757s. In the other direction, faster LIRR service could turn Islip into a better relief airport, but it would still have to overcome the stigma of being too far. HSR could also turn Philadelphia into a reasonable option: using the Airport Line and a freight corridor to the west to bypass some of the Wilmington Line’s curves and reduce travel time should be considered as a full build-out option, and would also put PHL about 45 minutes away from New York.
The New York versus Los Angeles difference is not too surprising once we consider where their respective second cities are located. San Francisco is 700 km from Los Angeles, Boston and Washington are 350 km from New York and Philadelphia 150. Elizabeth of CARRD tells me that on LA-SF the current mode split is 50% air, 50% car. The situation in the Northeast is different – making reasonable assumptions on seat occupancy, even on NY-DC and NY-Boston more people take a bus than fly.
Update: Anonymouse in comments brings a good point about the distribution of short-haul travel within airport systems: there is often proportionately more of it at the secondary airports. Providence actually has less short-distance traffic than Boston and Midway is about even with O’Hare, but in California, much more short-distance traffic is at the secondary airports.
The five LA-area airports between them have 27.5% of their domestic traffic within 3-hour radius, but this splits as 21% at LAX, 35% at Long Beach, 37% at Santa Ana, 40% at Ontario, and 63% at Burbank. The three Bay Area airports between them have 19% of their domestic traffic going to LA and a total of 35% within 5-hour train radius, but this splits as 14% and 29% at SFO, 27% and 48% at San Jose, and 35% and 57% at Oakland.
Notes about the table:
1. The transfer penalty is set at 20 minutes, for city pairs that have no reason to ever have a one-seat ride. Both low- and high-speed connecting services are included, including HSR trains running through to the legacy network; I am not proposing new HSR tracks to Green Bay.
2. Instead of making hard alignment decisions, I simply ignored everything that would be controversial. The change in numbers is trivial. For example, neither South Bend nor Fort Wayne is included; both combined have only 2,000 daily air travelers anywhere in the lower 48, and only a handful of dozens to each of the cities in the table.
3. The travel times are full-build, so, for example, the Northeast Corridor is 1:30 Boston-New York and 1:30 New York-Washington, rather than the slightly higher travel times that should be aimed at initially. Average speeds range from 240 to 300 km/h on high-speed lines (higher in the Midwest, South, and flat portions of the West, lower in the Northeast and the Californian mountain crossings), and 100-130 km/h on upgraded legacy lines.
4. For US-Canada travel, we use T-100 data for international flights (data from September 2011). The data quality is poor since small planes are excluded, causing an underestimate in traffic on such markets as New York-Toronto, but conversely many of those flights would be double-counted because international-domestic transfers count twice. We can assume that the two effects (ignoring international flights outside Canada, and counting domestic-international transfers) cancel out, which is equivalent to assuming that exactly half of international travelers connect domestically.
5. The full list of cities included in each entry in the table is:
New York:
-2:30: the Northeast Corridor, Hartford, the Empire Corridor up to Rochester, Pittsburgh, Richmond, Burlington, Montreal.
2:30-3:00: Buffalo, Raleigh, Portland.
3:00-3:30: Toronto, Ottawa, Cleveland, Norfolk, Greensboro.
3:30-4:00: Charlotte, Toledo, Fayetteville, Lynchburg.
4:00-4:30: Greenville (SC), Greenville (NC), Columbus, Detroit, Roanoke, Nantucket, Columbia (SC).
4:30-5:00: Atlanta, Chicago, Dayton, Cincinnati, Wilmington (NC), Savannah.
Los Angeles:
-2:30: Las Vegas, Phoenix, Sacramento.
2:30-3:00: San Francisco, Tucson.
(This is where my exclusion of unrealistic corridors has the most effect. HSR could connect Los Angeles with Portland and Denver in 5 hours, Salt Lake City in 3:30, and El Paso and Albuquerque in 4:30. But the population is too sparse for the overlapping short trips that make comparably long corridors in the eastern half of the US semi-reasonable.)
Bay Area:
-2:30: the entire Central Valley.
2:30-3:00: Los Angeles.
3:00-3:30: Palm Springs.
3:30-4:00: —
4:00-4:30: San Diego, Las Vegas (assuming a Grapevine and Cajon alignment, which is the worst assumption; if the connector is between Victorville and Palmdale, as officially planned, then it’s about 4:00, and if it’s between Mojave and Barstow, it’s 3:45).
4:30-5:00: Phoenix.
Chicago:
-2:30: the corridors to Minneapolis, Detroit/Cleveland, Cincinnati, and St. Louis; Grand Rapids, Louisville, Dayton, Green Bay, Columbus.
2:30-3:00: Nashville, Pittsburgh, Buffalo, Kansas City, Toronto.
3:00-3:30: Chattanooga, Rochester.
3:30-4:00: Atlanta, Harrisburg, Syracuse.
4:00-4:30: Ottawa, Philadelphia.
4:30-5:00: Montreal, Albany, New York.
Washington-Baltimore:
-2:30: the Northeast Corridor up to New York, the Southeast Corridor down to Charlotte, Fayetteville, Norfolk, Lynchburg.
2:30-3:00: Boston, Hartford, Albany, Pittsburgh, Greenville (SC), Greenville (NC), Roanoke, Columbia (SC).
3:00-3:30: Atlanta, Wilmington (NC), Burlington, Cleveland, Savannah.
3:30-4:00: Montreal, Syracuse, Toledo.
4:00-4:30: Charleston, Birmingham, Jacksonville, Detroit, Columbus, Rochester, Chattanooga, Asheville, Portland.
4:30-5:00: Dayton, Cincinnati, Buffalo, Daytona, Ottawa. (Orlando is very close and some alignments put it just under 5 hours, but not all do.)
Boston:
-2:30: the Northeast Corridor down to Philadelphia, the Empire Corridor up to Rochester, Burlington, Montreal, Hartford, Portland.
2:30-3:00: Washington, Buffalo, Harrisburg.
3:00-3:30: Toronto, Ottawa, Erie, Atlantic City.
3:30-4:00: Cleveland, Pittsburgh, Richmond.
4:00-4:30: Raleigh, Toledo.
4:30-5:00: Norfolk, Greensboro, Detroit, Columbus, Dayton.
HSR Routes: Triangles and Ys
This post partially responds to “The Altamont of X” comments made by Adirondacker, though it is far more general than that.
Whenever a route has to connect three non-collinear cities, compromises must be made between cost and directness. The two basic configurations are a triangle and a Y or T; a triangle is more direct but requires more infrastructure, whereas a Y is the opposite. The purest example of this issue is in Texas; the Interstates connecting Houston, Dallas, and San Antonio form a triangle, but with future high-speed rail, either configuration and many compromises in between are possible. Since not even in Texas is there a pure triangle with equal vertices and nothing in between, each site has its own questions regarding phasing, constructibility, intermediate cities, and relative importance of the triangle’s three sides.
In California, the Altamont vs. Pacheco debate is at least in part a Y vs. triangle debate. Here, the three nodes are Southern California, the Bay Area, and Sacramento. The LA-Sacramento leg is the simplest, because the line would just run straight up the Central Valley. The question is then what to do with the other two. The Pacheco alternative is essentially a triangle: San Francisco-Sacramento service gets an Altamont overlay, or maybe a heavily upgraded Capitol Corridor, and there is wide separation between the Central Valley-Bay Area connection used by trains heading to Los Angeles and ones heading to Sacramento. Altamont is a Y whose branch point is Manteca, with tracks going west to the Bay Area, north to Sacramento, or south to Los Angeles.
The particular case of California, however, favors the Y over the triangle. LA-SF and SF-Sacramento are both important corridors, so being able to serve both more easily is an advantage. Although Pacheco is shorter in distance than Altamont, it is not shorter in time to San Francisco, because more of Altamont is in the Central Valley and less is on the Caltrain corridor; for the same reason, the two options are about even on the cost of LA-SF alone. Altamont is actually a bit cheaper according to the original alternatives analysis, and the recent cost overrun is disproportionately in areas used only by Pacheco, such as the pass itself and the San Jose Diridon complex. Although Altamont has to cross water, a water tunnel parallel to the potential crossing site is currently under construction and so the geology and environment are well-understood. Pacheco’s advantage is just about San Jose: it offers it a faster connection to Los Angeles, and also the prestige of being on the main line rather than on a spur that would have gotten canceled as soon as costs ran over.
The fact that Altamont is no worse than Pacheco at connecting Los Angeles to San Francisco, as opposed to San Jose, is the key here. Altamont has other advantages, but since the biggest advantage of triangles here is reduced to connecting a secondary city better, there’s every reason to prefer the Y.
The same is not true elsewhere. Let us consider three cases: New York and New England, Texas, and the eastern part of the Midwest.
In the Midwest, this is the easiest. The question is how to connect Chicago to Detroit, the options being the I-94 corridor through Michigan, and the I-90 corridor through Indiana and Toledo, which would be shared with a connection to Cleveland. In this case the savings due to picking a Y rather than a triangle are much greater, while, again, the Y does not compromise Chicago-Detroit, but only reduces Chicago’s connectivity to small cities on I-94 in Michigan. Unsurprisingly, there is no longer a debate I am aware of; the SNCF proposal and the Siemens proposal both connect Detroit to Chicago via Toledo.
In the other regions, it is harder. When one leg of the triangle is obviously more important than the other two, it can be useful to have a T, which is like a Y except that one leg is straight and the other two are lengthened slightly more. If Houston and San Antonio swapped locations, it would be obvious that it should be a T. But given that they are where they are, the strongest leg, Dallas-Houston, has nothing significant in between, while Dallas-San Antonio has two intermediate cities in addition to Austin, complicating that kind of T. The Texas T-Bone alignment keeps straight Dallas-San Antonio, the second strongest leg; on this rudimentary list of possible alignments on Keep Houston Houston, a T with Dallas-Houston straight does not even appear. SNCF’s proposal starts with Dallas-San Antonio and is agnostic on whether to extend to Houston as a triangle or a T.
Practically any solution but a triangle would make the weakest leg, Houston-San Antonio, more circuitous, but various compromises that keep it at least competitive are incompatible with making both Dallas-San Antonio and Dallas-Houston straight. The presence of Austin also makes an exact triangle infeasible. Houston-San Antonio on I-10 is 321 km; via Austin, it is 389; via the T-Bone, it is 500; via Dallas, it is over 800, making it completely uncompetitive with driving. The Interstates had an easier time – cars can get from Houston to Austin, Temple-Killeen, and Waco on state roads, and because 1960s’ Texas was empty between the three Triangle cities, construction costs were low.
In the Northeast, there is also an opportunity for a triangle versus Y argument, in the New York-Boston-Albany triangle, but this time the Y is weaker. The problem is that New York-Boston is by far the strongest leg and the first that should be constructed. For that leg alone, the advantage of a shore route through Providence over an inland route through Hartford and I-84 is not overwhelming, but it requires less construction (New Haven-Kingston vs. New Haven-Boston). On top of that, the pure Y would not use I-84 but require New York-Boston trains to go through Springfield, lengthening the trip, and even that would only make the extra construction required even with the triangle. On a high-value, relatively short corridor where every minute matters, this is a problem. The only leg that works either way, Boston-Albany, is by far the weakest.
Meanwhile, the second leg, New York-Albany, would greatly suffer from any such detour. New York-Albany direct is about 230 km. Via New Haven and Springfield, it’s 330, and the average speed is also lower because of unfixable curves between New York and New Haven and several forced station stops. On top of that, although less overall construction would be required at the end, New York-Albany direct requires less tunneling than going through the Berkshires, even with the Hudson Highlands, and also less urban construction through Hartford and Springfield. (Without the Y, New Haven-Hartford-Springfield would be an upgraded legacy corridor, rather than a dedicated HSR line, which would provide similar local functionality but be insufficient for an intercity through-route to Boston or Upstate New York.)
What this means is that just because a Y is preferable to a triangle in one location does not mean Ys are always better. It depends on how it impacts the stronger legs, on phasing, and on very dry constructibility questions. “The Altamont of X” is incomplete; the Altamont Y is special in that the strongest leg is indifferent to Altamont vs. Pacheco, making the benefits (as opposed to costs) a matter of 10 or 20 extra minutes on secondary markets.
Low- and Medium-Hanging Fruit
The entire process I try to apply to cost-effective rail construction is to figure out the best places to spend money per unit of time saved. Obviously, this is mainly for intercity traffic – for local traffic it’s more interesting to look at cost per rider – but it’s intercity traffic that benefits most from this kind of optimization anyway.
With the Northeast Corridor, there are definitively low-hanging fruit, such as new (non-FRA-compliant) rolling stock, raising superelevation, improving platform access within present infrastructure, and adding constant tension catenary south of New York. Those are so useful, in terms of cost per benefit to travelers, that they should all be pursued immediately. The more interesting question is what to do afterward. I’ve proposed a few things before, in various posts, but it’s more useful to talk about the general process of determining where to build, i.e. which fruit are medium-hanging and which are high-hanging. I think traditionally this boils down to two parameters:
1. Cost per minute saved, including by improving reliability. This is of course adjusted for demand: New York-Philadelphia minutes are the most important, then Philadelphia-Washington, then New York-Boston, and finally other corridors.
2. Reduction in operating cost. If the rest of the network is based on hourly trains, and you need to squeeze five additional minutes to reduce your travel time including turnaround to an integer number of hours, it’s worth spending the money on it to avoid needing extra trains, or a schedule that doesn’t match up with the rest of the network. (And the same is true if the network repeats every 52 minutes – there’s nothing magical about 60 here.)
However, three additional, less obvious parameters are important:
3. Usefulness to local transit, in terms of speed, reliability, etc. This essentially reduces the cost imputed to intercity trains per minute saved.
4. How low-hanging the fruit becomes if combined with another. The issue is that eliminating two adjacent slow zones in an otherwise fast run saves more than double the time of eliminating just one of the two; another way to think about it is that eliminating the second slow zone saves more time than eliminating the first. This can result in counterintuitive phasing in a constrained funding environment.
5. How high-hanging the fruit becomes if it is delayed. If there is significant disruption to service coming from construction, then it’s better to do it earlier than would be warranted based on pure cost-per-minute-saved calculation.
#3 features prominently in Amtrak’s preexisting planning – in fact, too prominently, with its emphasis on Gateway. It’s a matter of agency imperialism more than anything, but it can lead to good results elsewhere. It’s really points #4-5 that aren’t optimized – either the costs are out of whack, or they are ignored. Washington Union Station‘s remodeling is an example of overemphasizing #5 without considering the cost or the ability to use existing infrastructure more cheaply; Transbay Terminal‘s poor column placement is an example of ignoring #5 entirely.
The reason I push concrete-heavy improvements between New Rochelle and Stamford, but not between Stamford and New Haven, comes essentially from those three points. The Cos Cob Bridge replacement is good because of points #1, #3, and #5; an I-95 bypass of Port Chester and Greenwich then interacts with it positively because of point #4, and also provides a suitable passing segment between high-speed and express commuter trains. In contrast, the projects east of Stamford don’t interact so positively: they involve constructing various bypasses, at high cost per minute saved, in separate locations so that the same increasing returns do not exist, and generally it’d not difficult to connect the bypasses to existing tracks so that the disruption effect of #5 is not in place.
Troll Rail Projects
In lieu of a real post, I want to discuss a few possible rail projects that are not completely thought-out. By this I mean rail projects that probably have critical constructibility and cost problems, but not obvious ones. They lie somewhere between true trolling – say, transcontinental HSR from New York to Los Angeles – and projects that are difficult and not yet proposed but need to be seriously considered, such as new train tunnels to Lower Manhattan or a Geary subway.
The projects are roughly ordered from most serious to most frivolous. The projects for the Northeast may well be feasible and should be at least considered, and the first was probably originally not done due to agency turf issues. The rolling stock projects are the most speculative – they suggest things to be done by competent rolling stock manufacturers that probably would’ve done them already if they could. The non-Northeastern infrastructure projects are somewhere in between. Make of this what you will. Just, please, do not use any of this as the basis for any alternative proposal, and do not link with a description like “Why have transit agencies not thought of this?” unless you know what you’re doing.
Northeast
ARC-North: the proposals for cross-Hudson tunnels that connect to Penn Station, including ARC Alt G and now Amtrak’s Gateway, would have the new tunnels connecting to the south of the main intercity through-tracks: ARC goes to the southern tracks, currently used by New Jersey, and Amtrak eventually wants to add tracks to the south. I propose that when they eventually build such a project, they build the new tunnels to the north, connecting to the existing northern pair of East River Tunnels; a connection to Grand Central could then be built from one of the two East River tunnel pairs, the one not used by intercity trains.
Right now, the northernmost tracks have the most access points and the southernmost tracks the fewest. The system would take advantage of the reduction in demand to Penn Station after East Side Access opens. In case the present-day North River Tunnel diameter is too narrow to allow for higher speeds, the new tunnel could then be used (also) by intercity trains at 200 km/h while letting commuter trains go to Grand Central without reducing capacity there.
Northeast Corridor to Market East, on the cheap: a short connection between North Philadelphia and North Broad, similar to that proposed for the Chestnut Hill West Line but used for the Northeast Corridor instead, would let intercity trains serve Market East or Suburban Station, in addition to 30th Street Station. Trains continuing down to Washington would probably not want to use such a connection, as it would slow them down because of the sharp turn in the SEPTA tunnel, but trains continuing on the Keystone Corridor would emerge from 30th Street oriented the right way. Right now trains to the Keystone Corridor have to either reverse direction (as they do today) or use a connection that skips 30th Street Station (as the fastest New York-Chicago trains did in the Broadway Limited era). It could be useful for local HSR trains if there ever were HSR from Philadelphia to Pittsburgh.
Philadelphia Bypass: also on the subject of HSR from New York to the Keystone Corridor, if express trains skip Philadelphia, it would be useful to build a bypass roughly along existing freight routes and I-276, starting at Trenton and ending somewhere between King of Prussia and Exton. The cost may not justify this in terms of cost per minute saved on New York-Pittsburgh (and New York-Cleveland, and New York-Chicago).
Providence Downcity Station: using the East Side Rail Tunnel, trains could continue west to Downcity, and then connect to the legacy tracks by hopping over I-95 in Federal Hill. For commuter trains, an underground station at Thayer Street is necessary. This is a pick-your-poison project in terms of takings: there are tradeoffs between curve radius, i.e. noise, and takings, and also between both and centrality. One option would be a curved station over City Hall Park, which would become the new Kennedy Plaza, and then what is now Kennedy Plaza would be landscaped and turned into the new City Hall Park. Another would go straight west, cutting through Citizens Plaza, and have a station elevated over Memorial Boulevard.
To troll even further, trains could use abandoned trackage starting from East Providence and then go to Fall River (reconstructing more abandoned trackage) and Newport (building new tracks through Bristol and over the Mount Hope Bridge).
Old Erie Line Revival: New Jersey Transit’s Main Line trains do not use the Erie Main Line south of Paterson, which is abandoned, but instead go along the Lackawanna’s old Boonton Branch. The right-of-way for the original Erie line is still intact, and serves the center of Passaic better. It might be useful to rebuild the tracks, which would require viaducts, and realign the Main Line. Service on all lines would probably require too many outlets – not even a dedicated tunnel to Lower Manhattan, combined, could be used for all lines serving that part of North Jersey, so some would have to be severed and turned over to light rail (maybe the Northern Branch) or the subway. The old Erie line is actually the best candidate for being part of a subway extension, since it serves dense communities and has a natural terminus at Paterson, where it would probably have to go underground.
Steinway Tunnel Widening: the Steinway Tunnel was widened from trolley loading gauge to IRT loading gauge when what is now the 7 was built. Since the rest of the 7 is built to the wider BMT/IND loading gauge, widening the tunnel is a useful capacity reliever to spend money on. It’s probably supremely expensive – I’m sure the MTA has studied it in the past; it’s also far from the most crowded Queens-Manhattan crossing point. But the cost may compare favorably with other means of providing extra capacity, and it may also be beneficial to let some Flushing Line trains serve Broadway and some Astoria Line trains serve 42nd Street.
West Coast
Subway to Burbank: Los Angeles’s Red Line does not go straight north along Vermont to Burbank, but swerves west to swerve more of Hollywood and serves Universal City and North Hollywood on the Valley side of the mountains. Since Downtown Burbank is a major secondary employment center, soon to be served by HSR, why not extend the city’s transit system in that direction? The Orange Line there should be a no-brainer, but more speculatively, the MTA could find money (another ballot measure, maybe?) and program another a subway branch off the Red Line that serves Burbank, with excessive splitting prevented by a new Vermont subway, or even (to troll further) an entirely new line that follows Western south of the mountains.
San Jose – Almaden Street Station: San Jose has a medium-sized CBD, roughly comparable to Providence or Burbank, but Diridon Station is separated from it by a freeway. Since there’s already a plan to spend large amounts of money of turning it into a multi-level train station, which the local technical activists have dubbed Diridon Intergalactic (or Pangalactic), why not also move the station? Trains could go on an alignment like this, elevated over Almaden, on a viaduct dedicated to Caltrain and HSR so that only four tracks would be needed. It would also bypass the current reverse curve between Tamien and Diridon, obviating the need for an iconic bridge. In a realistic, cost-conscious blended plan this is too expensive, but they should at least compare the cost with both a blended plan and the proposed full-fat business plan before rejecting it.
San Francisco – Embarcadero Station: with Transbay Terminal facing every planning and constructibility problem known to humanity, and the current terminal at 4th and King too far from the CBD, why not extend the trains under King Street and then the Embarcadero and build a station near the Ferry Building? Building this close to water is a nightmare, and the curve from King to the Embarcadero may be too sharp, but at least this connects to BART directly and has no station length constraints. On the third hand, the Embarcadero is wide but possibly not wide enough for three platforms and six tracks.
Rolling Stock
Tilting HSR: tilting HSR trains are either relatively low-speed (the Pendolino is limited to 250 km/h, with a few derivatives capable of a bit more) or relatively low-tilt (Talgos are capable of 180 mm of cant deficiency, and the latest Shinkansen trains have active suspension allowing up to about the same for the E5 Series. However, trains capable of 250 mm cant deficiency and 360 km/h are feasible; this is the main subject of Martin Lindahl’s thesis, which I (and others) have been quoting as a ready source of HSR track standards around the world. That said, probably the only place in the world that needs such trains is the Northeast Corridor, due to its unique combination of long straight stretches, on which very high speeds are possible or could be with minor infrastructure upgrades, and long curvy stretches, on which even major upgrades could not bring up to full HSR standards.
Catenary-free HSR: there’s new technology for catenary-free light rail, which is intended for use in historic city centers with aesthetic opposition to trolleywire. The contactless power supply is buried under the tracks, with each segment activated only when a train is completely above it. Although the technology is still low-speed, it could be useful for HSR. Pantographs generate disproportionate noise at high speeds, and Japan specifically has been squeezing every possible decibel out of low-noise pantographs. Being able to eliminate the pantograph would carry this to its logical conclusion. On the margins, it would also permit narrower rights-of-way, since no space for catenary poles would be needed.
Washington Union Station
Amtrak’s announcement that it needs $7 billion to improve Union Station, in a way that is tangential to train or passenger capacity, has gotten some deserved flak already on other blogs. What I want to discuss instead is a pair of issues relating to capacity: passenger circulation, and track capacity. Especially on the latter, Union Station does have some problems, not at current traffic, but enough that future traffic increases may require difficult at-grade merges. The core of the problem is that the terminal tracks are located to the west of the through-tracks, with an at-grade junction, rather than between them.
Fortunately, the passenger circulation capacity issue is easier. Although Amtrak claims 100,000 passengers use the station every day, in reality the number is beefed up with Metro riders, similarly to Penn Station’s 600,000 daily passengers statistic, of which nearly half is subway ridership. Total ridership on MARC and VRE is 53,000 per weekday, and Amtrak has a total of 13,000 boardings and alightings per day there (not per weekday, but intercity traffic does not have the weekday peak of commuter traffic). This is 66,000 boardings and alightings, assuming every MARC and VRE trip begins or ends at Union Station. In contrast, on just two tracks with ordinary subway platforms, Metro has 34,000 boardings at the station; page 13 of Amtrak’s announcement shows the relative scale of Metro and mainline infrastructure. The mainline half of the station’s ridership is passengers who are likelier to be carrying luggage or not be local, but the main difference between it and the Metro half is that the Metro half is using Metro turf and the mainline half is using the station above which Amtrak’s headquarters is located.
If there is a problem, it comes from Amtrak’s practice of corralling riders at waiting points, instead of letting them filter onto the platforms or the stations whenever they like, as is done every day on trains in France and Germany, or on the less busy stations of the Northeast Corridor. Stephen Smith tells me that unlike in New York or Boston, where the waiting areas are at least adjacent to the platform and the problem is one of having just one access point (or just one official access point in New York), in Washington there is another antechamber between the passengers and the train. An extra 100 meters of walking adds about a minute of travel time in a congested space, and perhaps 45 seconds in a clear one; Amtrak’s current practice adds multiple minutes to door-to-door travel time, and also forces pedestrian congestion once it clears passengers to access the platform.
Adding access points is also a good thing, but that does not cost $7 billion, and does not require redoing the entire main concourse. But possibly the most important thing to do in the near term is making all platforms high, also nowhere near a $7 billion project; the diagrams on Amtrak’s announcement suggest all terminal tracks and most through-tracks will be high-platform, but one through-platform will remain low.
Now, track capacity is where things get more interesting, because potentially there is a problem, coming from terminal layout. A not very clear, but public, diagram can be found here: look for Washington Union Terminal, and within it, Interlockings C (the outer station throat and a nearby yard), K (the inner throat and the actual tracks), and A (the connection from the through-tracks to First Street Tunnel). Note that terminating tracks 7-20 are to the west of through-tracks 22-29, and the junction is at grade, which represents a problem for easy cookie-cutter planning.
The operationally simplest but most expensive to deal with this is to build a grade separation. If it’s anything like Harold, expect a $300 million price tag. At present and expected levels of traffic, this is overkill.
I claim that if MARC and VRE trains continue to terminate at Union Station, no special work is needed: Brunswick and Camden Line traffic can be segregated on tracks 7-9 (and the turnaround capacity, easily about 12 tph for 3 tracks, is more than those lines will need between them), VRE traffic can be segregated on tracks 24-25, and Penn Line traffic can use the same tracks as the terminating intercity trains.
The only at-grade conflict would be between northbound trains originating at Washington, and southbound ones continuing through to Virginia, and even high possible traffic levels (say, 12 tph terminating including the Penn Line sprawled across 11 tracks of which 3 already have long platforms and arguably 3 more can be lengthened, 2 tph through across 4 tracks) can be scheduled in a similar manner to all-terminating stations, treating the through-trains as terminating trains that have to use specific tracks and have no limit on dwell time.
Specifically, because Penn Line (or local HSR) trains would leave immediately after express HSR trains to reduce the number of required overtakes, at worst we’d have trains originating at :00 and :02, repeating every 10 minutes, and then there’s an 8-minute window within which to schedule southbound through-trains.
So instead let us assume commuter trains run through, in which case we may as well assume they have good reliability so that they can be scheduled with 2-minute headways. Current peak traffic is 3 tph Brunswick, 2 tph Camden, 3 tph Penn, and lower combined traffic on the Virginia side. Assume that peak traffic will grow to 3 tph Brunswick and Camden and 6 tph combined Penn and through-HSR; in fact the most potential for growth is off-peak, and because multiple platforms are very long, long trains may be used if there are capacity problems.
We now have 6 tph terminating HSR, 6 tph through-traffic on the Penn Line (including HSR), and 6 tph through-commuter traffic on the Camden and Brunswick Lines; Camden and Brunswick are physically to the west of the Northeast Corridor, and so in addition to conflicts between terminating and through trains, we have conflicts between through-Camden/Brunswick and southbound through-Penn/HSR.
In this situation, we can have southbound terminating HSR and through-Penn/HSR trains clearing the throat at :00 and :02 again. Northbound terminating HSR trains have to depart 2 minutes after the arrival of southbound through-Penn/HSR trains, e.g. :04, and then northbound through-Camden/Brunswick trains can depart between :06 and :08; northbound through-Penn/HSR trains are always to the east of everything else and so do not conflict with anything.
Because southbound through-Camden/Brunswick trains conflict with terminating trains, they can be scheduled at the same time as northbound through-trains of some kind, which constrains the symmetry axis we choose but is otherwise workable. For example, if Camden/Brunswick trains both depart and arrive at :07 then with the terminating trains arriving :00 and departing :04, we have a symmetry axis ending in a 2 or a 7 (and through-Penn/HSR trains would arrive and depart at :02). But then the terminating trains also arrive just before the through-Penn/HSR trains and depart just after, implying they are slower or else there would be an overtake just north of the station. We can instead switch the trains – and then terminating trains arrive and depart :02, and through-Penn/HSR arrive southbound :00 and depart northbound :04. Note that there is no conflict between northbound terminating trains and southbound through-trains.
So it is possible to do this without extra infrastructure beside longer and level-boarding platforms, which are cheap. Let us finish by seeing what extra trains can be scheduled into the above 18 tph schedule. Scheduling 6 tph of terminating trains is easy: trains arriving :04 and departing :00, the opposite of the terminating HSR trains discussed above, will be adequately separated. The problem then is just the need to overtake the :02 through-trains along the tracks; however, at such a level of demand, 18 tph combined HSR and commuter on the Northeast Corridor, full four-tracking there would be necessary anyway.
But no extra through-traffic can be realistically scheduled into the same timetable, because the southbound :04 trains would conflict with the northbound :04 terminating trains. Changing the schedule so that it’s the terminating trains that arrive and depart at the same time is, however, possible: since we’re four-tracking the entire Baltimore-Washington line at this stage, we can have terminating trains arrive and depart :02, Camden/Brunswick trains do the same :07, and through-Penn/HSR trains arrive and depart :00 and :04. That said, this means it’s impossible to schedule more than 6 terminating tph into Union Station; I believe it’ll be easier to fill all those extra intercity trains into Washington than fill 18 tph going from Washington toward Virginia, both intercity and commuter.
Of course, the traffic levels discussed here are all very high, especially for HSR. An HSR system that fills even 6 tph is one that can pay for future capacity increases out of operating profits. The importance should be getting a starter system with reasonable capacity for the next few years and then build capacity projects as required, with immediate construction done only on the most critical segments or those that would be hard to reconstruct with more future traffic.
So we’re back to the question of what needs to be done with Union Station, and the answer is hardly anything. It’s not even Moynihan Station, which is also sold as a bigger transportation benefit than it is, but is at least billed as a grand station to be named after a politician more than anything (and is only about $1.5 billion). It’s even worse than Gateway and the Market East station, which would have positive transportation value, and are just very cost-ineffective. It’s not solving any problem for the foreseeable future; it’s just using big numbers about current traffic and growth to scare people into thinking more capacity is needed, and mostly it’s using small increases in track capacity to justify throwing billions of dollars on beautifying Amtrak’s headquarters.
The Value of New York-Boston
This post mainly responds to an argument made by Jim in comments that the core portion of the Northeast Corridor is New York-Washington, and New York-Boston is more expensive and less useful.
The Northeast Corridor has two halves: New York-Philadelphia-Washington and New York-Boston. The southern half is the more important one: according to PDF-page 41 of the Master Plan it carries 70% of the traffic, and the top city pairs are New York-Washington and New York-Philadelphia, both substantially larger than New York-Boston. Although the corridor is always treated as a single line, it is worth checking the value of upgrades separately, especially because the southern half is straighter and would take less investment to bring up to full high-speed rail standards.
However, even with such a disaggregation, New York-Boston is a valuable route, with more potential benefits than any other in the US except New York-Washington. For a first filter, we can look at city populations. New York’s size is such that even much smaller cities can be fruitfully connected to it by greenfield HSR. Seoul, of comparable size to New York, is connected to Busan, which is slightly smaller than Boston and slightly farther apart from Seoul than Boston is from New York; the intermediate cities, Daejeon and Daegu, are somewhat larger than New Haven and Providence. Total ridership on the Seoul-Busan segment of the KTX is about 30 million per year, and Korail appears to be making profits on the line, despite very high construction costs coming from heavy tunneling (about 40% of the route).
The first filter alone warrants further investigation of the route, even independently of New York-Washington. The costs of New York-Boston, while higher than those of New York-Washington, are not very high. We can put much of the New Haven Line in the “too hard” basket initially, but instead focus on high speeds between New York and Stamford and between New Haven and Boston and somewhat higher speeds between Stamford and New Haven than today. The average speed that can be squeezed with such investment is comparable to that of the KTX today, before the high-speed segments through two intermediate cities have been completed; those segments can then be compared to tackling Stamford-New Haven.
Of course, while adequate, is still nowhere nearly as good as what can be done on New York-Washington. It’s not just that this segment connects New York to two different cities the size of Greater Boston. Although today New York-Philadelphia has higher ridership than New York-Boston, this may well be reversed in the presence of full-fat HSR, since cutting a 1:05 trip to 0:38 does not provide the same competitive boost as cutting a 3:30 trip to 2:00, and Amtrak’s primary competition is highways rather than planes.
Rather, the benefits of New York-Washington are more in the distribution of the secondary centers. The biggest satellite metro area of Washington is Baltimore, on the line. Of Boston’s satellite metro areas – Providence, Worcester, and Nashua-Manchester – at most one can be served by any semi-reasonable HSR alignment. Philadelphia-Washington provides an additional market to be served. Washington’s population growth is much faster than that of the rest of the Northeast, and is comparable to that of the Sunbelt.
At the same time, there are benefits to building both lines; since under a phased program that built one first and then the other New York-Washington would be first, those benefits should be counted as benefits of New York-Boston. The biggest one is service through New York. Boston-Washington is a major air market: the O&D passenger volume between the Boston and Washington areas is 3.1 million a year; this is more than Boston-New York and New York-Washington combined, and Boston-Washington is both Boston and Washington’s busiest air city pair. In general, Boston-Washington and Boston-Philadelphia are located at more favorable ranges for HSR’s competitiveness than New York-Boston and New York-Washington, on which the trip time advantage versus cars and buses is smaller.
If we take Boston-Philadelphia and Boston-Washington and slightly more than double the size of today’s air market – the same ratio of present-day HSR traffic to pre-HSR air traffic between London and Paris – we get an additional 9 million passengers a year, small compared to the possibilities of the other city pairs but non-negligible.
The other issue is rolling stock and operating plan. Because the Northeast Corridor runs as one route, and there is no point in separating its two halves operationally, the same rolling stock that runs south of New York also has to run north of New York. In particular, we obtain the following situation:
– Traffic purely south of New York justifies rolling stock that could in principle achieve much higher speeds north of New York.
– Because of certain capacity problems, both real and imagined, a few strategic bypasses and (near Boston) commuter rail modernization can have outsized intercity trip time benefit relative to the cost. A high-speed train that gets stuck behind commuter trains pulled by diesel locomotives does Boston-Providence in about 35 minutes. One that shares tracks with punctual modern EMUs can do the same in 20.
– At low levels of infrastructure investment, the cost of new rolling stock can be sizable compared to the cost of infrastructure. Half-hourly service with 16-car trains, one possible initial service plan, costs $250 million times the one-way Boston-Washington trip time in hours including turnaround time, plus spare ratio. 15-minute service requires double that cost, naturally. None of the New York-Boston projects, not even “buy the MBTA better trains,” flips to negative cost this way, but some have lower cost as a result.
– Shared-track HSR requires very good punctuality. Coming south from Boston, trains have no reason to be off-schedule in New York – Metro-North is reasonably punctual (though not enough for HSR) and both between the Rhode Island/Massachusetts state line and New Haven and between New Rochelle and New York Amtrak owns the tracks and runs the most trains – but the bypass and junction separation will help further. Coming north from Virginia there are much bigger problems, but trains can dwell arbitrarily long in Washington for schedule buffer, which they can’t in New York.
What this means is that it’s best to phase Northeast HSR investment throughout the entire corridor. New York-Washington should have the priority because it’s cheaper and has more traffic potential, but unless for some reason there is no money (not even about $4 billion for immediate improvements plus a little more for a bypass), parts of New York-Boston should be in the first phase.
Arguably, even true branches, such as to the Keystone Corridor and Springfield, can get through-service early. Those do not have the ridership potential of the core route, but electrifying New Haven-Springfield to run trains through, and programming extra trains for Keystone, can be done within a few years. The limit perhaps is only rolling stock, or more precisely what to do with the electric locomotives that would become obsolete (they already are, but are a sunk cost, and buying new HSR trainsets now becomes an additional one-time cost).
Northeast Corridor: Dealing With Capacity
To build high-speed rail on the Northeast Corridor cheaply, intercity trains will have to share tracks with regional trains at several locations, which between them comprise a majority of the corridor. At most of these, commuter traffic is heavy enough that it must be accommodated in some way; only in a minority is it so insignificant that Amtrak can feasibly kick trains out if need be. So far I’ve only explained how track-sharing can be done between Boston and Providence and between New York and New Rochelle, both far from the busiest segments of the corridor.
I’d like to start tackling the more difficult segments, New York-Trenton and New Rochelle-Stamford. Thankfully, they are almost fully four-tracked; the one exception is the North River Tunnels and the immediate approaches, where there is little speed difference between intercity and regional trains. Unfortunately, even four tracks are not enough to provide full separation between services that do not run at the same speed, because those corridors are busy enough to warrant both local and express commuter service. This requires some scheduling creativity. In both cases, what is required is having express commuter trains weave between the local tracks and the intercity tracks.
As before, my explicit assumptions are that the rolling stock is optimized, and that speed limits except those coming from right-of-way geometry have already been eliminated. However, since unlike the MBTA, Metro-North runs good rolling stock, and New Jersey Transit runs passable rolling stock, we can’t realistically expect either to buy the most powerful regional trains on the market; that said, New Jersey Transit is looking into new trains, and we will assume those trains will be in line with the high-performance but heavy Silverliner Vs. What we can expect is better on-time performance and less schedule padding. The amount of commuter traffic is assumed to be similar to or slightly higher than today; the outer ends of both lines can be expected to lose traffic from commuter to intercity trains, but the rest will not.
Complicating all this is the requirement of making all the trains cohere into one line. In other words, unlike the situation for Boston-Providence, Newark-Trenton can’t stand on its own; the trains need to depart Newark with suitable gaps to allow trains to come in from the Kearny Connection. Likewise, New Rochelle-New Haven needs to feed into New Rochelle-New York in such a way that trains can share tracks on that segment. The most difficult portion is then combining the two commuter halves of the Northeast Corridor together to allow through-running, without holding commuter trains for too long at Penn Station. One possibility is to expand the entire route between the tunnels and Newark to a long overtake segment, and have all commuter trains stop at Secaucus to further slow them down and permit intercity trains that arrived at New York second to arrive at Newark first.
Newark-Trenton
Current peak traffic on New Jersey Transit’s Northeast Corridor and North Jersey Coast lines is 13 trains per hour. Of those, only 2 make local stops from Rahway north, and both are North Jersey Coast trains. An additional 2 trains are express North Jersey Coast trains, leaving us with 9 trains at Metropark (3 stopping from New Brunswick, 3 more stopping from Jersey Avenue, 3 super-express from Trenton).
The introduction of high-speed trains would change the distribution of demand dramatically. From Trenton, HSR would be far faster. Even from Princeton Junction, it would be substantially faster to take a commuter train south to Trenton and connect to HSR to New York. For passengers desiring a one-seat ride, trains could continue to run, but make more stops along the way. We may suppose that no commuter train will skip any stop from Metropark south, and that an additional 2 trains that currently run express to New Brunswick or Jersey Avenue will run local, providing the Rahway-Newark segment with a peak local traffic of 4 tph.
The desired ideal is that all commuter trains will stay away from the inner two tracks, with brief forays when absolutely necessary. The above rule regarding local runs ensures no overtakes among the commuter trains take place south of Rahway. We are then left with the task of ensuring all overtakes north of Rahway make use of the two existing six-track segments, around Newark Airport, and from just south of the Elizabeth curve to Union Interlocking between the mainline and the North Jersey Coast Line, the latter segment including Linden and Rahway.
Because the southern six-track segment persists through the interlocking, it provides a fully separated route between local coast trains and express mainline trains, and also between local mainline trains and express coast trains southbound. Slightly modifying the interlocking to allow a separated northbound path between local mainline and express coast trains that does not use the inner two tracks may be required.
Now, a Silverliner V running at 160 km/h appears to lose about 90 seconds to a high-platform stop. For the record, a FLIRT would lose 75 seconds. Since there are five local stops north of the interlocking, we have to deal with 7.5 minutes. With 2-minute headways, this means local trains can depart Newark 9.5 technical minutes ahead of express trains on the same branch (mainline or coast), and 6.5 ahead of express trains on the opposite branch. Since 11/9.5 = 1.16 and a 16% pad is excessive, 11 scheduled minutes of separation are enough, and we obtain the following option for departure times out of Newark:
Express :00
Express :02
Express :04
Local :06
Express :15
Express :17
…
Each local must serve a different branch from the express immediately following, since 9 < 9.5. The express afterward – for example the :17 express after the :06 local – is separated by 11 minutes, and so can run on any branch. This allows 16 tph, of which 4 are local, and at least 4 have to run on the New Jersey Coast Line. Of course not every slot has to have a train scheduled in it.
Adding local frequency at the expense of express frequency is possible, but requires tightening the gap between a local train and the express that follows it, unless we allow inconveniences such as serving the local stations at highly irregular intervals. For example, 10-minute local headways allow trains to depart Newark at,
Express :00
Local :02
Express :10
Local :12
…
The 8-minute difference means each express must serve a different destination from the preceding local, and this underserves the mainline at only 6 tph. We can add stops to the express trains (or saddle them with inferior, locomotive-hauled rolling stock), but two stops are required, unless New Jersey Transit makes sure to get cutting-edge trains, which is unlikely; with FLIRTs, the time difference shrinks from 7.5 minutes to 6.25 and only one stop is required. In either case, we might as well squeeze an :x8 express, also serving a different destination from the local ahead of it.
Another option is to use the Linden-Rahway segment for overtakes. Trains lose 3 minutes there. If we add an infill stop, they lose 4.5, which is very close to the 4 minutes required to switch the order of two trains. This means express trains need to approach Linden 2-2.5 minutes behind the locals, and thus leave Newark 7 minutes behind. We obtain,
Local :00
Express :07
Express :09 (different destination from the :00 local)
…
(12-minute clockface pattern)
Since 12-minute schedules are generally awkward and my New York-New Rochelle proposal uses 10- (below) or 15-minute schedules (in the original link), we should add a Newark Airport or Elizabeth stop to the express trains, and then they leave Newark about 5-5.5 minutes behind the locals, and we can have a 7.5-minute pattern, which divides 15 evenly. Alternatively, we can add the stop and then have a 10-minute pattern again. We either get 6 local and 12 express slots with each express serving a different destination from the local behind it, or 8 local and 8 express slots, and there is no restriction on destination:
Local :00
Express :05
Express :07
Local :10
Express :15
Express :17
…
or
Local :00
Express :05
Local :07
Express :13
Local :15
Express :20
…
Note that nowhere here does HSR share tracks with anything except maybe in the Newark Penn Station throat, under any of the options. Thus, any discussion of HSR speed zones is irrelevant, except perhaps at the final stage when some tweaks to the basic schedule are under consideration.
New Rochelle-Stamford
Like Newark-Trenton, this is a four-track segment. However, commuter traffic here is heavier, and there are no six-track segments. Instead, overtakes between express commuter trains and intercity trains must be done on bypass segments. The one that we will consider is, as I outlined before, a route from just south of Rye to between Greenwich and Cos Cob, following the I-95 right-of-way.
No HSR on the New Haven Line should be considered with New Rochelle as it is. The flat junction and S-curve together severely constrain train speed and capacity. Since the junction has to be grade-separated, and some takings are required, we might as well assume the separation allows trains to proceed without crossing opposing traffic no matter where they go. Furthermore, the station should be six-tracked if necessary.
We will also assume the curve has been partially eased, to a radius of 700 meters with appropriate superelevation spirals, permitting our example 375-mm-equivalent-cant trains 150 km/h. We will also assume that Harrison has been partially eased to 1,500 meters, permitting 220; that the curve toward the bypass around Rye is 1,500 meters, which may be slightly too optimistic but not by more than a few seconds of travel time; and that the curves farther north until the Stamford approach are 2,000, permitting 250. The approach to Stamford consists of two curves forming a wide S, the western one at 1,000 (180 km/h) and the eastern one at 800 (160). Note that these upgrades allow express commuter trains to travel at 160 on the shared segments – indeed, they require it to avoid or at least limit cant excess. Local trains have more limited cant because of the needs of freight.
We will assume the number of trains is about the same, with capacity boosted with longer trains; where New Jersey Transit runs 12-car trains because of limited capacity across the Hudson, Metro-North tends to run 8-car trains. Unlike in New Jersey’s case, there’s little point then in programming more slots for trains.
Let us now consider Easy Mode, with all Metro-North trains using the existing route to Grand Central. We have two track-sharing segments, one between New Rochelle and Rye, and one between Greenwich and Stamford. The first segment is 12 km long and has 3 stations with 2 more at the ends; the second is 8 km long and has 3 stations as well, with just 1 more at one end.
On the first segment, there are 18 Metro-North tph peak today: 12 not stopping at all, 2 stopping only at Harrison, and 4 local. Now if the express trains share tracks with HSR rather than the locals, we will want to schedule trains HSR-express-express repeating every 10 minutes, or HSR-express-express-express repeating every 15; the former allows more versatile HSR slots (local and express), and the 15-minute assumption of New York-New Rochelle has no relevance in Easy Mode.
Current scheduled time between Rye and New Rochelle is 17 minutes for local trains; judging by both rolling stock capability and the local-express schedule difference, nonstop trains take about 10 minutes, and trains stopping at Rye but not New Rochelle take 12. Sped up to 160 km/h, with 7% schedule padding, nonstop trains would take about 6 minutes. HSR would take 3:35, again padded 7%. This means that, with 2-minute headways in both directions (fast-ahead-of-slow, and slow-ahead-of-fast), and 6-minute express commuter trains, we can have (northbound times from New Rochelle, HSR passing and commuter trains passing or stopping):
HSR :00
Express :02
Express :04
HSR :10
…
This is because by Rye, the :10 HSR is still 3.5 minutes behind the :04 express Metro-North train.
Alternatively, it’s possible but very tight to have an express-express-local schedule, assuming commuter trains are not sped up but the stop penalty is reduced to 80 seconds (so, 4 minutes for 3 stops), which is feasible at the speeds of the line:
Express :00
Express :02
Local :04
Express :10
…
This requires express trains to weave effortlessly to tracks 2 and 5 of a 6-track New Rochelle station, or to stop at New Rochelle.
A mixed schedule, with half the express trains sharing track with HSR and half with the local trains, is also feasible, but is essentially like drinking half coffee and half tea: while the 8-minute local-express gap on the local tracks is fine as it is, the gap on the HSR tracks requires speeding up the express trains anyway.
Note that if the all express trains share tracks with HSR, it is trivial to add local service, or to replace express trains with locals.
The other segment is easier, because it is shorter and lower-traffic, with only 13 tph (3 local, the rest express). HSR would take 2:24 with pad; express commuter trains take 7 today and could take 3:24 with a speed-up. The speed-up would be very significant here as this is a slow segment today, with the movable Cos Cob Bridge restricting speeds. The present speed difference is already almost small enough to allow HSR-express-express, as above; we need to cut another 36 seconds from the express travel time, which we can do with improved reliability reducing padding (the pad I’ve observed between Stamford and Grand Central is 10 minutes). Local-express-express would be 7 vs. 12 minutes, and if locals could consistently take just 11 minutes, as some already do, or if expresses could easily weave to the express tracks just north of Greenwich after HSR trains diverge to the bypass, then it would be feasible.
To finish Easy Mode, let us reconcile the two segments, which after all are populated by the same trains. If we have HSR-express-express on both segments and use the bypass as an overtake, we need to ensure that a commuter train that was 2 minutes ahead of HSR before is now 4 minutes behind after: 4, and not 2, because each HSR train overtakes 2 express trains. Losing 6 minutes is difficult, as the current local travel time between Greenwich and Rye is just 7 minutes. But with approaches this is a bit more than 8 minutes, and HSR would do the segment in 2:08, padded. This has the only drawback of awkwardly making express trains make stops at Greenwich (understandable given traffic), Port Chester, and Rye.
As an alternative, we can also do local-express-express on one segment and HSR-express-express on the other. Since the HSR-express-express schedule is tighter on the southern segment, the southern segment should have local-express-express. This only requires us to avoid having trains run a mixture of local and express too much: as two of the Greenwich-Stamford locals run express south of Greenwich and three of the Harrison-New Rochelle locals only run as far north as Harrison, we can simply combine those to create more locals going all the way from Stamford to Grand Central.
Now, let us move on to Hard Mode, which includes New Rochelle-New York. A consistent 15-minute schedule does not look possible to me on New Rochelle-Stamford without reducing peak commuter traffic to 16 tph, for example by lengthening trains and platforms. If that were done, 8 tph local on the local tracks with 4 turning at or south of Greenwich, and 8 tph express in HSR-express-express pattern on the southern shared segment, would be feasible.
So let us consider 10-minute schedules. HSR and express trains run at almost the same speed, since there are few areas south of New Rochelle on which even 200 km/h is at all feasible. The difference between HSR and express 145 km/h M8s (stopping at New Rochelle and Sunnyside), as already investigated in my original post on the subject, is 3:15 without pad, and 3:29 with. This means the express needs to leave New Rochelle up to 4.5 minutes after the HSR train, so that it will arrive at Sunnyside 8 minutes after, and 2 ahead of the next HSR. With a 9-minute time difference between HSR and the express trains from Greenwich to New Rochelle, this requires the express to be at least 4.5 minutes ahead of HSR at Greenwich, which with very minor speed-up is possible. What this means is that with mixed HSR-express-express and local-express-express as in Easy Mode, the first express after each HSR will go to Penn Station and the second one will go to Grand Central.
The question then is what to do with local trains. If they only go as far north as Co-op City, then it’s easy; with the exception of Hell Gate Bridge, the tracks in the Bronx would have to be four-tracked anyway to allow some overtake, and since there’s room, there’s not much traffic now, and this represents an expansion of Metro-North service, we can safely assume four-tracking. In that case local trains, making no stops in Queens except Sunnyside, would run at the same speed as the express trains on the two-track segment south of Hunts Point, and could be scheduled anywhere. An Astoria stop would require them to be scheduled immediately after the HSR and express trains southbound, which is feasible as near Sunnyside those would be close together already, with the express just ahead of HSR.
Of course, as this is Hard Mode, we cannot assume the local trains turn at Co-op City. Instead, we will make them turn at New Rochelle, or ideally run through farther north as locals. Now, southbound HSR trains, we have established, pass New Rochelle at :00, express trains leave at :04:30 and :06:30, and local trains leave at :02:30. This means we should extend four-tracking at Co-op City such that the local goes at the exact same speed as the express, which does stop at New Rochelle, until after it diverges to the local tracks at Co-op City; alternatively, if there is room in the schedule, we can have the local trains leave at :02 and then there is enough room.
Rearrangement of trains heading toward Hell Gate should be considered a trivial problem: if locals are too far ahead, or too far behind, the number of stops could be adjusted, or they could be held at the Bronx stations longer. Because the time difference between a local and an HSR in the Bronx and Queens combined is just under 10 minutes, the first option would require an extra stop or two or longer dwell times, making the local lose a full 10-minute headway and thus come immediately after the next HSR. By then the express has shifted back to about :07-:08 and so it’s not a threat even if the local does make an Astoria stop.
Conclusion
None of this is elegant. The schedules don’t necessarily match. Local HSR trains would add extra complications, though at least they’d reduce the speed difference with commuter trains in Metro-North territory. All agencies involved need to be on the same page. Through-running would involve a multi-overtake schedule, in which the most local trains get overtaken several times, by different classes of trains (HSR and express). Punctuality doesn’t have to be Japanese, but it needs to be Swiss, or else the entire edifice collapses.
And it’s still far cheaper than trying to overbuild everything to prevent this mess. The only commuter trains sharing track with HSR in this region are Metro-North, and those are fairly punctual, though this involves heavy padding. The rolling stock assumed is already in operation or in the procurement stage. The track repairs required are straightforward, and the curve modifications required, while annoying, are not the end of the world; the one greenfield bypass follows an existing Interstate, and the takings required, while nonzero, are low.
The travel time implied for this is a little more than 17 minutes from Newark to Trenton, for an intercity train stopping only at Newark (though this requires a top speed of 360 km/h causing severe noise impact in New Brunswick and Trenton), a little more than 8 between New Rochelle and Stamford, and just less than 10 between Sunnyside and New Rochelle. Depending on how much speed can be squeezed out of narrow tunnels and a new Portal Bridge, about 11 minutes Sunnyside-Newark, including New York and Newark dwell times, could be done; this is about 46 minutes Stamford-Trenton, a segment that Amtrak currently does in 1:45 excluding the long New York dwell time. And the amount of concrete pouring required is quite small for an hour’s worth of travel time reduction. Even a top speed that’s less noisy and ambitious, and lower speeds through the existing tunnels, do not raise this travel time far above 50 minutes.
Great things are possible if we first look at what is feasible, and then demand that agencies cooperate to achieve it, instead of program everything around public transportation agencies that act like rival gangs. If everything is optimized right, travel times not much higher than those Amtrak is targeting become possible, for a small fraction of the price, and capacity constraints can be kicked down the road to when passenger rail makes enough money to pay to relieve them. Organization, electronics, and small, strategic concrete pouring can go a long way. The choice is not between HSR for a twelve-figure sum and small improvements for an eleven-figure sum; it’s between low-cost HSR and agency turf battles.
Surreptitious Cost Escalations and Spurious Cost Savings
In response to my previous post regarding the extreme cost of Amtrak’s new Northeast Corridor Vision plan, people both on forums and on blogs have said that it’s actually a cost saving coming from bundling the Vision with the earlier Master Plan. Although the original cost was $117 billion and the current one is $151 billion, the current one is still lower than the sum of the original cost plus the cost of the Master Plan, by $15 billion. This looks like a cost saving, but it’s actually not.
The explanation is that the Master Plan still contains elements that are unnecessary if large portions of the line, including nearly the entire New York-Boston segment, are bypassed. The list of projects on PDF-page 21 of the plan contains additional tracks in eastern Connecticut and a replacement of the bridge over the Connecticut, boosting capacity. However, if the intercity trains are removed from the line, there is no need to boost capacity. Low-performing branch lines – and this is what Shore Line East is without intercity trains – can be and are spun off to regional agencies: JR East abandoned the northern reaches of the Tohoku Main Line as it extended the Tohoku Shinkansen, spinning them off to the prefectures to run as it is not interested in running regional rail at the low densities of northern Japan and the intercity functions were all rolled into the Shinkansen.
So in that sense, any cost saving was spurious: Amtrak simply removed some, but not all, Master Plan projects that are obviated by the plan for a bypass. It’s no different from the fact that the Tokaido Main Line and the PLM Line are still double-tracked, as in both cases the national railroad chose to build high-speed rail parallel to them instead of to quadruple-track them to boost capacity.
But on top of that, there is at least some cost overrun implied in the plan. The cost breakdown is not detailed enough to make this clear, but the cost of the Gateway Tunnel is up to $14.7 billion, from $10-13.5 billion last year. It’s buried deep enough that it’s hard to see, or discern what the total overrun is, but it’s there. So Amtrak has a surreptitious cost escalation for the Gateway project at the same time as a spurious cost saving from partially merging the Vision and the Master Plan.
The CAHSR-SNCF Bombshell
The most important HSR news right now is the recent revelation on the LA Times, strategically made immediately after the state legislature had voted to appropriate the required money to begin construction, that the California HSR Authority had brushed off an offer from SNCF, which came with funding attached, to take over and build the project. SNCF’s offer would run trains through I-5 all the way instead of the chosen route vaguely along State Route 99, bypassing Bakersfield and Fresno.
Stephen Smith, who’s talked to the same sources who spoke with the LA Times, says that SNCF was interested in either I-5 or a greenfield alignment just west of SR 99 that would serve Bakersfield and Fresno with edge-of-urban area stations, though I-5 was “the only alignment… that private backers felt was financially viable.”
Although in 2009 SNCF submitted a document proposing to build the project along the chosen alignment, serving Bakersfield and Fresno at city-center stations, the document is stamped “Do not circulate outside government,” and the source says explicitly that the HSR Authority had pressured SNCF not to say anything about alignments, and more recently rejected its I-5 (or west-of-99) proposal out of hand. The HSR Authority responded, brushing off some of the article’s concerns and raising what is essentially FUD: HSR Authority Chair Dan Richard made sure to mention the manufactured controversy over the fact that SNCF had been forced by the Nazis to help ship Jews to extermination camps.
I do not have any access to sources, confidential or otherwise, but at least some analysis of this can be made from public information. The key cost numbers the LA Times provided are,
The I-5 route would have been the shortest, fastest and lowest-cost alignment, with a price tag of about $38 billion — sharply less than the rail authority’s current route, which has been estimated at various times to cost $34 billion, $43 billion, $98 billion and now $68 billion.
The problem: the cost of the Central Valley segment is a sufficiently small portion of the cost that it can’t possibly make the entire or even most of difference between $38 billion and the current price tag. It’s unclear to me what $38 billion should be compared to – 2010 dollars or year-of-expenditure dollars, and the Blended Plan ($68 billion YOE) or the full Phase 1 ($98 billion YOE) – but the lowest number, the Blended Plan in 2010 dollars, is $53 billion, $15 billion more than SNCF’s proposal. I have asked what exactly the comparable Authority number is and will update when I get an answer.
In contrast, the Initial Construction Segment, which includes a large majority of the Phase 1 Central Valley segment (though not the most difficult part, through Bakersfield) is $5.2 billion in 2010 dollars (see PDF-page 15 of the 2010 business plan); the actual money appropriated is just over $6 billion, but if we’re doing YOE numbers then we must compare $38 to $68 and then the difference doubles. Since the cost of construction along I-5, although lower than along the chosen route with its viaducts and grade separations, is nonzero, we get that a relatively small fraction of the cost difference, perhaps a quarter or a third, is attributable to this design choice.
So if it’s not just I-5, what is it, and what can we learn from this? I believe the results should if anything make the HSR Authority look even worse than it already does in light of this story and its lackluster response. This is because it means the entire amount of money required to build to SNCF’s specs but serve Bakersfield and Fresno, at edge-of-urban-area stations if the cities object to the noise of trains through downtown (which at least Fresno does not), is a small number of billions of dollars. This means that if service to those two cities was the true dealbreaker, the Authority could have asked SNCF to change the alignment back to the chosen route or a greenfield route just west of it, and then demanded that Fresno and Bakersfield pay for the difference.
Fresno had been hoping to use statewide HSR money to bundle its own project of grade-separating the freight tracks through the city along the Union Pacific right-of-way. The poor relationship between the HSR Authority and Union Pacific dashed the plans to use its right-of-way where it is superior to the BNSF alignment. That said, the threat of being left out of the network entirely could have induced it to come up with money for this on its own; the segment of the project through the Fresno area is $1-1.5 billion. A downtown station in Bakersfield is more difficult, especially if one gets from the Central Valley to the LA Basin via the Grapevine rather than via Palmdale, but in Bakersfield there are some complaints about the impacts that a downtown alignment would cause, and at any rate even I-5 would come close to serving the urban area.
In addition, portions of the cost savings that do not come from alignment choice have to be attributed to superior cost control. Part of the difference between American and rest-of-world construction costs has to come from more mundane issues such as proper supervision of contractors, since the difference is large and persistent and remains in place even after one controls for such issues as the percentage of the route that is in tunnel. (For example, recall that the Tohoku Shinkansen extension cost $4.6 billion for 82 km, of which a third is just one long tunnel and another sixth additional shorter tunnels).
The other lesson we can learn from this episode is political, regarding cost escalations and strategic misrepresentation. Too many political transit supporters downplay the issue. LightRailNow claims that a cost escalation that occurs before construction starts is not a cost escalation, but just a more accurate cost estimate; Robert Cruickshank did not quite say the same when the 2010 business plan for CAHSR revealed costs had doubled, but came close to it by describing the plan as more careful and thorough. In reality, large bombshell reports shortly after money has been obligated are a hallmark of secretive, untrustworthy planning, precisely the kind likeliest to lie about costs.
The main problem with megaprojects is not the dollar cost. In the grand scheme of things, a lot of them can generate enough social rate of return, and sometimes even a purely financial rate of return; at any rate, even when they are cost-ineffective, they are a small proportion of total GDP. The problem is getting politicians to vote for them. This means that issues such as institutional inertia are in play. It’s harder to get people to rescind money than to get them to vote against spending money.
If the primary cause of cost escalations is unforeseeable challenges, then we will see them come in timed with engineering developments, contract awards, and actual construction. If instead it is strategic misrepresentation, then they will be timed to come just after major political hurdles regarding funding: the passage of a referendum, legislative funding, an electoral victory by a supportive politician. The California HSR bombshells aren’t quite this clean, but they come a lot closer to the outright lying hypothesis.