Modernizing Rail, and a Note on Gender

Modernizing Rail starts in 15 hours! Please register here, it’s free. The schedule can be viewed here (and the Zoom rooms all have a password that will be given to registered attendees); note that the construction costs talk is not given by me but by Elif Ensari, who for the first time is going to present the Turkish case, the second in our overall project, to the general public. But do not feel obligated to attend, not given what else it’s running against.

I made a video going into the various breakout talks that are happening, in which I devoted a lot of time to the issue of gender. This is because Grecia White didn’t have enough time at last year’s equity session to talk about it, so this time she’s getting a full session, which I have every intention of attending. The video mentions something that fizzled out because of difficulties dealing with US census UI, which is a lot harder to use than the old Factfinder: the issue of gender by commuting. So I’d like to give this more time, since I know Grecia is going to talk about something adjacent but not the same.

The crux is this: public transit ridership skews female, to some extent. US-wide, 55% of public transit trips are by women; an LA-specific report finds that there, women are 54% of bus riders and 51% of rail riders. The American Community Survey’s Means of Transportation to Work by Selected Characteristics Table has men at 53% of the overall workforce but transit commuters splitting 50-50; the difference, pointed out in both links, is that women ride more for non-work trips, often chaining trips for shopping and child care purposes rather than just commuting to work.

In the video, I tried to look at the gender skew in parts of the US where transit riders mostly use commuter rail, like Long Island, and there, the skew goes the other way, around 58-42 for men. In Westchester, it is 54-46. In New York, which I struggled to find data for in the video, the split is 52-48 female – more women than men get to work on public transit.

But an even better source is the Sex of Workers by Means of Transportation to Work table, which (unlike Selected Characteristics) details commute mode choice not just as car vs. transit but specifies which mode of public transit is taken. There are, as of the 2019 ACS, 3,898,132 male transit commuters and 3,880,312 female ones – that’s the 50-50 split above. But among commuter rail riders, the split is 533,556 men, 387,835 women, which is 58-42. Subways split about 50-50, buses skew 52-48 female.

In the video, I explain this referencing Mad Men. Commuter rail is stuck in that era, having shed all other potential riders with derogatory references to the subway; it’s for 9-to-5 suburban workers commuting to the city, and this is a lifestyle that is specifically gendered, with the man commuting to the city and the woman staying in the suburb.

This impacts advocacy as well. In planning meetings for the conference, we were looking for more diverse presenters, but ran into the problem that in the US, women and minorities abound in public transit advocacy but not really in mainline rail, which remains more white and male. I believe that this is true of the workforce as well, but the only statistics I remember are about race (New York subway and bus drivers are by a large majority nonwhite, commuter rail drivers and conductors are the opposite), and not gender. Of course there are women in the field – Adina Levin (who presented last year) and Elizabeth Alexis are two must-read names for understanding what goes on both in general and in the Bay Area in particular – but it’s unfortunately not as deep a bench as for non-mainline transit, from which it is siloed, which has too many activists to list them all.

Do Costs Run Over or Are They Underestimated?

The literature on cost overruns for infrastructure projects is rich, much more so than that for absolute costs. The best-known name in this literature is Bent Flyvbjerg, who in the early 2000s collated a number of datasets from the 1980s and 90s to produce a large enough N for analysis, demonstrating consistent, large cost overruns, especially for urban rail. Subsequently, he’s written papers on the topic, focusing on underestimation and on how agencies can prospectively estimate costs better and give accurate numbers to the public for approval. This parallels an internal trend in the US, where Don Pickrell identified cost overruns in 1990 already, using 1980s data; Pickrell’s dataset was among those analyzed by Flyvbjerg, and subsequent to Pickrell’s paper, American cost overruns decreased to an average of zero for light rail lines.

But a fundamental question remains: are cost overruns really a matter of underestimation, or a true overrun? In other words, if a project, say Grand Paris Express, is estimated to cost 22.6 billion € in 2012 (p. 7) and is up to 35.6 billion € today (p. 13), does it mean the cost was 35.6b€ all along and the 2012 analysis just failed to estimate it right? Or dos it mean the cost was 22.6b€ then, and then the budget ran over due to failures of planning that could have been avoided?

Transit agencies that just want to avoid the embarrassment of media headlines saying “they said it costs X but it costs 2X” care mostly about underestimation. This is also true of both generic project managers and political appointees, two groups that do not care about the details of how to build a subway, and think of everything in abstract terms in which a subway might as well be a box of shampoo bottles.

However, the concrete examples that I have seen or heard of for cost overruns look like overruns rather than underestimation. That is, those projects could have been done at the original cost, but planning mistakes drove the budget up, or otherwise created conditions that would enable other forces to drive the budget up.

The Netherlands: early commitment

Bert van Wee is among the world’s top researchers on cost overruns, even if he’s less well-known to the public than Flyvbjerg. He spoke to me about the problems of early commitment in Dutch planning, in which politicians commit to a project before design is finalized. Once the political decision has been made, it is easy for actors to extract surplus, because the state or city cannot walk away easily, while a 20% cost overrun is much easier to explain to the public. This problem plagued 2000s investments like HSL Zuid. To deter this, after 2009 the Netherlands passed reforms that attempt to tackle this problem, aiming to defer the formal political decision to later in the process.

This factor seems to correlate with absolute costs, if not with overruns. American planning is extremely politicized; Canadian planning is fairly politicized too, with individual subway projects identifiable as the brainchildren of specific politicians or parties; Southern European and Nordic planning is highly bureaucratized, with design driven by the civil service and politicians making yes or no decisions late in the process.

Sweden: changes in rules

According to a senior planner at Nya Tunnelbanan, the project has run over from 22.506 billion kronor in 2013 to 31.813 today, both in 2016 price levels; in US dollars, this is $2.551b/19.6 km to $3.606b/19.6 km, all underground. The reasons for the escalation come largely from tighter regulations as well as litigation:

  • Safety requirements have been tightened midway through the project, requiring a service tunnel in addition to the two track tunnels, raising excavation volume almost 50%
  • An environmental court ruling slowed down excavation further
  • Consensus with stakeholders took longer than expected
  • Excavated rock was reclassified midway through the project from useful building material to waste that must be disposed of

Focusing on underestimation is not really germane to what’s happened in Stockholm. The problem isn’t that early 2010s engineers failed to anticipate regulations that were not in force at the time. It’s that regulations were changed later. The rock removal process today actually increases greenhouse gas emissions, just because of the need to freight it away, let alone the systemwide effects on climate of making it harder to build subways.

California: scope creep and change orders

California High-Speed Rail is such a big project that its cost overruns, in multiple stages, were amply discussed in the media. The original announcements in the early 2010s, for example here, were largely about scope creep. At-grade segments turned into viaducts; above-ground segments, particularly in the Bay Area, were turned into tunnels. The reasons were mostly about agency turf battles.

Only in one case was the problem more about underestimation than overrun: the Central Valley segment had originally been planned to follow railroad rights-of-way, but had to be redesigned to have more viaducts and swerve around unserved small towns. This was bad planning, at two points: first, the original designs assumed trains could go at 350 km/h through unserved towns, which they don’t anywhere; and second, once the redesign happened, it was so rushed that land acquisition was time-consuming and acrimonious. Even then, much of the overdesign as identified by a Deutsche Bahn postmortem could have been prevented.

The second stage is more recent: the Central Valley construction contracts have long busted their budgets due to change orders. Change orders are a common problem in California, and in this case, it involved not only the change order king Tutor-Perini, but also the usually reasonable Dragados. The situation here must be ascribed to overrun rather than underestimation: a transparent process for handling changes, based on itemized costs, is an emerging best practice, known since the early 2000s to people who cared to know, and more recently seen in the economics literature for general infrastructure. That California failed to follow this practice – which, again, was available already in the late 2000s – is the source of malpractice. The original bids could have held if the process were better.

Absolute costs and cost overruns

Cost overruns are not the same as absolute costs. They are not even obviously correlated: witness the way the US eliminated most overruns on surface light rail projects in the 1990s and 2000s, to the point that projects with large overruns like the Green Line Extension are exceptional, while absolute costs have skyrocketed. But if we understand the problem to be about cost overruns from an ambitious but achievable budget rather than about underestimating a final cost that could not be improved on, then the study of the two topics is inherently intertwined.

Problems that recur in postmortems of cost overruns are not just about estimation. They’re about building better and cheaper. A bureaucratized planning process in which politicians retain the right to make yes-or-no decisions on complete design reduces cost overruns by reducing leakage and surplus extraction; the overruns such a process prevents are preventable extra costs, rather than higher initial estimates. The same is true of avoiding overbuilding, of not introducing extraneous regulations, of treating environmental questions as systemic and quantitative rather than as local under a do-no-harm principle. Even the question of change orders is more transparently about reducing absolute costs in the literature, since the overruns prevented tend to be seen in higher risk to the contractor leading to higher profit margin demands.

The upshot is that this makes the study of absolute costs easier, because we can reuse some of the literature for the related problem of cost overruns. But conceptually, it means that agencies need to be more proactive and treat early budgets as standards to be adhered to, rather than just blow up the budgets preemptively so that it’s easier to stick to them.

What Berlin Should Be Building

A week and a half ago, I crayoned Berlin U- and S-Bahn expansion on video. With some tweaks, here is the final product:

Solid lines exist, dashed ones are under construction or (as far as I can tell) done deals, dotted ones are things that I am proposing or that are officially maybes; a few station names change to dissimilate different U- and S-Bahn stations and coname colocated stations

Here is the full-size version. (I know I’ve been asked to provide lighter JPGs, but my attempt at JPG compression turned 86 MB to 37 MB, hardly a coup de grâce.)

This is based on ongoing U-Bahn expansion plans plus the 2030 S-Bahn plan.

S-Bahn

The most significant variation is that the dashed S-Bahn line from Gesundbrunnen to Hauptbahnhof and Potsdamer Platz, dubbed S21, is turned into a northwest-southeast trunk line in my plan, following a proposal by Felix Thoma in Zukunft Mobilität. The plan for S21 today is to stay north-south and link with Südkreuz and Schöneberg, beefing up frequency on the north-south S-Bahn.

I believe my routing to be superior, due to traffic on the Görlitzer Bahn, seen below (source, p. 6):

Currently, peak traffic on both the Stadtbahn and the North-South Tunnel is 18 trains per hour in each direction. This is low; Munich achieves 30 tph with very short signal blocks and more branching than Berlin has, splitting into seven branches on each direction rather than three or four. 30 is a limit value, but 24 is more common, and would substantially simplify operations.

The North-South Tunnel splits into a western branch, currently carrying S1 via Schöneberg to Wannsee every 10 minutes, and an eastern, carrying S2/S25/S26 via Südkreuz every 10/20/20 minutes; since the two branches have roughly equal ridership, each should run every 5 minutes, unlike today, where only Südkreuz gets such service. To the north, each of the two main branches can run every 5 minutes as well.

The Stadtbahn is asymmetric. Only 12 out of 18 tph continue west of Westkreuz: Spandau and Potsdam get 10-minute service, and in addition S5, turning at Westkreuz, runs every 10 minutes. As such, all growth in traffic on the western branches should be encouraged. This is thankfully already done, with expansion plans west of Spandau. To the east, traffic is the most overloaded, and will remain so even with the opening of the U5 extension last year. Going up from 18 to 24 maximum tph means 10-minute service on each of the four branches – S3 to Erkner, S5 to Strausberg-Nord, S7 to Ahrensfelde, S75 to Wartenberg (proposed to be extended into a loop going northwest). Today, S3 runs every 20 minutes, and S75 doesn’t run through but rather only runs from Warschauer Strasse east, and conversely, S9 curves from the Stadtbahn to the Görlitzer Bahn to the airport.

Rerouting S21 to connect to the Görlitzer Bahn means that trunk, currently carrying 18 trains per hour, can all run through to city center, and then either go to the Siemensbahn or loop from Hauptbahnhof to Gesundbrunnen. Such service also removes reverse-branching from the rest of the system, allowing all services to run more regularly and reliably since each of the four trunks, including the Ring, would run independently of the others, and delays wouldn’t propagate.

U-Bahn

U-Bahn expansion in Berlin is mostly mothballed. The city prefers trams, even where they are inappropriate due to low speed over long stretches or forced transfers. Plans for U-Bahn expansion to Märkisches Viertel are uncertain, unfortunately. Plans for expansion to Tegel along a branch of U6 look dead, hence my resurrection of an older unbranched U5 extension; the current plan is to connect the Urban Tech Republic complex with the rest of the city via tram. Trams are cheaper but you get what you pay for; the ideal use of a tram is for cross-city routes, not primary routes to the center.

Hence various extensions that I think should be built. U7 to the airport looks like a done deal, and U7 to Staaken is favorable too, as is the low-cost, low-ridership one-stop extension of U3 to Mexikoplatz. U9 to Pankow and U2 to Pankow-Kirche are much-discussed, as is U8 to Märkisches Viertel, whose current cost/rider projection is favorable by international standards.

My additions are U1 extensions at both ends, the U5 extension to Tegel and then looping to intersect U6 and U8 in Reinickendorf, and the resurrection of the U10 plan as a U3 link (and not as a line to Steglitz, which gets extra S-Bahn service either way). The U1 extension to the west is forced to use cut-and-cover since the U1 tunnel under Kurfürstendamm is 1900s cut-and-cover, which is disruptive but cheaper than bored tunnel. The other two lines are long-term desires of the city and have been safeguarded for decades, with intersecting stations built to accommodate them.

Whether lines run in this configuration or another is up for debate. At Wittenbergplatz it’s easiest to link the new U10 system to U1 to Uhlandstrasse and then connect U3 to Krumme Linke with the existing Warschauer Strasse terminus. This would be an awkward system of U1, U2, and U3 in which the line going farthest north going east also goes farthest north going west and the line going farthest south to the east goes farthest south also to the west. If there’s a way to flip the situation, pairing U10 with present-day U1-west, U2-east with U3-west, and U3-east with U2-west, it should be done; this system in general has undergone many such changes over the generations.

Quick Note: Do Costs Ever Go Down?

Bad agencies have a ratchet process in costs: they can go up, but not down. If there’s a cost saving, it does not reduce the budget, but only cancels out with unspecified cost increases. Agency heads and politicians trumpet their value engineering while costs never go down, leading to premium-cost, substandard quality projects.

Case in point: the Baltimore and Potomac Tunnel replacement project. The project used to be $750 million, in the 2000s, as a two-track passenger rail tunnel. Over the next decade, this turned into a four-track system with mechanical ventilation for diesel freight trains and enough clearance for double-stacked freight; costs ran over to $4 billion. Well, two months ago Amtrak announced a scope reduction back to two tracks, which it claims would save a billion dollars, cutting cost to… $4 billion.

This is not the first time this happens. Value engineering in California has had the same effect: every attempt to reduce scope – the blended plan for Northern California, plus various design compromises in both the Bay Area and the Central Valley – has failed to reduce costs. At most, they’ve prevented further cost overruns.

And in New York, the removal of the cavern underneath Penn Station in the planning process between the canceled ARC tunnel and the Gateway tunnel did not reduce costs at all. The cost estimate was $10 billion, much of which was the cavern; the cost estimate now is $10 billion for the bare tunnel with less scope than before. ARC was canceled on the grounds of potential cost overruns, and yet as soon as it took over the project, even while descoping the cavern, Amtrak presided over further increases in costs due to extras (Penn South, etc.).

It’s as if once there’s a number circulating out there, it will be spent, no matter what. If there’s a surplus, it will be blown on unspecified extras or on sheer inefficiency. Why spend $3 billion when the political system has already indicated that $4 billion is okay? Thus, 4-1 = 4, and, no doubt, if further value engineering is identified, the cost will stay $4 billion.

At no point does anyone say, okay, if there’s a cost saving, here’s the next slate of projects that the money can be spent on. Nor is there any proactive value engineering. Costs are only a problem insofar as they prevent the political system from saying yes, but even then, if there’s a number out there, even an outlandish one that nobody will say yes to (such as $117 billion for medium-speed rail on the Northeast Corridor), then it is the number. Any cuts from that are against inherently moral workers, communities, etc., in the service of inherently immoral outsiders and experts.

Quick Note: Waste and Missed Projects

If the state spends money on a bad infrastructure project, or too much money beyond what was necessary for the project, then this is waste of money, and should be avoided. But the opposite situation can occur too: some worthwhile projects are not pursued, and that too is a waste, because society forgoes the benefits coming from such projects. This situation should be avoided equally. Moreover, there is no priority between those two types of error. Planning should treat them symmetrically and aim on balance to avoid both equally.

The reason is that just as infrastructure projects are generally not critical, the money that is spent on them is not critical. The US is spending around $1.5 trillion over the lifetime of the program on the F-35 plane, and the money is buried deep in a defense budget that by the standards I grew up with isn’t even that large – and that program consists of documented waste and suffers from poor planning, including serious cost overruns and delays. None of this is an existential threat; the problems the F-35 is intended to solve are not existential but neither are its costs, and likewise, neither infrastructure problems such as delays, capacity limitations, and congestion nor the costs of the projects that intend to fix them are existential.

And if none of this is existential, then the decision of whether to build is about comparing two finite, bounded quantities: costs and benefits. This is why one does a benefit-cost analysis and respect its conclusions, without spiking. But this is also why the state should not systematically aim to err in one direction. If a project with a BCR of less than 1 is built then there is waste, but if a project with a high BCR is not built then there is waste as well.

Note that this principle of not biasing one’s error in one direction (typically the bias is toward inaction) is separate from the question of what the best estimates for costs and benefits are. There is a real tendency to underestimate costs, which is why the minimum BCR that should be funded is not 1 but slightly more, the typical range in Europe being 1.2-1.4. But subject to that limit, decisions should still be symmetric, i.e. if the limit is 1.4, then building 0.7 is symmetrically bad with failing to build 2.8. Alternatively, some projects, like high-speed rail, have upfront costs and long-term benefits, and so it’s better to think of them in terms of financial and social returns on investment, as is done in France (source, pp. 11-12), rather than a BCR in which the discount rate is hidden in a box. But ROI analysis should still be symmetric around one’s chosen limit.

This becomes relevant especially for projects that can expect benefits to rise over time due to economic growth. It is tempting to have a bias toward inaction and only build something once its benefits are unimpeachable, a large multiple of the cost. But this means that in the interim, society has forgone the smaller-but-still-real benefits. Worse, when the BCR grows too large, surplus extraction might pull it back down through an increase in costs, and thus building later can be very risky.

In essence, what this means is that if there’s infrastructure out there with a very high BCR or ROI – and if you ask me, preliminarily, Northeast Corridor high-speed rail done right has a purely financial ROI of maybe 13% – then something is deeply wrong. There shouldn’t be 13% returns out of anything. If there is one, the first question to ask is “why was this not built 50 years ago?”.

In the opposite direction, what looks like building infrastructure prematurely is in fact the prudent decision. South Korea and Taiwan both opened high-speed rail in the 2000s, both underperforming initial expectations. But both have seen steady growth in ridership; at this point, Taiwan HSR returns 4% without social benefits, which is decently healthy, and KTX has somewhat higher ridership than THSR on only slightly higher total construction costs. In the mid-2000s the projects looked like white elephants, that is they were doing just better than minimum. But the 15 years of benefits since then have been considerable. The 20% of society least interested in paying for things should not have veto power; economics exists on the margin and politics on the median.

Regional Rail and Subway Maintenance

Uday Schultz has a thorough post about New York’s subway service deterioration over the last decade, explaining it in terms of ever more generous maintenance slowdowns. He brings up track closures for renewal as a typical European practice, citing examples like Munich’s two annual weekends of S-Bahn outage and Paris’s summertime line closures. But there’s a key aspect he neglects: over here, the combination of regional rail and subway tunnels means that different trunk lines can substitute for one another. This makes long-term closures massively less painful and expensive.

S-Bahn and subway redundancy

S-Bahn or RER systems are not built to be redundant with the metro. Quite to the contrary, the aim is to provide service the metro doesn’t, whether it’s to different areas (typically farther out in the suburbs) or, in the case of the RER A in Paris, express overlay next to the local subway. The RER and Métro work as a combined urban rail network in Paris, as do the S- and U-Bahns in German cities that have both, or the Metro and Cercanías in Madrid and Barcelona.

And yet, in large urban rail systems, there’s always redundancy, more than planners think or intend. The cleanest example of this is that in Paris, the RER A is an express version of Métro Line 1: all RER A stops in the city have transfers to M1 with the exception of Auber, which isn’t too far away and has ample if annoying north-south transfers to the Champs-Elysées stations on M1. As a result, summertime closures on the RER A when I lived in the city were tolerable, because I could just take M1 and tolerate moderate slowdowns.

This is the case even in systems designed around never shutting down, like Tokyo. Japan, as Uday notes, doesn’t do unexpected closures – the Yamanote Line went decades with only the usual nighttime maintenance windows. But the Yamanote Line is highly redundant: it’s a four-track line, and it is paralleled at short distance by the Fukutoshin Line. A large city will invariably generate very thick travel markets, and those will have multiple lines, like the east-west axis of M1 and the RER A, the two north-south axes of M12 and M13 and of M4 and the RER B, the east-west spine from Berlin Hauptbahnhof east, the Ikebukuro-Shibuya corridor, or the mass of lines passing through Central Tokyo going northeast-southwest.

The issue of replacement service

In the United States, standard practice is that every time a subway line is shut for maintenance, there are replacement buses. The buses are expensive to run: they are slow and low-capacity, and often work off the overtime economy of unionized labor; their operating costs count as part of the capital costs of construction projects. Uday moreover points out that doing long-term closures in New York on the model of so many large European cities would stress the capacity of buses in terms of fleet and drivers, raising costs further.

This is where parallel rail lines come in. In some cases, these can be other subway lines: from north of Grand Central to Harlem-125th, the local 6 and express 4/5 tracks are on different levels, so the express tracks can be shut down overnight for free, and then during maintenance surges the local tracks can be shut and passengers told to ride express trains or Second Avenue Subway. On the West Side, the 1/2/3 and the A/B/C/D are close enough to substitute for each other.

But in Queens and parts of the Bronx, leveraging commuter rail is valuable. The E/F and the LIRR are close enough to substitute for each other; the Port Washington Branch can, to some extent, substitute for the 7; the Metro-North trunk plus east-west buses would beat any interrupted north-south subway and would even beat the subway in normal service to Grand Central.

Running better commuter rail

The use of commuter rail as a subway substitute, so common in this part of the world, requires New York to run service along the same paradigm that this part of the world does. Over here, the purpose of commuter rail is to run urban rail service without needing to build greenfield tunnels in the suburbs. The fares are the same, and the frequency within the city is high all day every day. It runs like the subway, grading into lower-density service the farther one goes; it exists to extend the city and its infrastructure outward into the suburbs.

This way, a coordinated urban rail system works the best. Where lines do not overlap, passengers can take whichever is closest. Where they do, as is so common in city center, disruption on one trunk is less painful because passengers can take the other. The system does not need an external infusion of special service via transportation-of-last-resort shuttle buses, and costs are easier to keep under control.

New Leadership for New York City Transit and the MTA

Andrew Cuomo resigned, effective two weeks from now, after it became clear that if he didn’t the state legislature would remove him. As much of the leadership of public transportation in the state is his political appointees, like Sarah Feinberg, the incoming state governor, Lieutenant-Governor Kathy Hochul, will need to appoint new heads in their stead. From my position of knowing more about European public transit governance than the New York political system does, I’d like to make some recommendations.

Hire from outside the US

New York’s construction costs are uniquely high, and its operating costs are on the high side as well; in construction and to a large extent also in operations, it’s a general American problem. Managers come to believe that certain things are impossible that in fact happen all the time in other countries, occasionally even in other US cities. As an example, we’ve constantly heard fire safety as an excuse for overbuilt subway stations – but Turkey piggybacks on the American fire safety codes and to a large extent so does Spain and both have made it work with smaller station footprints. Much of the problem is amenable to bringing in an outsider.

The outsider has to be a true outsider – outside the country, not just the agency. An American manager from outside transportation would come in with biases of how one performs management, which play to the groupthink of the existing senior management. Beware of managers who try to perform American pragmatism by saying they don’t care about “Paris or such,” as did the Washington Metro general manager. Consultants are also out – far too many are retirees of those agencies, reproducing the groupthink without any of the recent understanding by junior planners of what is going wrong.

Get a Byford, not Byford himself

Andy Byford is, by an overwhelming consensus in New York, a successful subway manager. Coming in from Toronto, where he was viewed as a success as well, he reformed operations in New York to reduce labor-management hostility, improve the agency’s accessibility program, and reduce the extent of slow orders. Those slow orders were put in there by overly cautious management, such as Ronnie Hakim, who came in via the legal department rather than operations, and viewed speed as a liability risk. Byford began a process called Save Safe Seconds to speed up the trains, which helped turn ridership around after small declines in ridership in the mid-2010s.

The ideal leader should be a Byford. It cannot be Byford himself: after Cuomo pushed him out for being too successful and getting too much credit, Byford returned to his native Britain, where Mayor Sadiq Khan appointed him head of Transport for London. Consulting with Byford on who to hire would be an excellent idea, but Byford has his dream job and is very unlikely to come back to New York.

Look outside the Anglosphere

High operating costs are a New York problem, and to some extent a US problem. Canada and the UK do just fine there. However, construction costs, while uniquely bad in New York, are also elevated everywhere that speaks English. The same pool of consultants travel across, spreading bad ideas from the US and UK to countries with cultural cringe toward them like Canada, Australia, and Singapore.

The MTA has a $50 billion 5-year capital plan. Paris could only dream of such money – Grand Paris Express is of similar size with the ongoing cost overruns but is a 15-year project. The ideal head of the MTA should come from a place with low or at worst medium construction costs, to supervise such a capital plan and coordinate between NYCT and the commuter rail operators.

Such a manager is not going to be a native English speaker, but that’s fine – quite a lot of the Continental European elite is fluent in English, though unfortunately this is not as true in Japan, South Korea, or Taiwan. If it is possible to entice a Spanish manager like Silvia Roldán Fernández of Madrid Metro to come in, then this is ideal, given the number of Spanish-speaking New Yorkers; Madrid of course also has legendarily low construction costs, even today. Gerardo Lertxundi Albéniz of Barcelona is a solid option. Italian managers are an option as well given the growing networks in Italy, not just building new lines but also making old stations accessible: Stefano Cetti of Milan’s public works arm MM, Gioia Ghezzi of the operating company ATM, Giovanni Mottura of Rome’s ATAC, etc. Germans like Munich’s Bernd Rosenbusch or Ingo Wortmann or Berlin’s Eva Kreienkamp have experience with juggling conflicting local and state demands and with more labor militancy than people outside Germany associate Germany with. Laurent Probst may well be a good choice with his experience coordinating an even larger transit network than New York’s – assuming that he wouldn’t view New York as a demotion; the same is true of RATP’s head, the generalist Catherine Guillouard.

This is not meant to be a shortlist – these are just the heads of the transit organs of most of the larger Continental Western European systems. Japanese, Korean, and Taiwanese heads should be considered too, if they speak English and if they don’t view working in the US, in a city smaller than Tokyo or Seoul, as a demotion.

Let the civil service work

American civil service is broken – or, more precisely, was never allowed to become an administrative state, thanks to postwar anti-state paranoia. Professionals learn to be timid and wait for the word of a political appointee to do anything unusual. Cuomo did not create this situation – he merely abused it for his own personal gain, making sure the political appointees were not generic liberal Democrats but his own personal loyalists.

The future cannot be a return to the status quo that Cuomo exploited. The civil service has to be allowed to work. The role of elected politicians is to set budgets, say yes or no to megaproject proposals, give very broad directions (“hire more women,” “run like a business,” etc.), and appoint czars in extreme situations when things are at an impasse. Byford acted as if he could work independently, and Cuomo punished him for it. It’s necessary for New York to signal in advance that the Cuomo era is gone and the next Byford will be allowed to work and rewarded for success. This means, hiring someone who expects that the civil service should work, giving them political cover to engage in far-reaching reforms as required, and rewarding success with greater budgets and promotions.

Why It’s Important to Remove Failed Leaders

Andrew Cuomo has a Midas touch. Everything he touches turns to gold, that is, shiny, expensive, and useless. Bin Laden killed 3,000 people in New York on 9-11. Cuomo, through his preference for loyalists who cover up his sexual assaults over competent people, has killed 60,000 and counting in corona excess deaths – 50% more than the US-wide average. And the state let it slide, making excuses for his lying about the nursing home scandal. Eventually the sexual assault stories caught up with him, but not before every state politician preferred to extract some meaningless budget concessions instead of eliminate the killer of New Yorkers at the first opportunity. Even now they delay, not wanting to impeach; they do not believe in consequences for kings, only for subjects.

Time and time again, powerful people show that they don’t believe in accountability. After all, they might be held accountable too, one day. This cascades from the level of a mass killer of a governor down to every middle manager who excuses failure. The idea is that the appearance of scandal is worse than the underlying offense, that somehow things will get better by pretending nothing happened.

And here is the problem: bad leaders, whether they are bad due to pure incompetence or malevolence, don’t get good. People can improve at the start of their careers; leaders are who they are. They can only be thrown away, as far as down as practical, as an example. Anders Tegnell proposed herd immunity for Sweden in early 2020 and then pretended he never did, and the country remained unmasked for most of the year; deaths, while below European averages due to low Nordic levels of cohabitation, are far and away the worst in the Nordic countries, and yet Tegnell is still around, still directing an anti-mask policy. Tegnell is incompetent; Sweden is a worse country for not having gotten rid of him in late spring 2020. Cuomo is malevolent; New York is a worse state for every day that passes that he’s not facing trial for mass manslaughter and sexual assault, every day that passes that his mercenary spokespeople who attacked his victims remain employed.

This is not a moral issue. It’s a practical issue. The most powerful signal anyone can get is promotion versus dismissal (there’s also pay, but it’s not relevant to political power). When Andrew Cuomo stripped Andy Byford of responsibilities as head of New York City Transit, it was a clear signal: you can be a widely acclaimed success, but you failed to flatter the monarch and prostrate before him and this is what matters to me. Byford read the signal correctly, resigned, and ended up promoted to the head of Transport for London, because Sadiq Khan and TfL appreciate competence every bit as Cuomo does not.

Likewise, the retention of Tegnell sends a signal: keep doing what you’re doing. The same is true of Cuomo, and every other failure who is not thrown away from the public.

If anything, it’s worse for a sitting governor. Cuomo openly makes deals. The state legislators who can remove this killer from the body politic choose to negotiate, sending a clear signal: corrupt the state and be rewarded. 60,000 dead New York State residents mean little to them; many more who will die as variants come in mean even less.

The better signal is you have nothing anyone wants, go rot at Sing Sing. This is the correct way to deal with a failure even of three fewer orders of magnitude. Fortunately, there’s only one Cuomo – never before has New York had such mass man-made death. Unfortunately, incidents that are still deadly and require surgical removal of malefactors are far more common. Many come from Cuomo’s lackeys; in my field, the subway, Sarah Feinberg is responsible for around a hundred preventable transit worker deaths, and should never work in or adjacent to this field again. But apolitical managers too screw up on costs, on procurement, on maintenance, on operations, on safety – and rarely suffer for it. But then the fish rots from the head. Chop it off and move on.

How to Build High-Speed Rail with Money the United States Has

The bipartisan infrastructure framework (BIF) just passed the Senate by a large margin, with money for both roads and public transportation. Unlike the 2009 Obama stimulus, the BIF has plenty of money for high-speed rail – not just $8 billion as in the 2009 bill, but a total of $66 billion to be spent on mainline rail. The Northeast Corridor program gets $24 billion out of this $66 billion in a dedicated program and another $6 billion out of another program within this bucket dedicated to Amtrak. This is $30 billion, which should be more than enough for high-speed rail on the Northeast Corridor. Together with other buckets for other parts of the US, it can even build some non-Northeastern lines, for example serving Chicago or Los Angeles.

I say should because the current plans are to waste the money. But better things are possible, so at the Transit Costs Project, we’re planning to embark on a project to write a report on how to do this better. The construction cost report will be done in early 2022, but we can overlap to some extent. A one-year program, to debut in early 2023, will include a Northeast Corridor proposal; a two-year one will also include tie-ins and starter lines elsewhere, such as Chicago-Cleveland/Detroit or Los Angeles-San Diego.

But for this, we need funding. We’re a good deal of the way there, I think around two-thirds for the two-year option – and this isn’t quite enough for the one-year option, some of the money needs to be matched. This is not the same as my Patreon in either scale (the difference is more than an order of magnitude) or scope (my Patreon funds the blog and vlog, which are way more general); if you know grants for such projects, please let us know, we can send a fuller proposal.

What’s the project’s scope?

Lots and lots of analysis, for one, like what we’re doing for subways. Intriguingly, high-cost countries for high-speed rail tend to also have high subway costs and vice versa, and this remains true even as it is easier to explain high-speed rail costs in terms of unnecessary scope and leakage. But this is not the dominant part of the project – rather, we are going to be synthetic and make a proposal. We’re not committing to an investment figure; my guess is that in 2021 dollars it should be around $15 billion to cut Northeast Corridor trip times to about 1:45 on each of New York-Boston and New York-Washington, but some variation is possible in either direction.

If there’s $30 billion for the Northeast Corridor, and high-speed rail is doable for half that, then the other half should be spent on tie-ins, for example improving regional rail in all four major metropolitan areas. Naturally, this should only include useful spending for rail operations and connections, but the Northeast doesn’t lack for those; New York can spend $17 billion on new tunnels and that’s at the per-km cost of Citybanan, one of the cheaper city center regional rail projects in our database.

Modernizing Rail 2021 Announcement

We are happy to announce that on Sunday the 29th of August we will hold this year’s Modernizing Rail conference, on the heels of the success last year.

Please register using this form. And please give details on what you’d like to see, and if you’re willing to lead sessions – the schedule of the breakout sessions is still up in the air depending on popular demand. Even the number of breakouts depends on how many registrants we get, compared with the about 200 we had last year. Perhaps the news of the infrastructure bill will tilt the demand toward more political sessions regarding how to ensure what is built is good and less toward technical best practices.

Our keynote is certainly political: Rep. Seth Moulton (D-MA), who represents the northern suburbs of Boston (6th district) and for years has been pushing the North-South Rail Link. He will give brief remarks at 16:00 Eastern time, or 22:00 Central Europe Summer Time, to be followed by a Q&A; if you have a question that you’d like to hear an answer to, you can mention it in the registration form, or email the organizing committee at modernizingrail@gmail.com. We will be taking questions throughout the conference, which will start 11:00 Eastern, so if your questions depend on what you hear at the breakouts, you’re in luck.