Category: Incompetence

The Fish Rots from the Head

All reform agendas run into the same problem: someone needs to implement the reform, and this someone needs to be more politically powerful than the entrenched interests that need reform. The big political incentive for a leader is to swoop in to fix an organization that is broken and get accolades for finally making government work. But whether this work depends on what exactly is broken. If the fish rots from the tail, and better management can fix things, then reformist politicians have an easy time. The problem is that if the fish rots from the head – that is, if the problem is the political leaders themselves – then there is no higher manager that can remove underperforming workers. My contention is that when it comes to poor American public transit practices, the fish usually rots from the head.

Whither fixing construction costs?

I wrote my first comment documenting high New York construction costs at the end of 2009. By 2011 this turned into my first post in my series here with some extra numbers. By the time I jumped from commenting to blogging, the MTA had already made a reference to its high costs in a 2010 report called Making Every Dollar Count (p. 11): “tunneling for the expansion projects has cost between three and six times as much as similar projects in Germany, France and Italy.” New York City Comptroller Scott Stringer has been plagiarizing my 2011 post since 2013.

However, the early recognition has not led to any concrete action. There has not been any attention even from leaders who could gain a lot of political capital from being seen as fixing the problem, such as governors in California, New York, and Massachusetts, as well as successive New York mayors. That Governor Cuomo himself has paid little attention to the subway can be explained in terms of his unique personal background from a car-oriented city neighborhood, but when it’s multiple governors and mayors, it’s most likely a more systemic issue.

What’s more, there has been plenty of time to come up with an actionable agenda, and to see it pay dividends to help catapult the career of whichever politician can take credit. The MTA report came out 9 years ago. An ambitious, forward-thinking politician could have investigated the issue and come up with ways to reduce costs in this timeframe – and in the region alone, four politicians in the relevant timeframe (Mayors Bloomberg and de Blasio, Cuomo, and Governor Christie) had obvious presidential ambitions.

Evidently, there has been action whenever a political priority was threatened. The LIRR had long opposed Metro-North’s Penn Station Access project, on the grounds that by sending trains through a tunnel used by the LIRR, Metro-North would impinge on its turf. As it was a visible project and a priority for Cuomo, Cuomo had to remove the LIRR’s obstruction, and thus fired LIRR President Helena Williams in 2014.

So what’s notable is that construction costs did not become a similar political priority, even though rhetoric of government effectiveness and fighting waste is ubiquitous on the center-left, center, and center-right.

Who benefits?

That successive powerful American leaders have neglected to take on construction costs suggests that there is no benefit to them in fixing the problem. The question is, who benefits from high costs, then?

The answer cannot be that these politicians are all corrupt. The inefficiency in construction does not go to any serious politician’s pockets. Corruption might, but that requires me to believe that all relevant mayors and governors take bribes, which I wouldn’t believe of Italy, let alone the United States. One or two crooks could plausibly lead to cost explosion in one place, but it is not plausible that every serious politician in the New York area in the last decade has been both corrupt and in on the exact same grift.

Another answer I’d like to exclude is powerful interest groups. For example, if the main cause of high American construction costs were unions, then this would explain why governors all over the more liberal states don’t make an effort to build infrastructure more cheaply. However, there are enough high-cost states with right-wing politics and anti-union laws. The other entrenched interest groups are quite weak nationwide, for example planners, who politicians of all flavors love to deride as unelected bureaucrats.

The pattern of competence and incompetence

In my dealings with New York, I’ve noticed a pattern: the individual planners I talk to are curious, informed, and very sharp, and I don’t just mean the ones who leak confidential information to me. This does not stop at the lower levels: while most of my dealings with planners were with people who are my age or not much older, one of my sources speaks highly of their supervisor, and moreover my interactions with senior planners at the MTA when Eric Goldwyn and I pitched our bus redesign were positive. Eric also reports very good interactions with bus drivers and union officials.

In contrast, the communications staff is obstructive and dishonest. Moreover, the most senior layer of management is simply incompetent. Adam Rahbee describes it as “the higher up you get, the less reasonable people are” (my paraphrase, not a direct quote); he brings up work he proposed to do on reworking on the subway schedules, but the head of subway operations did not have the budget to hire an outside consultant and the higher-up managers did not even know that there was a problem with trains running slower than scheduled (“running time”).

A number of area observers have also noticed how MTA head Ronnie Hakim, a Cuomo appointee, was responsible to much of the recent spate of subway slowdowns. Hakim, with background in law rather than operations, insisted speed should not be a priority according to Dan Rivoli’s sources. The operations staff seem to hate her, judging by the number and breadth of anonymous sources naming her as one of several managers who are responsible for the problem.

The pattern is, then, that the put-upon public workers who run the trains day in, day out are fine. It’s the political appointees who are the problem. I don’t have nearly so many sources at other transit agencies, but what I have seen there, at least in Boston and San Francisco, is consistent with the same pattern.

Quite often, governors who aim to control cost institute general hiring freezes, via managers brought in from the outside, even if some crucial departments are understaffed. For example, Boston has an epidemic of bus bunching, is staffed with only 5-8 dispatchers at a given time, and can’t go up to the necessary 15 or so because of a hiring freeze. The 40 or so full-time dispatchers who are needed to make up the difference cost much less than the overtime for bus drivers coming from the bunching, to say nothing of the extra revenue the MBTA could get if, with the same resources, its buses ran more punctually. In the name of prudence and saving money, the MBTA wastes it.

The risk aversion pattern

The above section has two examples of political interference making operations worse: a hiring freeze at the MBTA (and also at the MTA), and Ronnie Hakim deemphasizing train speed out of fear of lawsuits. There is a third example, concerning capital planning: Cuomo’s interference with the L shutdown, well covered by local sources like Second Avenue Sagas, in which the governor effectively took sides in an internal dispute against majority opinion just because engineering professors in the minority had his ear. All three examples have a common thread: the negative political interference is in a more risk-averse direction – hiring fewer people, running slower trains, performing ongoing maintenance with kludges rather than a long-term shutdown.

The importance of risk-aversion is that some of the problems concerning American construction costs are about exactly that. Instead of forcing agencies that fight turf battles to make nice, political leaders build gratuitous extra infrastructure to keep them on separate turf, for example in California for high-speed rail. Only when these turf battles risk a visible project, such as the LIRR’s opposition to Penn Station Access, do the politicians act. Costs are not so visible, so politicians let them keep piling, using slush funds and raiding the rest of the budget.

In New York, the mined stations, too, are a problem of risk-aversion. Instead of opening up portions of Second Avenue for 18 months and putting it platforms, the MTA preferred to mine stations from a smaller dig, a five-year project that caused less street disruption over a longer period of time. An open dig would invite open political opposition from within the neighborhood; dragging it over five years may have caused even more disruption, but it was less obtrusive. The result: while the tunneling for Second Avenue Subway was about twice as expensive as in Paris, the stations were each seven times as expensive. The overall multiplier is a factor of seven because overheads were 11 times as expensive, and because the stop spacing on Second Avenue is a bit narrower than on the Paris Metro extension I’m comparing it with.

In contrast with the current situation in New York, what I keep proposing is politically risky. It involves expanding public hiring, not on a massive level, but on a level noticeable enough that if one worker underperforms, it could turn into a minor political scandal in which people complain about big government. It involves promoting smart insiders as well as hiring smart outsiders – and those outsiders should have industry experience, like Andy Byford at New York City Transit today, not political experience, like the MBTA’s Luis Ramirez or the FRA’s Sarah Feinberg; by itself, hiring such people is not risky, but giving them more latitude to operate is, as Cuomo discovered when Byford began proposing his own agenda for subway investment.

On the engineering level, it involves more obtrusive construction: tunnels and els, not bus lanes that are compromised to death – and the tunnels may involve cut-and-cover at stations to save money. Regional rail is obtrusive politically, as modernization probably requires removal of many long-time managers who are used to the current way of doing things (in Toronto, the engineers at GO Transit obstructed the RER program, which was imposed from Metrolinx), and in New York the elimination of Long Island and the northern suburbs’ respective feudal ownership of the LIRR and Metro-North. The end result saves money, but little kings of hills will object and even though American states have the power to overrule them, they don’t want the controversy.

The fish rots from the head

American transportation infrastructure does not work, and is getting worse. The costs of building more of it are extremely high, and seem to increase with every construction cycle. Operating costs for public transit run the gamut, but in the most important transit city, New York, they are the highest among large world cities, and moreover, the cheapest option for extending high-quality public transit to the suburbs, regional rail, is not pursued except in Silicon Valley and even there it’s a half-measure.

The problems are political. Heavyweight politicians could use their power to force positive reforms, but in a number of states where they’ve been able to do so on favorable terms, they’ve done no such thing. On the contrary, political influence has been negative, installing incompetent or dishonest managers and refusing to deal with serious long-term problems with operations and maintenance.

The reason politicians are obstructive is not that there’s no gain in improving the state of public services. On the contrary, there is a huge potential upside to getting credit for eliminating waste, fraud, and abuse and delivering government projects for much cheaper than was thought possible. But they look at minor controversies that could come from bypassing local power brokers, who as a rule have a fraction of the influence of a governor or big city mayor, or from building bigger projects than the minimum necessary to be able to put their names or something, and stop there.

One animal analogy for this is that the fish rots from the head: the worst abuses come from the top, where politicians prefer slow degradation of public services to a big change that is likely to succeed but risks embarrassment or scandal. The other animal analogy is that, through a system that rewards people who talk big and act small, American politics creates a series of chickenshit leaders.

Air Travel in 2018’s America and High-Speed Rail

One of my go-to datasets for analyzing American intercity traffic is the Consumer Airfare Report. It reports on average airfares paid for domestic airline traffic, and on the way gives exact counts for O&D traffic between any pair of cities in the contiguous United States. Six and a half years ago I used this dataset to look at potential demand for high-speed rail, back when high-speed rail was still a topic of conversation in American politics, and a few days ago I got curious and looked again.

Unfortunately, the Consumer Airfare Report is no longer available as an easily downloadable table, due to web design horror. The relevant table, Table 6, used to be downloadable per quarter; today the only version lumps all data going back to 1996 and is 100 MB. Here are two cleaned up versions in .ods format, one a 40 MB table going back to 1996 and one an 800 KB table of just the most recent quarter available, the second quarter of 2018. The files lump all airports in a metro area together, such as JFK and Newark, and reports data in ridership per day; be aware that in the smaller file I repeat every city pair, one for each direction, making it easy to sort by city to figure out each city’s total air traffic, which means that just summing up ridership for all city pairs together yields double the actual traffic. In this post I’m going to compare data from 2018 to data from 2011, the year used in my previous post.

Air traffic is increasing

In 2011 Q3, the total volume of domestic air traffic in the US was 1,020,673 per day. By 2018 Q2, it had risen to 1,303,397. A small proportion of this increase is seasonality – Q2 is the busiest – but most of it is real. Here is a table of air traffic and average distance flown (in miles) by quarter:

Year Quarter Passengers Distance
1996 1 661,862 995.1
1996 2 766,496 983.6
1996 3 741,927 1,001.6
1996 4 751,128 992.3
1997 1 739,073 994.9
1997 2 848,426 990.3
1997 3 836,128 996.0
1997 4 827,477 978.9
1998 1 773,065 980.9
1998 2 878,737 1,000.3
1998 3 848,688 997.9
1998 4 861,767 985.3
1999 1 817,247 992.5
1999 2 925,579 996.2
1999 3 903,603 1,004.4
1999 4 916,802 993.8
2000 1 864,645 998.8
2000 2 1,015,251 1,007.6
2000 3 956,562 1,011.1
2000 4 962,971 1,001.4
2001 1 899,230 1,000.3
2001 2 1,000,973 1,018.6
2001 3 864,262 1,039.6
2001 4 772,924 1,047.9
2002 1 778,610 1,036.9
2002 2 897,218 1,033.6
2002 3 863,277 1,050.6
2002 4 864,537 1,041.8
2003 1 794,776 1,040.4
2003 2 901,628 1,059.1
2003 3 881,716 1,071.2
2003 4 917,454 1,057.2
2004 1 863,650 1,062.5
2004 2 1,001,499 1,079.9
2004 3 973,370 1,083.9
2004 4 983,740 1,065.6
2005 1 937,691 1,067.6
2005 2 1,083,554 1,060.0
2005 3 1,042,798 1,069.8
2005 4 1,025,538 1,053.8
2006 1 994,088 1,049.3
2006 2 1,118,003 1,054.4
2006 3 1,037,597 1,060.4
2006 4 1,066,004 1,039.8
2007 1 1,006,113 1,045.3
2007 2 1,128,317 1,056.5
2007 3 1,067,657 1,066.4
2007 4 1,047,234 1,050.4
2008 1 976,701 1,050.5
2008 2 1,110,267 1,049.8
2008 3 1,024,983 1,063.2
2008 4 979,031 1,042.3
2009 1 897,849 1,053.2
2009 2 1,037,048 1,064.6
2009 3 1,001,012 1,068.8
2009 4 964,406 1,054.9
2010 1 897,906 1,065.7
2010 2 1,025,152 1,070.5
2010 3 1,004,906 1,074.8
2010 4 1,012,277 1,057.5
2011 1 918,355 1,064.8
2011 2 1,056,564 1,075.3
2011 3 1,020,673 1,081.0
2011 4 996,383 1,060.6
2012 1 923,234 1,061.2
2012 2 1,048,600 1,075.5
2012 3 1,003,384 1,083.7
2012 4 996,905 1,066.8
2013 1 937,946 1,066.6
2013 2 1,067,682 1,078.9
2013 3 998,909 1,093.3
2013 4 1,020,700 1,073.6
2014 1 954,679 1,075.8
2014 2 1,092,447 1,085.3
2014 3 1,052,161 1,093.7
2014 4 1,053,878 1,075.2
2015 1 983,278 1,083.9
2015 2 1,130,227 1,100.2
2015 3 1,109,443 1,104.0
2015 4 1,116,866 1,087.0
2016 1 1,025,994 1,092.5
2016 2 1,191,304 1,101.0
2016 3 1,150,247 1,107.9
2016 4 1,143,414 1,086.5
2017 1 1,076,006 1,089.4
2017 2 1,227,913 1,099.8
2017 3 1,181,006 1,106.5
2017 4 1,198,662 1,085.1
2018 1 1,111,920 1,090.6
2018 2 1,303,397 1,100.4

Long-distance air traffic is especially increasing

The proposition of high-speed rail is that it can replace short-haul flights. A plane averages about 1,000 km/h but incurs considerable taxi, takeoff, and landing time, and passengers also have considerable airport access and egress times, including security and other queues. High-speed trains average about 200-250 km/h, but need no security – a well-run system allows passengers to show up at the station less than five minutes before the train departs – and have much shorter access and egress times as stations are located near city centers.

The above table shows a small increase in average distance flown, about 2% since 2011. However, this masks patterns in the largest cities. New York-Los Angeles traffic grew 30%, compared with 23% in national traffic growth; it is now barely behind New York-Miami (with West Palm Beach separated out) for third busiest American air city pair, the first being far and away Los Angeles-San Francisco.

We can look at the change in the proportion of traffic that can be served by HSR in the largest six American air markets since 2011; consult my post from 2012 for the exact definitions of which corridors count within which buckets – there are some revisions and fixed to be made, but I’ve not done them in order to keep the list of city pairs constant. Las Vegas is no longer ahead of Boston, and Dallas is a fraction of a percent below Boston as of 2018.

City Traffic (2011 Q3) Traffic (2018 Q2) < 3:00 (2011) < 3:00 (2018) < 5:00 (2011) < 5:00 (2018)
New York 153,386 188,702 10.7% 9.2% 32.2% 29.1%
Los Angeles 132,556 167,788 26.4% 26.6% 26.4% 26.6%
San Francisco 103,752 133,346 18.1% 18.6% 33.3% 33.1%
Chicago 103,540 122,376 16.5% 12.2% 34.1% 29.9%
Washington 97,234 116,878 16.7% 14.9% 31.3% 28.5%
Boston 75,329 90,747 21.3% 18.7% 31.8% 26.9%

In the East, short-distance markets have shrunk, in relative terms. Observe that in Chicago the entire difference is within the 3-hour radius, including the spokes of any Midwest HSR network, where air travel has srhunk 12.6% in absolute terms, whereas the 3-to-5-hour annulus, including farther away cities like Atlanta and New York, has not only grown but kept up with Chicago’s overall domestic air travel volumes. But in New York, Washington, and Boston, both the 3-hour radius and the 3-to-5-hour annulus have shrunk, reflecting flights to intermediate Midwestern cities east of Chicago as well as to the South; Boston’s 3-to-5-hour annulus has shrunk 6% in absolute terms.

California holds steady

Since 2011 there has been an increase in air travel to California, especially San Francisco. Los Angeles-San Francisco, once the second largest air market in the US behind New York-Miami, is now far ahead of it, and on its strength, the share of air travel out of Los Angeles and San Francisco that’s within HSR radius has held up.

California’s HSR problems are not about whether there’s demand for such infrastructure. There clearly is. The problems are exclusively about construction costs. But as the state’s economy grows, demand for internal travel is increasing, making HSR a better proposition.

What does this mean for HSR?

The cynical answer is nothing, because in an America where even high-spending Green New Deal proposals neglect HSR and focus on electric cars, it’s unlikely there will be a political effort to build anything. Even Amtrak seems content with justifying capital expense on grounds of climate adaptation rather than reducing trip times.

That said, in the event of a concerted national effort to build HSR, the changes in travel patterns this decade suggest some changes on the margins. California and Texas grow in value while the Midwest falls in value.

In the Midwest, the core lines remain strong, but more peripheral Midwestern lines, say a bypass around Chicago for cross-regional traffic or improved rail service due west toward Iowa, are probably no longer worth it. The Cleveland-Columbus-Cincinnati corridor may not be worth it to build as full HSR – instead it may be downgraded to an electrified passenger-primary corridor (as I understand it it already has very little freight).

There is asymmetry in this situation in that there aren’t a lot of peripheral lines in California and Texas that are becoming interesting now that these states’ economies are bigger than they were when rail advocates first came up with maps in the late 2000s. There is still far too little traffic to justify stringing HSR from Las Vegas to Salt Lake City or from Sacramento to Portland under the mountains. In Texas, there has been a shift from the T-bone alignment to a more triangle-shaped network, since a direct Dallas-Houston line is already under construction, but beyond the Texas triangle, tails like Dallas-Oklahoma City and Houston-New Orleans aren’t getting stronger – Houston-New Orleans air travel volumes are actually down from 2011, though Dallas-New Orleans volumes are up.

The core lines, of course, don’t change. The Northeast Corridor is still the most important corridor, the next most important are still tie-ins extending it to the south and west, and the following is still California HSR. But the dreams of a nationally connected network, or at least a connected network in the eastern two-thirds of the US, should be cast aside – the in-between links, always peripheral, have weakened in this decade.

The Red-Blue Connector and the Importance of Connectivity

The Boston rapid transit network has the shape of the hex symbol, #. In Downtown Boston, the two north-south legs are the Green Line on the west and the Orange Line on the east, and the two east-west legs are the Red Line on the south and the Blue Line on the north. The Orange and Green Lines meet farther north, but the Red and Blue Lines do not. The main impact of this gap in systemwide connectivity is that it’s really hard to get between areas only served by the Blue Line, i.e. East Boston, and ones only served by the Red Line, i.e. Cambridge, Dorchester, and Quincy. However, there is a second impact: people who do transfer between the Red and Blue Lines overload one central transfer point at Park Street, where the Red and Green Lines meet. This way, the weak connectivity of the Boston rapid transit network creates crowding at the center even though none of the individual lines is particularly crowded in the center. The topic of this post is then how crowding at transfer points can result from poor systemwide connectivity.

The current situation in Boston

Connecting between the Blue and Red Lines requires a three-seat ride, with a single-stop leg on either the Orange or Green Line. In practice, passengers mostly use the Green Line, because the Orange Line has longer transfer corridors.

Travel volumes between East Boston and Cambridge are small. Only 1,800 people commute from East Boston, Winthrop, and the parts of Revere near the Blue Line to Cambridge, and only 500 commute in the other direction. I don’t have data on non-work travel, but anecdotally, none of the scores of Cantabrigians I know travels to the Blue Line’s service area except the airport, and to the airport they drive or take the Silver Line, and moreover, only two people moved from Cambridge or Somerville to the area, a couple that subsequently left the region for Bellingham. Travel volumes between East Boston and the southern legs of the Red Line are barely larger: 1,200 from East Boston to Dorchester, Mattapan, and Quincy, 1,600 in the other direction, most likely not taking public transit since cars are a good option using the Big Dig.

Nonetheless, this small travel volume, together with connections between East Boston and South Station or Dorchester, is funneled through Park Street. According to the 2014 Blue Book, which relies in 2012 data, transfer volumes at Park Street are 29,000 in each direction (PDF-p. 16), ahead of the Red/Orange connection at Downtown Crossing, where 25,000 people transfer in each direction every weekday. Riders connecting between the Blue and Red Lines are a noticeable proportion of this volume – the East Boston-Cambridge connection, where I believe the transit mode share is high, is around 8% of the total, and then the East Boston-Dorchester connection would add a few more percentage points.

Why Soviet triangles exist

In a number of metro networks, especially ones built in the communist bloc, there are three lines meeting in a triangle, without a central transfer point. This is almost true of the first three subway lines in Boston, omitting the Red Line: they meet in a triangle, but the Green and Orange Lines do not cross, whereas in true Soviet triangles lines meet and cross.

The reason for this typology rather than for the less common one in which all three lines meet at one station, as in Stockholm, is that it spreads transfer loads. Stockholm’s transfer point, T-Centralen, has 184,000 daily boardings (source, PDF-p. 13), almost as many as Times Square, which is served by 14 inbound tracks to T-Centralen’s 5 and is in a city with 5.6 million weekday trips to Stockholm’s 1.1 million. Urban transit networks should avoid such situations, which lead to central crowding that is very difficult to alleviate. Adding pedestrian circulation is always possible, but is more expensive at a multilevel central station than at a simple two-line crossing.

The triangle is just a convenient way of building three lines. As the number of lines grows beyond three, more connectivity is needed. Moscow’s fourth line, Line 5, is a circle, constructed explicitly to decongest the central transfer station between the first three lines. More commonly, additional lines are radials, especially in cities with water constraints that make circles difficult, like Boston and New York; but those should meet all the older radii, ideally away from existing transfer stations in order to reduce congestion. When they miss connections, either by crossing without interchange or by not crossing at all, they instead funnel more cross-city traffic through the existing transfer points, increasing ridership without increasing the capacity required to absorb it.

The way out

The situation is usually hard to fix. It’s much harder to fix missed connections, or parallel lines that diverge in both directions, than to connect two parallel lines when one of these lines terminates in city center, which Boston’s Blue Line does. The one saving grace is that cities with many missed connections, led by New York and Tokyo, also have very expansive networks with so many transfer points that individual interchanges do not become overloaded.

In large cities that do have problems with overcrowded transfer points, including London and Paris, the solution is to keep building out the network with many connections. London tries to weaken the network by reducing transfer opportunities: thus, Crossrail has no connection to Oxford Circus, the single busiest non-mainline Underground station, in order to prevent it from becoming any more crowded, and the Battersea extension of the Northern line deliberately misses a connection to the Victoria line. Paris has a better solution – it invests in circumferential transit, in the form of Metro Line 15 ringing the city at close distance, as well as extensions to Tramway Line 3, just inside city limits.

While the solution always involves investing more in the transit network, its precise nature depends on the city’s peculiar geography. In Paris, a compact city on a narrow river, adding more circles is an option, as is adding more RER lines so that people would be able to avoid difficult Metro-to-RER transfers. In London, the population density is too low and the construction costs are too high for a greenfield circle; the existing circle, the Overground, is cobbled together from freight bypasses and is replete with missed radial Underground connections. Thus, the solution in London has to come from radials that offer alternatives to the congestion of the Victoria line.

In Boston, a much smaller city, the Red-Blue Connector is easier since the Red and Blue Lines almost touch. It only takes about 600 meters of cut-and-cover tunnel under a wide road to continue the Blue Line beyond its current terminus in Downtown Boston and meet the Red Line at Charles-MGH; to first order, it should cost not much more than $100 million. The transfer would not be easy, since the Red Line is elevated there and the Blue Line would be underground, but it would still be better than the three-seat ride involving the Green Line. A competent state government with interest in improving transportation connectivity for its residents – that is, a government that is nothing like the one Massachusetts has – would fix this problem within a few years. Boston is fortunate in not needing painful deep tunneling under a medieval city center like London or hundreds of kilometers of inner suburban tunneling like Paris – it only needs to kick out the political bums, unfortunately a much harder task.

Amtrak Uses Climate Adaptation as an Excuse to Waste More Money

When the Gateway tunnel project began at the start of this decade, it was justified on the same grounds as the older ARC project: more capacity for trains across the Hudson. This justification continued even after the existing tunnels suffered damage in Hurricane Sandy. As costs mounted and it became clear there was no political will to round up $25 billion of federal and state money for capacity, the arguments changed. An engineering report softly recommended long-term tunnel closure for maintenance, without comparing the cost of new tunnels to that of continuing to close the tunnels one tube at a time on weekends, and subsequently both the funding requests and the press releases shifted in tone to “we must close the tunnels or else they’ll collapse.” Unfortunately, this racket is now spreading to other parts of the American mainline rail network – namely, Amtrak and its high-speed rail program.

Case in point: in an internal report, leaked to the press via a belated public records request, Amtrak fearmongers about the impact of rising sea levels on its infrastructure. Bloomberg helpfully includes maps of rising sea levels inundating part of the Northeast Corridor’s infrastructure in low-lying parts of Connecticut, Delaware, and Maryland.

What Bloomberg does not say is that the Northeast Corridor is slightly elevated over the parts shown as inundated, due to river crossings. There’s even an attached photo of the station in Wilmington, clearly showing the train running above ground on a viaduct, at what looks like about five meters above sea level. There are no photos from other areas along the corridor, but regular riders as well as people looking closely at satellite photos will know that through the flood-prone parts of Secaucus, the Northeast Corridor is already on a berm, crossing over intersecting roads, and the same is true in most of Connecticut. On Google Earth, the lowest-lying parts of the route, passing through southeastern Connecticut and parts of Maryland, are 3-4 meters above sea level.

The rub is that a sea level rise of 3-4 meters is globally catastrophic to an extent that doesn’t make Amtrak any of the top thousand priorities. Cities would be flooded, as helpfully shown by photos and images depicting the railroad running above street level. Entire countries would be wiped off the map, like the Maldives. Low-lying coastal floodplains, so crucial for high-intensity agriculture, would disappear. In Bangladesh alone, a sea level rise of a single meter would flood 17.5% of the country, which with today’s demographics would displace about 25 million people; the sea level rise required to threaten the Northeast Corridor is likely to produce a nine-figure global refugee crisis.

To Amtrak’s credit, it’s somewhat pushing back against the apocalyptic language – for now. The Bloomberg article tries to demagogue about how unconcerned Amtrak is with climate change-related flooding, but at least the quotes given in the piece suggest Amtrak views this as a concern, just not one it’s going to talk about while the president openly says climate change is a Chinese conspiracy. Once the political winds will shift, Amtrak as portrayed by a close reading of the article will presumably shift its rhetoric.

However, the credit Amtrak gets for not pushing this line right now is limited. Sarah Feinberg, a former FRA administrator who was also on the panel for Governor Cuomo’s MTA genius grant competition, is described as saying talking about climate change won’t fly in Congress. In other words, in Feinberg and Amtrak’s view, “we need money to flood-proof the Northeast Corridor” is not a preposterous proposition, but a demand to be reserved until the Democrats are in charge of the federal government.

In the 2000s, Amtrak fired David Gunn from his position as CEO, since he wouldn’t succumb to political pressure to skimp on maintenance in order to achieve on-paper profitability so that Amtrak could be privatized. In his stead, the Amtrak board installed the more pliable Joe Boardman. Then Obama replaced Bush and economic stimulus replaced domestic spending cuts, and suddenly Amtrak discovered a backlog of maintenance, demanding billions of dollars that could have built 350 km/h high-speed rail between Boston and Washington already for state of good repair instead. The backlog has increased ever since, as it became clear Amtrak could just ask for more money without having to show any work for it as long as it was couched in language about maintenance.

The same mentality is still in place today. The required response of the American transportation complex to climate change: an immediate end to any public spending on roads and airports and massive spending on public transportation, intercity rail, and electric car charging stations, in that order. Amtrak has a role to play in advocating for more rail use as mitigation of transportation emissions, which are currently the largest single source of greenhouse gas emissions in the United States.

However, responding this way would require Amtrak to run better service. It would require it to stop playing agency turf games with other railroad agencies – after all, the planet does not care who owns which piece of track on the Northeast Corridor. It would require it to show visible improvements in speed, capacity, coverage, and reliability. It is not capable of producing these improvements and neither do other federal organs dealing with passenger rail, such as the FRA-led NEC Future effort. Thus, it is preparing the way to argue for a massive increase in spending that is explicitly not designed to produce any tangible benefit.

There is a way forward, but not with any of the people in charge today. They are incapable of managing large projects or even smoothly running a railroad in regular service, and should be replaced by people who have the required experience. Feinberg is a political operative who before her appointment as FRA head in 2015 had no background in transportation; evidently, together with the other judges of the genius grant she greenlit manifestly impossible projects.

Evidently, when New York City Transit hired a chair with a strong transportation background, namely Andy Byford, suddenly plans became more than just the state of good repair black hole plus court-mandated accessibility retrofits. Byford insists on specific positive improvements, which lay riders can judge in the coming decade as they see more elevator access and higher train frequency, provided his plan’s very high cost is funded.

With Amtrak, in contrast, there is only a black hole. There is an extremely expensive high-speed rail plan out there, but the first segment Amtrak wants to build, Gateway, wouldn’t provide any tangible benefit in speed or even capacity (the current state of Gateway is a $11 billion tunnel without additional surface tracks, so the two-track bottleneck would remain). A project that was once a critical capacity increase has since been downgraded into the state of good repair black hole, in which many tens of billions of dollars can disappear without showing anything. As the NEC Future process evolves, any calls for high-speed rail in the Northeast are likely to evolve in the same direction: no improvement, just endless money poured on the same service quality as today, justified in terms of adaptation or resilience.

Urban Transit Vs. Commuter Transit

The Geary corridor in San Francisco is a neat model for transit ridership. The Golden Gate Park separates the Richmond District from the Sunset District, so the four east-west buses serving the Richmond – the 38 on Geary itself and the closely parallel 1 California, 31 Balboa, and 5 Fulton – are easy to analyze, without confounding factors coming from polycentric traffic. Altogether, the four routes in all their variations have 114,000 riders per weekday. The 38 and 1 both run frequently – the 1 runs every 5-6 minutes in the weekday off-peak, and the 38 runs every 5 minutes on the rapid and every 8 on the inner local.

I was curious about the connection between development and travel demand, so I went to OnTheMap to check commute volumes. I drew a greater SF CBD outline east of Van Ness and north of the freeway onramp and creek; it has 420,000 jobs (in contrast, a smaller definition of the CBD has only 220,000). Then I looked at how many people commute to that area from due west, defined as the box bounded by Van Ness, Pacific, the parks, and Fell. The answer is 28,000. Another 3,000 commute in the opposite direction.

Put another way: the urban transit system of San Francisco carries about twice as many passengers on the lines connecting the Richmond and Japantown with city center as actually make that commute: 114,000/2*(28,000 + 3,000) is 1.84. This represents an implausible 184% mode share, in a part of the city where a good number of people own and drive cars, and where some in the innermost areas could walk to work. What’s happening is that when the transit system is usable, people take it for more than just their commute trips.

The obvious contrast is with peak-only commuter rail. In trying to estimate the potential ridership of future Boston regional rail, I’ve heavily relied on commute volumes. They’re easier to estimate than overall trip volumes, and I couldn’t fully get out of the mindset of using commuter rail to serve commuters, just in a wider variety of times of day and to a wider variety of destinations.

In Boston, I drew a greater CBD that goes as far south as Ruggles and as far west as Kendall; it has a total of 370,000 jobs. Of those, about 190,000 come from areas served by commuter rail and not the subway or bus trunks, including the southernmost city neighborhoods like Mattapan and Hyde Park, the commuter rail-adjacent parts of Newton, and outer suburbs far from the urban transit system. But MBTA commuter rail ridership is only about 120,000 per weekday. This corresponds to a mode share of 32%.

I tried to calculate mode shares for the MBTA seven years ago, but that post only looked at the town level and excluded commuter rail-served city neighborhoods and the commuter rail-adjacent parts of Newton, which contribute a significant fraction of the total commute volume. Moreover, the post included suburban transit serving the same zones, such as ferries and some express buses; combined, the mode share of these as well as commuter rail ranged from 36% to 50% depending on which suburban wedge we are talking about (36% is the Lowell Line’s shed, 50% is the Providence Line’s shed). Overall, I believe 32% is consistent with that post.

Part of the difference between 32% and 184% is about the tightness of economic integration within a city versus a wider region. The VA Hospital in San Francisco is located in the Outer Richmond; people traveling there for their health care needs use the bus for this non-commuter trip. On a regional level, this never happens – people drive to suburban hospitals or maybe take a suburban bus if they are really poor.

That said, hospital trips alone cannot make such a large difference. There are errand trips that could occur on a wider scale if suburban transit were better. Cities are full of specialty stores that people may travel to over long distances.

For example, take gaming. In Vancouver I happened to live within walking distance of the area gaming store, but during game nights people would come over from Richmond; moreover, the gaming bar was in East Vancouver, and I’d go there for some social events. In Providence I’d go to Pawtucket to the regional gaming store. In the Bay Area, the store I know about is in Berkeley, right on top of the Downtown Berkeley BART station, and I imagine some people take BART there from the rest of the region.

None of this can happen if the region is set up in a way that transit is only useful for commute trips. If the trains only come every hour off-peak, they’re unlikely to get this ridership except in extreme cases. If the station placement is designed around car travel, as is the case for all American commuter lines and some suburban rapid transit (including the tails of BART), then people will just drive all the way unless there’s peak congestion. Only very good urban transit can get this non-work ridership.

No Pelosi-Trump Infrastructure Deal, Please

After the midterm election 2.5 weeks ago, there began calls for an infrastructure deal. The details, as always, were always vague, but the idea is that congressional Democrats and President Trump will agree on a bill to spend about a trillion dollars on infrastructure. What infrastructure is at stake is not specified, except that some New York-based commentators (and Senator Schumer) are calling for federal funding of the Gateway project; whether to pay for the program with deficit spending, tax hikes, or cutting other spending is not specified either. The good news is that such a deal isn’t likely to happen, for roughly the same reasons such a deal would be a bad idea in the first place. However, just in case some people reading this blog might like the idea of such a grand bargain, I’d like to spell the reasons why such a deal would be a waste of money.

What is the purpose of an infrastructure deal, anyway?

Given around a year of something approaching full-time work, I could identify a trillion dollars’ worth of useful public transportation investment in the United States. Given that I’d also look for ways to cut construction costs (which I’m almost certain Congress has not seriously tried), and given that there are other infrastructure priorities than transit, it should not be hard to come up with a long-term 13-figure program.

However, I’m fairly certain there hasn’t been any serious attempt to list infrastructure projects that should be covered under this plan. The main clue is that if there were any, the people trying to sell the public on such a deal would mention them as concrete benefits. This has happened with Gateway: people around the New York area are desperate for federal funding to cover the project’s extreme cost, and do not shy from mentioning it as a beneficiary of a grand bargain. But with anything else, there’s nothing.

For example, nobody in California has said anything about federal funds for the state’s flagging high-speed rail project, even though it would be a natural candidate for a bipartisan deal between Trump and congressional Democrats (the state’s Republican delegation opposed the project, but much of it was wiped out in the midterm). Elsewhere, there are both road and transit projects in red state cities that are hungry for funding, some of which were on the Trump administration’s list of projects to fund last year, in one of the interminable Infrastructure Week pushes that went nowhere. Nothing comparable has surfaced this month.

The lack of detail about the plan suggests it’s not really serious policy. It’s a trial balloon – one that’s failing because of the political situation. But in the event anything comes out of it, it will be a half-thought plan, created for the purpose of spending money and doing something that gives the appearance of bipartisan consensus.

The US economy is not in a recession

The point of a Keynesian stimulus is to prop up the economy during recessions. The American economy right now has 3.7% unemployment, which is more or less full employment, and 2.5% inflation, which is a hair above target. Additional spending would be great for me – it would strengthen the dollar, personally helping me as someone who earns dollars and spends euros. But for the putative target of the bill – the American people – the only effect would be fiscal constraints. The country needs to think about reducing the deficit, not about increasing it in a show of bipartisan unity.

Worse, the stimulus effect of new government spending comes from the net change in annual spending, whereas the deficit effect comes from overall annual spending. A big infrastructure bill would only act as economic stimulus in the earliest phases, when the spending rate would ramp up. Subsequently, it would have no effect on growth or on employment. David Dayen made this point regarding the 2009 stimulus: it had a big effect on American economic growth in 2009, but as the spending rate reached its maximum in 2010, the net effect of federal spending on growth turned negative in the third quarter of 2010, even before the Republican victory in the midterm, long before most stimulus funds were actually spent.

This does not mean that infrastructure funding is out of the question. A serious bill that is crafted to be deficit-neutral in the short as well as long term could do good; it is also close to impossible. Some Democratic pundits have trolled the conversation by proposing pairing it with repealing Trump’s tax cuts, but the probability of a grand bargain that raises taxes to pay for extra spending is approximately zero. Cutting other spending is extremely unlikely as well – unlike state and local governments, domestic federal spending doesn’t have enough waste to fund a trillion-dollar infrastructure bill, and what waste does exist is locked up in Medicare, which is politically untouchable.

The state of the American economy is such that it’s a great idea to design an infrastructure bill, to be deployed at the next recession. There could be a list of priority projects for public transportation (or other forms of infrastructure) chosen for a combination of cost-effectiveness and nationwide spread. While designing this plan, the federal government would make the process open, to let local and state governments know what is happening and offer them the opportunity to submit their choice projects for consideration. The federal government should also insist that they not defer maintenance now hoping to score state of good repair money later – for example, I would propose to credibly commit to only funding expansion but not maintenance, and to defund projects run by agencies that defer maintenance (such as Boardman-era Amtrak). The plan would be funded, with deficit spending, at the next recession, which analysts expect to start in the next few years.

The federal government is unusually corrupt

If the above plan of coming up with a measured infrastructure plan, with incentives to encourage good behavior among state and local governments, sounds like science fiction, it’s because the federal government today doesn’t have the capability of carrying out such a program. Part of it is generic public-sector weakness within the United States, making it hard to make long-term plans; the civil service is weak, and politicians make capricious decisions, so nothing like the TGV, Grand Paris Express, High Speed 2, and Crossrail – all bipartisan projects within their respective countries – can happen.

But there’s a bigger problem now: Trump. Trump himself is corrupt in ways that go far beyond the affairs of scandal-ridden past presidents like Clinton and George W. Bush, and this affects how people think of infrastructure. The US has a public transportation cost premium of nearly a full order of magnitude over comparable countries. Such a premium must have multiple causes, but one cause is corruption: we’ve already seen how political interference by Schumer helped double the cost of Amtrak’s rolling stock procurement. Trump’s scandals easily surpass Schumer’s.

This goes beyond partisanship. Atrios has been a partisan Democrat since his blog’s early days, and yet he’s called for SUPERTRAINS (always in caps) since mid-2008, when the idea of stimulus became part of the American public conversation. At the time Obama was ahead in the polls, but he was not guaranteed to win, and years of Bush had gotten the Democratic base used to opposing anything a Republican president did; and yet, center-left writers like Atrios and Matt Yglesias (at the time transitioning from the Republican bloggers’ favorite Democrat to a conventional partisan liberal Democrat) were fine endorsing an infrastructure program in an uncertain partisan climate.

In theory, the extent of Trump’s corruption is small compared with the magnitude of the program. It’s billions of dollars at worst versus a trillion. In practice, the presence of the current president at the helm of any program screams at contractors, “make an effort to stay at Trump hotels and Mar-a-Lago, not to make a cheap and technically sound bid.” The extra cost coming from contractors slouching in the bidding and construction phases can easily soak up hundreds of billions of dollars out of the trillion: in Brian Rosenthal’s article about high New York costs, contractors quoted a premium of about 25% just from MTA red tape, and Trump’s personal corruption is probably on the same order of magnitude.

Ultimately, it’s fine to wait

In late 2008 and early 2009, the American economy was spiraling into the deepest recession since 1946; in that climate, rushing the stimulus was desirable. The situation today is not like that at all. There’s time to develop an infrastructure plan based on one’s combination of political preference and belief about the future (e.g. will Trump be reelected?, and who will control Congress after 2020?). There’s no point in passing a plan that exists purely to spend money and to show that Congress can enact big policies.

Since there’s no rush, and no need to deficit-spend right now, there’s grounds for demanding better of the government. Any infrastructure plan should be based on clear needs: that is, a national blueprint (such as reducing greenhouse gas emissions, or spreading infrastructure funding to poor states, or a similar political goal), a list of items designed to maximize cost-effectiveness within the blueprint’s parameters, and a federal civil service that can implement the construction of these items with maximum efficiency.

The incompetent and the corrupt should have no role to play in this program, and this begins with the current president. If it’s not possible to remove deadwood from the federal government, it’s fine to indefinitely postpone any big federal infrastructure plan. Nothing there would be indispensable; if Congress wants to deficit-spend money to create jobs, it can choose policies that are less sensitive to public-sector competence, such as tax cuts, unemployment benefits (not a big factor today but by definition a big one in a recession), and aid to states. With infrastructure that most of the developed world laughs at the US still manages to be one of the richest countries in the world; filling in the gap in public transportation is desirable, but the country won’t collapse if the gap persists.

FRA Reform is Here!

Six and a half years ago, the Federal Railroad Administration announced that it was going to revise its passenger train regulations. The old regulations required trains to be unusually heavy, wrecking the performance of nearly every piece of passenger rolling stock running in the United States. Even Canada was affected, as Transport Canada’s regulations mirrored those south of the border. The revision process came about for two reasons: first, the attempt to apply the old rules to the Acela trains created trains widely acknowledged to be lemons and hangar queens (only 16 out of 20 can operate at any given time; on the TGV the maximum uptime is 98%), and second, Caltrain commissioned studies that got it an FRA waiver, which showed that FRA regulations had practically no justification in terms of safety.

The new rules were supposed to be out in 2015, then 2016, then 2017. Then they got stuck in presidential administration turnover, in which, according to multiple second-hand sources, the incoming Republican administration did not know what to do with a new set of regulations that was judged to have negative cost to the industry as it would allow more and lower-cost equipment to run on US tracks. After this limbo, the new rules have finally been published.

What’s in the new regulations?

The document spells out the main point on pp. 13-20. The new rules are similar to the relevant Euronorm. There are still small changes to the seats, glazing, and emergency lighting, but not to the structure of the equipment. This means that unmodified European products will remain illegal on American tracks, unlike the situation in Canada, where the O-Train runs unmodified German trains using strict time separation from freight. However, trains manufactured for the needs of the American market using the same construction techniques already employed at the factories in France, Germany, Switzerland, and Sweden should not be a problem.

In contrast, the new rules are ignoring Japan. The FRA’s excuse is that high-speed trains in Japan run on completely dedicated tracks, without sharing them with slower trains. This is not completely true – the Mini-Shinkansen trains are built to the same standards as the Shinkansen, just slightly narrower to comply with the narrower clearances on the legacy lines, and then run through to legacy lines at lower speed. Moreover, the mainline legacy network in Japan is extremely safe, more so than the Western European mainline network.

On pp. 33-35, the document describes a commenter who most likely has read either my writings on FRA regulations or those of other people who made the same points in 2011-2, who asked for rules making it possible to import off-the-shelf equipment. The FRA response – that there is no true off-the-shelf equipment because trains are always made for a specific buyer – worries me. The response is strictly speaking true: with a handful of exceptions for piggybacks, including the O-Train, orders are always tailored to the buyer. However, in reality, this tailoring involves changes within certain parameters, such as train width, that differ greatly within Europe. Changes to parts that are uniform within Europe, such as the roofing, may lead to unforeseen complications. I don’t think the cost will be significant, but I can’t rule it out either, and I think the FRA should have been warier about this possibility.

The final worry is that the FRA states the cost of a high-speed train is $50 million, in the context of modification costs; these are stated to be $300,000 for a $50 million European high-speed trainset and $4.7 million for a Japanese one. The problem: European high-speed trainsets do not cost $50 million. They cost about $40 million. Japanese sets cost around $50 million, but that’s for a 16-car 400-meter trainsets, whereas European high-speed trainsets are almost always about 200 meters long, no matter how many cars they’re divided into. If the FRA is baking in cost premiums due to protectionism or bespoke orders, this is going to swamp the benefits of Euronorm-like regulations.

But cost concerns aside, the changes in the buff strength rules are an unmitigated good. The old rules require trainsets to resist 360-945 metric tons of force without deformation (360 for trains going up to 200 km/h, 945 beyond 200 km/h), which raises their mass by several tons per cars – and lightweight frames require even more extra mass. The new ones are based on crumple zones using a system called crash energy management (CEM), in which the train is allowed to deform as long as the deformation does not compromise the driver’s cab or the passenger-occupied interior, and this should not require extra train mass.

How does it affect procurement?

So far, the new rules, though telegraphed years in advance, have not affected procurement. With the exception of Caltrain, commuter railroads all over the country have kept ordering rolling stock compliant with the old rules. Even reformers have not paid much attention. In correspondence with Boston-area North-South Rail Link advocates I’ve had to keep insisting that schedules for an electrified MBTA must be done with modern single-level EMUs in mind rather than with Metro-North’s existing fleet, which weighs about 65 metric tons per car, more than 50% more than a FLIRT per unit of train length.

It’s too late for the LIRR to redo the M9, demanding it be as lightweight as it can be. However, New Jersey Transit’s MultiLevel III is still in the early stages, and the railroad should scrap everything and require alternate compliance in order to keep train mass (and procurement cost) under control.

Moreover, the MBTA needs new trains. If electrification happens, it will be because the existing fleet is so unreliable that it becomes attractive to buy a few EMUs to cover the Providence Line so that at least the worst-performing diesels can be retired. Under no circumstance should these trains be anything like Metro-North’s behemoths. The trains must be high-performance and as close as possible to unmodified 160 km/h single-level regional rail rolling stock, such as the DBAG Class 423, the Coradia Continental, the Talent II, or, yes, the FLIRT.

Metra is already finding itself in a bind. It enjoys its antediluvian gallery cars, splitting the difference between one and two decks in a way that combines the worst of both worlds; first-world manufacturers have moved on, and now Metra reportedly has difficulty finding anyone that will make new gallery cars. Instead, it too should aim at buying lightly modified European trains. These should be single-level and not bilevel, because bilevels take longer to unload, and Chicago’s CBD-dominant system is such that nearly all passengers would get off at one station, Millennium Station at the eastern edge of the Loop, where there are seven terminating tracks and (I believe) four approach tracks.

Ultimately, on electrified lines, the new rules permit trains that are around two thirds as heavy as the existing EMUs and have about the same power output. Substantial improvements in train speed are possible just from getting new equipment, even without taking into account procurement costs, maintenance costs, and electricity consumption. Despite its flaws, the new FRA regulation is positive for the industry and it’s imperative that passenger railroads adapt and buy better rolling stock.

The American Way of Building Rapid Transit

I’ve sporadically discussed how some countries or regions have traditions of how to build rapid transit. For example, in a City Metric article last year I made an off-hand comment about how communist bloc metros, from Europe to North Korea, have widely-spaced stops just like Moscow, while French metros and French-influenced Montreal Metro have short stop spacing just like Paris. I intend to write some posts covering different traditions, starting from one I’ve barely discussed as such: the American one. There are commonalities to how different American cities that build subways choose to do so, usually with notable New York influences, and these in turn affect how American transit activists think about trains.

For the most part, the American tradition of rapid transit should be viewed as one more set of standards, with some aspects that are worth emulating and others that are not. Most of the problems I’ve harped on are a matter of implementation more than a matter of standards. That said, that something is the local tradition does not immediately mean it works, even if on the whole the tradition is not bad. Some of the traditions discussed below definitely increase construction costs or reduce system effectiveness.

The situation in New York

A large majority of American rapid transit ridership, about two thirds, is in New York. The city’s shadow is so long that the systems built in the postwar era, like the Washington Metro and BART, were designed with New York as a reference, whether consciously or not. Only the Boston subway and Chicago L are old enough to avoid its influence – but then their elevated system design still has strong parallels in New York, whether due to direct influence or a common zeitgeist at the end of the 19th century. Thus, the first stop on the train of thought of the American rapid transit tradition must be New York practice.

New York has nine subway main lines. Five are north-south through Manhattan and four-track, three are east-west and two-track, and one avoids Manhattan entirely. Nearly all construction was done cut-and-cover between 1900 and 1940, forcing lines to hew to the street network. As New York has wide, straight streets, a trait shared with practically all American cities, this was not a problem, unlike in London, where carving right-of-way for the Underground was so difficult that every line from the third onward was built deep-bore.

With four tracks on most of the Manhattan trunks, there is local and express service. This allows trains to go around obstacles more easily, increasing redundancy. It’s in this context that New York’s 24/7 service makes sense: there is no absolute need for nighttime maintenance windows in which no train runs. This approach works less well on the two-track lines, and the L, the only one that’s two-track the entire way, has occasional work orders with very low train frequency because of single-tracking.

Outside the core of the city as it was understood during construction, lines run elevated. The standard New York el is an all-steel structure, which reduces construction costs – the First Subway’s subway : el cost ratio was 4:1, whereas today the average is about 2.5:1 even though tunneling uses the more expensive boring technique – at the cost of creating a boombox so noisy that it’s impossible to have a conversation under the tracks while a train is passing. Moreover, splitting the difference between two and four tracks, the standard el has three tracks, which allows peak-direction express service (on the 2/5, 6, and 7) or more space for trains to get around obstacles (on the 1, 4, and N/W).

Because the els are so noisy, the city stopped building them in the 1920s. The lines built in the 1930s were all underground, with the exception of one viaduct over an industrial shipping channel.

Moreover, from the 1930s onward, stations got bigger, with full-length mezzanines (the older stations had no or short mezzanines). Track standards increased, leading to an impressive and expensive array of flying junctions, contrasting with the flat junctions that characterize some older construction like the Chicago L or some foreign examples like much of the London Underground.

Finally, while New York has nine separate subway colors, its number of named lines is far greater. The system comprises several tens of segments called lines, and each route combines different lines, with complex branching and recombination. The infrastructure was never built for discrete lines with transfers between them, but rather for everywhere-to-everywhere one-seat rides, and service choices today reinforce this, with several outer lines reverse-branching to an East Side and a West Side Manhattan trunk.

The desire for 24/7 service

I know of five urban rail networks with 24/7 service. One is the Copenhagen Metro, which is driverless and built with twin bores, making it easy for service to single-track at night for maintenance. The other four are American: the New York City Subway, PATH, PATCO, and the Chicago L. Moreover, the LIRR runs 24/7, which no other commuter rail system I know of does, even ones where an individual outlying station has comparable ridership to the entire LIRR.

The other systems have somewhat of a 24/7 envy. I’ve heard lay users and activists in Washington and the Bay Area complain that the Washington and BART shut down overnight; BART itself feels it has to justify itself to the users on this question. Right now, BART’s decision to temporarily add an hour to the nighttime shutdown window to speed up maintenance is controversial. People are complaining that service is being cut despite increases in funding. In Washington, the more professional activists understand why 24/7 service is unviable, but like BART feel like they have to explain themselves.

Local and express trains

New York is full of four-track mainlines, running both local and express trains. Chicago and Philadelphia have them as well on one line each. The other rapid transit networks in the US don’t, but like 24/7 service desire it. Washington has enough complaints about it that regular reader and Patreon supporter DW Rowlands had to write an article for Greater Greater Washington explaining why it would not be all that useful.

BART is the more interesting case. In any discussion of BART extensions, people bring up the fact that BART can’t skip stops – never mind that its stop spacing is extremely wide owing to its function as suburban rail. The average speed on BART is 57 km/h per the National Transit Database; the RER A, which is the express service here, averages around 50. At BART’s speed, the single longest express segment in New York not crossing water, the A/D between 125th and 59th Streets, would take 7 minutes; in fact it takes about 9. If anything, BART errs in having too few stations in Oakland and San Francisco.

On new-build systems, four tracks are understandable and desirable, provided the construction method is cut-and-cover, as it was in early-20th century America. The earliest subway lines built in New York had little cost premium over London and Paris even though the tunnels were twice as wide for twice as many tracks. However, cut-and-cover is no longer used in developed countries owing to its heavy impact on merchants and residents along the way; already during WW2, Chicago dug the tunnels for the Red and Blue Lines of the L using deep boring. A city that bores tunnels will find that four-track tunnels cost twice as much as two-track tunnels, so it might as well built two separate lines for better coverage.

The shadow of steel els

New York, Boston, Philadelphia, and Chicago all built all-steel els. While cheaper, these structures are so noisy that by the 1930s they became untenable even in far-out neighborhoods, like on the Queens Boulevard Line. New lines in New York were underground; existing els were removed, quickly in New York and more slowly in Boston.

The newer systems built in the US avoided els entirely. BART planned to build one in Berkeley, but community opposition led to a change to an underground alignment; unlike subsequent examples of NIMBYism, Berkeley was willing to pay the cost difference. When tunnels are infeasible due to cost, American rail networks prefer at-grade rights-of-way, especially freeway medians. Rail rights-of-way are popular where available, such as on the realigned Orange Line in Boston, but freeway medians are common where rail alignments don’t exist.

The next generation of American urban rail systems, unable to tunnel in city center, turned to light rail in order to keep things at-grade. Across the border, in Canada, Vancouver built els to cover gaps in the right-of-way that turned into the Expo Line, and then built concrete els on the Millennium Line and outer Canada Line to reinforce the system. These brutalist structures are imposing, but I’ve had conversations under the viaducts in Richmond, just as I have in Paris under the mixed concrete and steel structures or in Sunnyside next to New York’s one concrete el.

Reverse-branching

New York did not invent reverse-branching. London has had it since the 1860s, when most South London railways ran separate trains to the City (at Cannon Street, London Bridge, or Blackfriars) or the West End (at Victoria or Charing Cross), and multiple North London railways ran trains to their traditional terminals or to the North London Railway for service to Broad Street. Paris has had it since even earlier: the railways operating out of Gare Saint-Lazare and Gare Montparnasse merged in 1851 and treated the two stations as reverse-branches allowing cities farther west to access both the Right Bank and the Left Bank. In both cities, this situation makes it harder to run coherent regional rail – in London the railways are spending considerable resources on disentangling the lines to increase frequency to South London’s many branches, and in Paris the fact that Montparnasse and Saint-Lazare serve similar destinations frustrated plans to connect the two stations with an RER tunnel.

Where New York innovated is in copying this practice on rapid transit, starting with the Dual Contracts era. In Brooklyn, existing as well as new outlying lines could be routed to any number of new crossings to Manhattan; in the Bronx and Eastern Brooklyn, a desire to give branches service to both the West Side and East Side led to reverse-branching even on the numbered lines, which were built from scratch and did not involve older suburban railroads.

Reverse-branching spread across the United States. Boston had it until it removed the Atlantic Avenue El, and even today, railfans occasionally talk about reverse-branching the Red Line along Massachusetts Avenue to Back Bay and Roxbury. Chicago occasionally has it depending on the arrangement of trains on the North Side; today, the Purple and Brown Lines share tracks at rush hour but then go in opposite directions on the Loop. The Broad Street Line in Philadelphia reverse-branches to Chinatown. The Washington Metro has reverse-branches in Virginia, limiting train frequency due to asymmetry at the merge points. BART designed itself to force a three-way wye in Oakland pointing toward San Francisco, Berkeley and Downtown Oakland, and East Oakland on which every pair of destinations has a direct train, or else East Oakland residents would have to change trains to access their own city center – and current plans for a second trans-Bay tube add further reverse-branches instead of using the extra capacity as an opportunity to fix the Oakland junction.

Outside the United States, I know of four reverse-branches on rapid transit that is not historically regional rail: the Delhi Green Line, the Namboku and Mita Lines in Tokyo, the Yurakucho and Fukutoshin Lines also in Tokyo, and the Northern line’s two trunks in London. Of those, the last one is slowly being disentangled: its southern end will be two separate lines once the Battersea extension opens, and its northern end will, severing the line in two, once upgrades to pedestrian circulation are completed at the branch point. Historically Toronto had a three-way wye on the subway, like BART, but it caused so many problems it was discontinued in favor of running two separate lines.

Regional rail

The most prominent feature of American rail networks is not what they do, but what they lack. American (and Canadian, and Chinese) regional rail networks remain unmodernized, run for the exclusive benefit of upper middle-class suburban office workers at the primary CBD. Details differ between cities, but even when management is theoretically part of the same agency as the rapid transit network, as in Boston, New York, and Philadelphia, in practice the commuter railroads are autonomous. There is no hint of fare integration or schedule integration.

This fact influences network design more than anything else, even the low quality of steel els. Service to any destination beyond the dense urban core, which is small outside a handful of relatively dense cities, requires building new rail from scratch. This favors low-cost, low-capacity light rail, often in freeway medians. Smaller cities, unable to afford enough light rail to convince entire counties to tax themselves to build transit, downgrade service one step further and build bus rapid transit, typically treated as a weird hybrid of Latin American busways and European bus lanes.

Does any of this work?

In one word, no. The American tradition of rapid transit clearly doesn’t work – just look at the weak ridership even in old cities like Boston and Philadelphia, whose mode shares compare with medium-size urban regions in the French sunbelt like the Riviera or Toulouse.

Or, more precisely, it doesn’t work in early-21st century America. In the rare occasion an American city manages to round up funding to build a new subway line, I would recommend looking abroad for models of both construction methods and network design. For example, as BART keeps working on designing the second tube, I would strongly advise against new branches on the East Bay – instead, one of the two tubes (old and new) should permanently serve East Oakland, with a new Downtown Oakland transfer station, and the other should serve Berkeley and Concord.

Moreover, the United States owes it to itself to aggressively modernize its mainline passenger rail network. It’s too important to let Amtrak, the LIRR, Metro-North, Metra, and other dinosaurs do what they’ve always done. Toronto’s modernization of GO Transit, named the Toronto RER after the Western world’s premier regional rail network, had wide support among transit planners, but the engineers at GO itself were against it, and Metrolinx had to drag them into the 21st century.

Where the American tradition does work is in contexts that the United States has long left behind. Booming third-world cities direly need rapid transit, and while American construction costs are not to be emulated, the concept of opening up major throughfares, laying four tracks, and covering the system is sound. The mix of underground construction in city center and elevated construction farther out (using concrete structure, not louder steel ones) is sound as well, and is already seeing use in China and India. This is especially useful in cities that have little to no legacy regional rail, in which category India and China do not qualify, but most of the rest of the third world does.

Globalization makes for grand shuffles like this one. Experts in the United States should go to Nigeria, Bangladesh, Pakistan, Colombia, Kenya, Tanzania, Angola, and the Philippines and advise people in these countries’ major cities about how to emulate rapid transit designs from early-20th century America. But in their home country these same experts should instead step aside and let people with experience in the traditions of Japan, South Korea, and the various distinct countries of Western and Central Europe make decisions.

Celebrate Birthdays, not Holidays

To the transportation user, holidays are nothing but pain. Synchronized travel leads to traffic jams and very high rail and air fares, and synchronized shopping by car leads to parking pain. American commercial parking minimums are designed around the few busiest days of the year (source, endnote #8), timed for the Christmas rush. In France, synchronized travel at the beginning and end of school holidays is so bad that each region begins and ends its winter and spring breaks on different dates. There’s so much travel pain, and associated waste in designing transportation around it, that it’s worth asking why even bother.

The travel pain is even worse than mere congestion. When I visited London in early July, Eurostar broke in both directions. This was not a pair of random delays. French holiday travel is synchronized even though there are two months of summer break and only about one month of paid vacation net of the other holidays: traditionally people from all over the country and the world visit Paris in July, and then Parisians visit other places in August.

With slow boarding at the stations courtesy of security theater and manual ticket checks with just two access points per train, it takes longer than usual to board the trains when they are full. With full trains throughout the day, the delays cascaded, so by afternoon the trains were hours off schedule. Eurostar let passengers on trains on practically a first-come, first-served basis: people with tickets on a train got to ride the next available train. I had a ticket on an 11:39 train, and got to ride the train that was nominally the 11:13 (there were a few available seats) but departed at 12:58, and my nominally-11:39 train departed even later.

Eurostar’s inability to deal with crowds that occur annually, at a time when revenue is highest, is pure incompetence. But even if that particular problem is resolved, the more fundamental problem of unnecessary swings in travel volumes remains. On domestic TGVs it’s seen in wild price swings. Today is the 8th. In two weeks, a one-way TGV ticket from Paris to Marseille costs 72-74 on Thursday the 22nd or Friday the 23rd (Friday is the traditional peak weekend travel date and increasingly Thursday joins it) and about 62 on Saturday the 24th. But next month, on the 23rd, I see tickets for about 150, and even the low-comfort OuiGo option, which usually has 10 tickets (from the suburbs, not Paris proper), shoots up to 100; even with these prices, most trains are sold out already.

In some cultures, common holidays serve a religious or otherwise traditional purpose of bringing the extended family together. This is the case for Chinese New Year, which causes overcrowding on the mainline rail network at the beginning and end of the holiday as urban workers visit their families back home, often in faraway interior provinces. The same tradition of extended families occurs on Passover, but Israel has little travel pain, as it is so small that Seder travel is the same as any other afternoon rush hour.

However, there is no religious or social value to synchronized school holidays, nor is there such value to Western holidays. Western Christian civilization has centered nuclear families over extended families for around a millennium. In modern-day American culture, people seem to spend far more time complaining about the racist uncle than saying anything positive about catching up with relatives.

Christmas has religious significance, but much of the way it is celebrated in rich countries today is recent. The emphasis on shopping is not traditional, for one. The travel peak is probably unavoidable, since Christmas and New Year’s are at a perfect distance from each other for a week-long voyage, but everything else is avoidable. A source working for a bookstore in Florida, located strategically on the highway between Disneyland and the coast, told me of two prominent peaks. In the summer there would be a broad peak, consisting mostly of European tourists with their long paid vacations. But then there would be a much sharper peak for the holiday season between Thanksgiving and Christmas, in which the store would fill every cashier stall and pressure employees, many of whom temps working seasonally, to work overtime and get customers through as quickly as possible.

Some holidays have political significance, such as various national days, but those do not have to create travel peaks or shopping peaks. Bastille Day doesn’t.

Finally, while it’s accepted in Western countries today that summer is the nicest season to travel, this was not always the case, and even today there are some exceptions. The Riviera’s peak season used to be winter, as the English rich fled England’s dreary winters to the beaches; Promenade des Anglais in Nice is named after 19th century winter vacationers. When I lived in Stockholm, I was more excited to visit the Riviera in the winter, fleeing 3 pm sunsets, than in the summer. Today, Japan has a peak for the cherry blossom in the spring, while in New England (and again in Japan) there is a tradition of leaf peeping in the fall.

Instead of centering synchronized holidays, it’s better for states to spread travel as well as shopping behavior throughout the year as much as possible. Different people have different preferences for seasonality, and this is fine.

For bigger shopping seasons, the best thing to do is to emphasize birthdays. Instead of trying to fix major holidays, the way Lincoln did for Thanksgiving, it’s better to encourage people to make their biggest trips and biggest shopping around birthdays, anniversaries, saint days in Catholic countries, and idiosyncratic or subculturally significant days (such as conventions for various kinds of geeks). There are already well-placed traditions of birthday and anniversary gifts. In academia it’s also normal to extend conference trips into longer vacations, when they don’t conflict with teaching schedules.

The impact on labor is reduced seasonality, and far less peak stress. With less seasonal employment, the natural rate of unemployment may also end up slightly lower. The impact on transportation is a large reduction in travel peaks, which would make it easier to run consistent scheduled service year-round, and to maintain car travel and parking capacity at its average day level rather than building parking lots that go unused 364 days out of every year.

Sunnyside Junction, Redux

Seven years ago, I wrote a pair of posts about Sunnyside Yards. The first recommends the construction of a transfer station through Sunnyside Yards, in order to facilitate transfers between Penn Station- and Grand Central-bound trains. The second recommends redeveloping the yards via a deck, creating high-density residential and commercial space on a deck on top of the yard. Recent news, both about an official plan to deck the yards and about leaks that Amazon is likely to move half of its second headquarters (HQ2) to Long Island City, make a Sunnyside Junction so much more urgent.

Here is how service would look:

The color scheme is inherited from my regional rail maps (see e.g. here) but for the purposes of this post, all it means is that green and blue correspond to the inner and outer tracks of the Park Avenue, purple is East Side Access, orange corresponds to LIRR trains going to the northern pair of East River Tunnels, and red corresponds to LIRR, Metro-North Penn Station Access, and Amtrak trains going to the southern pair of East River Tunnels. No track infrastructure is assumed except what’s already in service or funded (i.e. ESA and Penn Station Access), and only two infill stations are mapped: Astoria, which would be a strong location for a stop were fares integrated with the subway and frequency high, and Sunnyside Junction.

The infill stations that are not planned

An Astoria station was studied for PSA, but was dropped from consideration for two reasons. First, the location is legitimately constrained due to grades, though a station is still feasible. And second, under the operating assumptions of high fares and low off-peak frequency, few people would use it. It would be like Wakefield and Far Rockaway, two edge-of-city neighborhoods where commuter rail ridership is a footnote compared with slower but cheaper and more frequency subway service.

A Sunnyside Junction station was in contrast never considered. There are unfunded plan for an infill station to the west of the junction, served only by Penn Station-bound trains. Such a station would hit Long Island City’s job center well, but the walk from the platform to the office towers would still be on pedestrian-hostile roads, and if there’s political will to make that area more walkable, the city might as well just redevelop Sunnyside Yards (as already planned).

The reason there was never any plan for a station can be seen by zooming in on the area I drew as a station. It’s a railyard, without streets (yet). At today’s development pattern, nobody would use it as an O&D station, even if fares and schedules were integrated with the subway. The importance of the station is as a transfer point between Grand Central- and Penn Station-bound trains. The planned developments (both HQ2 and independent city plans) makes it more urgent, since the area is relatively far from the subway, but the main purpose of the station is a better transit network, rather than encouraging development.

The main benefit of the station is transfers between the LIRR and Metro-North. While nominally parts of the MTA, the two agencies are run as separate fiefs, both of which resisted an attempt at a merger. The LIRR opposed PSA on the grounds that it had a right to any empty slots in the East River Tunnels (of which there are around 8 per hour at the peak). Governor Cuomo intervened to protect PSA from Long Island’s opposition, but in such an environment, coordinated planning across the two railroads is unlikely, and the governor would not intervene to improve the details of the ESA and PSA projects.

Network improvements

East Side Access means that in a few years, LIRR trains will split between two Manhattan destinations. Conceptually, this is a reverse-branch: trains that run on the same route in the suburbs, such as the LIRR Main Line, would split into separate routes in the city core. In contrast, conventional branching has trains running together in the core and splitting farther out, e.g. to Oyster Bay, Port Jefferson, and Ronkonkoma. Reverse-branching is extremely common in New York on the subway, but is rare elsewhere, and leads to operational problems. London’s Northern line, one of the few examples of reverse-branching on an urban subway outside New York, is limited to 26 trains per hour through its busiest trunk at the peak, and long-term plans to segregate its two city trunks and eliminate reverse-branching would raise this to 36.

To ensure LIRR trains run with maximum efficiency, it’s necessary to prevent reverse-branching. This means that each trunk, such as the Main Line and the Hempstead Branch, should only ever go to one Manhattan terminal. Passengers who wish to go to the other Manhattan terminal should transfer cross-platform. Jamaica is very well-equipped for cross-platform transfers, but it’s at a branch point going to either Manhattan or Downtown Brooklyn, without a good Penn Station/Grand Central transfer. Without a good transfer, passengers would be stuck going to a terminal they may not work near, or else be forced into a long interchange. In London the reason the Northern line is not already segregated is that the branch point in the north, Camden Town, has constrained passageways, so eliminating reverse-branching requires spending money on improving circulation.

Unlike Camden Town, Sunnyside Junction is roomy enough for cross-platform transfers. The tracks should be set up in a way that LIRR trains going to East Side Access should interchange cross-platform with PSA and Port Washington Branch trains (which should go to Penn Station, not ESA), as they do not stop at Jamaica. Penn Station-bound LIRR trains not using the Port Washington Branch, colored orange on the map, should stop at Sunnyside too, but it’s less important to give them a cross-platform transfer.

This assignment would be good not just for LIRR passengers but also for PSA passengers. Unlike on the LIRR, on the New Haven Line, reverse-branching is unavoidable. However, passengers would still benefit from being able to get on a Penn Station-bound train and connecting to Grand Central at Sunnyside. Not least, passengers on the PSA infill stations in the city would have faster access to Grand Central than they have today via long walks or bus connections to the 6 train. But even in the suburbs, the interchange would provide higher effective frequency.

The connection with development

I don’t know to what extent decking Sunnyside Yards could attract Amazon. I wrote an article last year, which died in editing back-and-forth, lamenting that New York was unlikely to be the HQ2 site because there was no regional rail access to any of the plausible sites thanks to low frequency and no through-running. Long Island City’s sole regional rail access today consists of LIRR stations on a reverse-branch that does not even go into Manhattan (or Downtown Brooklyn) and only sees a few trains per day. It has better subway access and excellent airport access, though.

However, since Sunnyside Junction is so useful without any reference to new development, the plans for decking make it so much more urgent. Sunnyside Yards are in the open air today, and there is space for moving tracks and constructing the necessary platforms. The cost is likely to be in the nine figures because New York’s construction costs are high and American mainline rail construction costs are even higher, but it’s still a fraction of what it would take to do all of this under a deck.

Moreover, the yards are not easy to deck. Let’s Go LA discussed the problem of decking in 2014: columns for high-rise construction are optimally placed at intervals that don’t jive well with railyard clearances, and as a result, construction costs are a multiple of what they are on firma. Hudson Yards towers cost around $12,000/square meter to build, whereas non-WTC commercial skyscrapers in the city are $3,000-6,000 on firma. The connection with Sunnyside Junction is that preparing the site for the deck requires extensive reconfiguration of tracks and periodic shutdowns, so it’s most efficient to kill two birds with one stone and bundle the reconfiguration required for the station with that required for the deck.

In the other direction, the station would make the deck more economically feasible. The high construction costs of buildings on top of railyards makes decking unprofitable except in the most desirable areas. Even Hudson Yards, adjacent to Midtown Manhattan on top of a new subway station, is only treading water: the city had to give developers tax breaks to get them to build there. In Downtown Brooklyn, Atlantic Yards lost the developer money. Sunnyside Yards today are surrounded by auto shops, big box retail, and missing middle residential density, none of which screams “market rents are high enough to justify high construction costs.” A train station would at least offer very fast rail access to Midtown.

If the decking goes through despite unfavorable economics, making sure it’s bundled with a train station becomes urgent, then. Such a bundling would reduce the incremental cost of the station, which has substantial benefits for riders even independently of any development it might stimulate in Sunnyside.