Notes on Accessibility and Chronic Pain

I’m surrounded by people who have various chronic pain disorders. I’m not sure why this is; people with disabilities tend to be marginalized and made invisible, and this is especially true for disabilities other than what’s become the universal symbol for the community, the wheelchair. I speculate that queer communities make chronic pain more visible because they normalize talking about one’s body, and this way people casually tell me about their Ehlers-Danlos Syndrome (EDS), their chronic fatigue, their sciatica, their epilepsy, their motion sickness, their sensory issues, their car crash injuries. Not all of the people I’ve spoken to about this in the last five years are queer, but a hefty proportion are, likely a majority, and the rest tend to be public transit advocates who are sensitive to this issue. This makes it not a perfect ethnography, but I do think the combination of talking to experts and members of the lay public is good at showing some of what transit planners have unfortunately so far overlooked.

The issue of chronic pain

Public accommodations for disabled people look at a few classes of disabilities. Wheelchair users are the best-known and form the universal symbol for the group, to the point that the name of the program in Britain is “step-free access”; it makes sense since elevator installation on subways is the most expensive retrofit required, but is not the only issue. Two additional important classes are blind and deaf people; for their benefits, systems install tactile pavements on platforms and arrange things so that station announcements are both visible from the train and clearly audible.

However, chronic pain syndromes are not on the list of disabilities to be so covered by design standards. The assumption is that invisible disabilities do not really exist; one person suffering from both EDS and complications from a debilitating car crash told me that they considered walking around with a cane, not because they needed it, but because otherwise people would assume they were able-bodied and freely run into them and not accommodate their need for a seat at public facilities.

Compounding this issue is the matter of spoons. Spoons are, in the disability community, an analog of hit points or mana pool in RPGs, an abstracted level of energy that is drained by routine activities, such as household chores, work, having a difficult conversation with a romantic partner, or dealing with medical care. In addition to having a more limited pool of spoons, people with disabilities also have to deal with a medical care system that is often adversarial and hostile; doctors flat out disbelieve patients’ pain, especially when they are women or racial minorities, which issue has been publicized more broadly with post-viral fatigue for long covid. The upshot of spoons is that people with disabilities can expend a spoon and act in ways that do not appear different from the behavior of able-bodied people, such as boarding a bus with poor ride quality, but they can’t do so consistently, and accessibility standards should acknowledge this and figure out how to minimize spoon consumption.

The issue of long covid makes accommodations for people with chronic pain an especially pertinent issue. Corona is not the first infection to lead to long-term ill effects, but because it is so much more virulent than the flu and the cold, it affects many more people, including many middle-class people who are used to getting what they need from the medical system to obtain a diagnosis. A hefty fraction of the population has been made permanently disabled, outside corona fortresses like Taiwan, and this means that going forward, access for this class of people will be a serious public issue.

Disability and harassment

People with disabilities do not expect the general public or any authority to be sympathetic to them or their needs. Twitter is full of threads giving people advice about how to deal with hostile doctors, and both in public and in private, people who require regular medical care think little of the medical establishment; I suspect one of the connections with queerness is that trans people tend to have a similar negative experience.

This lack of sympathy includes outright harassment. It’s lesser-known than sexual harassment, but it follows a similar pattern: one asshole makes derisive or threatening remarks, and the general public stands by. In some cases, the public may want to be helpful but not know how and thereby make things worse: one of my interviewees spoke of a friend who has seizures and is afraid to take public transport because if they have an episode on a bus then people might try to help them in the wrong way such as sticking a spoon in their mouth, which could lead to broken teeth.

The people I’ve interviewed who mentioned harassment or public hostility to me, including women and men, did not propose the same mechanisms as women who are afraid of sexual harassment. Women who worry about sexual harassment tend to complain about a general fear of crime, mentioning problems like poor lighting, obstructed sight lines, and loitering, and positives like nearby retail and safety in numbers. I have not heard the same from the disabled people I’ve spoken to. To the extent there’s a specific ask, it’s better public awareness and training, in common with people with other disabilities (wheelchair users object to strangers touching their wheelchairs without permission).

Trains, buses, and automobiles

Most of my interviewees have said that they prefer trains to buses, often strongly. Trains have better ride quality; buses are rickety and make them feel more fatigued, motion sick, or in outright pain. Some did not mention mode choice either way; I don’t recall any who explicitly said they are indifferent between bus and rail transit. The better ride quality of trains must be viewed as a key factor behind the rail bias, the observation that at equal speed and other amenities, trains get around 40% more ridership than buses.

Other opinions are variable. Some have said that even trains induce fatigue, and as a result, they drive everywhere; others have explicitly said the otherwise and prefer trains to cars on ride quality and motion sickness grounds. Bikes are less clear – the German chronic pain podcaster I talked to said that she has difficulty riding bikes but public transit is fine, and the Americans I’ve talked to did not say much about bikes, but then American cities are in general not nearly as bike-friendly as Berlin.

The magnitude of the bus effect varies by person, type of bus, and system. Reasons people have cited for avoiding buses include sudden acceleration and deceleration cycles, uncomfortable seats, insufficient straps to hold on, brake squeal, old buses in general, the noise and rattling of the diesel engine, and the experience of waiting at a bus stop on the street with nowhere to sit. Trolleybuses, lacking a diesel engine, are better according to some but not all people I have spoken to. One person emphasized that driving on the same arterial road used by a bus was much better than riding the bus, singling out Denver for its poor ride quality in comparison with the better buses of Sydney.

Trains vary in quality too. One interviewee complained that the ride quality on the Washington Metro deteriorated after the system switched from automatic (albeit not driverless) operation with smooth acceleration and braking to manual driving, leading to motion sickness.

One thing I did not hear commonly despite asking multiple times was complaints about walking. To the contrary, one source, familiar with modern transit planning conventions, explicitly said they’re fine with walking longer to consolidated stops, and another would walk longer distances to the subway to avoid the bus. But one planner, Allan Rosen who has proposed many bus reforms in New York, has argued in public that his sciatica makes walking longer to the bus stop more difficult.

The need for seats

It’s understood that in public accommodations, the disabled, elderly, and pregnant should have first priority for seats. Signs and PSAs remind passengers on trains and buses to get up if they see such a person, designating priority seats near the doors; there are also strong social norms about getting up for elderly people (my mother taught me this when I started riding the bus alone, at age 10).

This is compounded for people with invisible disabilities. Passengers will not spontaneously get up for someone who is in physical pain. When I would get sick enough that my legs hurt, I had no expectation of being able to get people to give me a seat, and had to seize what I could on Vancouver buses. This is one of the reasons as mentioned above one of my sources considered walking with a cane, which they otherwise did not need.

The implication is that seats must be available. Every bus stop must have a bench and shelter on a system that expects people who are not desperately poor to ride public transport. Train stations and other public facilities must have ample seating space for the general public as well; the hostile architecture trend of eliminating seating in order to repel homeless people must cease.

On vehicles, the seating-standing space tradeoff is murkier. Trains that cram many seats into the same space at the expense of standing space end up cramped. Moreover, for the people I’ve interviewed, a short period of standing typical of urban rail trips, of perhaps 10 minutes or even 20, is tolerable, even at the expense of some spoon expenditure.

Motion sickness

There is ample literature studying motion sickness on various forms of transport, public and private. Examples include Dobie et al cited in Persson, and Cohen et al, regarding trains; Griffin-Turner 1 and 2 regarding buses; and Li-Reda-Butz and Ittner-Mühlbacher-Weisswange regarding car drivers and passengers with further implications to buses.

One of my sources also told me of getting vertigo on the long escalators of the deepest stations of the Washington Metro, those on the Red Line as it transitions from running under hilly terrain to ducking under Rock Creek.

In general, motion sickness levels show great heterogeneity. Backward-facing seats, which the literature implies are less comfortable and which get a 5% discount on Korean high-speed trains, are no trouble for those sources who I asked directly, and yet they are unusually bad for me, an otherwise able-bodied person. Much depends on exact characteristics of acceleration, smoothness of ride, and road quality.

Sensory issues

A pair of people who I interviewed together told me about sensory issues. Those are even worse-known than physical chronic pain, and have implications for system design that are at odds with current norms. The issue is that of lighting quality: lighting that is too harsh or unnatural can induce migraines and repel passengers. The Denver system, already bad for its physical ride quality, also has such harsh white light at stations and on vehicles.

Sensory issues are especially delicate, as the worst cases can induce seizures, and people who get seizures are an important constituency for public transportation as many cannot drive for fear they might be incapacitated while on the road and cause an accident.

The language of universal design

The trend within accessibility advocacy is toward universal design and fostering independence. To that end, wheelchair users are promulgating norms in which it is prohibited to touch a stranger’s wheelchair without consent. Gap standards incorporate this norm by mandating such narrow gaps between train or bus and platform that a wheelchair user can safely traverse it without requiring someone else to push them. For the same reason, there is some agitation by wheelchair users in the United States against local regulations that require drivers to strap them in when they board a bus, such as those of New York City Transit, robbing them of their independent mobility.

Likewise, the trend is toward universal design, rather than special accommodations. Nobody wants to be judged for demanding special treatment or delaying other passengers; my sources, all either middle-class or aspiring to that status, have never once mentioned paratransit as an option. In this mentality, elevators are a lifeline for people in wheelchairs but are also useful for able-bodied people with strollers or heavy luggage, tactile pavements help prevent accidents, and clear audiovisual announcements help able-bodied passengers who are not alert during the trip and are especially helpful for people who don’t speak the language. And far from an obscure radicalism, the practice of universal design was first explained to me by Laura Brelsford, assistant general manager of accessibility at the MBTA.

Accommodating people with EDS, motion sickness, sciatica, or especially in the coming generation long covid is likewise a matter of universal design. Better ride quality on buses and trains means that I have a better user experience and (through precise computer control) faster trips while people who are more sensitive to motion sickness can ride at all without vomiting. Railstituting buses with trams where appropriate likewise has wide-reaching benefits, accruing again the most to people with chronic fatigue, and the same is true of the intermediate option of using trolleybuses or IMC. Bus shelter has very high impact relative to its cost, and this again especially benefits people who can’t stand for 10 minutes waiting for a bus.

All of these design issues are difficult to quantify. This makes them invisible to the manager who asks for metrics and data for everything as an excuse for inaction, as invisible as the chronic pain sufferers who they most benefit. But they are real, and from a broad enough view, their impact on the use and health of a public transport network is large.

Quick Note: California Gets Electrification Wrong

Caltrans has a new plan to make its intercity rail fleet zero-emission. The snag: it rejects electrification as infeasible and is instead looking for hydrogen fuel cell trains. I do not think any of the people who were involved in this study is competent enough to keep working in this field, and it’s important to explain why.

I refer readers to the electrification report we at TransitMatters put out a few months ago. It talks about the costs and benefits of overhead wire, and goes over some case studies of some electrification projects, some good (Trondheim), some okay (Israel, Denmark), and some examples of what not to do (Caltrain, Toronto). Since then I’ve seen additional data of electrification costs out of Italy, where they’re near the bottom of our range.

Our report also goes into alternatives to wire and why they’re infeasible. Hydrogen is not even remotely close. The largest order as of 2019 was 27 trains for the Rhine-Main region, each 54 meters long, for 500M€, or around 343,000€ per linear meter; single-level EMUs typically cost around 80,000€/m in Europe. It’s infant technology with wanting performance and its cost is not worth it compared with the cost of wiring the trains.

Instead, Caltrans thinks that overhead wires are infeasible. It does not publish cost estimates; those estimates would be based on the failure of Caltrain and not on successes in non-English-speaking countries (or even in Britain, with high but not fire-everyone costs), because nobody at Caltrans who has any authority knows or cares.

To make it worse, Caltrans says electrification “has right-of-way implications.” In other words, it requires space for poles and this is supposed to be difficult. In reality, it isn’t. A short distance from the tracks is needed for poles, but the rights-of-way in the state are not especially constrained; Caltrain, in a fairly dense suburban area, did not have that problem, but rather had problems with the execution of the design and with unusual standards for pole placement.

It’s a perennial problem in the United States that rail managers and agency heads are allergic to electrification. It’s a foreign concept, literally. They don’t travel – when they do they think of it as a vacation, not as work to see how countries with an order of magnitude more rail ridership per capita do it. None of the people they know knows, either. Nor are they technically apt or curious – they come from a managerial culture in which speaking of technical details is low-prestige, and making excuses and talking about politics are high-prestige. Fresh master’s graduates in Europe know more than they ever will. They are useless, and they know it.

So they avoid that technology using whatever excuses that they can find. Hydrogen feels to them like they’re innovative; they’re not, US mainline passenger rail is a joke, but they think they are because the notion that the US is a technological laggard doesn’t come naturally to them, since in many fields, none of which is public-sector, the US really is at the technological frontier. Nor are they qualified to tell the difference between mature and experimental tech, which is why they think electrification is not affordable and hydrogen trains at four times the upfront acquisition cost and an unproven maintenance cost are.

The only long-term solution to this recurrent problem is removing the people involved. I don’t have direct experience with California the way I do with the Northeast, but between what I know of the Northeast and what Richard Mlynarik and others have said of California, what’s likely is that the top people do not know what an EMU is, the traditional railroaders think electric wires are for toy trains, and the analysts have never once written an alternatives analysis in which the outcome was not politically pre-decided.

How Tramway Networks Look

I’ve been thinking about trams today. The origin of this post is that yesterday’s post about modal versus other questions concerning public transport led to a conversation about how in some places, namely Vancouver, the light rail versus subway debate is big. And that got me thinking about how cities that do not have subways arrange their streetcar networks. These cities exist, mostly in Central and Eastern Europe, and often have very strong public transport – this is for example the Zurich model, based on a combination of streetcars and an S-Bahn system. Some such cities don’t even have an S-Bahn system. How do they arrange their tramway networks?

The top tram cities

I asked on Twitter what the busiest tramway network is in cities without a subway. Across all cities, including ones that have both streetcars and metro tunnels, the answer was Saint Petersburg at the beginning of the 21st century, and today is either still Saint Petersburg, where ridership has been in decline recently, or Budapest; Prague is the third. All have around 400 million annual riders, or somewhat less.

Among cities without subways, it’s harder to tell, because the information isn’t always out there; streetcars are not as well-studied as subways, a pattern of which I am guilty of contributing to with the focus of the Transit Costs Project (for now). Zurich, Brno, Zagreb, and Melbourne all have around 200 million annual passengers each, and Bratislava, Kraków, Łódź, an Belgrade are all plausible contenders except that I have not been able to find ridership figures for them.

Additional cities with strong ridership but not 200 million a year include the Upper Silesia complex with about 100 million, which is weak for its size with high car modal split for a Polish city, and smaller cities like Leipzig, Dresden, Linz, Basel, Geneva, Košice, Gothenburg and Lviv.

The pattern of tram cities

All of the high-ridership tram cities I’ve been able to find have historically maintained their systems. Cities that closed their streetcars in the postwar era and have since reopened them as modern light rail systems sometimes have very strong ridership, like Paris, but that’s in conjunction with a metro system; the Ile-de-France tram network is strikingly circumferential and barely penetrates city limits, where the Métro predominates. In the United States, the busiest modern light rail system is Los Angeles and the busiest without a subway is Portland, with 40 million annual trips, in a metro area of comparable size to Upper Silesia, which is much more auto-oriented than monocentric Polish city regions like those of Warsaw and Kraków.

Moreover, nearly all examples I know are in Central and Eastern Europe. Elsewhere, trams were shut down in the postwar era, or replaced with subway-surface Stadtbahn systems as in San Francisco and most West German cities. This is going to color the analysis, because just as there are American, Soviet, British, French, and German traditions of how to build rapid transit, there are national and areal traditions of how to build tramways, and with the exceptions of Melbourne and Gothenburg, all of the top systems in metro-free cities are in one or two macro-regions (Warsaw Pact and German), which means that shared features may be either the key to success or just a regional cultural feature.

The shape of strong tramway networks

I encourage readers to go to Alexander Rapp’s website with maps of rapid transit and tram networks around the world, and toggle the maps so that the top streetcar networks are visible.

For example, here is Zagreb:

Here is Melbourne, which doesn’t yet have a metro but is building one at very high costs:

Here is Brno, which has around 200 million annual passengers in a metro area of 700,000:

The striking features of these networks and others without as good maps on Wikipedia (Gothenburg, Zurich), to me, are,

  • The network design is radial – crosstown routes are rare and sporadic.
  • The lines form something like a mesh in a small city center, perhaps the size of the historic premodern core, in which one can walk from one end to another; Melbourne, which does not have the history of a walled European city, shows convergent evolution with the same pattern.
  • Owing to the long history of such systems, the ones I’ve used (Prague, Zurich, Basel, Leipzig, East Berlin) have basic stations with shelter and in Zurich’s case ticketing machines but no other facilities.
  • There is extensive interlining and branching in all directions.

Moreover, as I should blog about soon in the future, Melbourne exhibits the same pattern even with a weak city center: the centralmost 100 km^2 of the city, which in Canada or Europe or the most centralized American cities should have 30-40% of metropolitan employment, only have 15%.

The Interborough Study

I was excited about the idea of Interborough Express (IBX) as announced by New York Governor Kathy Hochul, and then last week her office released a preliminary report about the alternatives for it, and I got less excited. But it’s not that the study is bad, or that Hochul is bad. Rather, the study is a by the numbers alternatives analysis, shorter than the usual in a good way; its shortcomings are the shortcomings of all American planning.

The main rub is that the report looks at various options for the IBX route, broken down by mode. There’s a commuter rail option, which bakes in the usual bad assumption about commuter rail operations, including heavier trains (lighter trains are legal on US tracks as of 2018) and longer dwell times that are explained as a product of the heavier trains (dwell times have nothing to do with train mass). That’s par for the course – as we saw yesterday, everything that touches mainline rail in North America becomes stupid even in an otherwise understandable report.

But even excluding commuter rail, the study classifies the options by mode, focusing on bus rapid transit and light rail (and no subway, for some reason). It compares those two options and commuter rail on various measures like expected ridership and trip times. This is normal for American alternatives analyses for new corridors like IBX: they look at different modes as the main decision point.

This is also extraordinarily bad governance. There are some fundamental questions that are treated as afterthoughts, either not studied at all or mentioned briefly as 1-2 sentences:

  • How far north should the line go? The IBX plan is to only go from Jackson Heights to the south, in contrast with older Triboro proposals going into the Bronx.
  • What should the stop spacing be? The stops can be widely spaced, as in the current proposal, which stops mainly at intersection points with other lines, or more closely spaced, like an ordinary subway line.
  • Under a light rail option, should the line be elevated where the trench is too narrow or at-grade?
  • Should freight service be retained? What are the benefits of retaining freight rail service on the Bay Ridge Branch and what are the incremental costs of keeping it versus taking over the right-of-way?
  • How large should the stations be?
  • How frequent should the trains be? If freight service is retained, what frequencies are compatible with running freight on the same tracks for part or all of the line?

A better study must focus on these questions. Some of them, moreover, must be decided early: urban planning depends on whether the line goes into the Bronx or not; and industrial planning depends on what is done with freight service along the corridor.

Those questions, moreover, are more difficult than the modal question. A BRT option on a rail corridor without closely parallel arterial roads should be dismissed with the same ease that the study dismisses options not studied, and then the question of what kind of rail service to run is much less important than the scope of the project.

But American planning is obsessed with comparing public transit by mode rather than by corridor, scope, or any other aspect. Canadian planning has the same misfeature – the studies for the Broadway SkyTrain extension looked at various BRT and light rail options throughout, even though it was clear the answer was going to be SkyTrain, and omitted more fundamental questions regarding the cost-construction disruption tradeoff or even the scope of the project (the original studies from 2012 did not look at truncating to Arbutus, an option that had been talked about before and that would eventually happen due to cost overruns).

So overall, the IBX study is bad. But it is interestingly bad. Andrew Cuomo was a despicable governor who belongs in prison for his crimes. Less criminal and yet similarly loathsome people exist in American public transit. And yet, Hochul and her office are not like that, at all. This is not a sandbag, or a corrupt deal. It’s utterly ordinary in its failure; with all the unique failures of the Cuomo era stripped, what is left is standard American practice, written more clearly than is usual, and it just isn’t up to par as an analysis.

Hochul has been moving on this project very quickly, and good transit advocates should laud this. It should not take long to publish a report comparing alternatives on more fundamental questions than mode, such as scope, the role of freight, and the extent of civil infrastructure to be used. The costs and benefits of IBX heavily depend on the decisions made on such matters; they should not be brushed aside.

New York Publishes a Bad Benchmarking Report

I’ve grown to intensely dislike benchmarking reports. It’s not that the idea of benchmarking bad. It’s that they omit crucial information – namely, the name of the system that one is compared with. The indicators always have a wide variety of values, and not being able to match them with systems makes it impossible to do sanity-checks, such as noticing if systems with high costs per car-km are consistently ones that run shorter trains. This way, those anonymized reports turn into tools of obfuscation and excusemongering.

The MTA in New York recently published such a report, including both US-wide and international benchmarking for the subway as well as commuter rail. The US benchmarking is with comparable American systems – exactly the ones I’d compare, with the systems listed by name as NTD data is wisely not anonymized. The international benchmarking for the subway is with CoMET, which includes most of the larger global systems as well as a handful of smaller ones, like Vancouver; for commuter rail, it’s with ISBeRG, which has an odd list of systems, omitting the RER (which is counted in CoMET), all of Japan except JR East, and any S-Bahn, skipping down to Australian systems, Cape Town, and Barcelona.

That, by itself, makes much of the international benchmarking worthless. The standard metric for operating costs is per car-km. This is covered in pp. 8-9, showing that New York has fairly average costs excluding maintenance, but the second highest maintenance costs. But here’s the problem: I’m seeing a comparison to an undifferentiated mass of other systems. One of them is an outlier in maintenance costs, even ahead of New York, but I do not know which it is, which means that I cannot look at it and see what it does wrong – perhaps it has an unusually old fleet, perhaps it is small and lacks scale, perhaps it is domestically viewed as scandal-ridden.

Far more useful is to look at complete data by name. For example, JICA has complete operating cost data for Japanese metro systems. Its tables are complete enough that we can see, for example, that overall operating costs are around $5/car-km for all systems, regardless of scale; so scale should not be too important, or perhaps Tokyo’s wealth exactly cancels out the scale effect. There are, on table 2.37 on PDF-p. 117, headcounts for most systems from which we can impute labor efficiency directly, using train-km data on PDF-p. 254; Yokohama gets 1,072 train-hours a year per driver at 35 km/h (the rough average speed I get from Hyperdia).

And here’s the thing: without the ability to fill in missing data like average speed, or to look at things the report didn’t emphasize, the report is not useful to me, or to other independent researchers. It’s a statement of excuses for New York’s elevated operating and maintenance cost, with officious proclamations and intimidating numbers.

For example, here’s the excuse for high maintenance costs:

High maintenance costs for NYCT are largely attributable to 24-hour service. Most COMET peer agencies shut down every night, allowing for four hours of continuous daily maintenance. In comparison, NYCT subway’s 24-hour service requires maintenance to occur within 20-minute windows between late night trains, reducing work efficiencies. Additionally, maintenance costs for NYCT have risen recently to support the improvements as part of the Subway Action Plan, which have led to a significant improvement to on-time performance year over year since inception.

Okay, so here we’re seeing what starts like a reasonable explanation – New York doesn’t have regular nighttime maintenance windows. But the other American systems studied do and they’d be above global average too; Boston has regular nighttime work windows but still can’t consign all track maintenance to them, and has almost the same maintenance cost per car-km as New York. Moreover, track maintenance costs per car-km should feature extensive scale effects – only at freight rail loads is the marginal track wear caused by each additional car significant – and New York runs long trains.

Then there is the Subway Action Plan line, which is a pure excuse. Other systems do preventive maintenance too, thank you very much. New York is not unusually reliable by global standards, and the benchmarking report doesn’t investigate questions like mean distance between failures or some measure of the presence of slow restrictions – and because it is anonymized, independent researchers can’t use what it does have and get answers from other sources.

The study has a section on labor costs, showing New York’s are much higher than those of some peer cities. Thankfully, that part is not anonymized, which means I can look at the cities with overall labor costs that are comparable to New York’s, like London, and ignore the rest; New York’s construction labor costs are higher than London’s by a factor of about 2, despite roughly even regionwide average wages. Unfortunately, a key attribute is missing: labor efficiency. The JICA study does better, by listing precise headcounts; but here the information is not given, which means that drawing any conclusion that is not within the purview of MTA’s endless cold war on its unions is not possible. As it happens, I know that New York is overstaffed, but only from other sources, never anonymized.

It’s worse with commuter rail. First of all, at the level of benchmarking, the study’s list of comparisons is so incomplete and so skewed (three Australian systems, again) that nothing it shows can be relevant. And second, commuter rail in North America comes with its own internal backward-looking culture of insularity and incompetence.

The report even kneecaps itself by saying,

While it is true that benchmarking provides useful insights, it is also important to acknowledge that significant differences exist among the railroads that pose challenges for drawing apples-to-apples conclusions, particularly when it comes to comparisons with international peers. Differing local economies, prevailing wages and collective bargaining agreement provisions can have dramatic impacts on respective labor costs. Government mandates, including safety regulations, vary widely, and each railroad exists in a unique operating environment, often with different service schedules, geographic layouts and protocols. Together these factors have also have a significant impact on relative cost structures.

To translate from bureaucratic to plain English, what they’re saying is that American (and Canadian) practices for commuter rail are uniquely bad, but controlling for them, everything is fine. The report then lists the following excuses, all of which are wrong:

• Hours of Operation: LIRR provides 24 hours of service 7 days per week, and MNR provides 20-22 hours of service 7 days a week

• Ungated System: Neither LIRR nor MNR operate gated systems, therefore they require onboard fare validation/collection

• Branch Service: Both LIRR and MNR run service to and from a central business district (New York City) and do not have ability to offer through-running service

• Electrification: Both LIRR and MNR operate over both electrified and non-electrified territory, thereby requiring both electric and diesel fleets

It’s impressive how much fraud – or, more likely, wanton indifference and incuriosity – can fit into just four bullet points. Metro-North’s hours of service are long, but so are those of the JR East commuter lines; the Yamanote Line runs 20 hours a day, which means the nighttime maintenance window is shorter. Ungated systems use proof-of-payment ticketing throughout Europe – I don’t know if Rodalies de Catalunya runs driver-only trains, but the partly-gated RER and the ungated S-Bahns in the German-speaking world do. Through-running is a nice efficiency but not all systems have it, and in particular Melbourne has a one-way loop system akin to that of the Chicago L instead of through-running. Finally, electrification on the LIRR and Metro-North is extensive and while their diesel tails are very expensive, they also sometimes exist in Europe, including in London on a line that’s partly shared with the Underground, though I don’t know if they do in the report’s comparison cases.

The report does not question any of the usual assumptions of American mainline rail: that it must run unusually heavy vehicles, that it run with ticket-punching conductors, etc.

For a much more useful benchmarking, without anonymization, let’s look at German S-Bahns briefly. There is a list of the five largest systems – Berlin, Munich, Hamburg, Frankfurt, Stuttgart – with ridership and headcounts; some more detail about Berlin can be found here. Those five systems total 6,200 employees; the LIRR has 7,671 and Metro-North 6,773. With 2,875 employees, the Berlin S-Bahn has more train-hours than the LIRR, Metro-North, and New Jersey Transit combined; about as many car-km pro-rated to car length as the LIRR times 1.5; and more ridership than all American commuter rail systems combined. The LIRR in other words has more workers than the largest five German S-Bahns combined while the Berlin S-Bahn has more riders than all American commuter rail systems combined.

The excuses in the report highlight some of the reasons why – the US sticks to ticket-punching and buys high-maintenance trains compliant with obsolete regulations – but omits many more, including poor maintenance practices and inefficient scheduling of both trains and crew. But those are not justifications; they are a list of core practices of North American commuter rail that need to be eliminated, and if the workers and managers cannot part with them, then they should be laid off immediately.

Platform Edge Doors

In New York, a well-publicized homicide by pushing the victim onto the subway tracks created a conversation about platform edge doors, or PEDs; A Train of Thought even mentions this New York context, with photos from Singapore.

In Paris, the ongoing automation of the system involves installing PEDs. This is for a combination of safety and precision. For safety, unattended trains do not have drivers who would notice if a passenger fell onto the track. For precision, the same technology that lets trains run with a high level of automation, which includes driverless operations but not just, can also let the train arrive with meter-scale precision so that PEDs are viable. This means that we have a ready comparison for how much PEDs should cost.

The cost of M4 PEDs is 106 M€ for 29 stations, or 3.7M€ per station. The platforms are 90 meters long; New York’s are mostly twice as long, but some (on the 1-6) are only 70% longer. So, pro-rated to Parisian length, this should be around $10 million per station with two platform faces. Based on Vanshnook’s track map, there are 204 pairs of platform faces on the IRT, 187 on the IND (including the entire Culver Line), and 165 on the BMT (including Second Avenue Subway). So this should be about $5.5 billion, systemwide.

Here is what the MTA thinks it should cost. It projects $55 million per station – but the study is notable in looking for excuses not to do it. Instead of talking about PEDs, it talks about how they are infeasible, categorizing stations by what the excuse is. At the largest group, it is accessibility; PEDs improve accessibility, but such a big station project voids the grandfather clause in the Americans with Disabilities Act that permits New York to keep its system inaccessible (Berlin, of similar age, is approaching 100% accessible), and therefore the MTA does not do major station upgrades until it can extort ADA funding for them.

Then there is the excuse of pre-cast platforms. These are supposed to be structurally incapable of hosting PEDs; in reality, PEDs are present on a variety of platforms, including legacy ones that are similar to those of New York, for example in Paris. (Singapore was the first full-size heavy rail system to have PEDs – in fact it has full-height platform screen doors, or PSDs, at the underground stations – but there are later retrofits in Singapore, Paris, Shanghai, and other cities.)

The trains in New York do not have consistent door placement. The study surprisingly does not mention that as a major impediment, only a minor one – but at any rate, there are vertical doors for such situations.

So there is a solution to subway falls and suicides; it improves accessibility because of accidental falls, and full-height PSDs also reduce air cooling costs at stations. Unfortunately, for a combination of extreme construction costs and an agency that doesn’t really want to build things with its $50 billion capital plans, it will not happen while the agency and its political leaders remain as they are.

The New Triboro/Interboro Plan

Governor Kathy Hochul announced a policy package for New York, and, in between freeway widening projects, there is an item about the Triboro subway line, renamed Interboro and shortened to exclude the Bronx. The item is brief and leaves some important questions unanswered, and this is good – technical analysis should not be encumbered by prior political commitments made ex cathedra. Good transit advocates should support the program as it currently stands and push for swift design work to nail down the details of the project and ensure the decisions are sound.

What is Triboro?

The Bronx Times has a good overview, with maps. The original idea, from the RPA’s Third Regional Plan in the 1990s, was to use various disused or barely-used freight lines, such as the Bay Ridge Branch, to cobble together an orbital subway from Bay Ridge via East New York and Jackson Heights to Yankee Stadium. Only about a kilometer of greenfield tunnel would be needed, at the northern end.

In the Fourth Plan from the 2010s, this changed. The Fourth Plan Triboro was like PennDesign’s Crossboro idea, differing from the Third Plan Triboro in three ways: first, the stop spacing would be wider; second, the technology used would be commuter rail for mainline compatibility and not subway; and third, the Bronx routing would not follow disused tunnels (by then sealed) to Yankee Stadium but go along the Northeast Corridor to Coop City. Years ago, I’ve said that the Fourth Plan Triboro is worse than the Third Plan.

Unlike the RPA Triboro plans, Hochul’s Interboro plan only connects Brooklyn and Queens, running from Jackson Heights to the south. I do not know why, but believe this has to do with right-of-way constraints further north. The Queens-Bronx connection is on Hell Gate Bridge, which has three tracks and room for a fourth (which historically existed), of which Amtrak uses two and CSX uses one; having the service run to the Bronx is valuable but requires figuring out what to do about CSX and track-sharing. The Third Plan version ignored this, which is harder now, in part because freight traffic has increased from effectively zero in the 1990s to light today.

Stop spacing

The stop spacing in the governor’s plan appears to be more express, as in the Fourth Regional Plan, where the service is to run mostly nonstop between subway connections. In contrast, the Third Regional Plan called for regular stop spacing of 800 meters, in line with subway guidelines for new lines, including Second Avenue Subway.

I’m of two minds on this. We can look at formulas derived here in previous years for optimal stop spacing; the formulas are most commonly applied to buses (see here and follow first paragraph links), which can change their stop pattern more readily, but can equally be used for a subway.

The line’s circumferential characteristic gives it two special features, which argue in opposite directions on the issue of stop spacing. On the one hand, trips are likely to be short, because many people are going to use the line as a way of connecting between two subway spokes and those are for the most part placed relatively close to one another; farther-away connections such as end-to-end can be done on a radial line. But on the other hand, trips are not isotropic, because most riders are going to connect to a line, and the stronger the distinguished nodes are on a line, the longer the optimal interstation is.

On this, further research is required and multiple options should be studied. My suspicion is that on balance the longer stop spacing will prove correct, but it’s plausible that the shorter one is better. A hybrid may well be good too, especially in conjunction with a bus redesign ensuring the stops on the new rail link are aligned with bus trunks.

The issue of frequency

The line’s short-hop characteristic has an unambiguous implication about service: it must be very frequent. The average trip length along the line is likely to be short enough, on the order of 15 minutes, that even 10-minute waits are a drag on ridership. Nor is it possible to set up some system of timed transfers to 10-minute subway lines, first of all because the subway does not run on a clockface timetable, and second because the only transfers that could be cross-platform are to the L train.

This means that all-day frequency must be very high, on the order of a train every 5 minutes. This complicates any track-sharing arrangement, because the upper limit of frequency on shared track with trains that run any other pattern is a bit worse than this. The North London Line runs every 10 minutes and shares track with freight, and I believe there are some short shared segments in Switzerland up to a train every 7.5 minutes.

The upshot is that freight can’t run during normal operations. This is mostly fine, there are only 2-4 freight trains a day on the Bay Ridge Branch, where there are segments of the right-of-way that are only wide enough for two tracks, not four. This means if freight is to be retained, it has to run during light periods, such as 5 in the morning or 11 at night, when it’s more acceptable to run passenger trains every 10 minutes and not 5.

Institutional Issues: Who is Entrusted to Learn?

I know I’ve been on hiatus in the last few weeks; here is the continuation of my series on institutional factors in public transportation. I have harped for more than 10 years about the need to learn best practices from abroad, and today I’d like to discuss the issue of who gets to learn. Normally it should be a best practices office or various planners who are seconded to peer agencies or participate in exchange programs, but the United States does things differently, leading to inferior outcomes.

The American pattern is that senior officials revel in junket trips while ordinary civil servants are never sent abroad. Any connections they make are sporadic: if they go to Europe on vacation at their own expense then they are allowed to attend professional conferences. This is the exact opposite of how good learning happens. A few days of a junket trip teach nothing, while long-lasting connections at the junior and middle levels of the bureaucracy facilitate learning.

This is connected with the issue of downward trust. When I confront Americans with the above pattern and explain why it is problematic, the response I get is always the same: senior officials do not trust junior ones. This is often further elaborated in terms of low- versus high-trust societies, but it is not quite that. It’s not about whether people trust their leaders, but whether the leaders, that is the layer of political appointees and senior managers, trust the people who they have parachuted to oversee. If they see themselves as mentors and guides and their charges as competent people to be coordinated, the institutional results will be superior to if they see themselves as guards and scourges and their charges as competitors.

Some examples

New York City Mayor-Elect Eric Adams, for example, spent much of the second half of this year flying over to Europe to experience urbanism outside the United States. He is not the only elected official to have done so. Mike Bloomberg reveled in his personal connections with Ken Livingstone in the 2000s, leading to his attempt to import London’s congestion pricing system into New York.

Below the mayoral level, senior officials engage in the same behavior. They fly to the Netherlands, France, Denmark, or any other country they seek to learn from for a few days, experience the system as a tourist, and come back with little more knowledge than when they left but a lot more self-assurance in their knowledge.

This is called the junket trip, because to the general public, it’s viewed as just a taxpayer-funded vacation. It isn’t quite that, because at least the ones who I’ve spoken to who engage in such behavior genuinely believe that they learn good practices out of it. But realistically, it has the same effects as a vacation. Spending a week in a city where you are an important person meeting with other important people who are trying to impress you will not teach you much.

My pedestrian observations

I would travel regularly before corona. Some of my early blog posts are literally called Pedestrian Observations from [City], describing my first impressions of a place; the name of this blog comes from a photo album I took in 2011 a few months before I started blogging, called Pedestrian Observations from Worcester.

Those observations were always a mixed bag, which I was always aware of. Overall, I think they’ve held up reasonably well – my pedestrian observations from Providence were mostly in accordance with how I would experience the city later after I moved there. But there were always big gaps; in my Providence post, note that in my first visit to the East Side I named Wickenden and South Main as the major commercial streets, missing the actual main drag, Thayer, which I only discovered during my next visit.

The same is true of transit observations. Shortly before corona, I spent a week in Taipei. I took the MRT everywhere, and was impressed with its cleanliness and frequency, but there isn’t too much more I could say about the system from personal experience. I could only tell you how it deep-cleaned the system in early 2020, when people thought corona was spread by fomites rather than aerosols, from a report sent to me by long-term resident Alex Garcia of Taipei Urbanism. I knew construction costs were high because I looked them up, but that’s not the same as personal experience, and I only have a vague understanding of why, coming from both Alex and papers I would later read on the subject.

In Berlin, at a queer meetup in 2019 on a Friday night, months into living here, I was expressing worry around midnight that I might miss the last train. One of the people there chided me. I was working in the transit industry, broadly speaking – how could I not know that trains here run overnight on weekends? I knew, but had forgotten, and I needed that person to remind me.

Secondment and exchange

The short junket trip reveals nothing. But this does not mean learning from abroad is impossible – quite to the contrary. The path forward is to take these trips but go for months rather than days. There are journalists who do this: Alec MacGillis, a Baltimore-based journalist, spent months in Germany to study how the country is dealing with economic and environmental issues, and when I met him toward the end of his stay, he could tell me things I did not know about the coal industry in Germany.

Within Europe and East Asia, there are exchange programs. DB sends its planners abroad on exchange missions for a few weeks to a few months at a time, not just within Western Europe but also to Japan and Russia – even in those countries enough people speak English that it’s possible to do this. The people who take these trips are ordinary middle-class civil servants and not a class of overlords; the locals who they interact with are their peers and will correct them on errors, just as my queer meetup friend corrected me when I forgot that Berlin trains run overnight on weekends.

This program must also include routine connections at conferences. These are short trips, but a planner who goes on one makes connections with planners abroad and hears about advances in the field, from a peer who will have a discussion as an equal about their own experience and expertise. Over many trips the attendees can then figure out patterns to travel, notice changes, and come up with their own suggestions. This is no different from the academic process, in which research groups across multiple continents would regularly meet to discuss their work, and form connections to produce joint papers.

This way, it’s possible to learn details. This includes consumer-level details, similar to how I learn a city by taking public transit there many times and finding out hidden gems like Berlin’s timed transfer stations at Mehringdamm and Wuhletal. But this also includes the back end of how planning is done, what assumptions everyone makes that may differ from one’s home country’s, and so on.

The United States has done this before, by accident. Veteran and planner R. W. Rynerson has long pointed out that first-generation light rail in North America, covering such systems as Edmonton, Calgary, San Diego, and Portland, was planned by veterans who’d served in Germany during the Cold War and were familiar with ongoing trends here. Army tours of duty abroad last years, and soldiers are often happy to extend them to offer their families stability.

This way, American light rail bears striking similarities to the German Stadtbahn concept. It exhibits convergent evolution with tram-trains, modified to avoid track-sharing with mainline rail. The vehicles used were developed for German Stadtbahn systems, and the concept of having a streetcar system that runs faster than a traditional streetcar came out of this history as well. However, the generation of vets has retired, and today American planners no longer keep up with European advances in the field. Civilian connections through conferences, secondments, and exchange programs do not really exist, and the militarization levels of the 1960s and 70s are a thing of the past.

Downward trust

When I confront Americans with the distinction between valuable but uncommon long-term, routine international links for ordinary engineers and planners and worthless but all too common executive junket trips, the excuses for the pattern all fall into the same family: executives just do not trust their workers. Senior management in this industry in the United States views the people they oversee as little devils to be constantly disciplined, and never supported.

Based on this pattern, the peons do not get professional development – only the executives do. If tabloid media criticizes European conferences as vacation trips then it is used as an excuse to prohibit civil servants from going, but somehow the executives still go on junket trips, figuring that someone at Eric Adams’ level can just ride out the media criticism.

Likewise, the civil servants do not get to develop any knowledge that the executives don’t have. If they come with prior knowledge – say, Hispanic immigrants who work in New York and keep abreast of developments in their country of origin – then they must be broken down. They are peons, not advisors, and the layer of political appointees parachuting to oversee them are scourges and not mentors.

I focus on mentorship because good advisors understand that their advisees’ success reflects positively on them. In academia, professors who successfully place their students at tenure-track research positions are recognized as such behind the scenes and the rumor mill will inform new students that they should seek them out as advisors; there is a separate whisper network for women to discuss which advisors are abusive to them.

And this mentorship requires a minimum level of downward trust. Academia, for all of its toxicity and drama, has it, but somehow the American public-sector planning field does not. This is especially bad considering that the American public sector has set up its benefits system to ensure that people stay at the same workplace for life, which environment is perfect for investing in the junior employees. And yet, senior management does not deem $60,000/year planners with lush pensions important enough to pay $1,500 to send them to a conference abroad.

A high-trust environment is not one where the broad public trusts the elite. Germany has a culture of incessant complaints about everything; every middle-class German is certain they can do better than the state in many fields, and regrettably, many are correct. No: a high-trust environment is one where the elite trusts both the broad public and its own subordinates. This is what European public transit agencies have to varying extents, the ones that are more trusting of the riders generally having better outcomes than the ones that are less trusting, and what American ones lack.

Institutional Issues: Coordination

In this installment of institutional issues, I’m going to talk about coordination, following up from procurement, professional oversight, transparency, proactive regulations, and dealing with change.

The state is to a large extent a coordinating body. Even the more extractive aspects of it, like historically the military, succeeded or failed not by who was the most brutal (they all were brutal) but by who was most efficient at organizing large groups of people.

Coordination in public transit is especially important, because it’s a system with many moving parts: infrastructure, equipment, timetable, development. These do not accrete spontaneously, not in any society that has also invented cars; transit-oriented development in the 21st century looks different from historic development before mass motorization. Organizational capacity makes the difference between a state that grows around mass transit, like Japan or South Korea or Switzerland or Sweden or increasingly France, and one that grows around cars even when the goal is nominally transit first, as is common in the United States but also most of Southeast Asia.

So in general, better coordination means overall better public transit. But it specifically means better investment – more targeted at the right places. And this is especially visible in mainline rail, which is less self-contained than urban metro lines. The right way to plan is to get different bodies to cooperate, such as different railroads and government agencies. And then there is the wrong, American way.

Coordination versus wishlists

In theory, the United States has mechanisms to get different agencies to talk to one another. The Northeast Corridor planning process understands that the corridor has many users and owners: Amtrak, MBTA, Connecticut DOT, MTA, New Jersey Transit, SEPTA, MARC. To ensure they collaborate, there are layers set on top of them, like the NEC Commission.

And yet, the NEC Commission’s plans are not worth the paper they are written on, and the people involved should not work in this field or in government again. The problem is that their idea of coordination is to ask each of the above agencies what its wishlist is, collate the responses, and staple them together.

The wishlist staple job is the opposite of coordination. Coordination means sitting down with intercity and regional rail operators, figuring out their service needs, and writing down a timetable with associated infrastructure plan that maximizes service at minimum cost. Even the accidental moves toward coordination that do exist, like the MBTA plan to complete electrification of the Providence Line and run modern EMUs rather than diesels under catenary, do not figure into the plan: Amtrak still wants a third track on the Providence Line, which such electrification obviates even if Amtrak cuts its Boston-Providence trip time in half. The third track was said to cost $400 million years ago; I do not know if it is still its budget or whether costs are higher now. One such unnecessary project at a time is what it takes to turn what should be a $15 billion project into three-figure billions.

This wishlist mentality is present whenever bad planners (e.g. all Americans) try to do something that involves more than one agency. It’s assumed that different parts of the government must constantly be at one another’s throats. Unless one agency dominates, the only solutions in this mentality are either to do a staple job, or subordinate all agencies to one new hierarchy, typically run by people who have never run transit service and do not respect those who have.

How to plan mainline rail better

Three of the legs of coordinated planning – infrastructure, rolling stock, timetable – are coordinated in an excellent way in Switzerland. (Switzerland is unfortunately too NIMBY for modern TOD.) This does not mean slavishly copying every single Swiss decision, but it does mean that it behooves planners to learn how Swiss rail planners got Europe’s best rail network on a limited (though not quite austerity) budget.

The way it should work is that everything begins from the timetable. Trains must run on the same fixed interval – typically hourly, but denser services should be planned around shorter intervals like 30 minutes or smaller divisors of the hour. This provides the base level of coordination: connections between trains at major stations are to be done at times that are compatible with this interval.

If the trip time between major stations (“Knoten”) is just a bit too long for timed connections at both ends, it means that the trains should be sped up. This is the run trains as fast as necessary maxim, beloved by many high-speed rail opponents who bring up that maxim far more often than they bring up how much rail tunneling Switzerland has built.

Everything must come based on this plan. The choice of rolling stock must be compatible. Switzerland chose bilevel EMUs, because its use case is urban stations with a surplus of platform tracks but limited platform length; the bilevel trades off higher on-train capacity per unit of train length for lower egress capacity, and in a country where the main train station has 26 tracks, the bilevel is the correct choice. Maybe in another environment it is and maybe it isn’t; in New York it is not.

The slate of infrastructure projects must likewise be based on total integration of operations and capital planning. This means being able to trace delays to their source, using data to figure out what the most problematic areas are, and fixing them. Swiss trains are not inherently punctual; delays in the 5 minute range are routine. What sets them apart is that the infrastructure has been designed, at minimum cost, to ensure that delays don’t propagate, whereas in Germany, cascading delays are more common, and the less said about the United States, the better.

Swiss integration, to be clear, operates in an environment that is highly federal, has a smattering of private railroads interoperating with SBB, is stingy about public spending, and has in most cases Western Europe’s most privatized economy. And yet there is no separation of infrastructure and operations, in contrast with the trend in Britain and the EU.

Coordination and saying no

A planning agency that has to work with operators to ensure they all collaborate has to mediate conflict in many cases. This is the origin of the wishlist mentality: by planning overly expensive systems with maximum separation between operators, conflict is avoided, at the minor cost of an order of magnitude increase in the budget.

A better way to mediate is to either propose compromises, or outright saying no. Investment that is not part of the coordinated plan is extra and infrastructure plans should not burden the taxpayers with it. If different bodies conflict, sometimes one is right and the other is wrong, and the infrastructure planners should say so; sometimes who is right and who is wrong is consistent, sometimes it isn’t. Moreover, if bodies refuse to coordinate, it’s important to be able to say no to overall plans.

All of this interfaces with previous posts on this subject. In particular, the infrastructure investment program, whether it’s a regional Verkehrsverbund or an intercity system like the NEC Commission, should consist of subject matter experts. Senior politicians should understand that those experts are paid to maximize the efficiency of an enormous infrastructure program and therefore defend their expertise against attacks.