Category: Transportation

Tokyo Construction Costs

Here is a list of Japanese subways and their construction costs, courtesy of Borners, who has been working on this as well as on a deep dive about London construction costs. I’d been looking for this data for years; someone in comments posted a link to a different sheet summarizing the same data years ago but I couldn’t find it.

Unfortunately, the list isn’t quite good enough to be used for all subway lines. The problem is that the numbers are given in nominal yen for the costs of constructing entire lines, including ones that opened in phases over many years during which inflation was significant. The table of lines and their construction costs in units of 100 million yen/km is as follows, with my best attempt at deflating to 2023 prices, still in units of 100 million yen/km; to convert to millions of dollars per km, the 2022 PPP rate is $1 = ¥94.93, so add 5.3% to all numbers in the penultimate column.

LineCost/kmFirst worksFirst openingFinal openingYear of pricesCost/km (real)Confidence
Marunouchi181951195419621956114Medium
Asakusa461956196019681961257Medium
Hibiya321959196119641961179High
Tozai411962196419691965181High
Mita911965196820001975182Low
Chiyoda691966196919791970236Low
Yurakucho1671970197419881979261Low
Hanzomon2551972197820031983336Low
Shinjuku2351971197819891976433Low
Namboku2621986199120011993291High
Oedo3111986199120001994343High
Fukutoshin2822001200820082005314High

The confidence level is a combination of the length of time it took to build the line and the inflation rate over that period. The Oedo and Namboku Lines opened in stages over a decade, but during that decade Japan had no inflation, and as a result price level adjustments are easy. In contrast, inflation in the 1960s was high but the Hibiya and Tozai Lines were built quickly, so that the uncertainty based on picking a year to deflate to is maybe 10%. The in between lines – Mita, Chiyoda, Yurakucho, Hanzomon – all opened in stages over a long period of time with significant inflation. This makes it hard to use them to answer the question, what was Tokyo’s cost history?

What the numbers suggest is that by the 1970s, construction costs were not much lower than they’d be in the 2000s; Japan having grown steadily in the 1970s and 80s, this means that its ability to afford new subways after the bubble burst in the 1990s was actually greater than in the 1970s. Construction costs have risen since – an extension of the Namboku Line to Shinagawa is budgeted at ¥131 billion/2.5 km and a branch extension of the Yurakucho Line from Toyosu to Sumiyoshi is budgeted at ¥269 billion/4.8 km. Toyosu-Sumiyoshi is in Shitamachi and has multiple canal crossings justifying an elevated cost, but Shirokane-Takanawa-Shinagawa is in easier topography, and while it has multiple subway crossings over a short length, so did the lines built in the 1990s and 2000s – the Fukutoshin Line has, over 9 km, five subway crossings and complex connections at both ends with through-running.

Cos Cob Bridge Replacement

The Northeast Corridor has eight movable bridges in Connecticut; other than one that was replaced in the 1990s, all are considered by Amtrak and Connecticut DOT to be both critical priorities for replacement and also major undertakings. The Bipartisan Infrastructure Law funded two, on the Connecticut and the Norwalk Rivers. The costs are enormous, beyond any justification: the Walk Bridge replacement is funded at $1 billion for a four-track bridge of 200 meters, and the replacement will still be a movable bridge rather than a fixed span with enough clearance below for boat traffic. The cost can be compared with an order of magnitude of tens of millions of dollars for comparable or longer bridges, for examples $50 million for one of the Rhone bridges on the LGV Méditerranée and $32 million for an 800 m viaduct on the Erfurt-Nuremberg line.

The goal of this post is to focus on the Cos Cob Bridge on the Mianus River. Among the eight bridges, it is the one with the least advanced plans for rehabilitation, such that no cost figure is given, but rumors put it in the mid-single digit billions for a viaduct of about 1 km, crossing about 250 m of water. Among the bridges west of New Haven, it is also the one with the most constrained alignment making replacement more necessary to fix the right-of-way geometry: the bridge itself is straight but flanked by two short, sharp curves, and replacement should be bundled with a wider curve.

The NEC Webtool outlines one alignment, with a wide curve, 2,400 meters in radius. The snag is the vertical alignment. The bridge needs to be high enough to clear boat traffic below; I-95 slightly upriver has a clearance below of 14.9 meters (Wikipedia says 21 meters but that’s the top of the deck, not the bottom), and with a typical deck thickness of 1.5 meters it means top of rail needs to be about 16.5 meters above sea level – but the Riverside station 450 meters east of the midpoint of the river has top of rail 10 meters above sea level and the Cos Cob station under the I-95 overpass 450 meters west of the midpoint is 8 meters above sea level. To build it as a high span thus requires rising 8.5 meters over 450 meters.

The current Northeast Corridor plans hew to a much lower ruling grade. The Walk Bridge is being replaced with another movable bridge and not a high fixed span because the standards call for a 1% grade. This is, frankly, dumb. The passenger trains are electric, either commuter rail EMUs or powerful intercity trains capable of climbing 4% grades over a short section, even the medium-speed Northeast Regionals. The freight trains are long enough that what matters isn’t so much the maximum grade as the maximum grade averaged over the length of a train, in which case peaking at 4% over a length of 450 meters is not at all problematic.

With a 4% standard, the question is not about the grade, but about the vertical curve radius. Standards for those are tighter than for horizontal curves. Vertical and horizontal curve radii both follow the formula ar = v^2, but the acceleration limit a is much tighter since there is no tilting or superelevation, and on a crest a high speed also reduces the effective weight acceleration and thus reduces train stability. In Germany, a is limited to 0.482 on a crest and 0.594 on a hallow, both requiring special permission; in Sweden, the German crest value is the minimum limit, with no special dispensation on a hallow. The upshot is that at 250 km/h, the exceptional vertical curve radius is 10,000 m and thus it takes 400 meters just to get to 4%; over a length of 450 meters, the maximum average gradient is 1.125% if the higher acceleration rate on a hallow isn’t used or 1.25% if is and the tracks can only rise respectively 5 or 5.5 meters. To make it 8.5, the speed limit needs to be reduced: at 200 km/h, the vertical curve radius is 6,400 meters and then over 225 meters the trains can get up to 3.5% and, if it’s symmetric, over 450 they can climb 7.9 meters, and if it’s asymmetric then they can climb more than the required 8.5%. It’s dirty but it does work.

The issue is then how this affects construction. I don’t know why the Connecticut bridge replacements are so expensive, beyond the observation that everything in Connecticut is exceptionally expensive, usually even by the standards of other Northeastern American rail projects (for example, infill stations), let alone European ones. The local press articles talk about staging construction to avoid disturbing the running track, and if this is the main difficulty, then building a new bridge 50 meters upriver should be much easier, since then the only part of the project interfacing with the existing track is the track connections on firma.

Whatever it is, a multi-billion dollar pricetag is not believable given the required scope. More difficult construction has been done for two orders of magnitude less on this side of the Pond. On a different mode but in the same region, the 10-lane 1.4 km long Q Bridge cost $554 million, around $790 million today, which, relative to the size of the bridge, is still around an order of magnitude cheaper than Walk and more than an order of magnitude cheaper than what Cos Cob is rumored to be.

16-Car Trains on the Northeast Corridor

The dominant length of high-speed rail platforms in China, Japan, South Korea, and Europe is 400 meters, which usually corresponds to 16-car trains. The Northeast Corridor unfortunately does not run such long trains; intercity trains on it today are usually eight cars long, and the under construction Avelia Liberty sets are 8.5 cars long. Demand even today is high enough that trains fill even with very high fares, and so providing more service through both higher frequency and longer trains should be a priority. This post goes over what needs to happen to lengthen the trains to the global norm for high-speed rail. More trains need to be bought, but also the platforms need to be lengthened at many stations, with varying levels of difficulty.

The station list to consider is as follows:

  • Boston South Station
  • Providence
  • New London-HSR
  • New Haven
  • Stamford
  • New York Penn Station
  • Newark Penn Station
  • Trenton
  • Philadelphia 30th Street
  • Wilmington
  • Baltimore Penn Station
  • BWI
  • Washington Union Station

Some of these are local-only stations – the fastest express trains should not be stopping at New London or BWI, and whether any train stops at Stamford or Trenton is a matter of timetabling (the headline timetable we use includes Stamford on all trains but I am not wedded to it). In order, allowing 16-car trains at these stations involves the following changes.

Boston

South Station’s longest platforms today are those between tracks 8 and 9 and between tracks 10 and 11, both 12 cars long. To their immediate south is the interlocking, so lengthening would be difficult.

Moreover, the best platforms for Northeast Corridor trains to use at South Station are to the west. The best way to organize South Station is as four parallel stations, from west to east (in increasing track number order) the Worcester Line, the Northeast Corridor and branches, the Fairmount Line, and the Old Colony Lines, with peak traffic of respectively 8, 12 or 16, 4 or 8, and 6 trains per hour. This gives the Northeast Corridor tracks 4-7 or possibly 4-9; 4-7 means the Franklin Line has to pair with the Fairmount Line to take advantage of having more tracks, and may be required anyway since pairing the Franklin Line with the Northeast Corridor (Southwest Corridor within the city of Boston) would constrain the triple-track corridor too much, with 12 peak commuter trains and 4 peak intercity trains an hour.

The platform between tracks 6 and 7 is 11 cars long, but to its south is a gap in the tracks as the interlocking leads tracks 6 and 7 in different directions, and thus it can be lengthened to 16 cars within its footprint. The platform between tracks 4 and 5 is harder to lengthen, but this is still doable if the track that tracks 5 and 6 merge into south of the station is moved in conjunction with a project to lengthen the other platform.

Of note, the other Boston station, Back Bay, is rather constrained, with nearly the entire platforms under an overbuild, complicating any rebuild.

Providence

Providence has 12-car platforms. The southern edge is under an overbuild with rapid convergence between the tracks and cannot reasonably be extended. But the northern edge is in the open air, and lengthening is possible. The northern edge would be on rather tight curves, which is not acceptable under most standards, but in such a constrained environment, waivers are unavoidable, as is the case throughout urban Germany.

New London

This is a new station and can be built to the required length from the start.

New Haven

The current station platforms are only 10 cars long, but there is space to expand them in both directions. The platform area is in effect a railyard, a good example of the American tradition in which the train station is not where the trains are (as in Europe) but rather next to where the trains are.

A rebuild is needed anyway, for two reasons. First, it is desirable to build a bypass roughly following I-95 to straighten the route beginning immediately north of the station, even cutting off State Street in order to go straight to East Haven rather than curve to the north as on the current route. And second, the current usage of the station is that Amtrak uses tracks 1-4 (numbered west to east as in Boston) and Metro-North uses tracks 8-14, which forces Amtrak and Metro-North trains to cross each other at grade from their slow-fast-fast-slow pattern on the running line to the fast-fast-slow-slow pattern at the station. In the future, the station should be used in such a way that intercity trains either divert north to Hartford or Springfield or go immediately east on a flying junction to the high-speed bypass toward Rhode Island, without opposed-direction flat junctions; the flying junction is folded into the cost of the bypass and dominates the cost of rebuilding the platforms, as the space immediately north and south of the platforms is largely empty.

Stamford

Stamford has 12-car platforms. Going beyond that is hard, to the point that a more detailed alternatives analysis must include the option of not having intercity trains stop there at all, and instead running 12-car express commuter trains, lengthening major intermediate stops like South Norwalk (currently 10 cars long) and Bridgeport (currently 8) instead.

To keep the mainline option of stopping at Stamford, a platform rebuild is needed, in two ways. First, the station today has five tracks, a both literally and figuratively odd number, not useful for any timetable, with the middle track, numbered 1 (from north to south the numbers are 5, 3, 1, 2, 4), not served by a platform. And second, the platform between tracks 3 and 5 can at best be lengthened to 14 cars, while that between tracks 2 and 4 cannot be lengthened without moving tracks on viaducts. This means that some mechanism to rebuild the station should be considered, to create four tracks with more space between them so that 16-car platforms are viable; this should be bundled with a flying junction farther east to grade-separate the New Canaan Branch from the mainline.

A quick-and-dirty option, potentially viable here but almost nowhere else, is selective door opening, at the cost of longer dwell times. Normally selective door opening should not be used – it confuses passengers, for one. However, here it may be an option, as intercity traffic here is unlikely to be high; traffic today is 323,791 in financial 2023, the lowest of any station under consideration in this post unless one counts New London. The only reason to stop here in the first place is commuter ridership, in which case mechanisms such as restricting unreserved seats to the central 12 cars can be used.

New York

Penn Station has multiple platforms already long enough for 16- and even 17-car trains, including the one we pencil for all high-speed intercity trains in the proposal, platform 6 between tracks 11 and 12, as well as the two adjacent platforms, 5 and 7. (Note that unlike at New Haven and Boston, platform numbers at Penn increase south to north, that is right to left from the perspective of a Boston-bound traveler.)

Thank the god of railways, since platform expansion requires a multi-billion dollar project to remove the Madison Square Garden overbuild in the most optimistic case; in a more pessimistic case, it would also require removing the Moynihan Station overbuild.

Newark

Newark Penn Station’s platforms are in a grand structure about 14.5 cars long. Thankfully, they extend a bit south of it, producing about 16 cars’ worth of platform on the west (southbound) side, between tracks 3 and 4; as in New York, track numbers increase east to west. On the east side, PATH interposes between the two tracks, which have a cross-platform transfer from northbound New Jersey Transit trains to PATH. The platform structures and their extensions do have enough length to allow 16-car trains – indeed they go as long as 18 – but the southern ends are currently disused and would require some rehabilitation.

Trenton

Trenton has a 12.5 car long southbound platform and an 11.5 car long northbound platform. There is practically no room for an expansion if no tracks are moved. If tracks are moved, then some space can be created, but only enough for about 14 cars, not 16.

However, traffic is low, the second lowest among stations under consideration next to Stamford. The suite of Stamford solutions is thus most appropriate here: selective door opening with only the middle 12 cars (naturally the same as at Stamford) open to commuters, or just not stopping at this station at all. The only reason we’re even considering stopping here is timetabling-related: trains should be running every 10 minutes around New York but every 15 between Baltimore and Washington, or else significant expansion of quad-tracking on the Penn Line is required, and so a local stop should be added as a buffer, which can be Trenton or BWI, and BWI has twice the current Amtrak traffic of Trenton.

Philadelphia

30th Street Station has 14-car platforms. Selective door opening is basically impossible given the high expected traffic at this station, and instead platform expansion is required. There is an overbuild, but the tracks stay straight and only begin curving after a few tens of meters, which gives room for extension; from the north end to the overbuild to where the tracks begin curving toward one another to the south is 15.5 cars, and there is room north of the overbuild between the tracks.

Whatever reconstruction project is needed is helped by the low traffic at these platforms. SEPTA uses the upper level of the station, with tracks oriented east-west. The north-south lower level is only used by Amtrak, which could be easily reduced to three platform tracks (two Northeast Corridor, one Keystone) if need be, out of 11 today. Thus, staging construction can be done easily and intrusively, with no care taken to preserve track access during the work, as half the station platforms can be closed off at once.

Wilmington

Wilmington is frustrating, in that there is platform space for 16 cars rather easily, but it’s on inconsistent sides of the tracks. Track numbers increase south to north; track 1 has a side platform, there’s an island platform between tracks 2 and 3, and then track 3 also has a side platform on the other side, extending well to the east of the island platform. The island platform and the track 1 platform are about 12.5 cars long, and the track 3 side platform is 13.5 cars long. Thus, an extension, selective door opening, or a station rebuild is required.

The island platform can be extended about one car in each direction, so it cannot be the solution without selective door opening. Both side platforms can be extended somewhat to the west: the track 1 platform can be extended to 16 cars, but it would need to be elevated in the narrow space between the track viaduct and the station parking garage; the track 3 platform can be extended in both directions, avoiding a new elevated extension over North King Street.

If for some reason an extension of the track 1 platform is not possible, then selective door opening can be used, but not as reliably as at lower-traffic Stamford or Trenton, and overall I would not recommend this solution. A station rebuild then becomes necessary: the station has three tracks but doesn’t need more than two if SEPTA and Amtrak can be timetabled right, and then the removal of either track 1 or track 2 would create space for a longer platform.

Baltimore

Baltimore Penn has seven tracks, numbered from south to north 1, 3, 4, 5, 6, 7, F. Their platforms are 10 to 13 cars long. Northbound trains are more or less forced to use the platform between tracks 1 and 3, since the way the route tapers to a three-, then four-track line to the east forces all eastbound trains to use mainline track 1; this platform is rather narrow at its east end but has space to the west for a 16-car extension. Westbound trains can use either the platform between tracks 4 and 5 or that between tracks 6 and 7, with tracks 4 and 6 preferred over 7 as they reach the express westbound track (track 5 stub-ends). Both platforms can be extended, with the platform between tracks 6 and 7 requiring a one-car extension to the east where a ramp down to track level for track workers exists whereas that between tracks 4 and 5 has ample unused space to its west.

BWI

The two side platforms at BWI are just under 13 cars long. However, nowhere else on the corridor is an extension easier: the station is located in an undeveloped wooded area, with space cleared on both sides of the track so that tree cutting is likely unnecessary west of the tracks and certainly unnecessary east of them.

The station itself needs a rebuild anyway, due to already existing plans to widen it from three to four tracks. This is required to enable intercity trains to overtake commuter trains anyway, unless delicate timetabling on triple track is used or another part of the Penn Line is set up as a four-track overtake. The plans are rather advanced, but platform extensions can be pursued as an add-on, without disturbing them due to the easy nature of the right-of-way.

Washington

Washington is set up as two separate stations, a high-platform terminal to the west and a low-platform through-station to the east on a lower level. Track numbers increase west to east, the western part taking 7-20 (though only 9-20 are high and wired) and the eastern part 23-30. None of the western platforms is long enough, but multiple options still exist:

  • The platform between tracks 9 and 10 has room for an extension.
  • The platforms between tracks 15 and 16 and between tracks 16 and 17 look like they already have extensions, if not open for passengers.
  • The platforms between track 17 and track 18 and between tracks 19 and 20 are only 12 cars long, but tracks could be cannibalized in the open air to make a long enough platform, especially since the reason track numbers 21 and 22 are skipped is that there used to be tracks there and now there’s empty space.
  • The platform between tracks 25 and 26 is long enough, and could be raised to have level boarding.

The existing platforms that can be extended easily are sufficient in number, but probably not in location – it’s ideal for the platforms to be close together, to simplify the interlocking as trains have to be scheduled to enter and leave the station without opposite-direction conflicts. If it’s doable even with a split between platforms separated by multiple tracks then it’s ideal, but otherwise, the extra work on tracks 17-20 may be necessary, converting a part of the station that presently has six tracks and four platforms into likely four tracks and two platforms.

Conclusion

All of this looks doable. The hardest station, Stamford, is skippable if selective door opening is unviable after all and a rebuild is too expensive. Among the other stations, light rebuilds are needed at Boston, Wilmington, and maybe Washington; New Haven needs a more serious rebuild as part of the bypass, but the station platforms are a routine extension where there is already room between the tracks. The most untouchable station, New York, already has multiple platforms of the required length at the required location within the station.

Northeast Corridor Profits and Amtrak Losses

In response to my previous post, it was pointed out to me that Amtrak finances can’t really be viewed in combination, but have to be split between the Northeast Corridor, the state-supported routes, and the long-distance trains. Long-distance is defined by a 750 mile (1,200 km) standard, comprising the night trains plus the Palmetto; these trains have especially poor financial performance. The question is what level of Northeast Corridor profitability is required to cover those losses.

In financial 2024 (ending 2024-09-30), Amtrak finances per route category were as follows, in millions of dollars or passenger-km or in dollars per p-km:

CategoryRidershipP-kmCostCost/p-kmRevenueRevenue/p-km
NEC144,053.31,146.80.2831,414.60.349
State-supported14.52,972.61,110.70.374859.20.289
Long-distance4.33,505.81,261.20.36626.10.179

The long-distance trains don’t actually have higher cost structure than the state-supported ones. Their greater losses are because fares are degressive in distance, and so the longer distances traveled translate to lower revenue per kilometer. This is also observable on some high-speed routes in Europe – the fares on TGVs using the LGV Sud-Est are very degressive, with little premium on Paris-Nice over Paris-Lyon despite the factor of 2.5 longer distance and factor of almost 3 longer time.

Revenue per passenger-km in France and Germany is around $0.15, as I explain in this post with links, and revenue per passenger-km in Japan is $0.25, both with average trip lengths similar to those of the Northeast Corridor and state-supported trains. Getting operating costs for just high-speed trains in France and Germany is surprisingly tricky; the Spinetta report says the TGV costs 0.06€/seat-km without capital, which at current seat occupancy is around 0.08€/p-km or around $0.11/p-km.

The upshot is that Northeast Corridor profits need to be $886.6 million a year to cover losses elsewhere, and if the operating costs on the corridor were the same as on the TGV, this could be achieved now with no further increases in service.

Now, in reality, high-speed rail would both massively increase ridership and also have to involve reducing fares to more normal levels than $0.35/p-km. If the revenue is $0.15/p-km and the cost is $0.11/p-km, then traffic in p-km has to rise to 22.165 billion/year, a fivefold increase, to cover. This is less implausible than it sounds – my gravity-based ridership model predicts about that ridership. Potentially, operating costs could be lower than on the TGV, if the entire corridor is (relatively) fast, with no long sections on slow lines as in France, and if traffic is less peaky than in France. But to first order, the answer to the profits question should be “probably but not certainly.”

Amtrak’s Failure

An article in Streetsblog by Jim Mathews of the Rail Passengers Association talking up Amtrak as a success has left a sour taste in my mouth as well as those of other good transit activists. The post says that Amtrak is losing money and it’s fine because it’s a successful service by other measures. I’ve talked before about why good intercity rail is profitable – high-speed trains are, for one, and has a cost structure that makes it hard to lose money. But even setting that aside, there are no measures by which Amtrak is a successful, if one is willing to look away from the United States for a few moments. What the post praises, Amtrak’s infrastructure construction, is especially bad by any global standard. It is unfortunate that American activists for mainline rail are especially unlikely to be interested in how things work in other parts of the world, and instead are likely to prefer looking back to American history. I want to like the RPA (distinct from the New York-area Regional Plan Association, which this post will not address), but its Americanism is on full display here and this blinds its members to the failures of Amtrak.

Amtrak ridership

The ridership on intercity rail in the United States is, by most first-world standards, pitiful. Amtrak reports, for financial 2023, 5.823 billion passenger-miles, or 9.371 billion p-km; Statista gives it at 9.746 billion p-km for 2023, which I presume is for calendar 2023, capturing more corona recovery. France had 65 billion p-km on TGVs and international trains in 2023.

More broadly than the TGV, Eurostat reports rail p-km without distinction between intercity and regional trains; the total for both modes in the US was 20.714 billion in 2023 and 30.89 billion in 2019, commuter rail having taken a permanent hit due to the decline of its core market of 9-to-5 suburb-to-city middle-class commuting. These figures are, per capita, 62 and 94 p-km/year. In the EU and environs, only one country is this low, Greece, which barely runs any intercity rail service and even suspended it for several months in 2023 after a fatal accident. The EU-wide average is 955 p-km/year. Dense countries like Germany do much better than the US, as do low-density countries like Sweden and Finland. Switzerland has about the same mainline rail p-km as the US as of 2023, 20.754 billion, on a population of 8.9 million (US: 335 million).

So purely on the question of whether people use Amtrak, the answer is, by European standards, a resounding no. And by Japanese standards, Europe isn’t doing that great – Japan is somewhat ahead of Switzerland per capita. Amtrak trains are slow: the Northeast Corridor is slower than the express trains that the TGV replaced, and the other lines are considerably slower, running at speeds that Europeans associate with unmodernized Eastern European lines. They are infrequent: service is measured in trains per day, usually just one, and even the Northeast Corridor has rather bad frequencies for the intensely used line it wants to be.

Is this because of public support?

No. American railroaders are convinced that all of this is about insufficient public funding, and public preference for highways. Mathews’ post repeats this line, about how Amtrak’s 120 km/h average speeds on a good day on its fastest corridor should be considered great given how much money has been spent on highways in America.

The issue is that other countries spend money on highways too. High American construction costs affect highway megaprojects as well, and thus the United States brings up the rear in road tunneling. The highway competition for Amtrak comprises fairly fast, almost entirely toll-free roads, but this is equally true of Deutsche Bahn; the competition for SNCF and Trenitalia is tollways, but then those tollways are less congested, and drivers in Italy routinely go 160 km/h on the higher-quality stretches of road.

Amtrak itself has convinced itself that everyone else takes subsidies. For example, here it says “No country in the world operates a passenger rail system without some form of public support for capital costs and/or operating expenses,” mirroring a fraudulent OIG report that compares the Northeast Corridor (alone) to European intercity rail networks. Technically it’s true that passenger rail in Europe receives public subsidies; but what receives subsidies is regional lines, which in the US would never be part of the Amtrak system, and some peripheral intercity lines run as passenger service obligation (PSO) with in theory competitive tendering, on lines that Amtrak wouldn’t touch. Core lines, equivalent to Chicago-Detroit, New York-Buffalo, Washington-Charlotte-Atlanta, Los Angeles-San Diego, etc., would be high-speed and profitable.

But what about construction?

What offends me the most about the post is that it talks up Amtrak’s role as a construction company. It says,

Today, our nationalized rail operator is also a construction company responsible for managing tens of billions of dollars for building bridges, tunnels, stations, and more – with all the overhead in project-management staff and capital delivery that this entails.

The problem is that Amtrak is managing those tens of billions of dollars extremely inefficiently. Tens of billions of dollars is the order of magnitude that it took to build the entire LGV network to day ($65.5 billion in 2023 prices), or the entire NBS network in Germany ($68.6 billion). Amtrak and the commuter rail operators think that if they are given the combined cost to date of both networks, they can upgrade the Northeast Corridor to be about as fast as a mixed high- and low-speed German line, or about the fastest legacy-line British trains (720 km in 5 hours).

The rail operations are where Amtrak is doing something that approximates good rail work – lots of extraneous spending, driving up Northeast Corridor operating costs to around twice the fares on German and French high-speed trains, probably around 3-4 times the operating costs on those trains. But capital construction is a bundle of bad standards for everything, order-of-magnitude cost premiums, poor prioritization, and agency imperialism leading Amtrak to want to spend $16 billion on a completely unnecessary expansion of Penn Station. The long-term desideratum of auto-tensioned (“constant-tension”) catenary south of New York, improving reliability and lifting the current 135 mph (217 km/h) speed limit, would be a routine project here, reusing the poles with their 75-80 meter spacing; an incompetent (since removed) Amtrak engineer insisted on tightening to 180′ (54 m) so the project is becoming impossibly expensive as the poles have to be replaced during service. “Amtrak is also doing construction” is a derogatory statement about Amtrak.

Why are they like this?

Americans generally resent having to learn about the rest of the world. This disproportionately affects industries where the United States is clearly ahead (for example, software), but also ones where internal American features incline Americans to overfocus on their own internal history. Railroad history is rich everywhere, and the relative decline of the railway in favor of the highway lends itself to wistful alternative history, with intense focus on specific lines or regions. New Yorkers are, in the same vein, atypically provincial when it comes to the subway’s history, and end up making arguments, such as about the difficulty of accessibility retrofits on an old system, that can be refuted by looking at peer American systems, not just foreign ones.

The upshot is that an industry and an advocacy ecosystem that both intensely believe that railroad decline was because government investment favored roads – something that’s only partly true, since the same favoring of roads happened more or less everywhere – will want to learn from their own local histories. Quite a lot of advocacy by the RPA falls into the realm of trying to revive the intercity rail system the US had in the 1960s, before the bankruptcies and near-bankruptcies that led to the creation of Amtrak – but this system was what lost out to highways and cars to begin with. The innovations that allowed East Asia to avoid the same fate, and the innovations that allowed Western Europe to partly reverse this fate, involve different ideas of how to build and operate intercity rail.

And all of this requires understanding that, on a basic level, Amtrak is best described as a mishmash of the worst features of every European and East Asian railway: speed, fares, frequency, reliability, coverage. Each country that I know of misses on at least one of these aspects – Swiss trains are slow, the Shinkansen is expensive, the TGV has multi-hour midday gaps, German trains barely run on a schedule, China puts its train stations at inconvenient locations. Amtrak misses on all of those, at once.

And while Amtrak misses on service quality in operations, it, alongside the rest of the American rail construction industry, practically defines bad capital planning. Cities can build the right project wrong, or build the wrong project right, or have poor judgment about standards but not project delivery or the reverse, and somehow, Amtrak’s current planning does all of these wrong all at once.

Quick Note: Rural Drivers Aren’t Being Oppressed

A new paper is making the round arguing that Spanish rural automobility is a response to peripheralization. It’s a mix of saying what is obvious – in rural areas there is no public transportation and therefore cars are required for basic mobility – and proposing this as a way of dealing with the general marginalization of people in rural areas. The more obvious parts are not so much wrong as underdeveloped – the paper is an ethnography of rural drivers who say they need to drive to get to work and to non-work destinations like child care. But then the parts talking about peripheralization are within a program of normalizing rural violence against the state and against urban dwellers, and deserves a certain degree of pushback.

The issue here is that while rural areas are poorer than urban ones, making them economically more peripheral, they are not at all socially peripheral. This can be seen in a number of both economic and non-economic issues:

  • Rural areas are showered with place-based subsidies to deal with poverty, on top of the usual universal programs (like health care and pensions) that redistribute money from rich to poor regardless of location. This includes farm subsidies, like the Common Agricultural Policy, and infrastructure subsidies in which there’s more investment relative to usage in rural than in urban areas. The automobility of rural areas is itself part of this program: urban motorways can fund themselves from tolls where they need to, but national programs of road improvements end up improving the mobility options of rural areas out of almost exclusively urban taxes. In public transport, this includes considerable political entitlement, such as when Spanish regional governors made a botched train procurement into a national scandal and demanded that the chief of staff of the national transport ministry, Isabel Pardo de Vera Posada, resign over something she’d had nothing to do with.
  • Rural poverty is culturally viewed as the fault of other people than the residents. Poor urban neighborhoods are called no-go zones; I am not familiar enough with Spanish discourse on this but I doubt it’s different from French, German, and Swedish discourses, in which poor rural areas are never so called. A German district with neo-Nazi groups and majority public sympathy with extremism is called a victim of globalization in media, even left-leaning media, and not a no-go zone.
  • Rural areas, regardless of income, are socially treated as more authentic representatives of proper values, with expressions like Deep England or La France profonde contrasting with constant scorn for London, Paris, and Berlin.
  • Rural violence is treated as almost respectable. Political and media reactions to farmer riots with tractors as of late have been to shower the rioters with understanding. In France, the government acceded to the demands, and then-minister of the interior Gérald Darmanin forced law enforcement to act with restraint. In contrast, urban riots by racial minorities lead to mass arrests, the occasional fatal shooting of a rioter, and a discourse that treats riots as fundamentally illegitimate, for example just a few months prior.

The paper denigrates rural policies formed with “barely any understanding of how they are conditioned” and says that “an understanding of socio-spatial cohesion needs to look beyond the traditional objectives of equalizing agricultural incomes to consider how these accessibility gaps affect depopulation, young people’s skills, unemployment and low incomes.” But the issue isn’t understanding. Rural areas are not misunderstood. They are dominant, capable of steering specific subsidies their way that are not available to urbanites at equal income levels.

More broadly, I think it’s difficult for critical urbanism to deal with this issue of the permission structure for rural violence, because the urban-rural dynamic is not the same as the classical dynamic between social classes, or between white and black Americans, in which the socioeconomically dominant group is also the politically dominant one. It’s instead better to analogize it in ethnic terms not to American anti-black racism, or to European anti-immigrant racism, but to anti-Semitism, in which the social acceptance of a base level of violence coexists with the fact that Jews are often a more educated and richer group, leading anti-Semites to promulgate conspiracy theories.

The permission structure for rural drivers to commit violence in demand of government subsidies and government protection from competition is the exact opposite of peripheralization. It’s not a periphery; it’s a political and cultural center that faces a fundamental challenge in that it provides no economic or social value and is in effect a rapacious mafia using violence to extract protection money from an urban society that, due to misplaced sentimental values, responds with further subventions rather than with the full force of law as used against urban and suburban rioters with migration background.

Large Cars are a Positional Good

Americans have, over the last generation, gotten ever larger cars, to the point that the market is dominated by crossovers, pickup trucks, and SUVs and barely has sedans. Europe is not far behind, with the sedan market having collapsed and half of new sales comprising SUVs. Considerable resources are spent on these larger cars, which are more expensive to purchase, maintain, and refuel. The benefits at this point, however, are rather positional. The benefit of larger cars at this point is not about the comfort or performance of the car, but about being larger than other road users. Streets for All’s Michael Schneider described it as an arms race; this arms race that wastes resources and produces pollution and greenhouse gas emissions, without benefits even to individuals writ large, precisely the kind of problem that government regulation can solve.

The benefits of larger cars

The usual benefit drivers cite for why they want a larger car is comfort. The increase in car size from (say) the Fiat 500 or the Beetle or the 1970s Civic to modern midsize cars like the Accord and Camry has led to obvious improvements in comfort: four doors rather than two, ample front and rear passenger legroom, more trunk space.

And beyond this point, the relationship between car size and comfort saturates. Luxury sedans are still larger than midsize ones, but not by much; where the 500 had a curb weight of about 500 kg, the modern Accord is 1.4 t and the Camry is 1.6 t, barely less than a C-Class at 1.7 t and not much less than a 2.1 t 7 Series. A family car does not need to be larger than this, and when I talk to people about their vehicle purchases, at least the ones who tell me they’re getting SUVs do not cite comfort, not in the 2010s-20s.

The main selling point of luxury cars is performance. It’s this high-performance segment that Tesla competes with – electric cars have better performance specs, and where the older automakers tried to base their electric car offerings on preexisting platforms (like the Leaf, based on the Tiida), Tesla instead started by building high-performance luxury cars and expanded from there. But here there is no benefit to size – the Model 3 is around 1.7 t curb weight, and that includes batteries, which together weigh nearly half a ton.

Larger cars can also haul more goods, but the SUVs and pickups are expressly designed not to do that. The F-150’s bed has decreased with every new generation of the car; the Kei truck, specialized to have a large bed relative to the rest of the car, looks so weird to Americans that Massachusetts at one point banned it for being unsafe, while Americans on social media mocked the users as trying to prove an environmental point. The minivan, specialized to carry seven to eight passengers, has been unfashionable for at least a generation, losing out to the similarly large but lower-capacity SUV.

Instead, what I do hear from people telling me why they want a big car is purely positional: “I get to see over the other cars,” or alternatively “I can’t be the shortest car on the road because then I can’t see anything.” People are also recorded modifying their cars to be taller for the same reasons. The visibility in question does not improve if all cars get bigger; only the relative size matters. In the case of car accidents, this is even worse: in a collision between two cars the larger one is safer for the occupants, but making all the cars larger doesn’t improve traffic safety, and makes it much worse for pedestrians, and there’s some evidence of risk compensation by drivers of larger cars increasing the overall number of crashes.

The discourse on social benefits tends to exclude individual ones; thus, it’s easy to say that something that provides tangible individual benefits (such as larger dwellings) does not provide social ones. But this is something different. A purely private good does not provide positive externalities or improve the usual indicators that are usually the realm of public policy, like public health, but it improves the living standards of the owner, without negative externalities. But here, the benefit of the SUV or pickup truck to the user is purely the arms race on the road; the improvement in the quality of life of the owner is entirely about externalizing a fixed or even rising risk of car crashes to other road users. There isn’t even a social benefit here in the sense of the sum total of private individual benefits.

The costs of larger cars

While larger cars do not improve societal well-being on average, they have high individual and social costs.

The social costs are easier to explain: those cars emit much more pollution and greenhouse gases. The Camry has a fuel economy of maybe 37 miles per gallon (6.35 l/100 km) in the US; the F-150 gets less than half that, around 17.5 mpg (13.4 l/100 km). The fuel consumption ratio, 2.1, is somehow larger than the mass ratio – the F-150 doesn’t weigh 3.4 t but rather not much more than 2 t depending on model. Air pollution emissions are, for modern cars with modern petrol engines, proportional to greenhouse gas emissions; a car with twice the fuel consumption is going to also emit twice the particulate matter.

Then there is the danger of crashes. The United States has seen an increase in traffic fatalities lately, especially for pedestrians. The pedestrian fatality rate, in turn, comes from the form of pickups and larger SUVs: they have larger hoods, which hit pedestrians in the chest or (for children) the head rather than in the legs, and which also reduce visibility. Here it’s not an issue of mass but one of hood shape, but these come from the same fundemantal issue of an arms race to be larger and taller than the other cars, to the exclusion of spending on personal comfort.

Those social costs are not the tradeoff of some individual benefit. There is a benefit to the driver of the larger car, but there is no benefit to the driver of the average car on a road with larger cars. Instead, the driver of said average car incurs significant individual costs, coming from the need to buy, maintain, and refuel a larger machine. The low fuel economy costs the drivers money; most of the costs are external, but not all. The purchase price of a larger car is larger, because it is a larger piece of machinery, requiring more workers and more capital to put together; Edmunds’ price range for the F-150 is 50-100% higher than that for the Accord or Camry. Consumers routinely spend more money for better products, but here the product is not better except positionally.

The way forward

Government regulations to curb the arms race can directly limit or tax the size of cars, or instead go after their negative externalities. The latter should be preferred; in particular, a tax on car size would create a situation in which people can pay for a road that is safer for them and more dangerous for others, which is likely to lead to both much more aggressive driving by the largest cars on the road and to populist demands for large cars for everyone.

Specific taxes on large cars may still be appropriate in specific circumstances, like parking; Paris charges SUVs more for parking, justified by the fact that these vehicles don’t fit in the usual street parking spots, which are designed for the typical European car and not for the largest ones.

But outside the issue of parking, it’s better to be tighter about regulations and taxes on pollution, and about accidents. In the United States, it’s necessary to get rid of the system in which cars are perennially underinsured, with most states requiring liability coverage of $50,000 (Cid’s car accident, which was medium-term disabling but not fatal, incurred around $1 million in bills, and the insurance value of human life in the United States is $7.5 million). On both sides of the Atlantic, it’s necessary to tax or regulate pollution more seriously; the EU is ramping up fines on automakers that produce excessively polluting vehicles, but Robert Habeck, who is rather rigid on issues like nuclear power and the Autobahn speed limit, wants to suspend those fines since German automakers lag in electric cars.

On the matter of safety, it’s best to require cars to meet high standards of visibility and pedestrian safety in crashes, measured for example by survival rates at typical city speeds like 30 and 50 km/h. A car that fails these standards should not be on the road, just as cars are tested for occupant safety. If it means that the high, deep hood characteristic of the pickup truck no longer meets regulations, then fine; safety regulators should not compromise just because some antisocial drivers are acculturated to playing Carmageddon on real roads.

The key here is that regulations on emissions and personal injury liability suppress investment in larger cars, and that is good. There are other forms of capital investment in the economy competing for funding, which are not purely positional, for example housing, where German investment has been lagging due to high interest rates. Externalities are a real market failure and sometimes they get to the point that the product is, at scale, a net negative for society.

Quick Note: High-Speed Rail and Decarbonization

I keep seeing European advocates for decarbonizing transportation downplay the importance of big infrastructure, especially high-speed rail. To that end, I’d like to proffer one argument for why high-speed rail decarbonizes transportation even when it induces new trips. Namely: induced leisure trips come at the expense of higher-carbon travel to other destinations. In the 2010s discussion on High Speed 2, for example, induced trips were counted as raising greenhouse gas emissions (while having economic benefits elsewhere), and with this understanding I think that that is wrong. This becomes especially important with the growing focus on flight shaming in Europe. A 1,000 km high-speed rail link doesn’t just compete with flying on the same corridor, but also with flying to a different destination, which may be much farther away, and thus its effect on decarbonizing transport is much larger than a model of corridor-scale competition with cars and planes predicts.

Aviation emissions

A common argument for high-speed rail in the 2000s was that it would displace on-corridor flights, reducing greenhouse gas emissions. In the American version, this argument awkwardly coexisted with a separate argument for high-speed rail, namely that it would decongest airports and allow more flight slots to faraway destinations. In the 2010s and in this decade, this contradictory thinking fell away – the United States hasn’t built anything, China builds for non-environmentalist reasons, Europe gave up on cross-border rail construction and its activists became more interested in trams-and-bikes urbanism. This is also reflected in research: for all of the hype about high-speed rail as a substitute for aviation, researchers like Giulio Mattioli point out that aviation emissions are dominated by long-distance flights, with <500 km flights comprising only 5% of aviation fuel burn and >4,000 km ones comprising 39%. Activist response to policies like France’s ban on flights competing with <2.5 hour TGVs has been to mock it as the gimmick that it is.

For this and other reasons, on-corridor competition with air travel is no longer considered an important issue. This is now being taken in the direction of arguing against 300 km/h lines; the thinking is that high speed is only really needed to compete with flights, whereas competing with cars requires something else. But that argument misses the importance of off-corridor competition. Passengers don’t just choose what mode to take on a fixed corridor; they also choose where to travel, and transport options matter to that choice.

The limits of ridership models

Ridership models tend to be local. SNCF uses a gravity model, in which the ridership between a pair of cities with populations P_A, P_B, of distance d, is said to be proportional to about P_a^{0.8}P_b^{0.8}/d^2. I’ve used the same in my modeling, which predicts Tokyo-to-province ridership rather well but then severely underpredicts Taiwanese ridership.

The issue is that the model is local: if I live in Berlin and want to go to Munich, the model looks only at what’s between Berlin and Munich, and doesn’t consider that I can go to other cities instead if they’re more convenient to get to. One consequence of this is that the model probably overpredicts ridership in larger milieus than in smaller ones for this reason (the Tokyo resident can go to Osaka but also to Tohoku, etc.). But an equal consequence is that off-corridor competition is global.

The limits of leisure travel

Leisure travel is discretionary, and limited by vacation time. Building new high-speed lines does not mean that the country is offering workers more vacation days. The upshot is that every new line competes off-corridor with other lines, but also with other modes. A tightly integrated national high-speed rail system offers domestic tourism by rail, competing not just with flying on longer corridors like Berlin-Cologne, where the trains take four hours and are unreliable, but also with flying to places that the train doesn’t get to.

This has implications to a Europe-wide system as well. Right now, flights from Northern Europe to Southern Europe are on corridors where rail travel is only viable if you are an environmental martyr, really like 14-hour train trips, or ideally both. High-speed rail would by itself not compete on most of these corridors – those Spanish coastal cities are too far from Northern Europe for a mode other than flying, for one. But it would offer reasonable service to other places in Southern Europe with warm climate. Speeding up the Paris-Nice TGV means Parisians would choose to travel to Nice more and to islands less. Building high-speed rail approaches connecting to the base tunnels across the Alps means Germans, especially Southern Germans, could just go to large Italian cities instead of flying to islands or to Turkey. Even business travel may be affected, through replacement of flights to other continents.

One- and Two-Dimensional Rail Networks

As people on social media compare the German and American rail networks, I’m going to share two graphics from the upcoming Northeast Corridor report, made by Kara Fischer. They are schematic so it’s not possible to speak of scale, but the line widths and colors are the same in both; both depict only lines branded as Amtrak or ICE, so Berlin-Dresden, where the direct trains are branded IC or EuroCity, is not shown, and neither are long-range commuter lines even if they are longer than New Haven-Springfield.

The Northeastern United States has smaller population than that of Germany but not by much (74 million including Virginia compared with 84 million), on a similar land area. Their rail networks should be, to first order, comparable. Of course they aren’t – the map above shows just how much denser the German rail network is than the American one, not to mention faster. But the map also shows something deeper about rail planning in these two places: Germany is two-dimensional, whereas the Northeastern US is one-dimensional. It’s not just that the graph of the Northeastern rail network is acyclic today, excluding once-a-day night trains. More investment in intercity rail would produce cycles in the Northeastern network, through a Boston-Albany line for one. But the cycles would be peripheral to the network, since Boston, New York, Philadelphia, and Washington are collinear on the Northeast Corridor, and the smallest of these four metro areas, Philadelphia, is larger than all those on the branches depicted above, combined.

The most important effect on network planning is that it turns the Northeast Corridor into easy mode. We would not be able to come up with a coherent timetable for Germany on the budget that our program at Marron had. In the Northeast, we did, because it’s a single line, the main difficulty being overtakes of commuter trains that run along subsections.

This, in turn, has two different implications, one for each place.

The one-dimensionality of the Northeast

In the Northeast, the focus has to be on compatibility between intercity and commuter trains. Total segregation of tracks requires infrastructure projects that shouldn’t make the top 50 priorities in the Northeast, especially at the throats of Penn Station, South Station, and Washington Union Station. Total segregation of tracks not counting those throats requires projects that are probably in the top 50 but not top 20. Instead, it’s obligatory to plan everything as a single system, with all of the following features:

  • Timed overtakes, with infrastructure planning integrated into timetable design so that the places with overtakes, and only the places with overtakes, get extra tracks as necessary.
  • Simpler commuter rail timetabling, so that the overtakes can be made consistent, and so that trains can substitute for each other as much as possible in case of train delays or cancellation.
  • Higher-performance commuter rail rolling stock, to reduce the speed difference between commuter and intercity trains; the trains in question are completely routine in German regional service, where they cost about as much as unpowered coaches do in the United States, but they are alien to the American planning world, which does not attend InnoTrans, does not know how to write an RFP that European vendors will respect, and does not know what the capabilities of the technology are.
  • Branch pruning on commuter rail, which comes at a cost for some potential through-running pairs – trains from New Jersey, if they run through to points east of Penn Station, should be going to the New Haven Line and Port Washington Branch, and probably not to Jamaica; Newark-Jamaica service is desirable, but it would force dependency between the LIRR and intercity trains, which may lead to too many delays.

In effect, even an intercity rail investment plan would be mostly commuter rail by spending. The projects mentioned in this post are, by spending, almost half commuter rail, but they come on top of projects that are already funded that are commuter rail-centric, of which the biggest is the Hudson Tunnel Project of the Gateway Program. This is unavoidable, given the amount of right-of-way sharing between intercity trains and the busiest commuter rail lines in the United States. The same one-dimensionality that makes intercity rail planning easier also means that commuter rail must use the same non-redundant infrastructure that intercity rail does, especially around Penn Station.

The two-dimensionality of Germany

A two-dimensional network cannot hope to put all of the major cities on one line, by definition. Germany’s largest metro areas are not at all collinear. In theory, the Rhine-Ruhr, Frankfurt, Stuttgart, and Munich are collinear. In practice, not only does this still exclude Berlin and Hamburg, which is not at all like how Northeastern US collinearity works, but also the Rhine-Ruhr is a two-dimensional polycentric region, and Frankfurt is a terminal station oriented in such a way that a Stuttgart 21-style through-running project would allow for through-service from Stuttgart or from Cologne to points east but not from Stuttgart to Cologne. There’s also a tail of regions in the 1-1.5 million population range – Leipzig, Dresden, Nuremberg, Hanover, Karlsruhe – that are collectively larger than the largest single-core region (Berlin), even if they’re still smaller collectively than the eight-core Rhine-Ruhr region. The highest-demand link, Frankfurt-Mannheim, is a bottleneck between many city pairs, and is not at all dominant over other links in frequency or demand.

This makes for a network that is, by necessity, atypically complex. Train delays between Frankfurt and Mannheim can cascade as far as Berlin and Hamburg. There are timed connections, timed overtakes of slower regional trains on shared links (more or less everything in yellow on the map), and bypasses around terminal stations including Frankfurt and Leipzig as well as around Cologne, which is a through-station oriented east-west permitting through-service from Belgium and Aachen to the rest of Germany but not between Frankfurt and Dusseldorf.

Not for nothing, Deutsche Bahn has not really been able to make all of this work. The timetable padding is around 25%, compared with 10-13% on the TGV, and even so, delays are common and the padding is evidently not enough to recover from them.

The solution has to be reducing the extent of track sharing. The yellow lines on the map should not be yellow; they should be red, with dedicated passenger-only service, turning Germany into a smaller version of China. The current paradigm pretends Germany can be a larger version of Switzerland instead. But Switzerland builds tunnels galore to go around strategic bottlenecks, and even then makes severe compromises on train speeds – the average speeds between Zurich, Basel, and Bern are around 100 km/h, which works for a country the size of Switzerland but not for one the size of Germany, in which even the current 130-150 km/h average speeds are enough to get rail advocates to never take any other mode but not enough to get other people to switch.

In effect, the speed vs. reliability tradeoff that German rail advocates think in terms of is fictional. The two-dimensionality of Germany means that the only way to run reliably is not to have high frequency of both fast and slow trains on the same tracks between Berlin and Halle, between Munich and Ingolstadt, between Hanover and Hamburg, etc. Eliminating the regional trains is a nonstarter, so this means the intercity trains need to go on passenger-dedicated tracks.

In contrast, careful timetabling of intercity and regional trains on the same line has limited value in Germany. The regional trains in question have low ridership – the core of German commuter rail is S-Bahn systems that run in dedicated city center tunnels and have limited track sharing with the rest of the network, much less with the ICEs. If there’s high regional traffic on a particular link, it comes from combining hourly trains on many origin-destination pairs, in which case trains cannot possibly substitute for one another during traffic disturbances, and timetabling with low padding is unlikely to work.

Like Takt-based planning for Americans, building a separate intercity rail network for Germans comes off as weird and foreign. France and Southern Europe do it, and Germans look down on France and Southern Europe almost to the same extent that Americans look down on Europe. But it’s the only path forward. If anything, this combination of speed with reliability means that completing an all-high-speed connection on a major trunk line, like Berlin-Munich or Cologne-Munich, would permit cutting the timetable padding to more reasonable levels, which would save time on top of what is saved by the higher top speed. Germany could have TGV average speeds as part of this system, if it realized that these average speeds are both necessary and useful for passengers.

Consultant Slop and Europe’s Decision not to Build High-Speed Rail

I’m sitting on a series of three trains to Rome, totaling 14 hours of travel. If a high-speed rail network is built connecting those cities, the trip can be reduced to about 7.5 hours: 2.5 Berlin-Munich (currently 4), 2 Munich-Verona (currently 5.5), around 2.75 Verona-Rome (currently 3.5), around 0.25 changing time (currently 1). The slowest section is being bypassed with the under-construction Brenner Base Tunnel, but not all of the approaches to the tunnel are, and Germany is happy with its trains averaging slightly slower speeds than the 1960s express Shinkansen.

I bring this up because it’s useful background for a rather stupid report by Transport and Environment that was making the rounds on European social media, purporting to rank the different intercity rail operators of Europe, according to criteria that make it clear nobody involved in the process cares much about infrastructure construction or about what has made high-speed rail work at the member state level. It’s consultant slop, based on a McKinsey report that conflicts with the published literature on intercity rail ridership elasticity, which makes it clear that speed matters greatly. Astonishingly, even negative discourse about the study, by people who I respect, talks about the slop and about the problems of privatization, but not about the need to actually go ahead and build those high-speed connections, without which there are sharp limits to the quality of life available to the zero-carbon lifestyle, limits that make people avoid that lifestyle and instead fly and drive. In effect, Europe and its institutions have made a collective decision over the last 10 or so years not to build high-speed rail, to the point that activism suggesting it reverse course and do so is treated as self-evidently laughable.

The T&E study

The T&E study purports to rank the intercity rail operators of Europe. There are 27 operators so ranked, which do not exactly correspond to the 27 member states, but instead omit some peripheral states, include British and Swiss options, and have some private operators, including inexplicably treating OuiGo as separate from the rest of the TGV. The ranking is of operators rather than infrastructure systems; there is no attention given to planning infrastructure and operations together. Trenitalia comes first, followed by a near-tie between RegioJet and SBB; Eurostar is last. Jon Worth had to pour cold water on the conclusions and the stenography in various European newspapers about them.

In fact, the study fits so perfectly into my post about making up rankings that it is easy to think I wrote the post about T&E – but no, the post is from 2.5 years ago. The issue is that it came up with such bad weighting in judging railways that one is left to wonder if it specifically picked something that would sound truthy and put SBB at or near the top just to avoid raising too many questions. The criteria used are as follows:

  • Ticket prices: 25%
  • Special fares and reductions: 15%
  • Reliability: 15%
  • Booking experience: 15%
  • Compensation policies: 10%
  • Traveler experience (speed and comfort): 10%
  • Night trains and bicycle policy: 5%

None of this is even remotely defensible, and none of this passes any sanity check. No, it is not 1.5 times as important to have special reductions in fares for advance bookings or other forms of price discrimination as to have a combination of speed and comfort. The Shinkansen has fixed fares and is doing fine, thank you very much; SNCF’s own explanations of its airline-style yield management system portray it as a positive but not essential feature – its reports from 2009 recommending high-speed rail development in the United States cite yield management as a 4% increase in revenue, which is good but not amazing.

But more broadly, it is daft to set a full 50% of the weight on fares and fare-related issues (i.e. compensation), and 15% on the booking experience, and relegate speed to part of an issue that is only 10%. That’s not how high-speed rail ridership works. Cascetta-Coppola find a ridership elasticity with respect to trip time of about -2, but only -0.37 with respect to fares. Börjesson finds a much narrower spread, -1.12 and -0.67 respectively, but still the same directionally. Speed matters.

And yet, T&E doesn’t seem to care. The best hints for the reason why are in the way it compares operators rather than national networks, and relies on a McKinsey report pitched at private entrants and not at member state policymakers, who do not normally outsource decisionmaking to international consultants. It doesn’t think in terms of systems or networks, because it isn’t trying to make a pitch at how a member state can improve its rail network, but rather at how a private competitor should aim to make a profit on infrastructure built previously by the state.

The need for state planning

Every intercity rail network worth its name was built and planned publicly, by a state empowered to do so. In East Asia, this comprises the high-speed rail networks of China, Japan, Korean, and Taiwan, all funded publicly, even if Japan subsequently privatized Shinkansen operation (though not construction) to regional monopolies that, while investor-owned, are too prestigious to fail. In Europe, some networks have high-speed rail at their core, like France, and others don’t, like Switzerland or the Netherlands, but the latter instead optimize state planning at lower speed, with tightly timed connections, strategic investments to speed up bottlenecks, and integration between rolling stock, the timetable, and infrastructure.

This feature of the main low-speed European rail network frustrates some attempts at disaggregating the effects of different inputs on ridership and revenue. At the level of a sanity check, there does not appear to be a noticeable malus to French rail ridership from its low frequency at outlying stations. But then France relies on one-seat rides from Paris to rather small cities, which do not have convenient airport access, and in its own way integrates this operating paradigm with rolling stock (bilevels optimized for seating capacity, not fast egress or acceleration) and infrastructure (bypasses around intermediate cities, even Lyon). Switzerland, in contrast, has these timed connections such that the effective frequency even on three-seat rides is hourly, with guaranteed short waits at the transfers, and this provides an alternative way to connect small cities with not just large ones but also each other.

But in both cases, the operating paradigm is connected with the infrastructure, and this was decided publicly by the state, based on governmental financial constraints, imposed in the 1970s in France (leading to extraordinarily low construction costs for the LGV Sud-Est) and the 1980s in Switzerland (leading to the hyper-optimized operations of Bahn 2000 in lieu of a high-speed rail system). A private operator can come in, imitate the same paradigm that the infrastructure was built for, and sometimes achieve lower operating costs by being more aggressive about eliminating redundant positions that a state operator may feel too constrained by unions to. But it cannot innovate in how to run trains. Even in Italy and Spain, where private competition has led to lower fares and higher ridership, all the private competitors have done is force service to look more like the TGV as it is and less like the TGV as SNCF management would like it to be internationally. Even there, they do not innovate, but merely imitate what the TGV already had purely publicly, on infrastructure that was designed for TGV or ICE service intensity all along.

The idea that the private sector can innovate in intercity rail comes from the same imitation of airline thinking that led to the failure of Eurostar, with its high fares and airline-style boarding and queuing. In the airline business, integration between infrastructure and operations is weak, and private airlines can innovate in aircraft utilization, fast boarding, no-frills service, and other aspects that led low-cost carriers to success. Business analysts drawn from that world keep trying to make this work for trains, and fail; the Spinetta Report mentions that OuiGo tanked TGV revenues, and ridership did not materially increase when it was introduced due to inconveniences imposed by the system of segmenting the market by fare.

Europe’s decision not to build high-speed rail

In the 2000s, there was semi-official crayon, such as the TEN-T system, for EU-wide high-speed rail, inspired by the success of the TGV. Little of it happened, and by the 2010s, it became more common to encounter criticism alleging that it could not be done, and it was more important to focus on other things – namely, private competition, the thing that cannot innovate in rail but could in airlines.

At no point was there a formal decision not to build high-speed rail at a European scale. Projects just fell aside, unless they were megaproject tunnels across mountains like the Brenner Base Tunnel or water like the Fehmarn Belt Tunnel, and then there is underinvestment in the approaches, so that the average speed remains shrug-worthy. The discourse shifted from building infrastructure to justifying not building it and pitching on-rail competition instead. This, I believe, is due to factors going back to the 1990s:

  • The failure of Eurostar to produce high ridership. It underperformed expectations; it also underperforms domestic city pairs. SNCF is happy to collect monopoly profits from international travelers, and, in turn, potential travelers associate high-speed rail with high fares and inconvenience and look elsewhere. One failed prominent project can and does poison the technology, potentially indefinitely.
  • The anti-state zeitgeist at the EU level. This can be described as neoliberalism, but the thoroughly neoliberal Blair/Brown and Cameron cabinets happily planned High Speed 2. The EU goes beyond that: it is too scared to act as a state on matters other than trade, and that leads people in EU policy to think in terms of government-by-nudge, rather like the Americans.
  • SNCF and DB’s profiteering off of cross-border travelers in different ways turns them into Public Enemies #1 and #2 for people who travel between different member states by rail, who are then reluctant to see them as successes domestically.

For all of these reasons, it’s preferred at the level of EU policymaking and advocacy not to build infrastructure. Infrastructure requires there to be a public sector, and the EU only does that on matters of trade and regulatory harmonization.

Jon Worth has done a lot of work on getting a passenger rights clause into the agenda for the new EU Parliament, to deal with friction between DB and SNCF when each blames the other when a cross-border passenger is stranded (roughly: DB blames SNCF for running low frequencies so that if DB’s last train is delayed the passenger is stranded, SNCF blames DB for being so delayed in the first place). This is a good kind of regulatory harmonization. It reminds me of the EU’s role in health care: there’s reciprocity among the universal health care systems of Europe, for example allowing EU immigrants but not non-European ones to switch to the Kasse upon arrival; but at the same time, the EU has practically no role in designing or providing these universal health care system or even, as the divergent responses to corona showed in 2020, in coordinating non-pharmaceutical interventions for public health in a pandemic.

But health care does not require large coordinating bodies, and infrastructure does. Refugee camps tended to by UN agencies that have to pay bribes and protection fees to local gangs can have surprisingly good health care outcomes. Cox’s Bazar’s Rohingya camps have infant mortality rates comparable to those of Bangladesh and Burma; Gaza had good if worse-than-Israeli life expectancy and infant mortality until the war started. But nobody can build infrastructure this way. Top-down state action is needed to coordinate, which means actual infrastructure construction, not just passenger rights.

The thinking at the EU level is that greater on-rail competition can improve service quality. But that’s just a form of denial. The EU has no willingness to actually build the high-speed rail segments required to enable rail trips across borders, and so various anti-state actors, most on the center-to-center-right but not all, lie to themselves that it’s okay, that if the EU fails to act as a state then the private sector can step in if allowed to. That’s where the T&E study comes in: it rates operators on how to act like a competitive flight level-zero airline, going with this theory of private-sector innovation to cope with the fact that cross-border rail isn’t being built and try to salvage something out of it.

But it can’t be salvaged, not in this field; the best the private sector can do is provide equivalent service to a good state service on infrastructure that the state built. The alternative to the state is not greater private initiative. In infrastructure, the political alternative is that people who are not Green voters, which group comprises 92.6% of the European Parliament, are going to just drive and fly and associate low-carbon transportation with being contained to within biking distance of city center. The economic alternative is that ties between European cities will remain weak, to the detriment of the European economy and its ability to scale up.