Category: Incompetence

Celebrate Birthdays, not Holidays

To the transportation user, holidays are nothing but pain. Synchronized travel leads to traffic jams and very high rail and air fares, and synchronized shopping by car leads to parking pain. American commercial parking minimums are designed around the few busiest days of the year (source, endnote #8), timed for the Christmas rush. In France, synchronized travel at the beginning and end of school holidays is so bad that each region begins and ends its winter and spring breaks on different dates. There’s so much travel pain, and associated waste in designing transportation around it, that it’s worth asking why even bother.

The travel pain is even worse than mere congestion. When I visited London in early July, Eurostar broke in both directions. This was not a pair of random delays. French holiday travel is synchronized even though there are two months of summer break and only about one month of paid vacation net of the other holidays: traditionally people from all over the country and the world visit Paris in July, and then Parisians visit other places in August.

With slow boarding at the stations courtesy of security theater and manual ticket checks with just two access points per train, it takes longer than usual to board the trains when they are full. With full trains throughout the day, the delays cascaded, so by afternoon the trains were hours off schedule. Eurostar let passengers on trains on practically a first-come, first-served basis: people with tickets on a train got to ride the next available train. I had a ticket on an 11:39 train, and got to ride the train that was nominally the 11:13 (there were a few available seats) but departed at 12:58, and my nominally-11:39 train departed even later.

Eurostar’s inability to deal with crowds that occur annually, at a time when revenue is highest, is pure incompetence. But even if that particular problem is resolved, the more fundamental problem of unnecessary swings in travel volumes remains. On domestic TGVs it’s seen in wild price swings. Today is the 8th. In two weeks, a one-way TGV ticket from Paris to Marseille costs 72-74 on Thursday the 22nd or Friday the 23rd (Friday is the traditional peak weekend travel date and increasingly Thursday joins it) and about 62 on Saturday the 24th. But next month, on the 23rd, I see tickets for about 150, and even the low-comfort OuiGo option, which usually has 10 tickets (from the suburbs, not Paris proper), shoots up to 100; even with these prices, most trains are sold out already.

In some cultures, common holidays serve a religious or otherwise traditional purpose of bringing the extended family together. This is the case for Chinese New Year, which causes overcrowding on the mainline rail network at the beginning and end of the holiday as urban workers visit their families back home, often in faraway interior provinces. The same tradition of extended families occurs on Passover, but Israel has little travel pain, as it is so small that Seder travel is the same as any other afternoon rush hour.

However, there is no religious or social value to synchronized school holidays, nor is there such value to Western holidays. Western Christian civilization has centered nuclear families over extended families for around a millennium. In modern-day American culture, people seem to spend far more time complaining about the racist uncle than saying anything positive about catching up with relatives.

Christmas has religious significance, but much of the way it is celebrated in rich countries today is recent. The emphasis on shopping is not traditional, for one. The travel peak is probably unavoidable, since Christmas and New Year’s are at a perfect distance from each other for a week-long voyage, but everything else is avoidable. A source working for a bookstore in Florida, located strategically on the highway between Disneyland and the coast, told me of two prominent peaks. In the summer there would be a broad peak, consisting mostly of European tourists with their long paid vacations. But then there would be a much sharper peak for the holiday season between Thanksgiving and Christmas, in which the store would fill every cashier stall and pressure employees, many of whom temps working seasonally, to work overtime and get customers through as quickly as possible.

Some holidays have political significance, such as various national days, but those do not have to create travel peaks or shopping peaks. Bastille Day doesn’t.

Finally, while it’s accepted in Western countries today that summer is the nicest season to travel, this was not always the case, and even today there are some exceptions. The Riviera’s peak season used to be winter, as the English rich fled England’s dreary winters to the beaches; Promenade des Anglais in Nice is named after 19th century winter vacationers. When I lived in Stockholm, I was more excited to visit the Riviera in the winter, fleeing 3 pm sunsets, than in the summer. Today, Japan has a peak for the cherry blossom in the spring, while in New England (and again in Japan) there is a tradition of leaf peeping in the fall.

Instead of centering synchronized holidays, it’s better for states to spread travel as well as shopping behavior throughout the year as much as possible. Different people have different preferences for seasonality, and this is fine.

For bigger shopping seasons, the best thing to do is to emphasize birthdays. Instead of trying to fix major holidays, the way Lincoln did for Thanksgiving, it’s better to encourage people to make their biggest trips and biggest shopping around birthdays, anniversaries, saint days in Catholic countries, and idiosyncratic or subculturally significant days (such as conventions for various kinds of geeks). There are already well-placed traditions of birthday and anniversary gifts. In academia it’s also normal to extend conference trips into longer vacations, when they don’t conflict with teaching schedules.

The impact on labor is reduced seasonality, and far less peak stress. With less seasonal employment, the natural rate of unemployment may also end up slightly lower. The impact on transportation is a large reduction in travel peaks, which would make it easier to run consistent scheduled service year-round, and to maintain car travel and parking capacity at its average day level rather than building parking lots that go unused 364 days out of every year.

Sunnyside Junction, Redux

Seven years ago, I wrote a pair of posts about Sunnyside Yards. The first recommends the construction of a transfer station through Sunnyside Yards, in order to facilitate transfers between Penn Station- and Grand Central-bound trains. The second recommends redeveloping the yards via a deck, creating high-density residential and commercial space on a deck on top of the yard. Recent news, both about an official plan to deck the yards and about leaks that Amazon is likely to move half of its second headquarters (HQ2) to Long Island City, make a Sunnyside Junction so much more urgent.

Here is how service would look:

The color scheme is inherited from my regional rail maps (see e.g. here) but for the purposes of this post, all it means is that green and blue correspond to the inner and outer tracks of the Park Avenue, purple is East Side Access, orange corresponds to LIRR trains going to the northern pair of East River Tunnels, and red corresponds to LIRR, Metro-North Penn Station Access, and Amtrak trains going to the southern pair of East River Tunnels. No track infrastructure is assumed except what’s already in service or funded (i.e. ESA and Penn Station Access), and only two infill stations are mapped: Astoria, which would be a strong location for a stop were fares integrated with the subway and frequency high, and Sunnyside Junction.

The infill stations that are not planned

An Astoria station was studied for PSA, but was dropped from consideration for two reasons. First, the location is legitimately constrained due to grades, though a station is still feasible. And second, under the operating assumptions of high fares and low off-peak frequency, few people would use it. It would be like Wakefield and Far Rockaway, two edge-of-city neighborhoods where commuter rail ridership is a footnote compared with slower but cheaper and more frequency subway service.

A Sunnyside Junction station was in contrast never considered. There are unfunded plan for an infill station to the west of the junction, served only by Penn Station-bound trains. Such a station would hit Long Island City’s job center well, but the walk from the platform to the office towers would still be on pedestrian-hostile roads, and if there’s political will to make that area more walkable, the city might as well just redevelop Sunnyside Yards (as already planned).

The reason there was never any plan for a station can be seen by zooming in on the area I drew as a station. It’s a railyard, without streets (yet). At today’s development pattern, nobody would use it as an O&D station, even if fares and schedules were integrated with the subway. The importance of the station is as a transfer point between Grand Central- and Penn Station-bound trains. The planned developments (both HQ2 and independent city plans) makes it more urgent, since the area is relatively far from the subway, but the main purpose of the station is a better transit network, rather than encouraging development.

The main benefit of the station is transfers between the LIRR and Metro-North. While nominally parts of the MTA, the two agencies are run as separate fiefs, both of which resisted an attempt at a merger. The LIRR opposed PSA on the grounds that it had a right to any empty slots in the East River Tunnels (of which there are around 8 per hour at the peak). Governor Cuomo intervened to protect PSA from Long Island’s opposition, but in such an environment, coordinated planning across the two railroads is unlikely, and the governor would not intervene to improve the details of the ESA and PSA projects.

Network improvements

East Side Access means that in a few years, LIRR trains will split between two Manhattan destinations. Conceptually, this is a reverse-branch: trains that run on the same route in the suburbs, such as the LIRR Main Line, would split into separate routes in the city core. In contrast, conventional branching has trains running together in the core and splitting farther out, e.g. to Oyster Bay, Port Jefferson, and Ronkonkoma. Reverse-branching is extremely common in New York on the subway, but is rare elsewhere, and leads to operational problems. London’s Northern line, one of the few examples of reverse-branching on an urban subway outside New York, is limited to 26 trains per hour through its busiest trunk at the peak, and long-term plans to segregate its two city trunks and eliminate reverse-branching would raise this to 36.

To ensure LIRR trains run with maximum efficiency, it’s necessary to prevent reverse-branching. This means that each trunk, such as the Main Line and the Hempstead Branch, should only ever go to one Manhattan terminal. Passengers who wish to go to the other Manhattan terminal should transfer cross-platform. Jamaica is very well-equipped for cross-platform transfers, but it’s at a branch point going to either Manhattan or Downtown Brooklyn, without a good Penn Station/Grand Central transfer. Without a good transfer, passengers would be stuck going to a terminal they may not work near, or else be forced into a long interchange. In London the reason the Northern line is not already segregated is that the branch point in the north, Camden Town, has constrained passageways, so eliminating reverse-branching requires spending money on improving circulation.

Unlike Camden Town, Sunnyside Junction is roomy enough for cross-platform transfers. The tracks should be set up in a way that LIRR trains going to East Side Access should interchange cross-platform with PSA and Port Washington Branch trains (which should go to Penn Station, not ESA), as they do not stop at Jamaica. Penn Station-bound LIRR trains not using the Port Washington Branch, colored orange on the map, should stop at Sunnyside too, but it’s less important to give them a cross-platform transfer.

This assignment would be good not just for LIRR passengers but also for PSA passengers. Unlike on the LIRR, on the New Haven Line, reverse-branching is unavoidable. However, passengers would still benefit from being able to get on a Penn Station-bound train and connecting to Grand Central at Sunnyside. Not least, passengers on the PSA infill stations in the city would have faster access to Grand Central than they have today via long walks or bus connections to the 6 train. But even in the suburbs, the interchange would provide higher effective frequency.

The connection with development

I don’t know to what extent decking Sunnyside Yards could attract Amazon. I wrote an article last year, which died in editing back-and-forth, lamenting that New York was unlikely to be the HQ2 site because there was no regional rail access to any of the plausible sites thanks to low frequency and no through-running. Long Island City’s sole regional rail access today consists of LIRR stations on a reverse-branch that does not even go into Manhattan (or Downtown Brooklyn) and only sees a few trains per day. It has better subway access and excellent airport access, though.

However, since Sunnyside Junction is so useful without any reference to new development, the plans for decking make it so much more urgent. Sunnyside Yards are in the open air today, and there is space for moving tracks and constructing the necessary platforms. The cost is likely to be in the nine figures because New York’s construction costs are high and American mainline rail construction costs are even higher, but it’s still a fraction of what it would take to do all of this under a deck.

Moreover, the yards are not easy to deck. Let’s Go LA discussed the problem of decking in 2014: columns for high-rise construction are optimally placed at intervals that don’t jive well with railyard clearances, and as a result, construction costs are a multiple of what they are on firma. Hudson Yards towers cost around $12,000/square meter to build, whereas non-WTC commercial skyscrapers in the city are $3,000-6,000 on firma. The connection with Sunnyside Junction is that preparing the site for the deck requires extensive reconfiguration of tracks and periodic shutdowns, so it’s most efficient to kill two birds with one stone and bundle the reconfiguration required for the station with that required for the deck.

In the other direction, the station would make the deck more economically feasible. The high construction costs of buildings on top of railyards makes decking unprofitable except in the most desirable areas. Even Hudson Yards, adjacent to Midtown Manhattan on top of a new subway station, is only treading water: the city had to give developers tax breaks to get them to build there. In Downtown Brooklyn, Atlantic Yards lost the developer money. Sunnyside Yards today are surrounded by auto shops, big box retail, and missing middle residential density, none of which screams “market rents are high enough to justify high construction costs.” A train station would at least offer very fast rail access to Midtown.

If the decking goes through despite unfavorable economics, making sure it’s bundled with a train station becomes urgent, then. Such a bundling would reduce the incremental cost of the station, which has substantial benefits for riders even independently of any development it might stimulate in Sunnyside.

The Value of Outside Advice

After I criticized Cuomo’s Genius Challenge earlier this year, I saw some comment, I think on the Manhattan Contrarian, to the effect that even if the winning proposals suck the idea of the contest is still good because the MTA needs fresh advice. The argument is that a sclerotic organization like just about every state or local government agency in the US needs to be shaken up using outside ideas. The American private sector, which is very productive, is a good source of ideas, according to this line.

This notion is unfortunately wrong. Outside advice is useful, but leveraging the success of American business is not possible in transportation. Outsiders need a lot of grounding within the field to be able to contribute (and this includes myself). In some cases the best single source of fresh advice is not even from the outside, but from internal planners who the political appointees ignore.

The tyranny of the org chart

Aaron Renn tells a story from when he worked in management consulting: after years of leading projects advising other firms, he was tasked with improving the managerial efficiency of the firm where he worked. His ideas were ignored, because the organization chart said that he was middle management, and so senior management didn’t have to do what he said. When he consulted for other firms it was not like this, because consultants have titles that deliberately obfuscate the fact that in their own firm they are middle management, and thus senior management considers them peers outside their firm’s org chart and listens.

What’s more, many of the consultants’ ideas come from conversations with lower-level employees. The low- and mid-level workers pitch ideas that their managers ignore because of the tyranny of the org chart, and the consultants then take the better ideas, rebrand them as outside advice, and sell them to the people at the top. Employee resentment toward consultants often hinges on the fact that consultants take credit for ideas they heard from grunt workers.

A lot of transit reforms in the United States have this flavor. TransitCenter relies on best industry practices for its recommendations, but in some cases it learns what these practices are from passed-over planners. When I talked to Zak Accuardi last year about measuring punctuality on urban transit, he explained the concept of excess journey time to me, but then added that he learned from conversations with NYCT planners that this metric exists and is used in London and Singapore.

The bus redesign Eric and I have been working on has some of that, too. We have a lot of our own ideas, coming from independent research, but we’ve talked regularly to some of the mid-level planners for sanity checks. In particular, while we got the idea for a Brooklyn-Battery Tunnel bus route between Red Hook and Lower Manhattan from a railfan, I talked to one of the bus planners at NYCT about the idea and was told that the planners were already thinking in the same direction.

Best practices

When consultant advice is not based on laundering internal ideas to avoid getting stuck in the tyranny of the org chart, it comes instead from best industry practices. What a consultant needs to know is how the successful players in the relevant industry work. This is more than a simple laundry list of practices: there is a range of different options that work (Swiss and Japanese rail practices are not the same), and a dazzling array of local circumstances that can make some options a better fit for a specific client than others.

As it happens, NYCT is led by someone who is familiar with some better practices: Andy Byford, who has experience working in London, Sydney, and Toronto. He can be assumed to be familiar with the best English-speaking practices; Transport for London would not be my first choice for best practices worldwide or even Europe-wide, but it’s better than anything else that speaks English and is far better than anything in the United States.

It’s worth noting that it’s important to understand not just the best practices themselves but how to implement them. I’ve noticed this with various reform ideas that rely on European rail successes: there’s a reasonably deep bench of Americans who understand how some features work in London, but practically none who understand how they work in Paris, Madrid, Stockholm, Munich, Zurich, or Prague.

This is a clear-cut case of where outside advice would be valuable to American transit agencies. However, the snag is that there is no reason to expect the American private sector to be able to dispense any such advice. The bench of multilingual Americans is shallow, and a disproportionate share of those are second-generation immigrants who are heritage speakers of a language but often can’t read technical materials in it. What I know and what I’ve learned about best practices has involved talking to railfans from other countries who speak English who tell me about how Switzerland, Japan, Czechia, etc. work.

Domain knowledge

One of the themes I’ve been harping on since this blog’s early days is that public transit is 19th-century technology, and as such its corporate culture is one of incremental tweaks and not revolutionary changes. In this situation, it’s very difficult to come up with good ideas without very solid grounding in the domain. It’s nothing like tech, where people could invent their own platforms and succeed by first-mover advantage (did Amazon really need to know the bookselling business in the 1990s?).

This does not mean there is no room for new ideas. On the contrary. Old industries like public transit, cars, household appliances, and agriculture are full of innovation. But they are less likely to involve the personal brilliance of a Bill Gates or Jeff Bezos and more likely to involve copying something that works elsewhere, optimizing an existing platform, or tweaking something to be incrementally better.

In particular, the way Cuomo set up the genius challenge set it up for the failure that it turned out to be. The judges had no domain knowledge. They were mostly drawn from the tech world, and could not judge a proposal on its actual merits, only on its perceived merits. The winning ideas have the same relationship to innovation that truthiness has to truth.

How to get the outside advice the MTA needs

The MTA’s sclerosis is not universal within the agency. It most acutely afflicts the top brass, especially the political appointees, who are there to shield the governor from criticism rather than to run public transit properly. The lower-level planners are often much more up to the task. The remaining gaps in MTA effectiveness come from ignorance of best practices elsewhere, in particular in places that don’t speak English.

Were the MTA to ask me how it can adopt outside advice better, I would tell it to ignore gimmicks and definitely not try to look to American business-class saviors. Instead, I’d recommend the following action items:

  1. Invest in better HR infrastructure to hire better people faster (today the process takes months and discourages people who can obtain private-sector work), and make sure to regularly promote people who have good ideas rather than leaving them to stew in a middle position for 10 years. If it’s impossible to get senior management to listen to underlings better organically, then restore the employee suggestion box, which at least levels mid-level planners’ and line workers’ status.
  2. Hire a small team to investigate and implement best practices. The team should report to the head of NYCT directly and should preferentially comprise people with extensive rest-of-country and rest-of-world experience, with an aim for a broad coverage of languages spoken, ideally including Spanish, French, German, Japanese, Russian, Korean, and Chinese, most of which are fortunately represented by substantial immigrant communities in the region. The people on this team should interface with transit planners around the world in order to develop new ideas.
  3. Interface regularly with academics and researchers, such as Bent Flyvbjerg and his work on cost overruns, Carlos Daganzo and his work on modeling optimal transit networks, and David Levinson and his work on travel behavior. Answers to empirical questions like “what is the transfer penalty?” may change over time, and it’s easy for an organization to unwittingly use data that’s a generation out of date.
  4. Take more planning in-house, in order to develop institutional knowledge. In effect, this would give the MTA an acute problem of having to assimilate a vast quantity of knowledge today, instead of a slightly less acute problem of assimilating knowledge every 10 or 20 years when it discovers it’s fallen another step behind.

Building the institutional infrastructure for good transit is not easy. It’s tempting for Americans to rely on the private sector, through design-build bids, outsourcing design to consultants, and flashy tech challenges, but for all its prowess, the American private sector cannot solve transportation challenges. Higher productivity in transportation can only come from a better public sector. Outside advice that helps the MTA be more efficient is useful insofar as it helps the agency assimilate best practices and generate new ideas, and implement them. But if it aims to supplant public planning, it’s unlikely to succeed; Cuomo’s genius challenge hasn’t.

How to Design Rail Service to Connect to Buses Better

Usually, integrated transit planning means designing bus networks to feed rail trunks better. Buses are mobile: their routes can move based on long-term changes in the city’s physical and economic layout. Railroads in contrast have high installation costs. Between the relative ease of moving buses and the fact that there’s a hierarchy in which trains are more central than buses, buses normally should be feeding the trains. However, there are some cases in which the opposite happens: that is, cases in which it’s valuable to design rail infrastructure based on expected bus corridors. Moreover, in developed and middle-income countries these situations are getting more rather than less frequent, due to the increasing use of deep tunneling and large station complexes.

In nearly every circumstance, the hierarchy of bus and rail remains as it is; the exceptions (like Ottawa, at least until the light rail subway opens) are so rare as to be notable. What I posit is that in some situations, rail infrastructure should be designed better to allow buses to feed the trains more efficiently. This mostly affects station infrastructure, but there are also reasons to choose routes based on bus feeding.

Major bus corridors

Surface transit likes following major streets. Years ago, I blogged about this here and here. Major streets have two relevant features: they are wide, permitting buses (or streetcars) to run in generous dedicated lanes without having to deal with too much traffic; and they have continuous linear development, suitable for frequent bus stops (about every half kilometer).

These two features are likely to remain important for surface transit for the foreseeable future. The guidelines for good surface transit service depend on empirical parameters like the transfer penalty (in particular, grids are not the universal optimum for bus networks), but major corridors are relatively insensitive to them. The walk penalty can change the optimal bus stop spacing, but not in a way that changes the basic picture of corridor-based planning. Which streets have the most development is subject to change as city economic and social geography evolves, but which streets are the widest doesn’t. What’s more, a train station at a street intersection is likely to cement the cross-street’s value, making adverse future change less likely.

Note that we don’t have to be certain which major streets will host the most important buses in the future. We just need to know that major buses will follow major streets.

The conclusion is that good locations for rail infrastructure are major intersecting streets. On a commuter line, this means stations should ideally be placed at intersections with roads that can carry connecting buses. On a subway line, this means the same at a more local scale.

Stations and accessibility

When possible, train stations should locate at intersections with through-streets, to permit efficient transfers. This also carries over to station exits, an important consideration given the complexity of many recently-built stations in major rich and middle-income cities.

It goes without saying that a Manhattan subway line should have stations with exits at 72nd, 79th, 86th, 96th, etc. streets. Here, Second Avenue Subway does better than the Lexington Avenue Line, whose stations are chosen based on a 9-block stop spacing and miss the intersecting buses.

However, it’s equally important to make sure that the accessible exits are located at major streets as well. One bad example in New York is the Prospect Park B/Q station: it has two exits, one inaccessible on Flatbush Avenue and one accessible on Empire Boulevard. In theory both are major corridors, but Flatbush is far and away the more important ones, one of the busiest surface transit corridors in the city, while Empire competes for east-west buses with Kings County Hospital, the borough’s biggest job center outside Downtown Brooklyn. Eric Goldwyn’s and my Brooklyn bus redesign breaks the B41 bus on Flatbush and loops it and the Washington Avenue routes around the station complex to reach the accessible exit.

The Prospect Park case is one example of an almost-right decision. The full-time, accessible exit is close to Flatbush, but not quite there. Another example is Fields Corner: the eastern end of the platform is 80 meters from Dorchester Avenue, a major throughfare, and 180 meters from Adams Avenue, another major street, which unlike Dot Ave diverges from the direction the Red Line takes on its way south and is a useful feeder bus route.

Commuter rail and feeder buses

The station placement problem appears especially acute on mainline rail. This is not just an American problem: suburban RER stations are built without regard for major crossing roads (see, for example, the RER B airport branch and the RER A Marne-la-Vallee branch, both built in the 1970s). Railroads historically didn’t think much in terms of systemwide integration, but even when they were turned into modern rapid transit, questionable stop locations persisted; the Ashmont branch of the Red Line in Boston was taken over from mainline rail in the 1920s, but Fields Corner was not realigned to have exits at Dot and Adams.

Today, the importance of feeder buses is better-understood, at least by competent metropolitan transportation planners. This means that some stations need to be realigned, and in some places infill stops at major roads are desirable.

This is good for integration not just with buses but also with cars, the preferred station access mode for American commuter rail. The LIRR’s stations are poorly located within the Long Island road network; Patrick O’Hara argues that Hicksville is the second busiest suburban station (after Ronkonkoma) not because it preferentially gets express service on the Main Line, but because it has by far the best north-south access by road, as it has one arterial heading north and two heading south, while most stations miss the north-south arterials entirely.

Instead of through-access by bus (or by car), some stations have bus bays for terminating buses. This is acceptable, provided the headways are such that the entire local bus network can be configured to pulse at the train station. If trains arrive every half hour (or even every 20 minutes), then timed transfers are extremely valuable. In that case, allowing buses to stop at a bay with fast access to the platforms greatly extends the train station’s effective radius. However, this is of far less value on a dense network with multiple parallel lines, or on a railroad so busy that trains arrive every 10 minutes or less, such as the RER A branches or the trunks of the other RER lines.

Within New York, we see this mistake of ignoring local transit in commuter rail planning with Penn Station Access. The project is supposed to add four stations in the Bronx, but there will not be a station at Pelham Parkway, the eastern extension of Fordham Road carrying the city’s busiest bus, the Bx12. This is bad planning: the MTA should be encouraging people to connect between the bus and the future commuter train and site stations accordingly.

Street networks and route choice

On a grid, this principle is on the surface easy: rapid transit routes should follow the most important routes, with stops at cross streets. This is well understood in New York (where proposals for subway extensions generally follow busy bus routes, like Second Avenue, Nostrand, and Utica) and in Vancouver (where the next SkyTrain extension will follow Broadway).

However, there remains one subtlety: sometimes, the grid makes travel in one direction easier than in another. In Manhattan, north-south travel is easier than east-west travel, so in isolation, east-west subways connecting to north-south buses would work better. (In reality, Manhattan’s north-south orientation means north-south subways are indispensable, and once the subways exist, crossing subways should aim to connect to them first and to surface transit second.) In West Los Angeles, there is a multitude of east-west arterials and a paucity of north-south ones, which means that a north-south subway is of great value, connecting not just to the Expo Line and upcoming Wilshire subway but also other east-west arterials carrying major bus routes like Olympic.

Moreover, some cities don’t have intact grids at all. They have haphazard street networks, with some routes suitable for arterial buses and some not. This is less of an issue in mature cities, which may have such street networks but also have older subway lines for newer route to connect to, and more in newer cities, typically in the third world.

The tension is that very wide arterials are easier to build on, using elevated construction or cut-and-cover. If such a technique is feasible, then constructibility should trump connections to buses (especially since such cities are fast-changing, so there is less certainty over what the major future bus routes are). However, if deep boring is required, for examples because the arterials aren’t that wide, or the subway must cross underwater, or merchant opposition to cut-and-cover is too entrenched, then it’s useful to select routes that hit the arterials orthogonally, for the best surface transit connections.

Conclusion

In a working transit city, rail should be the primary mode of travel and buses should be designed to optimally feed the trains. However, this does not mean rail should be planned without regard to the buses. Train stations should be sited based not just on walk sheds and major destinations but also planned bus connections; on an urban rapid transit system, including S-Bahn trunks, this means crossing arterial streets, where buses typically run. Moreover, these stations’ exits should facilitate easy transfers between buses and trains, including for people with disabilities, who face more constrained mobility choices if they require elevator access. In some edge cases, it may even be prudent to select entire route construction priorities based on bus connections.

While choosing rail routes based on bus connections seems to only be a real issue in rare circumstances (such as the West LA street network), bus-dependent station siting is common. Commuter train services in general are bad at placing stations for optimal suburban bus connections, and may require extensive realignment and infill. On urban subways, station placement is important for both accessibility retrofits and new projects. Outside city centers, where dense subway networks can entirely replace surface transit, it’s critical to select station sites based on maximum connectivity to orthogonal surface lines.

Heterogeneity of Preferences

The public transit conversation is full of statements like “passengers don’t like to transfer,” or, in quantified terms, “passengers perceive a minute transferring to be equivalent to 1.75 minutes on a moving vehicle.” But what does this exactly mean? It’s not a statement that literally every passenger has a transfer penalty factor of 1.75. Different passengers behave differently. At best, it’s a statement that the average passenger on the current system has a transfer penalty factor of 1.75, or alternatively that the aggregate behavior of current passengers can be approximated by a model in which everyone has a transfer penalty factor of 1.75. Understanding that different people have different preferences is critical to both the technical and political aspects of transportation planning.

I talked about the heterogeneity of transfer penalties three years ago, and don’t want to rewrite that post. Instead, I want to talk more broadly about this issue, and how it affects various transit reforms. In many cases, bad American transit practices are the result not of agency incompetence (although that happens in droves) but of preferential treatment for specific groups that have markedly different preferences from the average.

Disabilities

The universal symbol of disability is the wheelchair. Based on this standard, every discussion of accessible to people with disabilities centers people in wheelchairs, or alternatively retirees in walkers (who tend to make sure of the same infrastructure for step-free access).

However, disabilities are far broader, and different conditions lead to dramatically different travel preferences. One paper by the CDC estimates that 20% of US adults have chronic pain, and 8% have high-impact chronic pain, limiting their life in some way. People with chronic pain are disproportionately poor, uneducated, and unemployed, which should not be a surprise as chronic pain makes it hard to work or go to school (in contrast, the one unambiguously inborn socioeconomic factor in the study, race, actually goes the other way – whites have somewhat higher chronic pain rates than blacks and Hispanics). Another paper published by BMJ is a meta-analysis, finding that depending on the study 35-51% of the UK population has chronic pain and 10-14% has moderately to severely disabling chronic pain.

I’ve only talked to a handful of people with chronic pain – all of working age – and the best generalization that I can make is that it is impossible to generalize. The conditions vary too much. Some find it more painful to drive than to take transit, some are the opposite. Some have conditions that make it hard for them to walk, some are fine with walking but can’t stand for very long. To the extent the people I’ve talked to have common features, they a) have a strong preference for rail over bus, and b) require a seat and can’t stand on a moving vehicle for very long.

Work status

The best use case for rapid transit is getting people to work in a congested city center at a busy time of day, ideally rush hour. Off-peak ridership is generally cheaper to serve than peak ridership, but this is true for all modes of transportation, and public transit tends to be relatively better at the peak than cars. Per table 2 of the Hub Bound report, as of 2016, 19% of public transit riders entering the Manhattan core do so between 8 and 9 am and 43% do so between 7 and 10 am, whereas the corresponding proportions for drivers are 6% and 18% respectively.

The upshot is that people are more likely to ride public transit if they work a salaried job. This is especially true in the middle class, which can afford to drive, and whose alternative is to work at some suburban office park where car ownership is mandatory. In the working class, the distribution of jobs is less CBD-centric, but the ability to afford a car is more constrained.

The social groups most likely to drive are then neither the working class (which doesn’t own cars anywhere with even semi-reasonable public transit) nor the professional working class, but other social classes. The petite bourgeoisie is the biggest one: small business owners tend to drive, since they earn enough for it, tend to have jobs that either virtually require driving (e.g. plumbers) or involve storefronts that are rarely located at optimal locations for transit, and need to go in and out at various times of day.

Another group that’s disproportionately likely to drive is retirees. They don’t work, so they don’t use transit for its most important role. They take trips to the hospital (which is bundled with issues of disability), which can be served by buses given that hospitals are major job centers and non-work travel destinations, but their other trips tend to be based on decades of socialization that have evolved haphazardly. The urban transit network isn’t likely to be set up for their particular social use cases.

Consensus for whomst?

I bring up small business owners and retirees because these two groups are especially empowered in local politics. When I lived in Sweden, I could vote in the local and regional elections, where I had no idea what the main issues were and who the candidates were; I voted Green based on the party’s national platform, but for all I know it’s not great on Stockholm-specific issues. Figuring out the national politics is not hard even for a newcomer who doesn’t speak the language – there are enough English-language news sources, there’s social media, there are friends and coworkers. But local politics is a mystery, full of insider information that’s never spelled out explicitly.

What this means is that the groups most empowered in local politics – that is, with the highest turnouts, the most ability to influence others in the same constituency, and the greatest ability to make consistent decisions – are ones that have local social networks and have lived in one place for a long time. This privileges older voters over younger voters, and if anything underprivileges people with disabilities, whose ability to form social and political connections is constrained by where they can go. This also privileges people with less mobile jobs – that is, shopkeepers rather than either the professional middle class or the working class.

With their greater local influence, the most empowered groups ensure the transportation that exists is what is good for them: cars. Public transit is an afterthought, so of course there is no systemwide reorganization – that would require politicians to care about it, which interferes with their ability to satisfy the politically strongest classes. But even individual decisions of how to run transit suffer from the same problem when there is no higher political force (such as a strong civil service or a national political force): bus stops are very close together, transfers are discouraged (“we oppose the principle of interchange” said one left-wing group opposed to Jarrett Walker’s bus redesign in Dublin), rail service is viewed more as a construction nuisance than a critical mobility service, etc.

Models for transportation usage take into account the behavior of the average user – at least the average current user, excluding ones discouraged by poor service. However, the political system takes into account the behavior of the average empowered voter. In the case of local politics, this average voter rarely rides public transit. When city political machines run themselves, the result is exactly what you’d think.

High-Speed Rail in India

India’s economic development lags China’s by about 15 years, so it shouldn’t be surprising that it’s beginning to construct a high-speed rail network. The first line, connecting Mumbai and Ahmedabad via Surat, began construction at the end of last year, with completion targeted within four years; the two states served, Maharashtra and Gujarat, are more or less India’s two richest large states, and are also both deeply right-wing, with nearly every constituency backing Modi. There are some severe problems with the system, stemming from its use of turnkey Japanese technology. But more broadly, India’s geography is just difficult for high-speed rail, especially by comparison with other high-population density countries at similar level of development, like Pakistan and Indonesia.

Japanese technology

The Mumbai-Ahmedabad corridor is to use imported Shinkansen technology, with Japanese financing. India has a vast railway network using broad gauge, with extensive regional rail (the Mumbai Suburban Railway has 2.6 billion riders per year) as well as legacy intercity rail.

However, to maintain Shinkansen compatibility, India has chosen to use standard gauge. This is based on a misunderstanding of why HSR uses standard gauge. Spain uses near-Indian gauge on its legacy network but standard gauge on HSR to maintain compatibility with the French TGV network, and Japan has narrow gauge on the legacy network and standard gauge on Shinkansen because narrow-gauge trains can’t run as fast. Neither of these justifications applies to India, and evidently, in another country where they don’t apply, Russia, HSR is to use broad gauge. With standard gauge, India will not be able to run HSR through to the legacy network, connecting to cities beyond the initial line, such as Delhi, nor will it be able to stage future construction to build lines in phases, the way France did, with through-service to lower-speed territory.

Even worse, alone in the world, India is using the Shinkansen’s loading gauge on HSR: trains are 3.35 meters wide, enough for 5-abreast seating. Indian Railways has a loading gauge allowing 3.66 meter trains, enough for 6-abreast seating with the same compromises on comfort familiar to every airline economy passenger. I don’t know what the standards for track centers are to be on India’s HSR: Indian Railways’ manual says 5.3 meters, which is wide enough for everything, but Shinkansen standards specify 4.3 meters, which is tight enough that a future widening of the track and loading gauges may pose difficulties for passing at high speed (at low speed it’s easy, India’s legacy track centers are 4.265 meters, and standard-gauge America’s are 3.7 meters on the slower parts of the Northeast Corridor).

During construction, the decision to use the wrong-size trains is fixable. Even after service opens, if the track centers are not too narrow, it’s possible to add a third rail to permit a transition to broad gauge. If the track centers are as narrow as the Shinkansen then might still be possible, if the third rails are on the outside (it would widen the track centers by the difference between the gauges, or 23.3 cm), but then the platforms would need to be shaved for wider trains. In the medium and long runs, such gauge widening is critical as India builds out its network.

But today, so complete is India’s reliance on Japanese technology that the training for drivers will be conducted in Japan, in Japanese; train drivers will be required to speak Japanese, as the Shinkansen trainers will not all speak English. It goes without saying that without a large body of Japanese speakers, India will be forced to pay first-world or near-first-world wages, forgoing its advantage in having low labor costs.

Construction costs

The projected construction cost of the 508-kilometer line is 1.1 trillion (“lakh crore”) rupees, which is $15 billion in exchange rate terms and about $55 billion in PPP terms. Per Wikipedia, the route includes only one tunnel, a 21-km approach to Mumbai with suburban and underwater tunneling (even if the gauges were compatible, using existing tracks like TGVs is impossible due to the use of every approach track by overcrowded Suburban Railway trains). The rest of the route is predominantly elevated, but the decision to runs the trains elevated rather than at-grade is only responsible for about 10% of its cost.

Despite the complexity of such a tunnel, there is no excuse for the high construction cost. In exchange rate terms it’s reasonable. Japan’s domestic Shin-Aomori extension of the Shinkansen cost about $55 million per kilometer, including a 26 km tunnel consisting of a third of the route and additional tunnels totaling a majority of the route. More recently, Japan’s new bout of Shinkansen construction costs about $30 billion for 389 km, but tunneling is extensive, with the Hokkaido route planned to be 76% in tunnel.

With India’s complete reliance on Japanese technology, paying the same as Japan in exchange rate terms is not surprising. It’s a disaster for India, which has to pay in depreciated rupees instead of leveraging its low-cost labor, but as far as Japan is concerned, it’s a perfect copy of the domestic Shinkansen system. Similar high costs can be observed for some Asian metro projects using Japanese financing, namely Dhaka (the world’s highest-cost elevated metro, even worse than in the US) and Jakarta.

In contrast, where India improves its rail network by tapping into Indian Railways’ own expertise, costs are low. Nearly half of India’s rail network is electrified, and to save money on expensive fuel, the country is rapidly electrifying the system, targeting 100% electrification. A plan to electrify 13,675 route-km in the next four years is to cost 12,134 crore rupees, about $123,000/km in exchange rate terms or $450,000/km in PPP terms. In the developed world, $1-1.5 million/km for electrification is reasonable, and the unreasonably expensive UK, US, and Canada go up to $5-10 million/km. Left to its own devices, Indian Railways can build things cheaply.

Network structure

India’s geography for high-speed rail is not easy. Mumbai, Surat, and Ahmedabad are the only three cities in the top 20 that lie on a straight line at easy HSR range. Delhi-Mumbai, Delhi-Kolkata, and Mumbai-Chennai are all just outside the best range for HSR (and Kolkata-Chennai is well outside it), having to rely on intermediate cities like Ahmedabad, Hyderabad, and Kanpur for ridership. Within Uttar Pradesh, Kanpur and Lucknow are both large cities, but the line connecting them is almost perpendicular to that connecting Delhi and Kolkata, so that only one can be served on the main line. In the South, there is a similar situation with Mumbai-Chennai, via either Bangalore or Hyderabad (and there, both routes should be built as Bangalore and Hyderabad are both near-megacities). Mumbai itself requires extensive tunneling in all directions: north toward Gujarat and Delhi, south toward Pune, and possibly also northeast toward the interior cities of Maharashtra.

I drew a possible map for a nationwide network. The total length is 17,700 double-track-km. It’s about the same length as most American proposals, and less than half as much as what China aims to build by 2025, but India has four times the population of the US and far higher population density, and its density is also several times that of China. For a better comparison, consider Pakistan: it is slightly less dense than India and has about 15% India’s population, and yet two spines totaling about 1,800 km, Karachi-Lahore and Lahore-Islamabad-Peshawar, would connect nearly every major city. Lying on the Indus, much of Pakistan has a linear population distribution, facilitating rail connections.

With a difficult urban geography for HSR, India has to take especial care to reduce construction costs. This means, in turn, that it needs to rely on indigenous expertise and standards whenever possible. When imported technology is unavoidable, it needs to provide its own financing (with an annual budget of 29 trillion rupees, it can afford to do so) and force Japanese, Korean, and European vendors to compete. A Chinese-style tech transfer (read: theft) is not possible – the vendors got burned once and won’t agree to the same again – but domestic driver training, with the foreign role restricted to the rolling stock (built to Indian standards) and engineering, is essential and unlikely to bother the global industry.

Sioux City: Straightening Buses and Getting Route-Length Right

A few days ago, Sandy Johnston linked to a diagram of the single bus route in South Sioux City, Nebraska, a suburb of Sioux City, Iowa. While South Sioux City has a traditional main street in Dakota Avenue, the bus does not follow it; it meanders, hitting destinations on and off Dakota. Many destinations are on US Route 77, an arterial bypass around the built-up area, with recent auto-oriented retail and office uses, including a Wal-Mart (in small-town America often the biggest bus trip generator). The discussion around what to do with this region’s bus network made me realize a crucial concept in planning infrequent transit: getting route-length right. To start with, here is a map of the bus, numbered Route 9 within the Sioux City area:

Here is a PDF map of the entire network. It has 10 routes, using 12 buses running hourly, with a timed meet at the center of Sioux City (just off the above map) at :30 every hour. Most routes run as loops, with highly separated inbound and outbound legs. Route 9 above runs one-way southbound on Dakota Avenue in the northern and southern legs but then meanders to run southbound on Route 77; the Dakota Avenue leg in between the two major east-west runs is one-way northbound.

I asked, why need it be so complicated? The major destinations are all on Dakota or Route 77. It should be easy to run two distinct routes, one on each, right? Without the east-west meanders, there would be the same total service-hours, right?

But no. The route runs hourly. The scale of the map is small: from the bridge over the Missouri in the north to I-129 in the south it’s 4.1 km. There is so little traffic that in the evening rush Google Maps said it would be just 10 minutes by car from Downtown Sioux City to the southern edge of Dakota Avenue near I-129. The roundtrip time would be 25-30 minutes, so the bus would sit idle half the time due to the hourly pulse.

Getting route-length right

When designing regional rail schedules, as well as my take on night buses in Boston (since reduced to a single meandering route), I’ve taken great care to deal with roundtrip route length not always being an integer multiple of the headway. A train that comes every half hour had better have a roundtrip length that’s just less than an integer or half-integer number of hours, counting turnaround times, to minimize the time the train sits at the terminal rather than driving in revenue service. The same is true of buses, except that scheduling is less precise.

In Boston, the plan at the time was for hourly buses, and has since changed to half-hourly, but the principle remains. The roundtrip length of each leg of the night bus network, should it expand beyond one (double-ended) route, should be an integer or half-integer number of hours. In practice this means a one-way trip time of about 25-26 minutes, allowing for a little recovery time and for delays for passengers getting on or off; overnight there is no traffic and little ridership, so 25 minutes of driving time correspond to just less than 30 minutes of actual time.

Thus, on each corridor, the bus should extend about 25 minutes of one-way nighttime driving time from the connection point, and the choice of which routes to serve and where to end each route should be based on this schedule. Of course on some shorter routes 12 minutes (for a half-hour roundtrip) and on some long routes 38 minutes (for a 90-minute roundtrip) are feasible with half-hourly frequencies, but in Boston’s case the strong night bus routes in practice would all be 25.

Length and frequency

In the case of Sioux City, hourly buses meeting at the center should have a one-way trip time of 25 minutes. However, the city is so lightly populated that there is little traffic, and the average traffic speed is so high that 25 minutes puts one well outside the built-up area. The driving time from city center to the edge of the built-up area, around I-129, Lakefront Shopping Center, and the various Wal-Marts ringing the city, is around 10 minutes.

Moreover, a car travel time of 10 minutes corresponds to not much longer on a bus. Frequent commenter Zmapper notes that in small American cities, taking the driving time in traffic and multiplying by 1.2, or 1.3 with recovery time, is enough. A one-way driving time of 11-12 minutes involves a roundtrip bus time of half an hour.

With such a small urban extent, then, the bus frequency should be bumped to a bus every half hour, leveraging the fact that few important destinations lie more than 11-12 minutes outside city center. The question is then how to restructure the network to allow for doubling frequency without doubling operating expenses.

The importance of straight routes

Some of Sioux City’s bus routes go beyond the 12-minute limits, such as route 6 to the airport. But most stay within that limit, they’re just incredibly circuitous. Look at the map of route 9 again. It jumps between two main corridors, has multiple loops, and enters the parking lots of the Wal-Mart and other destinations on US 77.

The reason for the meanders is understandable. US 77 is a divided highway without sidewalks or crosswalks, and none of the destinations thereon fronts the road itself. From the wrong side of the road to Wal-Mart it’s 330 meters, and a few other retail locations are more than 100 meters off. Many agencies wince at making passengers walk this long.

However, understandable does not mean justifiable. Traversing even 330 meters takes only about 4 minutes, and even with a hefty walking penalty it’s much less than the inconvenience caused by hourly headways. The other routes in the Sioux City area have the same problem: not a single one runs straight between city center and its outer destination.

With straighter routes, the savings in service-hours would permit running every half hour. A single bus could run every half hour if the one-way car travel time were at most 11-12 minutes; up to 23 minutes, two buses would provide half-hourly service. With 12 buses, there is room to replace route 9 with two routes, one on Dakota and one on US 77 (possibly entering the Wal-Mart, since the route is so short it may be able to get closer to Wal-Mart while still staying under 12 minutes). The Lakeport Commons and Southern Hills Mall area could get buses at the entrance, as it is the logical end of the line (route 1, to Southern Hills).

Some pruning would still be required. Some low-density areas far from the main corridors would have to be stranded. Some circumferential lines would be pruned as well, such as route 10 (to the Commons) on US 75 and route 2 (on Pierce Jackson) to Wal-Mart. Circumferential lines at such a low frequency are not useful unless the transfers to the spokes are timed, which is impossible without breaking the city center interchange since the lines take different amounts of time to get between city center with the plausible connection point. Ultimately, replacing the hourly routes with half-hourly routes would guarantee better service to everyone who’d still get any service, which is nearly everyone.

It’s not just Sioux City

I focus on Sioux City because it’s a good toy model, at such scale that I could redesign the buses in maybe two weeks of part-time work. But it’s not the only place where I’ve seen needlessly circuitous routes wreck what should be a decent bus network for the city’s size and density. In 2014 Sandy wrote about the bus network in New Haven, which has okay trunks (I only needed to hitchhike because of a bus delay once – the other four or five times I took the bus it was fine) but splits into indescribably complex branches near its outer ends.

More recently, I looked at the network in Ann Arbor, partly out of prurient interest, partly out of having gone to two math conferences there and had to commute from the hotel to the university on the city’s most frequent bus, route 4. Zoomed out, the Ann Arbor map looks almost reasonable (though not quite – look at routes 5 and 6), but the downtown inset shows how route 4 reverse-branches. Ann Arbor is a car-oriented city; at my last math conference, in Basel, a professor complained that despite the city’s leftist politics, people at the math department were puzzled when the professor biked to campus. The buses are designed to hit every destination someone who’s too poor to own a car might go to, with speed, frequency, and reliability not the main concerns.

The underlying structure of bus networks in small American cities – radial buses converging on city center, often with a timed transfer – is solid. The problem is that the buses run every hour when cities should make an effort to run them every half hour, and the routes themselves are circuitous. In very small cities like Sioux City, increasing the base frequency is especially urgent, since their built-up extent is so compact a direct bus would reach the limit of the serviceable area in 10-12 minutes, perfect for a half-hourly schedule, and not the 25 minutes more typical of hourly schedules. Sometimes, scaling down requires maintaining higher frequency than the bare minimum, to avoid wasting drivers’ time with low-value meanders.

Cities and Cultural Cringe

Following up on my last post’s promise to tackle both cultural theory of risk and cultural cringe, here is my take on the latter issue.

It is normal for people to have some degree of national pride and fervor. Cultural cringe refers to the opposite trend: when, in some circumstances, people in certain countries feel national shame and develop an inferiority complex. The term cultural cringe itself was coined by A. A. Phillips in 1950, describing Australia’s inferiority complex toward Britain in literary fields: Australians thought their literature was too provincial and perhaps too incomprehensible to the British readers, and as a result many authors were uncomfortable making the local references celebrated in the literary canon of Britain, France, Russia, the US, etc. This notion has been generalized elsewhere. Amos Oz says he felt uncomfortable writing books in such a peripheral country as Israel until he read Sherwood Anderson’s Winesburg, Ohio, showing how literature of and by the provinces can thrive.

From its origin in Australian literature, the idea of the cultural cringe has expanded to other fields, including the law, social relations, technology, and business. It seems endemic in former colonies, especially ones that are not rich. One writer in Nigeria argues how best practices thinking is cultural cringe by giving an example of a recent legal importation that turns out to already exist in traditional Yoruba law. In Australia itself, political scientist L. J. Hume pushed back against the notion that there is cultural cringe, arguing it is true of literature but not economics of other fields. But in mass culture, the vast majority of countries, both developed and developing, consider American film and television superior to their own and have domestic industries that focus on arthouse films or low-budget flicks.

Cultural cringe in legal, political, or technological fields remains endemic in many other developed countries. In one recent example, Emmanuel Macron said France is inherently resistant to change and (by implication) ungovernable, comparing it negatively with Denmark. In business, 1980s-era America was replete with books telling managers how to think like a Japanese or German, which trend ended when the Japanese lost decade and the economic crisis of German unification made these countries less fashionable.

Lying in the intersection of business, politics, and technology, urbanism and transportation are amenable to analysis using this concept. As in the Nigerian example, the third world tends to have too much cultural cringe and too much faith in the merits of importing first-world methods. Conversely, the United States (and to a large extent Canada) today is resistant to outside ideas and does not know how to be a periphery.

Urban layout: there’s a world outside Europe

During the SB 827 debate in California, supporters reassured restive city residents that the density the bill promoted – up to 7 floors right next to transit lines and up to 5 a little farther away – was gentle. “Paris density,” they said. Everyone likes Paris as a tourist. Everyone recognizes Paris as good urbanism.

There is very little cultural cringe in the United States – on the contrary, Americans are solipsistic in every field. However, one of very few exceptions is that the American middle class vacations in Europe and is familiar with how walkable European cities are. (It’s even referenced on Mad Men when a minor character goes on walks in their car-oriented New York suburb.) Paris is the largest and richest city Americans of a certain wealth and education level can be expected to be familiar with and like, but by the same token the YIMBYs could mention Barcelona, Amsterdam, and Rome.

But it’s useful to think of what was not mentioned. Certainly not Hong Kong or Dubai, which seem to be mentioned almost exclusively negatively in Western discourse. Not Tokyo, which Westerners are much less likely to visit to the point that the Western blogs talking about Japanese urbanism (like Urban Kchoze) are notable for it. Nothing in the middle-income world, including some old cities (like Mexico City and Istanbul) that have building height, street width, and stylistic variation that first-world urbanists would approve of (and do if they’ve been there).

In this situation, the invocation of famous European cities feels less like a dialogue and more like an attempt to induce cringe defensively, to make people feel less attached to their cities’ American auto-oriented character. In effect, it’s an attack on “it will change the character of our neighborhood,” a line that’s much less common in countries that are used to thinking of themselves as inferior to whatever they consider the metropolitan core (such as the first world writ large in Israel, or the former colonial master in ex-colonies).

Transportation: a little cringe is good, but not too much

In the developing world, there is extensive cringe. Without using that term, I suggested it as a reason behind high construction costs in the third world, which are similar to the costs of the first world today and several times as high as those of the first world from back when its income levels were comparable to those of subway-building third-world countries, in the early 1900s. In Latin America and China, development is more inward-looking, and China in particular learned to build subways from the USSR in the 1950s, not a rich country. In former colonies, there seems to be a greater willingness to import methods from either the former colonizer or from countries that aggressively invest in third-world infrastructure, like Japan and China; the result is very high construction costs for projects for which I have data in India and other countries of that development level.

In some cases, like India’s high-speed rail program, the country imports technology wholesale, and Japan (or China) may insist on an exact copy of its methods. As it is, Japan refuses to call Taiwan High-Speed Rail a Shinkansen system even though it runs Shinkansen rolling stock: construction methods were European, so Japan only calls THSR a high-speed rail system using Shinkansen-based technology.

However, decisions like India’s standard-gauge metro lines happen even in indigenous systems. Delhi Metro uses standard gauge not for some turnkey technological import, but purely because it feels more modern whereas Indian mainline trains feel dinghy and dangerous. Evidently, Delhi Metro electrification is 25 kV, which is standard on mainline trains but unheard of on first-world metros; modifying subways for high-voltage electrification requires expensive concrete pouring, since high-voltage catenary requires more generous clearances to avoid arcing, whereas modifying rail gauge is routine since the European vendors are used to selling to broad-gauge Finland and Spain and the Japanese ones are used to their country’s multitude of gauges.

And if India errs on the side of too much shiny adoption of foreign technology, the US errs on the side of adopting too little. Americans do not think their country is inferior. American authors do not think they need to experience another country or speak another language before they write. There was a time when the American business community felt outcompeted, but today it feels like it’s at the top of the world, Silicon Valley having long left Japanese corporations in the dust; I stopped seeing complaints that American cars were inferior to German and Japanese ones not long after Obama’s auto industry bailout.

The American policy sphere seems especially constrained. There is some cultural cringe toward London, leading thinktanks like the Regional Plan Association and TransitCenter to overlearn from London’s peculiarities (like the Oyster fare cap and contactless credit card payment), but not much toward Continental Europe and practically none toward Japan. Instead, the attitude toward non-English-speaking countries is one of dismissal. When Richard Mlynarik pointed out to a Caltrain official that Japanese trains turned much faster at terminals than Caltrain thought possible, the official replied, “Asians don’t value life the way we do.”

If India fails to understand where its own methods could be superior despite being a peripheral country, the United States fails to understand that it’s a peripheral country in the first place. Transportation innovation rarely happens in North America. It happens in Western Europe and Japan, and to some extent in developing countries that have less cultural cringe than former colonies, such as Brazil and Colombia and their invention of BRT or Colombia, Bolivia, and Mexico’s use of aerial gondolas in mountainous suburban areas.

Urban development: you are not New York

I’ve been reading Aaron Renn’s blog, the Urbanophile, since maybe 2008. At the time he was still in Indianapolis, in (I believe) management consulting, writing about how his city was trying to become culturally and economically bigger than it was, and sometimes but not always succeeding. A recurrent theme in his writings has been that Midwestern American cities are desperate for development. They keep saying they need more creative people, more venture capital, or whatever else is in vogue. (In contrast, he says, Rhode Island, where he lived later, doesn’t even understand how peripheral it is.)

However, the way the Midwestern cities he focuses on try to attract this elusive development is through cheap copying. An old post of his I can no longer find contrasts world-class Indianapolis with world class in Indianapolis. The former involves investing in some city institution to make it world-class, or more realistically notable enough that boosters can call it world-class with a straight face. The latter involves inviting a starchitect or another person with international cachet (such as Richard Florida) to build something in Indianapolis that’s notable and is exactly as notable as what this person might build in any other city of that size, with no particular connection to the city itself.

In the transportation field, many American cities build mixed-traffic downtown streetcars and beam with pride if they get 4,000 riders per weekday. Often this mentality overrides any attempt to provide services to city residents: thus, the streetcar in Detroit is not integrated with the city’s bus network, and in fact a bus runs on the same street, on different lanes from the streetcar. This isn’t about some mythical preference for rail over bus: these cities build whatever they hear is in vogue and will get them noticed by New York media, whether it’s peak-only commuter rail, a downtown streetcar, a limited bus that calls itself BRT, or now a bus network redesign around untimed 15-minute frequencies.

Cringe vs. dialogue

It’s important to distinguish dialogue with a foreign culture and cultural cringe toward it. One difference is that cringe implies infatuation; however, infatuation can also develop among immigrants who are steeped in the metropole’s culture after having lived there even while maintaining ties to the old country. A bigger difference is the extent of two-way dialogue. Israelis use the expression “unbroken country” to refer to the mythical average first-world country in which you can get things done without having to tell government bureaucrats that you served in the military with their bosses; however, few have lived abroad long enough to know the details of what makes these countries tick better.

With limited knowledge of the core, the periphery can worship at the feet of the few people who do know, which leads to political bias. This is where moral panics of no-go zones come from: there is an Israeli television show purporting to portray how things are in Europe, but any connection between Belleville (or other racially diverse Paris neighborhoods) and what they depict is completely incidental. In that case, the bias is right-wing. In the opposite direction, left-wing bias can occur when American liberals and socialists are enamored by European health care and education systems and elide a thousand details that distinguish them from American renditions of single-payer health care or free college tuition.

But the biased reaction is only common in places that care little about how to govern. “Well, actually Tower Hamlets is a no-go zone” is not a blueprint for reducing nonwhite immigration to the United States or Israel. Instead, in the policy sphere a more common reaction is a shrug. Dialogue is threatening: the people capable of it are typically not the top pundits on this issue. Instead, it’s more common to aggressively dismiss knowledge that’s hard to access, even among people who at the same time invoke the cringe. In Israel it takes the form of self-denigrating lines like “this is Israel, not Finland.” Cultural cringe leads to lower expectations this way.

When Phillips criticized Australian authors who deracinated their writing to appeal to British taste, he was implicitly saying that Australians couldn’t root their literature in British experience. Oz, similarly, felt constrained about writing when he was young because living in Israel, he could not root his books in Paris, Milan, and other flashy cities whose books he devoured. The economic (or legal, or technological) analogue of this observation is that the reason there is cultural cringe is that people in peripheral areas (which in transportation include the United States) are too unfamiliar with the core and cannot dialogue with it the way people in different parts of the core can.

Urbanism is not literature. One doesn’t need extraordinary sensitivity and a lifetime (short as it may be) in a culture to produce very good insights about transportation, housing, or municipal governance. It’s possible to break out of the cringe by acquiring detailed knowledge of how the core operates. In the case of the third world and subway construction, it means learning enough about current and historical construction methods to be able to propose ways to build infrastructure at low costs commensurate with these cities’ low wages; in the case of the United States, it means learning enough about what makes European, Japanese, Latin American, etc. urbanism tick that it can be adopted domestically.

Urbanism is not literature in a far more important sense: there really are better and worse traditions there. It’s not enough to have pride in what you have when what you have is a third-world city where the poor don’t have running water, or for that matter an American city that would shut down instantly were gas prices to rise to levels necessary to stop global warming. Learning from the core is crucial. It’s just equally important to do so through dialogue and not through the ignorant self-denigration that is cultural cringe.

Fare Payment Without the Stasi

Last year, I saw a tip by the Metropolitan Police: if you witness any crime on a London bus and wish to report it later, you should tell the police the number on your Oyster card and then they’ll already be able to use the number to track which bus you rode and then get the names and bank accounts of all other passengers on that bus. Londoners seem to accept this surveillance as a fact of life; closed-circuit TV cameras are everywhere, even in front of the house where Orwell lived and wrote. Across the Pond, transit agencies salivate over the ability to track passenger movements through smartcards and contactless credit cards, which is framed either as the need for data or as a nebulous anti-crime measure. Fortunately, free countries have some alternative models.

In Germany, the population is more concerned about privacy. Despite being targeted by a string of communist terrorist attacks in the 1970s and 80s, it maintained an open system, without any faregates at any train station (including subways); fare enforcement in German cities relies on proof of payment with roving inspectors. Ultimately, this indicates the first step in a transit fare payment system that ensures people pay their fares without turning the payment cards into tracking devices. While Germany resists contactless payment, there are ways to achieve its positive features even with the use of more modern technology than paper tickets.

The desired features

A transit fare payment system should have all of the following features:

  1. Integration: free transfers between different transit vehicles and different modes should be built into the system, including buses, urban rail, and regional rail.
  2. Scalability: the system should scale to large metro areas with variable fares, and not just to compact cities with flat fares, which are easier to implement. It should also permit peak surcharges if the transit agency wishes to implement them.
  3. No vendor lock: switching to a different equipment manufacturer should be easy, without locking to favored contractors.
  4. Security: it should be difficult to forge a ticket.
  5. Privacy: it should not be possible to use the tickets to track passengers in most circumstances.
  6. Hospitality: visitors and occasional riders should be able to use the system with ease, with flexible options for stored value (including easy top-up options) and daily, weekly, and monthly passes, and no excessive surcharges.

Smartcard and magnetic card systems are very easy to integrate across operators; all that it takes is political will, or else there may be integrated fare media without integrated fares themselves, as in the Bay Area (Clipper can store value but there are no free transfers between agencies). Scalability is easy on the level of software; the hardest part about it is that if there are faregates then every station must have entry and exit gates, and those may be hard to retrofit. Existing smartcard technologies vary in vendor lock, but the system the US and Britain are standardizing on, contactless credit cards, is open. The real problem is in protecting privacy, which is simply not a goal in tracking-obsessed Anglo-American agencies.

The need for hospitality

Hospitality may seem like a trivial concern, but it is important in places with many visitors, which large transit cities are. Moreover, universal design for hospitality, such as easily recognizable locations for topping up stored value, is also of use to regular riders who run out of money and need to top up. Making it easy to buy tickets without a local bank account is of use to both visitors and low-income locals without full-service bank accounts. In the US, 7% of households are unbanked and another 20% are underbanked; I have no statistics for other countries, but in Sweden banks will not even give debit cards to people with outstanding debts, which suggests to me that some low-income Swedes may not have active banking cards.

New York’s MetroCard has many faults, but it succeeds on hospitality better than any other farecard system I know of: it is easy to get the cards from machines, there is only a $1 surcharge per card, and season tickets are for 7 or 30 days from activation rather than a calendar week or month. At the other end of the hospitality scale, Navigo requires users to bring a passport photo and can only load weekly and monthly passes (both on the calendar); flexible 5-day passes cost more than a calendar weekly pass.

In fact, the main reason not to use paper tickets is that hospitality is difficult with monthly passes printed on paper. Before the Compass Card debacle, Vancouver had paper tickets with calendar monthly passes, each in a different color to make it easy for the driver to see if a passenger was flashing a current or expired pass. The tickets could be purchased at pharmacies and convenience stores but not at SkyTrain stations, which only sold single-ride tickets.

ID cards and privacy

The Anglosphere resists ID cards. The Blair cabinet’s attempt to introduce national ID cards was a flop, and the Britons I was reading at the time (such as the Yorkshire Ranter) were livid. And yet, ID cards provide security and privacy. Passports are extremely difficult to forge. Israel’s internal ID cards are quite difficult to forge as well; there are occasional concerns about voter fraud, but nothing like the routine use of fake drivers’ licenses to buy drinks so common in American college culture.

At the same time, in countries that are not ruled by people who think 1984 was an uplifting look at the future, ID cards protect privacy. The Yorkshire Ranter is talking about the evils of biometric databases, and Israeli civil liberties advocates have mounted the same attack against the government’s attempt at a database. But German passports, while biometric, store data exclusively on the passport, not in any centralized database. ID cards designed around proving that you paid your fare don’t even have to use biometrics; the security level is lower than with biometrics, but the failure mode is that the occasional forger can ride without paying $100 a month (which is much less than the cost of the forgery), not that a ring of terrorists can enter the country.

Navigo’s ID cards are not hospitable, but allowing passengers to ride with any valid state-issued ID would be. Visitors either came in from another country and therefore have passports, drove in and therefore have drivers’ licenses, or flew in domestically and therefore still have ID cards. Traveling between cities without ID is still possible here and in other free European countries, but everyone has national ID cards anyway; the ID problem is mainly in the US with its low passport penetration (and secondarily Canada and Australia), and the US has no intercity public transit network to speak of outside the Northeast Corridor.

What this means is that the best way to prevent duplication of transit passes is to require ID cards. Any ID card must be acceptable, including a passport (best option), a national ID card (second best), or an American driver’s license (worst).

Getting rid of the faregates

There are approximately three first-world Western cities that have any business having faregates on their urban rail networks: London, Paris, New York. Even there, I am skeptical that the faregates are truly necessary. The Metro’s crowd control during the World Cup victory celebration was not great. New York’s faregates sometimes cause backups to the point that passengers just push the emergency doors open to exit, and then rely on an informal honor system so that passengers don’t use the open emergency doors to sneak in without payment.

Evidently, the Munich S-Bahn funnels all traffic through a single two-track city center tunnel and has 840,000 weekday users, without faregates. Only one or two trunk lines are busier in Paris, the RER A with about a million, and possibly the RER B and D if one considers them part of the same trunk (they share a tunnel but no platforms); in London, only the Central, Victoria, and Jubilee lines are busier, none by very much; in New York, none of the two-track trunks is as busy. Only the overcrowded lines in Tokyo (and a handful in Osaka, Beijing, and Shanghai) are clearly so busy that barrier-free proof-of-payment fare enforcement is infeasible.

The main reason not to use faregates is that they are maintenance-intensive and interfere with free passenger flow. But they also require passengers to insert fare media, such as a paper ticket or a contactless card, at every station. With contactless cards the system goes well beyond exact numbers of users by station, which can be obtained with good accuracy even on barrier-free systems like Transilien using occasional counts, and can track individual users’ movements. This is especially bad on systems that do not have flat fares (because then passengers tag on and off) and on systems that involve transferring with buses or regional trains and not just the subway (because then passengers have to tag on and off at the transfer points too).

Best industry practice here is then barrier-free systems. To discourage fare evasion, the agency should set up regular inspections (on moving vehicles, with unarmed civilian inspectors), but at the same time incentivize season passes. Season passes are also good for individual privacy, since all the system registers is that the passenger loaded up a monthly pass at a certain point, but beyond that can’t track where the passenger goes. All cities that have faregates except for the largest few should get rid of them and institute POP, no matter the politics.

Tickets and ID cards

In theory, the ID card can literally be the ticket. The system can store in a central database that Alon Levy, passport number [redacted], loaded a monthly pass valid for all of Ile-de-France on 2018-08-16, and the inspector can verify it by swiping my machine-readable passport. But in practice, this requires making sure the ticket machine or validator can instantly communicate this to all roving fare inspectors.

An alternative approach is to combine paper tickets with ID cards. The paper ticket would just say “I am Alon Levy, passport number [redacted], and I have a pass valid for all of Ile-de-France until 2018-09-14,” digitally signed with the code of the machine where I validated the ticket. This machine could even be a home printer, via online purchase, or a QR code displayed on a phone. Designing such a system to be cryptographically secure is easy; the real problem is preventing duplication, which is where the ID card comes into play. Without an ID card, it’s still possible to prevent duplication, but only via a cumbersome system requiring the passenger to validate the ticket again on every vehicle (perhaps even every rail car) when getting on or off.

The same system could handle stored value. However, without printing a new ticket every time a passenger validates, which would be cumbersome, it would have to fall back on communication between the validator and the handheld readers used by the inspectors. But fortunately, such communication need not be instant. Since passengers prepay with stored value, the ticket itself, saying “I am Alon Levy, passport number [redacted], and I loaded 10 trips,” is already valid, and the only communication required is when passengers run out of money; moreover, single-use tickets have a validity period of 1-2 hours, so any validator-to-inspector communication lag time of less than the validity period will be enough to ensure not to validate expired tickets. The same system can also be used to have a daily cap as in Oyster, peak surcharges, and even generally-undesirable station-to-station rather than zonal fares.

It’s even possible to design a system without single-use tickets at all. Zurich comes close, in that a 24-hour pass costs twice as much as a single-use ticket (valid for just an hour), so passengers never have any reason to get a single-use ticket. In this system there would not be any stored value, just passes for a day or more, valid in prescribed zones, with printable tickets if regular riders in one zone occasionally travel elsewhere.

The upshot here is that advanced technology is only required for printing and reading QR codes. The machines do not need to be any more complicated than ATMs or Bitcoin ATMs (insert money, receive a Bitcoin slip of paper); I don’t know how much Bitcoin ATMs cost, but regular ATMs are typically $2,000-3,000, and the most expensive are $8,000, unlike the $75,000 ticket machines used at New York SBS stations. The moving parts are software and not hardware, and can use multi-vendor cryptographic protocols. In effect, the difficult part of verifying that there is no duplication or forgery is offloaded to the state ID system.

Development-Oriented Transit, Redux

I wrote years ago about the problems of so-called development-oriented transit – that is, transit built not to serve current demand but future development, often to be funded via land value capture and other opaque mechanisms. Today I want to talk not so much about the transit itself but the arguments people make for it.

The context is that I appeared on Kojo Nnamdi’s show last week discussing the plans for a ferry network in Washington DC, which I had heavily criticized in an article for the DC Policy Center. I was discussing the issue with guest host Marc Fisher and two locals involved in the ferry plan. I criticized the ferry plan over the poor land use on most of the waterfront on both sides of the Potomac, contrasting it with the Staten Island Ferry and Vancouver’s SeaBus (both of which have skyscrapers going almost to the water’s edge at the CBD end and decent secondary CBD development at the outlying end). My interlocutors answered, don’t worry, the area is undergoing redevelopment.

I heard something similar out of Boston, regarding the Seaport. People recurrently talk on Commonwealth about how to connect to the Seaport better, and at one point there was a plan to have the Fairmount Line reverse-branch to serve the Seaport (rather than going into the CBD proper at South Station). The crayonistas talk about how to connect the Green Line to the Seaport. Whenever I point out that the Seaport is at best a tertiary destination I’m told that it’s growing so it needs some transit.

In both cases, what’s missing is scale. Yes, waterfront redevelopment in former industrial cities is real. But the only place where it’s happened on sufficient scale to merit changing the entire transit system to fit the new development is London, around Canary Wharf. And even in London, the CBDs are unambiguously still the City and the West End; Canary Wharf is a distant third, deserving of a Crossrail line and some Tube lines but not of the dense mesh of transit that the City and West End have.

The important thing to understand is that TOD sites are practically never going to eclipse the CBD. La Defense, for all its glass-clad glory, is still smaller than the Paris CBD, stretching from west of Les Halles to east of Etoile. The peak job density at La Defense is higher, but westbound RER A trains are at their most crowded heading into Auber, not La Defense, and the CBD maintains its medium-high job density for several square kilometers while La Defense is geographically small. And your city’s waterfront redevelopment is not going to be La Defense or Canary Wharf.

If the TOD sites are not going to be primary CBDs, then they must be treated as secondary centers at best. One does not build transit exclusively for a secondary center, because people along the lines that serve it are going to be much more interested in traveling to the primary CBD. For example, people at the origin end of a ferry system (in Washington’s case this is Alexandria and suburbs to its south) are traveling to the entirety of city center, and not just to the redevelopment site near the waterfront. Thus the transit that they need has to connect to the CBD proper, which in Washington’s case is around Farragut and Metro Center. A ferry system that doesn’t connect to Metro well is of no use to them, and whatever redevelopment Washington puts up near the Navy Yard won’t be enough to prop up ridership.

The principle for redeveloped waterfronts has to be the same as for every secondary neighborhood destination: be on the way. If there is cause to build an entirely new metro line, or run more buses, and the new service can plausibly go through the redevelopment site, then it should. In Boston’s case, the 7 bus has high usage for how short it is, and so does the Silver Line going to the airport, so it’s worthwhile making sure they run more efficiently (right now the 7 and Silver Line run along the same inner alignment but peak in opposite directions without being able to share infrastructure or equipment) to serve the Seaport better. However, building a line from scratch just for the Seaport is a bad idea, and the same is true of the area around Waterfront and the Navy Yard in Washington.

In fact, the two closest things New York has to Canary Wharf – the Jersey City waterfront and Long Island City – both developed precisely because they were on the way. PATH was built to connect the railroad terminals at the then-industrial waterfront and the traditional center of Jersey City at Journal Square with Manhattan. Mainline trains began to be diverted from Jersey City to Manhattan when Penn Station opened, and with the general decline of rail traffic the waterfront was abandoned; subsequently, Exchange Place and Pavonia/Newport became major job and retail centers, since they had available land right on top of rapid transit stations minutes from Lower Manhattan. In Queens, something similar happened with Long Island City, once a ferry terminal on the LIRR, now a neighborhood with rapid residential and commercial growth since it sits on multiple subway lines just outside Midtown.

One exception to the be on the way rule is if there is a nearby stub-end line or a natural branch point. Some metro lines stub-end in city center rather than running through, such as the Blue Line in Boston, the 7 and L trains in New York, and Metro Line 11 here in Paris. If they can be plausibly extended to a new redevelopment site, then this is fine – in this case the CBD will be on the way to the new site. The 7 extension is one example of this principle; the extension is overall not a success, but this is exclusively due to high costs, while ridership per km is not terrible.

In London, the Jubilee line and Crossrail are both examples of this exception around Canary Wharf. Crossrail expects intense demand into Central London but less demand on the specific eastern branch used (the Great Eastern slow lines), making the City into a natural branch point with a separate branch to Canary Wharf and Southeast London. And the Jubilee line stub-ended at Charing Cross when it first opened in the 1970s; plans for an extension to the east are even older than the initial line, and once Canary Wharf became a major office building site, the plans were changed so as to serve the new center on the way to Stratford (itself an urban renewal site with extensive redevelopment, it’s just smaller than Canary Wharf).

The ultimate guideline here is be realistic. You may be staring at a place that’s doubled its job density in a decade, but it won’t be able to double its density every decade forever, and most likely you’ll end up with either high-density condo towers or a small job cluster. This means that you should plan transit to this site accordingly: worth a detour on a line to the CBD, but not worth an entire system (whether ferry or rail) by itself.