Category: New York
The Leakage Problem
I’ve spent more than ten years talking about the cost of construction of physical infrastructure, starting with subways and then branching on to other things, most.
And yet there’s a problem of comparable size when discussing infrastructure waste, which, lacking any better term for it, I am going to call leakage. The definition of leakage is any project that is bundled into an infrastructure package that is not useful to the project under discussion and is not costed together with it. A package, in turn, is any program that considers multiple projects together, such as a stimulus bill, a regular transport investment budget, or a referendum. The motivation for the term leakage is that money deeded to megaprojects leaks to unrelated or semi-related priorities. This often occurs for political reasons but apolitical examples exist as well.
Before going over some examples, I want to clarify that the distinction between leakage and high costs is not ironclad. Sometimes, high costs come from bundled projects that are costed together with the project at hand; in the US they’re called betterments, for example the $100 million 3 km bike lane called the Somerville Community Path for the first, aborted iteration of the Green Line Extension in Boston. This blur is endemic to general improvement projects, such as rail electrification, and also to Northeast Corridor high-speed rail plans, but elsewhere, the distinction is clearer.
Finally, while normally I focus on construction costs for public transport, leakage is a big problem in the United States for highway investment, for political reasons. As I will explain below, I believe that nearly all highway investment in the US is waste thanks to leakage, even ignoring the elevated costs of urban road tunnels.
State of good repair
A month ago, I uploaded a video about the state of good repair grift in the United States. The grift is that SOGR is maintenance spending funded out of other people’s money – namely, a multiyear capital budget – and therefore the agency can spend it with little public oversight. The construction of an expansion may be overly expensive, but at the end of the day, the line opens and the public can verify that it works, even for a legendarily delayed project like Second Avenue Subway, the Berlin-Brandenburg Airport, or the soon-to-open Tel Aviv Subway. It’s a crude mechanism, since the public can’t verify safety or efficiency, but it’s impossible to fake: if nothing opens, it embarrasses all involved publicly, as is the case for California High-Speed Rail. No such mechanism exists for maintenance, and therefore, incompetent agencies have free reins to spend money with nothing to show for it. I recently gave an example of unusually high track renewal costs in Connecticut.
The connection with leakage is that capital plans include renewal and long-term repairs and not just expansion. Thus, SOGR is leakage, and when its costs go out of control, they displace funding that could be used for expansion. The NEC Commission proposal for high-speed rail on the Northeast Corridor calls for a budget of $117 billion in 2020 dollars, but there is extensive leakage to SOGR in the New York area, especially the aforementioned Connecticut plan, and thus for such a high budget the target average speed is about 140 km/h, in line with the upgraded legacy trains that high-speed lines in Europe replace.
Regionally, too, the monetary bonfire that is SOGR sucks the oxygen out of the room. The vast majority of the funds for MTA capital plans in New York is either normal replacement or SOGR, a neverending program whose backlog never shrinks despite billions of dollars in annual funding. The MTA wants to spend $50 billion in the next 5 years on capital improvements; visible expansion, such as Second Avenue Subway phase 2, moving block signaling on more lines, and wheelchair accessibility upgrades at a few stations, consists of only a few billion dollars of this package.
This is not purely an American issue. Germany’s federal plan for transport investment calls for 269.6 billion euros in project capital funding from 2016 to 2030, including a small proportion for projects planned now to be completed after 2031; as detailed on page 14, about half of the funds for both road and rail are to go to maintenance and renewal and only 40% to expansion. But 40% for expansion is still substantially less leakage than seen in American plans like that for New York.
Betterments and other irrelevant projects
Betterments straddle the boundary between high costs and leakage. They can be bundled with the cost of a project, as is the case for the Somerville Community Path for original GLX (but not the current version, from which it was dropped). Or they can be costed separately. The ideal project breakdown will have an explicit itemization letting us tell how much money leaked to betterments; for example, for the first Nice tramway line, the answer is about 30%, going to streetscaping and other such improvements.
Betterments fall into several categories. Some are pure NIMBYism – a selfish community demands something as a precondition of not publicly opposing the project, and the state caves instead of fighting back. In Israel, Haifa demanded that the state pay for trenching portions of the railroad through the southern part of the city as part of the national rail electrification project, making specious claims about the at-grade railway separating the city from the beach and even saying that high-voltage electrification causes cancer. In Toronto, the electrification project for the RER ran into a similar problem: while rail electrification reduces noise emissions, some suburbs still demanded noise walls, and the province caved to the tune of $1 billion.
Such extortion is surplus extraction – Israel and Toronto are both late to electrification, and thus those projects have very high benefit ratios over base costs, encouraging squeaky wheel behavior, raising costs to match benefits. Keeping the surplus with the state is crucial for enabling further expansion, and requires a combination of the political courage to say no and mechanisms to defer commitment until design is more advanced, in order to disempower local communities and empower planners.
Other betterments have a logical reason to be there, such as the streetscape and drainage improvements for the Nice tramway, or to some extent the Somerville Community Path. The problem with them is that chaining them to a megaproject funded by other people’s money means that they have no sense of cost control. A municipality that has to build a bike path out of its own money will never spend $100 million on 3 km; and yet that was the projected cost in Somerville, where the budget was treated as acceptable because it was second-order by broader GLX standards.
Bad expansion projects
Sometimes, infrastructure packages include bad with good projects. The bad projects are then leakage. This is usually the politically hardest nut to crack, because usually this happens in an environment of explicit political negotiation between actors each wanting something for their own narrow interest.
For example, this can be a regional negotiation between urban and non-urban interests. The urban interests want a high-value urban rail line; the rest want a low-value investment, which could be some low-ridership regional rail or a road project. Germany’s underinvestment in high-speed rail essentially comes from this kind of leakage: people who have a non-urban identity or who feel that people with such identity are inherently more morally deserving of subsidy than Berlin or Munich oppose an intercity high-speed rail network, feeling that trains averaging 120-150 km/h are good enough on specious polycentricity grounds. Such negotiation can even turn violent – the Gilets Jaunes riots were mostly white supremacist, but they were white supremacists with a strong anti-urban identity who felt like the diesel taxes were too urban-focused.
In some cases, like that of a riot, there is an easy solution, but when it goes to referendum, it is harder. Southern California in particular has an extreme problem of leakage in referendums, with no short- or medium-term solution but to fund some bad with the good. California’s New Right passed Prop 13, which among other things requires a 2/3 supermajority for tax hikes. To get around it, the state has to promise somthing explicit to every interest group. This is especially acute in Southern California, where “we’re liberal Democrats, we’re doing this” messaging can get 50-60% but not 67% as in the more left-wing San Francisco area and therefore regional ballot measures for increasing sales taxes for transit have to make explicit promises.
The explicit promises for weak projects, which can be low-ridership suburban light rail extensions, bond money for bus operations, road expansion, or road maintenance, damage the system twice. First, they’re weak on a pure benefit-cost ratio. And second, they commit the county too early to specific projects. Early commitment leads to cost overruns, as the ability of nefarious actors (not just communities but also contractors, political power brokers, planners, etc.) to demand extra scope is high, and the prior political commitment makes it too embarrassing to walk away from an overly bloated project. For an example of early commitment (though not of leakage), witness California High-Speed Rail: even now the state pretends it is not canceling the project, and is trying to pitch it as Bakersfield-Merced high-speed rail instead, to avoid the embarrassment.
The issue of roads
I focus on what I am interested in, which is public transport, but the leakage problem is also extensive for roads. In the United States, road money is disbursed to the tune of several tens of billions of dollars per year in the regular process, even without any stimulus funding. It’s such an important part of the mythos of public works that it has to be spread evenly across the states, so that politicians from a bygone era of non-ideological pork money can say they’ve brought in spending to their local districts. I believe there’s even a rule requiring at least 92% of the fuel tax money generated in each state to be spent within the state.
The result is that road money is wasted on low-growth regions. From my perspective, all road money is bad. But let’s put ourselves for a moment in the mindset of a Texan or Bavarian booster: roads are good, climate change is exaggerated, deficits are immoral (German version) or taxes are (Texan version), the measure of a nation’s wealth is how big its SUVs are. In this mindset, road money should be spent prudently in high-growth regions, like the metropolitan areas of the American Sunbelt or the biggest German cities. It definitely should not be spent in declining regions like the Rust Belt, where due to continued road investment and population decline, there is no longer traffic congestion.
And yet, road money is spent in those no-congestion regions. Politicians get to brag about saving a few seconds’ worth of congestion with three-figure million dollar interchanges and bypasses in small Rust Belt towns, complete with political rhetoric about the moral superiority of regions whose best days lay a hundred years ago to regions whose best days lie ahead.
Leakage and consensus
It is easy to get trapped in a consensus in which every region and every interest group gets something. This makes leakage easier: an infrastructure package will then have something for everyone, regardless of any benefit-cost analysis. Once the budget rather than the outcome becomes the main selling point, black holes like SOGR are easy to include.
It’s critical to resist this trend and fight to oppose leakage. Expansion should go to expansion, where investment is needed, and not where it isn’t. Failure to do so leads to hundreds of billions in investment money most of which is wasted independently for the construction cost problem.
Commuter Rail Express Service Best Practices
After my last post on poor timetabling in the New York area, I got a lot of feedback comparing New York’s zonal system with existing high-quality commuter rail networks. Some of it was in comments, but most interesting was a post by the pseudonymous socialist Emil Seidel, who compares the situation in New York with that of Munich.
I’m going to go over some best practices here – this is not intended as a highlight of poor American practices. That said, because of the application to New York, I’m going to go over Paris and Tokyo, as they’re both very large cities, in addition to cleaner German examples, including Berlin (where I live), Nuremberg (where Herbert in comments lives and where a Twitter commenter pointed out express service), and finally Emil’s example of Munich.
The upshot is that yes, commuter trains do often have express service, and it’s common for the express service to run local on an outer segment and then express closer in. However, this is not really the New York zone theory. Most importantly, high-quality local service always comes first, and everything else is an overlay. This is common to all of the examples we will look at, and is the most fundamental fact of commuter rail: S-Bahn service is urban rail on mainline tracks.
Infrastructure for local trains
Local service always comes first, ahead of any longer-range regional service. This can be readily seen in infrastructure allocation: in all examples I know of in the German-speaking world, Paris, and Tokyo, when there’s scarce infrastructure built for through-service, local trains get it ahead of longer-range regional ones.
- In Paris, the RER is defined as what runs through on newly-built tunnels, whereas Transilien service terminates at one of the historic terminals of Paris. This distinction is fundamental and precedes other distinctions, such as frequency – there are sections of Transilien H, J, and L that have higher frequency than some RER branches. And where the two systems run side-by-side, the RER is the more local one.
- In Germany, newly-built tunnels are for S-Bahn service. For example, in Munich, the S-Bahn gets to use the tunnel, while other trains terminate on the surface; this is also the case in Frankfurt, Stuttgart (until the upcoming Stuttgart 21), and Berlin (until the North-South Main Line opened).
- In Zurich, there are two through-tunnels under Hauptbahnhof. The older one is used principally by the S-Bahn; the newer one is used by the S-Bahn as well as longer-distance trains. But many long-distance trains stay on the surface.
- In Tokyo, local commuter trains get preference in JR through-running. The original set of through-tracks at Tokyo Station was used for local trains on the Yamanote and Keihin-Tohoku Line, while faster, longer-distance regional trains were demoted, and through-running ceased entirely when the Shinkansen took their space in the 1990s. Regional trains only resumed through-running when the Ueno-Tokyo Line opened in 2015. The Shinkansen’s use of space over regional train is justified because it serves large secondary cities in the Tohoku region and not just suburbs.
Timetabling for local trains
Local trains are also the most important priority for high frequency. In all of the five example cities for this post, local frequency is high, even on branches. In Tokyo and Paris, the trunks don’t really run on takts; Japan and France overall have less rigid takts than Germany but do have off-peak takt patterns, it’s just not very important to passengers when a train on the RER A or the Chuo Line comes every 4-5 minutes off-peak.
Elsewhere, there are takts. There are also takts on the branches in Paris. Typical frequencies are a train every 10, 15, or 20 minutes; they may be lower on outer branches, especially ones that are operationally half-branches, i.e. branches of branches like the two halves of S1 and S2 in Munich. All of this depends on city size; Berlin is bigger than Munich, which is bigger than Nuremberg.
- In Berlin, S-Bahn branches run every 10 or 20 minutes, but the ones running every 10 usually have short-turning variants, so the outer portions only get 20-minute service. The outer ends of 10-minute service – Spandau, Buch, Frohnau, Friedrichshagen, Teltow Stadt, Grünau – tend to be 15-18 km from the center, but one, Potsdam, is almost 30 km out.
- In Munich, S-Bahn branches likewise run every 10 or 20 minutes at rush hour, with some tails that have ugly 40-minute headways. Off-peak, the numbered branches run every 20 minutes.
- In Nuremberg, frequency is weaker, as it is a small city. But S2 has a 20-minute takt up to Schwabach, about 15 km out.
Let us now compare larger cities. Just as Berlin has higher frequency at a given radius than Munich and Nuremberg, so does Paris have even higher frequency, and Tokyo yet higher. On the RER A, branches run every 10 minutes all day; Marne-la-Vallée, home to Disneyland Paris as well as a suburban office park, sees trains every 10 minutes off-peak, 37 km outside city center. At the other end, Cergy sees a train every 10 minutes all day at similar distance, and at rush hour this rises to 5 minutes, but half the trains run on Transilien L rather than the RER.
Some of these Parisian RER trains run express. The RER B, off-peak, has a pattern with three services, each running every 15 minutes: at each end these go minor branch (Robinson or Mitry-Claye), major branch express (major stops to Massy and then local to Saint-Rémy or nonstop to CDG), major branch local (local to Massy or CDG). So yes, nonstop trains exist, in the special context of an airport, but local trains still run every 15 minutes as far as 20-30 km from city center. At rush hour, frequencies rise and there’s no more room for express trains to the north, so trains run every 6 minutes to each of CDG or Mitry, all local: local service always comes first.
Tokyo has even higher local frequency. Rapid lines tend to have their own dedicated pair of tracks, there is so much traffic. For example, the Chuo Line has four tracks to Mitaka: the local tracks carry the Chuo-Sobu Line, and the express tracks carry the Chuo Rapid Line farther out. Both patterns are very frequent.
What Tokyo does have is a melange of express services with names like Special Rapid, Limited Express, or Liner. However, they are timetabled around the local services, or the regular rapid ones if there’s a rapid track pair as on Chuo, even in environments with competition between private railways for commuter traffic. The Chuo Rapid Line’s basic pattern, the vanilla rapid, runs irregularly every 3-8 minutes off-peak, with Special Rapid trains making limited stops timetabled around those, with timed overtakes at major stations. Thus frequency stays very high even as far out as Tachikawa, 37.5 km from Tokyo Station. Moreover, at rush hour, where frequency is denser, there is less, sometimes no, special express service.
Timetabling for express trains
All of our five example cities have express trains. In Berlin, Munich, and Nuremberg, they’re branded as RegionalBahn, distinct from the S-Bahn. In Paris, some RER trains run express, but mostly Transilien provides extra express service. In Tokyo, it’s all branded as part of the Kanto area commuter rail network. This is the core of Emil’s argument: express service exists in Germany, but has separate branding.
Nonetheless, there are best practices for how to do this. In Jarrett Walker’s bus-based terminology, it is better to run limited, that is make major stops, than to run express, that is have long nonstop sections from outer areas to city center. Sometimes patterns are somewhat of a hybrid, like on some New York subway lines, but the basic principle is that regional trains never skip major stations.
- In Berlin, the Stadtbahn, built in the 1880s, has four tracks, two dedicated to local S-Bahn trains and two to everything else. Intercity trains on the Stadtbahn only stop at Hauptbahnhof and Ostbahnhof, but regional trains make roughly every other S-Bahn stop. Elsewhere, some stations are never missed, like Lichtenberg and Wannsee. Note also that as in Paris, Berlin likes its airport express service, branded FEX, which skips the RegionalBahn station and S-Bahn branch point Schöneweide.
- In Munich, some RegionalBahn services express from the S-Bahn terminal, where they always stop, to Hauptbahnhof; some also make a few stops on the way. It depends on the line – Dachau and Laim are both popular RegionalBahn stops.
- In Nuremberg, I encourage people to look at the map. Express trains abound, at fairly high frequency, each named service running hourly, and they always make certain major stations like Erlangen and Fürth.
The stopping pattern can be more local once there’s no S-Bahn, but it’s not really local. For example, at both ends of Berlin’s RE 1, a half-hourly regional line between Brandenburg an der Havel and Frankfurt an der Oder with half the trains continuing west to Magdeburg and south awkwardly to Cottbus, there are stops spaced 7-10 km apart between the built-up area of Berlin-Potsdam and those of Brandenburg and Frankfurt.
In Paris and Tokyo, similarly, express trains stop at major stations. The RER B’s express pattern does run nonstop between Gare du Nord and CDG, but to the south of Paris, it makes major stops like Bourg-la-Reine rather than trying to run nonstop from Massy to Paris; moreover, the RER trains make all stops within the city core, even neighborhood stops like Cité-Universitaire or Nation. Tokyo’s Special Rapids likewise stop at major stations like Kokubunji, and don’t run nonstop from outer suburban branches to Shinjuku and Tokyo.
What this means for New York
New York does not run its commuter rail in the above way. Not even close. First, local frequency is weak. The pre-corona timetables of the New Haven and Harlem Lines have 30-40 minute gaps at rush hour at radii where Berlin still has some 10-minute service. Off-peak the schedule is more regular but still only half-hourly. Hourly S-Bahn systems exist, for example in Mannheim, but those are mocked by German railfans as not real S-Bahns but barely upgraded regional rail systems using the term S-Bahn for marketing.
And second, express trains are not designed to provide an express overlay on top of local trains with transfers where appropriate. When they’re zoned, they only make a handful of stops at rush hour and then express, often without overlapping the next zone for a transfer. This is the case even where the infrastructure is a four-track line set up for more normal express service: the Hudson Line is set up so that Ossining, Tarrytown, and Yonkers have express platforms, but its timetable largely ignores that in favor of long nonstops, with 20-minute gaps at Yonkers.
In the future, it is critical to focus on a high-quality local takt, with frequency depending on city size. In Boston, a Berlin-size city, the TransitMatters plan calls for a 15-minute takt, sometimes 10 minutes, generally as far out as 20-30 km. But New York is a larger city, and needs 5 minutes within the city and 10 well into suburbia, with a strong local schedule that express trains can go around if appropriate. S-Bahn service, by whatever name or brand it has, is always about using mainline infrastructure to operate urban rail and extend the city into the suburbs.
The Invention of Bad Railroad Timetables
The rail advocate Shaul Picker has uploaded a fascinating potpourri of studies regarding commuter rail operations. Among them, two deserve highlight, because they cover the invention of bad timetable practices in New York, and, unfortunately, not only think those practices are good, but also view their goodness as self-evident. They are both by Donald Eisele, who was working for the New York Central and implemented this system on the lines that are now Metro-North, first introducing the concept to the literature in 1968, and then in 1978 asserting, on flimsy evidence, that it worked. Having implemented it in 1964 based on a similar implementation a few years earlier in the Bay Area, Eisele must be viewed as one of the people most responsible for the poor quality of American mainline service, and his idea of zone theory or zonal operations must be discarded in favor of the S-Bahn takt.
Zone theory
Eisele’s starting point is that commuter rail service should be exclusively about connecting the suburbs with city center. He contrasts his approach with urban transit, which is about service from everywhere to everywhere; trips short of Manhattan were 20% of single-trip ticket revenue for New York Central suburban operations and 5% of multi-ride pass revenue, and the railroad wanted to eliminate this traffic and focus on suburb-to-city commuters. From this inauspicious starting point, he implemented a timetable in which suburban stations are grouped into zones of a few contiguous stations each, typically 2-4 stations. At rush hour, a train only stops within one zone, and then expresses to city center, which in the original case means Grand Central.
The idea behind zone theory is that, since all that matters is a rapid connection to city center, trains should make as few stops as possible. Instead of trying to run frequently, it’s sufficient to run every 20 or 30 minutes, and then once a train fills with seats it should run express. This is accompanied by a view that longer-haul commuters are more important because they pay higher fares, and therefore their trips should not be slowed by the addition of stops closer in.
It’s important to note that what zone theory replaced was not an S-Bahn-style schedule in which all trains make all stops, and if there’s more demand in the inner area than the outer area then some trains should short-turn at a major station in the middle. American railroads had accumulated a cruft of timetables; Eisele goes over how haphazard the traditional schedules were, with short but irregular rush-hour intervals as some trains skipped some stations, never in any systematic way.
The first paper goes over various implementation details. For example, ideally a major station should be the innermost station within its zone, to guarantee passengers there a nonstop trip to city center. Moreover, considerable attention goes to fare collection: fares are realigned away from a purely distance-based system to one in which all stations in a zone have the same fare to city center, simplifying the conductors’ job. The followup paper speaks of the success of this realignment in reducing fare collection mistakes.
The failure of zone theory
We can see today that zone theory is a complete failure. Trains do not meaningfully serve anyone except 9-to-5 suburban commuters to the city, a class that is steadily shrinking due to job sprawl and a change in middle-class working hours. Ridership is horrendous: all three New York commuter railroads combined have less ridership than the Munich S-Bahn, a single-trunk, seven-branch system in a metropolitan area of 3 million. Metro-North would brag about having an 80% market share among rush hour commuters from its suburban shed to Manhattan, but that only amounts to about 90 million annual riders. In contrast, the modal split of rail at major suburban job centers, even ones that are adjacent to the train station like White Plains and Stamford, is single-digit percent – and Metro-North is the least bad of New York’s three railroads in this category.
Even on the original idea of providing fast service from the suburbs to city center, zone theory is a failure. The timetables are not robust to small disturbances, and once the line gets busy enough, the schedules have to be padded considerably. I do not have precise present-day speed zones for Metro-North, but I do have them for the LIRR courtesy of Patrick O’Hara, and LIRR Main Line service is padded 30% over the technical travel time of present-day equipment on present-day tracks. A textbook I have recently read about scheduling best practices cites a range of different padding factors, all single-digit percent; Switzerland uses 7%, on a complex, interlined network where reliability matters above all other concerns. With 30% padding, the LIRR’s nonstop trains between Ronkonkoma and Penn Station, a distance of 80 km, take about as long as local trains would with 7% padding.
Eisele is right in the papers when he complains about the institutional inertia leading to haphazard schedules. But his solution was destructive, especially in contrast with contemporary advances in scheduling in Europe, which implemented the all-day clockface schedule, starting with Spoorslag ’70 and then the Munich S-Bahn takt in 1972.
Zone theory and reliability
The first paper claims as self-evident that zonal timetables are reliable. The argument offered is that if there is a short delay, it only affects trains within that zone, and thus only affects the stations within the zone and does not propagate further. There is no attempt at modeling this, just claims based on common sense – and transport is a field where intuition often fails and scientific analysis is required.
The problem is that zone theory does not actually make trains in different zones independent of one another. The second paper has a sample timetable on PDF-p. 4 for the evening rush hour, and this can also be reversed for the morning. In the morning, trains from outer zones arrive in city center just after trains from inner zones; in the afternoon, trains serving outer zone stations depart city center first, always with a gap of just a few minutes between successive trains. In the morning, a delay in a suburban zone means that the trains in the zones behind it are delayed as well, because otherwise they would clash and arrive city center at literally the same minute, which is impossible.
This isn’t purely an artifact of short headways between running trains. Subway systems routinely have to deal with this issue. The key is that on a subway system, trains do not have much of their own identity; if a train is delayed, the next train can perfectly substitute for it, and cascading delays just mean that trains run slightly slower and (because the equipment pool is fixed) are slightly more crowded. The principle that individual suburban stations should only be served every 20-30 minutes means no such substitution is possible. S-Bahn trains are not as interchangeable as subway trains, which is why they cannot run as frequently, but they still manage to run every 2-3 minutes with 7% padding, even if they can’t reach the limit values of a train very roughly 1.5 minutes achieved by some big city subways.
Eisele did not think this through and therefore made an assertion based on intuition that failed: reliability did not improve, and with long-term deterioration of speed and lack of reduction in operating expenses, the express timetables at this point are slower than an all-stops S-Bahn would be.
Consultants and Railroaders Turn New Haven Line Investment Into Shelf Art
The state of Connecticut announced that a new report concerning investment in the New Haven Line is out. The report is damning to most involved, chief of all the Connecticut Department of Transportation for having such poor maintenance practices and high construction costs, and secondarily consultant AECOM for not finding more efficient construction methods and operating patterns, even though many readily exist in Europe.
What started out as an ambitious 30-30-30 proposal to reduce the New York-New Haven trip time to an hour, which is feasible without construction outside the right-of-way, turned into an $8-10 billion proposal to reduce trip times from today’s 2 hours by 25 minutes by 2035. This is shelf art: the costs are high enough and the benefits low enough that it’s unlikely the report will lead to any actionable improvement, and will thus adorn the shelves of CTDOT, AECOM, and the governor’s office. It goes without saying that people should be losing their jobs over this, especially CTDOT managers, who have a track record of ignorance and incuriosity. Instead of a consultant-driven process with few in-house planners, who aren’t even good at their jobs, CTDOT should staff up in-house, hiring people with a track record of success, which does not exist in the United States and thus requires reaching out to European, Japanese, and Korean agencies.
Maintenance costs and the state of good repair racket
I have a video I uploaded just before the report came out, explaining why the state of good repair (SOGR) concept has, since the late 1990s, been a racket permitting agencies to spend vast sums of money with nothing to show for it. The report inadvertently confirms this. The New Haven Line is four-track, but since the late 1990s it has never had all four tracks in service at the same time, as maintenance is done during the daytime with flagging rules slowing down the trains. Despite decades of work, the backlog does not shrink, and the slow zones are never removed, only replaced (see PDF-p. 7 of the report). The report in fact states (PDF-p. 8),
To accommodate regular maintenance as well as state-of-good-repair and normal replacement improvements, much of the four-track NHL typically operates with only three tracks.
Moreover, on PDF-p. 26, the overall renewal costs are stated as $700-900 million a year in the 2017-21 period. This includes rolling stock replacement, but the share of that is small, as it only includes 66 new M8 cars, a less than second-order item. It also includes track upgrades for CTRail, a program to run trains up to Hartford and Springfield, but those tracks preexist and renewal costs there are not too high. In effect, CTDOT is spending around $700 million annually on a system that, within the state, includes 385 single-track-km for Metro-North service and another 288 single-track-km on lines owned by Amtrak.
This is an insane renewal cost. In Germany, the Hanover-Würzburg NBS cost 640 million euros to do 30-year track renewal on, over a segment of 532 single-track-km – and the line is overall about 30% in tunnel. This includes new rails, concrete ties, and switches. The entire work is a 4-year project done in a few tranches of a few months each to limit the slowdowns, which are around 40 minutes, punctuated by periods of full service. In other words, CTDOT is likely spending more annually per track-km on a never-ending renewal program than DB is on a one-time program to be done once per generation.
A competent CTDOT would self-abnegate and become German (or Japanese, Spanish, French, Italian, etc.). It could for a few hundred million dollars renew the entirety of the New Haven Line and its branches, with track geometry machines setting the tracks to be fully superelevated and setting the ballast grade so as to improve drainage. With turnout replacement, all speed limits not coming from right-of-way geometry could be lifted, with the possible exception of some light limits on the movable bridges. With a rebuild of the Grand Central ladder tracks and turnouts for perhaps $250,000 per switch (see e.g. Neustadt switches), trains could do New York-New Haven in about 1:03 making Amtrak stops and 1:27 making all present-day local stops from Stamford east.
Infrastructure-schedule integration
The incompetence of CTDOT and its consultants is not limited to capital planning. Operations are lacking as well. The best industry practice, coming from Switzerland, is to integrate the timetable with infrastructure and rolling stock planning. This is not done in this case.
On the contrary: the report recommends buying expensive dual-mode diesel locomotives for through-service from the unelectrified branches instead of electrifying them, which could be done for maybe $150 million (the Danbury Branch was once electrified and still has masts, but no wires). The lifecycle costs of electric trains are half those of diesel trains, and this is especially important when there is a long electrified trunk line with branches coming out of it. Dual-mode locomotives are a pantomime of low electrification operating costs, since they have high acquisition costs and poor performance even in electric mode as they are not multiple-units. Without electrification, the best long-term recommendation is to shut down service on these two branches, in light of high maintenance and operating costs.
The choice of coaches is equally bad. The report looks at bilevels, which are a bad idea in general, but then adds to the badness by proposing expensive catenary modifications (PDF-p. 35). In fact, bilevel European trains exist that clear the lowest bridge, such as the KISS, and those are legal on American tracks now, even if Metro-North is unaware.
The schedule pattern is erratic as well. Penn Station Access will soon permit service to both Grand Central and Penn Station. And yet, there is no attempt to have a clean schedule to both. There is no thought given to timed transfers at New Rochelle, connecting local and express trains going east with trains to Grand Central and Penn Station going west, in whichever cross-platform pattern is preferred.
The express patterns proposed are especially bad. The proposal for through-running to Philadelphia and Harrisburg (“NYX”) is neat, but it’s so poorly integrated with everything else it might as well not exist. Schedules are quoted in trains per day, for the NYX option and the GCX one to Grand Central, and in neither case do they run as frequently as hourly (PDF-p. 26). There is no specific schedule to the minute that the interested passenger may look at, nor any attempt at an off-peak clockface pattern.
Throw it in the trash
The desired rail investment plan for Connecticut, setting aside high-speed rail, is full electrification, plus track renewal to permit the elimination of non-geometric speed limits. It should cost around $1 billion one-time; the movable bridge replacements should be postponed as they are nice to have but not necessary, their proposed budgets are excessive, and some of their engineering depends on whether high-speed rail is built. The works on the New Haven Line are doable in a year or not much more – the four-year timeline on Hanover-Würzburg is intended to space out the flagging delays, but the existing New Haven Line is already on a permanent flagging delay. The trains should be entirely EMUs, initially the existing and under-order M8 fleet, and eventually new lightweight single-level trains. The schedule should have very few patterns, similar to today’s off-peak local and express trains with some of one (or both) pattern diverting to Penn Station; the express commuter trains should take around 1:30 and intercity trains perhaps 1:05. This is a straightforward project.
Instead, AECOM produced a proposal that costs 10 times as much, takes 10 times as long, and produces half the time savings. Throw it in the trash. It is bad, and the retired and working agency executives who are responsible for all of the underlying operating and capital assumptions should be dismissed for incompetence. The people who worked on the report and their sources who misinformed them should be ashamed for producing such a shoddy plan. Even mid-level planners in much of Europe could design a far better project, leaving the most experienced and senior engineers for truly difficult projects such as high-speed rail.
Quick Note: Deterioration of Speed
A regrettable feature of rail transport is that often, the speed of a line deteriorates over time after it opens or finishes a major upgrade. This can come from deferred maintenance or from proper maintenance that includes stricter speed limits or more timetable padding; in either case, it’s because maintaining the original schedule is not seen as a priority, and thus over time service degrades. In some cases, this can also include a deterioration of frequency over time, usually due to inattention.
This is not excusable behavior. The networks where this feature exists, including the US, France, and Germany, are not better-run than the Shinkansen, where I have not seen any such deterioration of Shinkansen speed in many years of poking around timetables on Hyperdia, or the system in Switzerland. Switzerland’s timed transfers make it impossible for gradual deterioration of speed to accumulate – trains are scheduled to just make connections to other trains at major nodes, and so if they slow down too much then they can’t make the transfers and the entire network degrades.
I wish I could say degradation is a purely American phenomenon. It’s very common in the United States, certainly – on the subway in New York the deterioration made citywide news in 2017 (including one piece by me), on the trains between New York and New Haven the schedule is visibly slower now than it was in the late 2000s, on Amtrak the Northeast Corridor has degraded since the 2000s. Speed is not viewed as a priority in the US, and so there are always little excuses that add up, whether they’re flagging, the never ending State of Good Repair program on the New Haven Line under which at no point in the last 20-25 years have all four tracks been in service at the same time, or just inattention to reliability.
But no. France and Germany have had this as well. The TGV used to run between Paris and Marseille in 3:03 every two hours and in 3:06 every other hour; today I see a 3:04 itinerary every four hours and the rest start at 3:11. And here, the Berlin-Hamburg trains were timetabled at 1:30 in the mid-2000s, giving an average speed of 189 km/h, the highest in Germany even though the top speed is only 230 and not 300; the fastest itinerary I can find right now is 1:43, averaging only 165 km/h.
I stress that such deterioration does not have any benefits. It’s an illusory tradeoff. When New York chose to slow down the L trains’ braking rate as part of CBTC installation, this was not seen in reduced systemwide maintenance costs; speed just wasn’t a priority, so the brakes were derated. The 7 train, as I understand it, will instead speed up when CBTC comes online, a decision made under Andy Byford’s program to speed up service.
Nor has France saved anything out of the incremental slowdowns in TGV service. Operating costs are up, not down. The savings from slowdowns are on the illusory to microscopic spectrum, always trumped by increases in cost from other sources, for example the large increases in wages in the 2010s due to the cheminot strikes.
By far the greatest cost of speed is during construction. During operations, faster service means lower crew costs per km. This is where the Swiss maxim of running trains as fast as necessary comes from. This isn’t about derating trains’ acceleration – on the contrary, Switzerland procures high-performance trains. It’s about building the least amount of physical infrastructure required to maintain a desired timetable, and once the infrastructure is built, running that timetable.
What City of Neighborhoods?
Here is a table of New York community boards, with their employed resident and job counts, broken down by how many people live and work in the same community board and how many in the same borough:
| Borough | CB | Emp. res. | In same borough | % | In CB | % | Jobs | From same borough | % | From CB % |
| Manhattan | 1 | 38642 | 29409 | 76.11% | 7221 | 18.69% | 355153 | 60618 | 17.07% | 2.03% |
| Manhattan | 2 | 48267 | 35865 | 74.31% | 5725 | 11.86% | 183115 | 41596 | 22.72% | 3.13% |
| Manhattan | 3 | 75441 | 49648 | 65.81% | 5371 | 7.12% | 57446 | 12860 | 22.39% | 9.35% |
| Manhattan | 4 | 66243 | 50860 | 76.78% | 7494 | 11.31% | 226747 | 49996 | 22.05% | 3.31% |
| Manhattan | 5 | 35539 | 27350 | 76.96% | 15770 | 44.37% | 1048842 | 237036 | 22.60% | 1.50% |
| Manhattan | 6 | 73820 | 56390 | 76.39% | 8073 | 10.94% | 217528 | 45792 | 21.05% | 3.71% |
| Manhattan | 7 | 98888 | 72880 | 73.70% | 6473 | 6.55% | 80773 | 21832 | 27.03% | 8.01% |
| Manhattan | 8 | 103360 | 77749 | 75.22% | 11494 | 11.12% | 150975 | 35921 | 23.79% | 7.61% |
| Manhattan | 9 | 50326 | 32450 | 64.48% | 6133 | 12.19% | 56437 | 20558 | 36.43% | 10.87% |
| Manhattan | 10 | 59808 | 37030 | 61.91% | 1921 | 3.21% | 27069 | 6582 | 24.32% | 7.10% |
| Manhattan | 11 | 54461 | 32989 | 60.57% | 3465 | 6.36% | 59785 | 13859 | 23.18% | 5.80% |
| Manhattan | 12 | 88756 | 53994 | 60.83% | 5585 | 6.29% | 42215 | 11191 | 26.51% | 13.23% |
| Brooklyn | 1 | 93858 | 23771 | 25.33% | 11669 | 12.43% | 95039 | 43701 | 45.98% | 12.28% |
| Brooklyn | 2 | 65843 | 12605 | 19.14% | 4815 | 7.31% | 168183 | 61063 | 36.31% | 2.86% |
| Brooklyn | 3 | 75550 | 22124 | 29.28% | 2437 | 3.23% | 30375 | 14971 | 49.29% | 8.02% |
| Brooklyn | 4 | 53047 | 13365 | 25.19% | 2037 | 3.84% | 20681 | 8800 | 42.55% | 9.85% |
| Brooklyn | 5 | 80184 | 26224 | 32.70% | 4135 | 5.16% | 36692 | 15537 | 42.34% | 11.27% |
| Brooklyn | 6 | 59620 | 12859 | 21.57% | 3060 | 5.13% | 44665 | 23825 | 53.34% | 6.85% |
| Brooklyn | 7 | 53912 | 27560 | 51.12% | 4105 | 7.61% | 51985 | 18241 | 35.09% | 7.90% |
| Brooklyn | 8 | 50134 | 13321 | 26.57% | 1017 | 2.03% | 14092 | 7875 | 55.88% | 7.22% |
| Brooklyn | 9 | 50798 | 17575 | 34.60% | 2437 | 4.80% | 21875 | 12134 | 55.47% | 11.14% |
| Brooklyn | 10 | 60178 | 21084 | 35.04% | 4564 | 7.58% | 26891 | 14710 | 54.70% | 16.97% |
| Brooklyn | 11 | 76193 | 33268 | 43.66% | 6534 | 8.58% | 41384 | 23491 | 56.76% | 15.79% |
| Brooklyn | 12 | 67453 | 35352 | 52.41% | 14929 | 22.13% | 82274 | 50212 | 61.03% | 18.15% |
| Brooklyn | 13 | 41841 | 20415 | 48.79% | 3685 | 8.81% | 31189 | 17578 | 56.36% | 11.82% |
| Brooklyn | 14 | 76918 | 31837 | 41.39% | 4287 | 5.57% | 37103 | 22108 | 59.59% | 11.55% |
| Brooklyn | 15 | 67527 | 32805 | 48.58% | 8909 | 13.19% | 51303 | 32664 | 63.67% | 17.37% |
| Brooklyn | 16 | 38147 | 13099 | 34.34% | 889 | 2.33% | 16258 | 7932 | 48.79% | 5.47% |
| Brooklyn | 17 | 74678 | 29788 | 39.89% | 1993 | 2.67% | 23133 | 11547 | 49.92% | 8.62% |
| Brooklyn | 18 | 96069 | 40009 | 41.65% | 5124 | 5.33% | 38047 | 21213 | 55.75% | 13.47% |
| Queens | 1 | 101288 | 18991 | 18.75% | 7031 | 6.94% | 75098 | 27667 | 36.84% | 9.36% |
| Queens | 2 | 64975 | 12229 | 18.82% | 3489 | 5.37% | 98729 | 31555 | 31.96% | 3.53% |
| Queens | 3 | 66603 | 19098 | 28.67% | 2930 | 4.40% | 24303 | 11737 | 48.29% | 12.06% |
| Queens | 4 | 68052 | 19221 | 28.24% | 2722 | 4.00% | 34347 | 14520 | 42.27% | 7.93% |
| Queens | 5 | 89074 | 22937 | 25.75% | 5969 | 6.70% | 41715 | 17767 | 42.59% | 14.31% |
| Queens | 6 | 59248 | 14194 | 23.96% | 4203 | 7.09% | 51413 | 23062 | 44.86% | 8.17% |
| Queens | 7 | 111424 | 39372 | 35.34% | 18856 | 16.92% | 96104 | 49400 | 51.40% | 19.62% |
| Queens | 8 | 66209 | 21037 | 31.77% | 3413 | 5.15% | 37200 | 17735 | 47.67% | 9.17% |
| Queens | 9 | 68350 | 22171 | 32.44% | 3543 | 5.18% | 36075 | 16644 | 46.14% | 9.82% |
| Queens | 10 | 57042 | 19399 | 34.01% | 2855 | 5.01% | 18793 | 9398 | 50.01% | 15.19% |
| Queens | 11 | 51870 | 17605 | 33.94% | 3145 | 6.06% | 32647 | 16201 | 49.62% | 9.63% |
| Queens | 12 | 102652 | 36664 | 35.72% | 5991 | 5.84% | 41669 | 19872 | 47.69% | 14.38% |
| Queens | 13 | 95551 | 28134 | 29.44% | 4232 | 4.43% | 46851 | 18484 | 39.45% | 9.03% |
| Queens | 14 | 46368 | 12538 | 27.04% | 4837 | 10.43% | 20989 | 9744 | 46.42% | 23.05% |
| Bronx | 1 | 40292 | 8822 | 21.90% | 2151 | 5.34% | 38160 | 15079 | 39.52% | 5.64% |
| Bronx | 2 | 20271 | 4912 | 24.23% | 1395 | 6.88% | 28631 | 11713 | 40.91% | 4.87% |
| Bronx | 3 | 31085 | 7438 | 23.93% | 836 | 2.69% | 16020 | 6469 | 40.38% | 5.22% |
| Bronx | 4 | 62233 | 12619 | 20.28% | 2010 | 3.23% | 22887 | 8491 | 37.10% | 8.78% |
| Bronx | 5 | 52639 | 11308 | 21.48% | 1688 | 3.21% | 18509 | 8608 | 46.51% | 9.12% |
| Bronx | 6 | 32209 | 7811 | 24.25% | 1257 | 3.90% | 21646 | 8534 | 39.43% | 5.81% |
| Bronx | 7 | 56770 | 13256 | 23.35% | 2812 | 4.95% | 37047 | 15328 | 41.37% | 7.59% |
| Bronx | 8 | 44353 | 9093 | 20.50% | 2773 | 6.25% | 22587 | 9143 | 40.48% | 12.28% |
| Bronx | 9 | 71562 | 16749 | 23.40% | 2846 | 3.98% | 23935 | 9931 | 41.49% | 11.89% |
| Bronx | 10 | 52005 | 12813 | 24.64% | 2876 | 5.53% | 32978 | 13456 | 40.80% | 8.72% |
| Bronx | 11 | 47966 | 13213 | 27.55% | 3476 | 7.25% | 41411 | 18590 | 44.89% | 8.39% |
| Bronx | 12 | 67597 | 17499 | 25.89% | 2717 | 4.02% | 21584 | 8862 | 41.06% | 12.59% |
| SI | 1 | 80116 | 20485 | 25.57% | 9719 | 12.13% | 40870 | 18722 | 45.81% | 23.78% |
| SI | 2 | 60486 | 14498 | 23.97% | 7548 | 12.48% | 48136 | 22915 | 47.60% | 15.68% |
| SI | 3 | 72208 | 19871 | 27.52% | 7532 | 10.43% | 25338 | 13227 | 52.20% | 29.73% |
Notes:
- The data uses the all-jobs filter on OnTheMap, which assigns a lot of public-sector jobs in the city to City Hall or Brooklyn Borough Hall. The actual number of workers in Brooklyn CB 2 is lower than stated, by perhaps 60,000. The definition of CBs also excludes a few parts of the city with jobs, including the airports. Finally, Marble Hill is in Manhattan but is in the Bronx CB 8; it is counted in Manhattan throughout in same-borough job counts but as part of the Bronx CB 8 in CB job and resident counts.
- Very few people work in the same community board they live in. Citywide, it’s 7.8%. The numbers are only high in Manhattan CB 5, which consists of Midtown and is so expensive to live in that people live there if they’re high-income commuters choosing a short walking commute. And yet, local politics is dominated by those 7.8%, who think owning a business near where they live makes them more moral than the rest of the city.
- Even working and living in the same borough is not that common, only 38.7% citywide. It’s only a majority in Manhattan and a bare majority in two Outer Borough CBs, Brooklyn 7 and 12 (Sunset Park and Borough Park).
- Staten Island, which has a strong not-the-rest-of-the-city political identity, relies on the rest of the city’s economy. Only 25.8% of employed residents work within the borough, and 55.6% work in the other four boroughs, the remaining working in the suburbs. Slightly more Staten Island residents work in Manhattan than on Staten Island.
- The majority of people working in New York live outside the borough they work in, and this is true even excluding Manhattan, only 45.7% of outer-borough workers living in the borough they work in.
- The Bronx CB 2 is on net a job center and not a bedroom community, due to industrial jobs in Hunts Point.
Labor and New York Bus and Subway Frequency
In New York, the frequency of a bus or subway service is regularly adjusted every three months to fine-tune crowding. Where Berlin has a fixed clockface timetable in which most trains run every 5 minutes all day, New York prefers to make small changes to the frequency of each service throughout the day based on crowding. The New York approach looks more efficient on paper, but is in fact the opposite. It leads to irregular frequencies whenever trains share tracks with other trains, and weakens the system by leading to long waits. But another problem that I learned about recently is that it is unusually inconvenient for labor, and makes the timetabling of trains too difficult.
How does New York timetable trains?
New York City Transit meets every three months to change the frequency of each named (numbered or lettered) subway service and, I believe, also every bus service. The rule is that, off-peak, train loads should be 125% of seated capacity at the most crowded point of the journey. Of note:
- This is adjusted by time of day – it’s not one fixed frequency for the entire midday off-peak.
- At the peak, the frequency follows the same rule but the guideline allows much more crowding, equal to about 3 times the seated capacity.
- When multiple services share the same trunk, the crowding is based on the service, not the trunk. This matters because sometimes there’s a notable difference, for example the 2 is more crowded than the 3 coming in from the Bronx and Harlem.
- There is no adjustment for the length of the most crowded point: it could be one 1.5-minute interstation, or a long 20-minute stretch.
- The interlining between different services leads to irregular frequencies on each, thus different crowding levels. The frequency guidelines are averaged across different trains of the same service.
- There is a minimum frequency of a train every 10 minutes weekdays, every 12 minutes weekends; late at night, all trains run every 20 minutes.
I wrote in 2015 about the negatives of this approach, focusing on the issue of interlining of different services with different frequencies and the seams this creates. Because the system is not trunk-based, the alternation of (say) 2 and 3 trains on the long trunk that they share is not regular. Thus the frequency is irregular and so is crowding. More recently, in 2019 I wrote about the frequency-ridership spiral. The guidelines are based on thinking from an era when nobody thought ridership was endogenous to frequency; direct commute trips without transfers are long compared with frequency, so in that era, the only perceived purpose of frequency was to provide capacity for a fixed ridership. But in reality, 10 minutes is too infrequent for the subway trips people actually take, which average 13.5 minutes without transfers.
Timetabling and labor
The consequence of the constant fidgeting on frequency is that crew timetables are unpredictable. In one period, the system may need more subway drivers reporting to Coney Island Yard, and in another, it may need more at yards in the Bronx and Queens. Bus depots likewise are located all over the city. Naturally, subway yards and bus depots are at peripheral locations, usually accessible only from one subway line in one direction. Commuting there from most spots in the city is difficult.
Moreover, as is typical in the American unionized public sector, workers at New York City Transit pick their schedules in descending order of seniority. The senior workers can make sure to pick work out of depots near where they live. The junior ones spend years having to work out of the Bronx one day and Southern Brooklyn the next. The commute is so bad that the TWU negotiated paid commute time: workers who have long commutes, forced by erratic timetabling, get paid for commute time, rather than just for time they actually work. Car ownership rates among subway workers are high, which is not typical of New York workers.
The erratic scheduling also means that, even independently of the long commutes for train and bus drivers, there is extensive downtime between runs. A prominent peak in the schedule means that split shifts are unavoidable. Split shifts are undesirable to workers, and therefore shift scheduling always includes some compromises, for example paying workers half-time for time between shifts (as in Boston), or scheduling shorter paid gaps between revenue service. In New York, there are some subway train operators who have three uninterrupted hours of paid work in which they do not drive a revenue train.
As a result, comparing total counts for train operators and service-hours, NYCT gets around 550 hours per train operator. I provided some comparative links in 2016, but they have rotted; Berlin, which runs close to even service on the U-Bahn with very little peaking and little adjustment over time, has 790 drivers and gets 22.1 million annual train-km at an average speed of 30.9 km/h, which is 905 hours per train driver. If you’ve seen me cite lower figures, such as 820 or 829 hours/driver, they come from assuming 20.3 million train-km, which figure is from 2009.
This is not because New York City drivers are lazy or overpaid. The timetabling is forcing unnecessary pain on them, which allows them to demand higher wages, and also leads to inefficiency due to much downtime and paid commutes. NYCT pays bus and train drivers $85,000 a year in base salary per See Through NY, and there aren’t hordes of people knocking on NYCT’s doors demanding those jobs. Boston pays slightly less, around $80,000, and has some retention problems among bus drivers; private bus companies that attempt to pay much less just can’t find qualified workers. The market pay is high, partly because it’s a genuinely physically tough job, but partly because it’s made tougher by erratic scheduling. In Munich, the richest city in Germany, with average per capita incomes comparable to those of New York, S-Bahn drivers get 38,000-45,000€ a year, and one wage comparison site says 40,800€. Berlin pays less, but Berlin is a poorer city than both Munich and New York.
There is another way
New York should timetable its trains differently. Berlin offers a good paradigm, but is not the only one. As far as reasonably practical, frequency should be on a fixed clockface timetable all day. This cannot be exactly 5 minutes in New York, because it needs more capacity at rush hour, but it should aim to run a fixed peak timetable and match off-peak service to peak service.
One possibility is to run all trunks every 2.5 minutes. In some cases, it may be fine to drop a trunk to every 3 minutes or a bit worse: the L train has to run every 3 minutes due to electrical capacity limits, but should run at this frequency all day; the local Broadway Line trains should probably only run every 3 minutes as they have less demand. But I wouldn’t run the 1 train every 3 minutes as it does today, but rather keep it every 2.5, matching the combined trunk of the 2 and 3, and try to time the cross-platform transfers at 96th Street. Train services that share tracks with other services should thus run every 5 minutes, maybe 6. Last year I called this the six-minute city, in which all buses and trains run every (at worst) 6 minutes all day. In the evening this can drop to a train or bus every 10 minutes, and late at night every 20, but this should be done at consistent times, with consistent quantity of service demanded week in, week out.
There may be still some supplemental peak frequency. Taking 3 minutes as the base on every trunk, some trunks may need 2.5 at the peak, or ideally 2 or less with better signaling. It represents a peak-to-base ratio of 1-1.2, or maybe 1.5 in some extreme cases; Berlin, too, has the odd line with 4-minute peak frequency, for a ratio of 1.25. The employee timetabling is unlikely to be onerous with a ratio of 1.25 rather than the present-day ratio of around 2, and while passengers do drop out of riding trains for short distances if they only come every 10-12 minutes, 6 minutes on branches may be tolerable, even if 5 is slightly better.
It’s a large increase in service. That’s fine. Frequency-ridership spirals work in your favor here. Increases in service require small increases in expenditure, even assuming variable costs rise proportionately – but they in fact do not, since regularizing frequency around a consistent number and reducing the peak-to-base ratio make it possible to extract far more hours out of each train driver, as in Berlin. Net of the increase in revenue coming from better service, such a system is unlikely to cost more in public expenditure.
This remains true even assuming no pay cuts for drivers in exchange for better work conditions. Pay cuts are unlikely anyway, but improving the work conditions for workers, especially junior workers, does make it easy to hire more people as necessary. The greater efficiency of workers under consistent timetabling without constant fidgeting doesn’t translate to lower pay, but to much more service, in effect taking those 550 annual hours and turning them into 900 through much higher off-peak frequency. It may well reduce public expenditure: more service and thus greater revenue from passengers on the same labor force.
What it requires is understanding that frequency is not to be constantly messed with. Gone are the days when frequency was naturally so high that it looked to be just a function of capacity. On a system with so many transfers and so much short ridership, ridership is endogenous to it, and therefore high, consistent frequency is a must for passengers. For workers, it is also a must, to avoid imposing 1.5-hour commutes on people without much notice. Modernization in this case is good for everyone.
Queens Buses and Regional Rail
Queens needs a bus redesign, thankfully already in the works; it also needs better LIRR service that city residents can use as if it’s an express subway. A key part of bus redesign is having buses and trains work together, so that buses feed trains where possible rather than competing with them. The proposed Queens redesign incorporates subway transfers but not LIRR transfers since the LIRR is infrequent and charges premium fares. This raises the question – how does the optimal bus network for Queens change in the presence of better city service on the LIRR? And conversely, how can the LIRR be designed to be of better use to Queens bus riders?
It turns out that the answer to both questions is “very little.” The best Queens bus network in a city where the LIRR lines through Queens run every 5-10 minutes all day is largely the same as the best network in a city where the LIRR remains an exclusive suburb-to-Manhattan mode. Similarly, bus connections change little when it comes to infill stations on the LIRR for better city service. This is not a general fact of bus redesigns and regional rail – the reason for this pattern has to do with the importance of Flushing and Jamaica. Nor does it mean that regional rail is irrelevant to buses in Queens – it just means that the benefits of rerouting buses to serve additional LIRR stations are too small compared with the drawbacks.
Flushing and Jamaica
This is the present-day subway infrastructure:

The 7 train terminates in Flushing; the E (drawn in F-orange above) and J/Z terminate in Jamaica, while the F terminates in Jamaica as well slightly farther east. As a result, the proposed Queens redesign has many buses from farther east diverting to one of these two neighborhood centers in order to connect with the subway better.
The LIRR changes the rail network situation. The Port Washington Branch, probably the easiest to turn into frequent S-Bahn service, parallels the 7 but continues past Flushing into the suburbs, with closely-spaced stations in the city from Flushing east. The Main Line likewise runs parallel to the Queens Boulevard Line and then continues east past Jamaica with additional stations in Eastern Queens, with branches for the Montauk Line and the Atlantic Line (Far Rockaway and Long Beach Branches).
The ideal bus grid is isotropic. An extension of train service in the radial direction makes it easier to run a bus grid, because buses could just go north-south on major streets: Main, Kissena-Parsons, 149th, 162nd-164th, Utopia, 188th, Francis Lewis, Bell-Springfield. In contrast, the planned redesign diverts the 164th route to Jamaica to connect to the subway, and treats 149th as a pure Flushing feeder. Moreover, the east-west buses in Northeast Queens all divert to serve Flushing.
However, in practice, all of these kinks are necessary regardless of what happens to the LIRR. Queens destinations are not isotropic. Flushing and Jamaica are both important business districts. Jamaica also has transit connections that can’t be provided at an existing or infill LIRR Main Line station, namely the JFK AirTrain and the multi-line LIRR transfer.
Southeast Queens
I can think of one broad exception to the rule that the optimal bus redesign for Queens is insensitive to what happens to the LIRR: the radial lines going from Jamaica to the southeast. These include the Merrick Boulevard routes, today the Q4, Q5, and N4, or QT18 and QT40-42 in the redesign; and the Guy Brewer Boulevard routes, today the Q111 and Q113-4 and in the redesign the QT13, QT19, QT43, and QT45. As of 2019, each of the two avenues carries slightly fewer than 20,000 riders per weekday.
Those buses are likely to lose traffic if LIRR service on the Montauk and Atlantic Lines improves. Long-range traffic is far faster by train; I expect people to walk long distances to an LIRR station, a kilometer or even more, for a direct, subway-fare trip to Manhattan coming every 10 minutes. Even lines that require people to change at Jamaica should wipe out most bus ridership, since the transfer at Jamaica is designed to be pleasant (cross-platform, usually timed).
In their stead, buses should run orthogonally to the train. Linden should get a single bus route, which in the redesign proposal is the QT7, losing the Linden-Jamaica QT40 in the process and instead running the QT7 more frequently. Farmers, running north-south crossing the Main, Montauk, and Atlantic Lines, should get higher frequency, on what is today the Q3 and in the redesign the QT68; in both cases it diverts to Jamaica rather than continuing north to Bayside and Whitestone, but as explained above, this is a necessary consequence of the job concentration in Jamaica.
LIRR infill
Integrated design of buses and trains means not just moving the buses to serve the trains, but also choosing train station locations for the best bus transfers. One example of this is in the Bronx: Penn Station Access plans should include one more infill station, built at Pelham Parkway to connect to the Bx12. By the same token, we can ask how bus-rail connections impact LIRR planning.
The answer is that, just as they only lightly impact bus route design, they do not impact LIRR station siting. Ideally, LIRR stations should be sited at major streets in order to connect with buses better. However, this is to a large extent already the case, and places where moving a station or building infill is valuable are sporadic:
- On the Port Washington Branch, there is no station at Francis Lewis. It may be valuable to build one, or alternatively to close Auburndale and replace it with two stations, one right at Francis Lewis and one at Utopia.
- On the Main Line, Queens Village is already at Springfield, Hollis is already at 188th/Farmers, and an infill station at Merrick is valuable regardless of what happens with the buses. A Francis Lewis station is plausible, but is so close to both Hollis and Queens Village that I don’t think it’s necessarily a good idea.
- The Montauk Line is not penetrated by many crossing arterials. Linden already has a station, St. Albans. Then to the south there is an awkward succession of three intersections within 850 meters: Farmers, Merrick, Springfield. The least bad option is probably to build an infill stop in the middle at Merrick, with the shopping center as an anchor, and with ramps leading to Farmers and Springfield.
- The Atlantic Line has the Locus Manor stop at Farmers, and Rosedale at Francis Lewis. Laurelton may be moved a bit west to hit Springfield better, and in addition, 1-2 infill stations are valuable, one at Linden and possibly also one at Baisley. But the Linden infill, like the Merrick infill, is fully justified regardless of bus transfers
Conclusion
In Queens, the importance of Flushing and Jamaica works to permit mostly separate planning of bus and regional rail service, except to some extent in Southeast Queens. This is not true in most other places, especially not elsewhere in New York. It follows from the fact that without city-usable LIRR service, buses have to divert to Flushing and Jamaica to feed the subway, whereas with city-usable LIRR service, buses still have to divert to Flushing and Jamaica because they are important business and cultural centers.
This is useful, because transit is a complex system, so anytime it’s possible to break it into mostly independently-planned components, it gets more tractable. If the bus redesign doesn’t require dealing with Long Island NIMBYs and traditional railroaders, and if turning the LIRR into a useful S-Bahn doesn’t require simultaneously redrawing the Queens bus map, then both processes become easier. A redesigned Queens bus map already comes pre-optimized for future LIRR improvements with mostly cosmetic changes, and this is good for the process of transit modernization.
New York Regional Rail (not S-Bahn)
The discussion of regional rail in New York usually focuses on through-running, with neat S-Bahn-/RER–style maps showing how lines run. But it’s also instructive to look at longer-range lines, under the rubric of RegionalBahn in Germany or Transilien in Paris. I’ve argued against segregating long- and short-range commuter trains in New York, on the grounds that its infrastructure layout is different from that of Berlin or Paris.
However, it is still necessary to conceptually plan longer-range regional rail in the New York region – that is, how to serve destinations that are too far to be really considered suburbs. I think that those lines should through-run, which makes the planning somewhat different from a standard intercity integrated timed transfer network, but the choice of where to go to, what frequency to push for, and so on is still important. This post should be seen as a pre-map version of what I drew for Upstate New York and New England, but for the Tri-State Region and satellites in Pennsylvania. It should also be seen as a companion to any high-speed rail proposal, albeit unmapped because I am still uncertain about some visible aspects.
Scope
The scope of this post is anywhere one should be able to get to from New York without resorting to high-speed rail. This covers the combined statistical area and its penumbra. In practice, this post will focus on areas that are off the Northeast Corridor than on areas that are on it. On the Northeast Corridor, I’ve talked about low-speed solutions toward New Haven putting it slightly more than an hour away from New York; instead of repeating myself, it’s better to discuss other destinations.
So what are the satellite regions around New York, excluding the city’s own suburbs? Let’s make a list:
- Eastern Long Island far enough to be outside the commute zone, like the Hamptons
- The Jersey Shore, likewise focusing on what’s too far for commuting, like Toms River
- Trenton
- Allentown and the Lehigh Valley
- The Delaware Water Gap Region and possibly Scranton
- The Mid-Hudson Valley on both sides of the river, i.e. Newburgh and Poughkeepsie
- Historic city centers in Connecticut: Danbury, Waterbury, Bridgeport, New Haven
For the most part, they already have commuter rail service. But travel demand is usually not very commuter-oriented. Some of those lines have service that accommodates this fact, like express LIRR service to the Hamptons at popular weekend getaway times. Others don’t. Newburgh, Allentown, Toms River and Delaware Water Gap have no service at all, though Delaware Water Gap is on the under-construction Lackawanna Cutoff.
The need for electrification
All trains touching New York must be fully electric. This means spending not a lot of money on completing wiring the LIRR, Metro-North, and New Jersey Transit, and ensuring further extensions are electrified as well. Diesel trains are slow and unreliable: the LIRR’s mean distance between failures is around 20,000-30,000 km on the diesel and dual-mode locomotives and well into the 6 figures on the EMUs. New Jersey Transit’s diesels also tend to only serve Hoboken, which forces an additional transfer; NJT’s new dual-mode locomotives are extremely costly and low-performance.
This kind of completionism is especially valuable because of fleet uniformity. Boston is reticent about electrification because it likes having a fleet it can maintain all at one place, and it requires some additional resources to expand a railyard that can accommodate future electrification. In New York this works in reverse: a large majority of the network is electrified, and getting rid of the diesel tails increases efficiency through scale.
The issue of express service
All of the tails in question are far from New York, generally 100 or more km, and close to 200 km for Montauk. This introduces tension between the need to run intense local service to areas 15 km from Manhattan and the need to maintain adequate speed at longer range. The solution is always to prioritize shorter-range service and make regional rail the most express pattern that can fit within the through-running paradigm. This works well where there are four tracks allowing long-range express service, as on the Northeast Corridor and the Empire Corridor, including tie-ins like Danbury and Waterbury.
Elsewhere, this is compromised. EMUs can still beat present-day diesel trip times, but the average speeds of the 30-30-30 plan for Connecticut are not realistic. This is a tradeoff; it is possible to run express trains to the Hamptons on the Babylon Branch, but it imposes a real cost on frequency to dense suburbs and should therefore be avoided. If there’s room for timed overtakes then they are welcome, but if there’s not, then these regional trains should really run as S-Bahn trains that just keep going farther out.
This has precedent on busy lines. Trains in the exurbs of Tokyo tend to run at the same speed as an ordinary rapid train, for example on the Chuo Line; there is the occasional higher-speed liner, but usually the trains to Otsuki, Takasaki, Odawara, etc. are just ordinary rapids, averaging maybe 50 km/h. In New York the average speed would be higher because there are still fewer stops even with the infill I’m proposing, which fits since there is more sprawl in New York.
Onward connections
Some of the outer ends in question should also get service that doesn’t go to New York. There is an existing line between Danbury and Brewster that can be used for revenue moves. Allentown lies on a decent SEPTA Regional Rail extension, albeit not on a good one, as the route is curvy. If there are internal bus systems, for example in Waterbury, then whenever possible they should pulse with the train, and it goes without saying trains that do not serve New York should be timed with trains that do.
This for the most part should run on a half-hourly clockface schedule. This means that on an S-Bahn network where even individual branches run every 10-15 minutes, there should be a rule saying every train in 2 or 3, depending on base frequency, continues onward to a distant destination. This is a combination of Northern European planning (timed connections) and Japanese planning (treating long-range regional rail in a megacity as a commuter train that goes further than normal).
The Hempstead Line
This is a writeup I prepared for modernization of the Hempstead Branch of the LIRR in the same style as our ongoing Regional Rail line by line appendices for Boston at TransitMatters, see e.g. here for the Worcester Line. This will be followed up in a few days by a discussion of the writing process and what it means for the advocacy sphere.
Regional rail for New York: the Hempstead Line
New York has one of the most expansive commuter rail networks in the world. Unfortunately, its ridership underperforms such peer megacities as London, Paris, Tokyo, Osaka, and Seoul. Even Berlin has almost twice as much ridership on its suburban rail network, called S-Bahn, as the combined total of the Long Island Railroad, Metro-North, and New Jersey Transit. This is a draft proposal of one component of how to modernize New York’s commuter rail network.
The core of modernization is to expand the market for commuter rail beyond its present-day core of 9-to-5 suburban commuters who live in the suburbs and work in Manhattan. This group already commutes by public transportation at high rates, but drives everywhere except to Manhattan. To go beyond this group requires expanding off-peak service to the point of making the commuter railroads like longer-range, higher-speed Queens Boulevard express trains, with supportive fares and local transit connections.
The LIRR Hempstead Line is a good test case for beginning with such a program. It is fortunate that on this line the capital and operating costs of modernization are low, and service would be immediately useful within the city as well as dense inner suburbs. With better service, the line would still remain useful to 9-to-5 commuters – in fact it would become more useful through higher speed and more flexibility for office workers who sometimes stay at the office until late. But in addition, people could take it for ordinary transit trips, including work trips to job centers in Queens or on Long Island, school trips, or social gatherings with friends in the region.
The Hempstead Line
The Hempstead Line consists of the present-day LIRR Hempstead Branch and a branch to be constructed to East Garden City. The Hempstead Branch today is 34 km between Penn Station and Hempstead, of which 24 km lie within New York City and 10 lie within Long Island.
Most trains on the branch today do not serve Penn Station because of the line’s low ridership, but instead divert to the Atlantic Branch to Downtown Brooklyn, and Manhattan-bound passengers change at Jamaica to any of the branches that run through to Midtown. Current frequency is an hourly train off-peak, and a train every 15-20 minutes for a one-hour peak. Peak trains do not all run local, but rather one morning peak train runs express from Bellerose to Penn Station.
Ridership is weak, in fact weaker than on any other line except West Hempstead and the diesel tails of Oyster Bay, Greenport, and Montauk. In the 2014 station counts, the sum of boardings at all stations was 7,000 a weekday, and the busiest stations were Floral Park with 1,500 and Hempstead with 1,200. But commute volumes from the suburbs served by the Hempstead Branch to the city are healthy, about 7,500 to Manhattan and another 10,500 to the rest of the city, many near LIRR stations in Brooklyn and Queens. Moreover, 13,500 city residents work in those suburbs, and they disproportionately live near the LIRR, but very few ride the train. Finally, the majority of the line’s length is within the city, but premium fares and low frequency make it uncompetitive with the subway, and therefore ridership is weak.
Despite the weak ridership, the line is a good early test case for commuter rail modernization in New York. Most of it lies in the city, paralleling the overcrowded Queens Boulevard Line of the subway. As explained below, there is also a healthy suburban job market, which not only attracts many city reverse-commuters today, but is likely to attract more if public transportation options are better.
Destinations
The stations of the Hempstead Line already have destinations that people can walk to, so that if service is improved as in the following outline, people can ride the LIRR there. These include the following:
- JFK, accessible via Jamaica Station.
- Adelphi University, midway between Garden City and Nassau Boulevard, walkable to both.
- York University, fairly close to Jamaica and very close to a proposed Merrick Boulevard infill station.
- Primary and secondary schools near stations within the city, where students often have long commutes.
- Penn Station as an intercity station – passengers from Queens and Long Island traveling to Boston, Philadelphia, and Washington would benefit from faster and more frequent trains.
- Many jobs near stations in Queens and on Long Island as described below.
Jobs
Within a kilometer of all stations except Penn Station, there is a total of 182,000 jobs in Queens and 50,000 on Long Island. The spine of the Main Line through Queens closely parallels the overcrowded Queens Boulevard express tracks, and in the postwar era was proposed for a Queens Super-Express subway line. But on Long Island, too, it serves the edge city cluster of Garden City and the city center of Hempstead. All of those jobs should generate healthy amounts of reverse-peak ridership and ridership terminating short of Manhattan.
| Station | Jobs within 1 km |
| Penn Station | 522904 |
| Queensboro Plaza (@ QB) | 62266 |
| Sunnyside Jct (@ 43th) | 23655 (with QBP: 78219) |
| Woodside | 14409 (with Sunnyside: 36469) |
| Triboro Jct (@ 51st Ave) | 14339 (Elmhurst Hospital) |
| Forest Hills | 21926 |
| Kew Gardens | 17855 |
| Jamaica | 19794 |
| Merrick Blvd | 17020 (with Jamaica: 29260) |
| Hollis | 2918 |
| Queens Village | 4758 |
| Bellerose | 3014 (with QV: 7735) |
| Floral Park | 5389 (with Bellerose: 6776) |
| Stewart Manor | 3203 |
| Nassau Blvd | 859 |
| Garden City | 9643 |
| Country Life Press | 5404 (with GC: 10865) |
| Hempstead | 10896 (with CLP: 15823) |
| East Garden City (@Oak) | 12461 |
| Nassau Center (@Endo) | 6352 (with EGC: 17904) |
Required infrastructure investment
The LIRR has fairly high quality of infrastructure. Every single station has high platforms, permitting level boarding to trains with doors optimized for high-throughput stations. Most of the system is electrified with third rail, including the entirety of the Hempstead Branch. High-frequency regional rail can run on this system without any investment. However, to maximize utility and reliability, some small capital projects are required.
Queens Interlocking separation
Queens Interlocking separates the Hempstead Line from the Main Line. Today, the junction is flat: two two-track lines join together to form a four-track line, but trains have to cross opposing traffic at-grade. The LIRR schedules trains around this bottleneck, but it makes the timetable more fragile, especially at rush hour, when trains run so frequently that there are not enough slots for recovering from delays.
The solution is to grade-separate the junction. The project should also be bundled with converting Floral Park to an express station with four tracks and two island platforms; local trains should divert to the shorter Hempstead Line and all express trains should continue on the longer Main Line to Hicksville and points east. Finding cost figures for comparable projects is difficult, but Harold Interlocking was more complex and cost $250 million to grade-separate, even with a large premium for New York City projects.
Turnout modification
Trains switch from one track to another at a junction using a device called a switch or turnout. There are two standards for turnouts: the American standard, dating to the 1890s, in which the switch is simpler to construct but involves an abrupt change in azimuth, called a secant switch; and the German standard from 1925, adopted nearly globally, in which the switch tapers to a thin blade to form what is called a tangential switch.
Passengers on a train that goes on a secant turnout are thrown sideways. To maintain adequate safety, trains are required to traverse such switches very slowly, at a speed comparable to 50 mm of cant deficiency on the curve of the switch. In contrast, German and French turnout standards permit 100 mm on their tangential switches; the double cant deficiency allows a nominal 40% increase in speed on a switch of given number (such as an American #10 vs. a German 1:10 or a French 0.1, all measuring the same frog angle). The real speed increase is usually larger because the train sways less, which creates more space in constrained train station throats.
With modern turnouts, Penn Station’s throat, currently limited to 10 15 mph (16 24 km/h), could be sped up to around 50 km/h, saving every train around 2 minutes just in the last few hundred meters into the station. Installation typically can be done in a few weekends, at a cost of around $200,000 per physical switch, which corresponds to high single-digit millions for a station as large as Penn. Amtrak has even taken to installing tangential switches on some portions of the Northeast Corridor, though not at the stations; unfortunately, instead of building these switches locally at local costs, it pays about $1.5 million per unit, even though in Germany and elsewhere in Europe installation costs are similar to those of American secant switches.
Speed
In addition to modifying the physical switches as outlined above, the LIRR should pursue speedups through better use of the rolling stock and better timetabling. In fact, the trains currently running are capable of 0.9 m/s^2 acceleration, but are derated to 0.45 without justification, which increases the time cost of every stop by about 30 seconds. In addition, LIRR timetables are padded about 20% over the technical running time, even taking into account the slow Penn Station throat and the derating. A more appropriate padding factor is 7%, practiced throughout Europe even on very busy mainlines, such as the Zurich station throat, where traffic is comparable to that of the rush hour LIRR.
To get to 7%, it is necessary to design the infrastructure so that delays do not propagate. Grade-separating Queens Interlocking is one key component, but another is better timetabling. Complex timetables require more schedule padding, because each train has a unique identity, and so if it is late, other trains on the line cannot easily substitute for it. In contrast, subway-style service with little branching is the easiest to schedule, because passengers do not distinguish different trains; not for nothing, the 7 and L trains, which run without sharing tracks with other lines, tend to be the most punctual and were the first two to implement CBTC signaling.
In the case of the LIRR, achieving this schedule requires setting things up so that all Hempstead Line trains run local on the Main Line to Penn Station, and all trains from Hicksville and points east run express to Grand Central. Atlantic and Babylon Branch trains can run to Atlantic Terminal, or to the local tracks to Penn, depending on capacity; Babylon can presumably run to Penn while the Far Rockaway and Long Beach Lines, already separated from the rest of the system, can run to Downtown Brooklyn.
Infill stations
Within the city, commuter rail station spacing is sparse. The reason is that the frequency and fares are uncompetitive. Historically, the LIRR had tight spacing in the city, with nine more stations on the Main Line within city limits, but it closed most of them in the 1920s and 30s as the subway opened to Queens. The subway offered very high frequency for a 5-cent fare compared with the LIRR’s 20-to-30-cent fares. Today, the fares remain unequal, but this can be changed, as can the off-peak frequency. In that case, it becomes useful to open some additional infill stops.
The cost of an infill station is unclear. There is a wide range; Boston and Philadelphia both open infill stations with high platforms for about $15-25 million each, and the European range is lower. Urban infill stations in constrained locations like Sunnyside can be more expensive, but not by more than a factor of 2. In the past, LIRR and Metro-North infill stops, such as those for Penn Station Access, have gone up to the three figures, and it is critical to prevent such costs from recurring.
Queensboro Plaza
This station is already part of the Sunnyside Yards master plan, by the name Sunnyside, and is supposed to begin construction immediately after the completion of the East Side Access project. This proposal gives it a different name only because there is another station called Sunnyside (see below).
Located at the intersection of the Main Line with Queens Boulevard, this would be a local station for trains heading toward Penn Station. It is close to the Queensboro Plaza development, which has the tallest building in the city outside Manhattan and more jobs than anywhere in the Outer Boroughs save perhaps Downtown Brooklyn. Within a kilometer of the station there are more than 60,000 jobs already, and this is before planned redevelopment of Sunnyside Yards.
Sunnyside Junction
The opening of East Side Access and Penn Station Access will create a zone through Sunnyside Yards where trains will run in parallel. LIRR trains will run toward either Penn Station or Grand Central, and Metro-North trains will run toward Penn Station.
It is valuable to build an express station to permit passengers to transfer. This way, passengers from the Penn Station Access stations in the Bronx could connect to Grand Central, and passengers from farther out on the New Haven Line who wish to go to Penn Station Grand Central could board a train to either destination, improving the effective frequency. Likewise, LIRR passengers could change to a different destination across the platform at Sunnyside, improving their effective frequency.
The area is good for a train station by itself as well. It has 24,000 jobs within a kilometer, more than any other on the line except Penn Station and Queensboro Plaza. There is extensive overlap with the 1 km radius of Queensboro Plaza, but even without the overlap, there are 16,000 jobs, almost as many as within 1 km of Jamaica, and this number will rise with planned redevelopment of the Yards.
Triboro Junction
This station is at 51st Avenue, for future transfers to the planned Triboro RX orbital. Population and job density here are not high by city standards: the 14,000 jobs include 5,000 at Elmhurst Hospital on Broadway, which is at the periphery of the 1 km radius and is poorly connected to the railroads on the street network. The value of the station is largely as a transfer for passengers from Astoria and Brooklyn.
Merrick Blvd
About 1.5 km east of Jamaica, Merrick Boulevard catches the eastern end of the Jamaica business district. It also connects to one of Eastern Queens’ primary bus corridors, and passengers connecting from the buses to Manhattan would benefit from being able to transfer outside the road traffic congestion around Jamaica Station.
The East Garden City extension
The Hempstead Branch was historically part of the Central Railroad of Long Island. To the west, it continued to Flushing, which segment was abandoned in 1879 as the LIRR consolidated its lines. To the east, it continued through Garden City and what is now Levittown and ran to Babylon on a segment the LIRR still uses sporadically as the Central Branch. The right-of-way between Garden City and Bethpage remains intact, and it is recommended that it be reactivated at least as far as East Garden City, with an East Garden City station at Oak Street and a Nassau Center station at Endo Boulevard. This is for two reasons.
Jobs
Long Island is unusually job-poor for a mature American suburb. This comes partly from the lack of historic town centers like Stamford or Bridgeport on the New Haven Line or White Plains and Sleepy Hollow in Westchester. More recently, it is also a legacy of Robert Moses, who believed in strict separation of urban jobs from suburban residences and constructed the parkway system to feed city jobs. As a result of both trends, Long Island has limited job sprawl.
However, East Garden City specifically is one of two exceptions, together with Mineola: it has a cluster with 18,000 jobs within 1 km of either of the two recommended stations. Reopening the branch to East Garden City would encourage reverse-commuting by train.
Demand balance
Opening a second branch on the Hempstead Line helps balance demand in two separate ways. First, the population and job densities in Queens are a multiple of those of Long Island and always will be, and therefore the frequency of trains that Queens would need, perhaps a local train every 5 minutes all day, would grossly overserve Hempstead. At the distance of Hempstead or East Garden City, only a train every 10-15 minutes (in a pinch, even every 20) is needed, and so having two branches merging for city service is desirable.
And second, having frequent Hempstead Line local service forces all of the trains on the outer tracks of the Main Line in Queens to run local, just as the subway has consistent local and express tracks. The LIRR gets away with mixing different patterns on the same track because local frequency is very low; at high frequency, it would need to run like the subway. Because passengers from outer suburbs should get express trains, it is valuable to build as much infrastructure as possible to help feed the local tracks, which would be the less busy line at rush hour.
Train access and integration
Today, the LIRR primarily interfaces with cars. LIRR capital spending goes to park-and-rides, and it is expected that riders should drive to the most convenient park-and-ride, even on a different branch from the one nearest to their home. This paradigm only fills trains at rush hour to Manhattan, and is not compatible with integrated public transportation. In working-class suburbs like Hempstead, many take cheaper, slower buses. Instead, the system should aim for total integration at all levels, to extend the city and its relative convenience of travel without the car into suburbia.
Fare integration
Fares must be mode-neutral. This means that, just as within the city the fares on the buses and subways are the same, everywhere else in the region a ticket should be valid on all modes within a specified zone. Within the city, all trains and buses should charge the same fares, with free intermodal transfers.
Such a change would entice city residents to switch from the overcrowded E and F trains to the LIRR, which is by subway standards empty: the average Manhattan-bound morning rush hour LIRR train has only 85% of its seats occupied. In fact, if every E or F rider switches to the LIRR, which of course will not happen as they don’t serve exactly the same areas, then the LIRR’s crowding level, measured in standees per m^2 of train area, will be lower than that of the E and F today.
In the suburbs, the fares can be higher than in the city, in line with the higher operating costs over longer distances. But the fares must likewise be mode-neutral, with free transfers. For example, within western Nassau County, fares could be set at 1.5 times subway fare, which means that all public transit access between the city and Hempstead would cost $190 monthly or $4.00 one-way, by any mode: NICE bus, the LIRR, or a bus-train combo.
This would be a change from today’s situation, where premium-price trains only attract middle-class riders, while the working class rides buses. In fact, the class segregation today is such that in the morning rush hour, trains run full to Manhattan and empty outbound and NICE buses, which carry working-class reverse-commuters, are the opposite. Thus, half of each class’s capacity is wasted.
Bus redesign and bus access
Instead of competing with the trains, buses should complement them, just as they do within the city with the subway. This means that the NICE system should be designed along the following lines:
- More service perpendicular to the LIRR, less parallel to it.
- Bus nodes at LIRR stations, enabling passengers to connect.
- Timed transfers: at each node the buses should arrive and depart on the same schedule, for example on the hour every 20 minutes, to allow passengers to change with minimal hassle. This includes timed transfers with the trains if they run every 15 minutes or worse, but if they run more frequently, passengers can make untimed connections as they do in the city.
Bike access
Urban and suburban rail stations should include bike parking. Bikes take far less space than cars, and thus bike park-and-ride stations in the Netherlands can go up to thousands of stalls while still maintaining a walkable urban characteristic.
In many countries, including the United States on the West Coast, systems encourage riders to bring their bikes with them on the train. However, in New York it’s preferably to adopt the Dutch system, in which bikes are not allowed on trains, and instead stations offer ample bike parking. This is for two reasons. First, New York is so large and has such a rush hour capacity crunch that conserving capacity on board each train is important. And second, cultures that bring bikes on trains, such as Northern California, arise where people take trains to destinations that are not walkable from the station; but in New York, passengers already connect to the subway for the last mile from Penn Station to their workplaces, and thus bikes are not necessary.
Train scheduling
Trains should run intensively, with as little distinction between the peak and off-peak as is practical. At most, the ratio between peak and off-peak service should be 2:1. Already, the LIRR’s high ratio, 4:1 on the Hempstead Branch, means that trains accumulate at West Side Yard at the end of the morning peak. The costs of raising off-peak service to match peak service are fairly low to begin with, but they are especially low when the alternative is to expand a yard in Midtown Manhattan, paying Midtown Manhattan real estate prices.
For an early timetable in which the Babylon Branch provides extra frequency in the city, the following frequencies are possible:
| Segment | Peak | Off-peak |
| Penn Station-Garden City | 5 minutes | 10 minutes |
| Garden City-Hempstead | 10 minutes | 20 minutes |
| Garden City-Nassau Center | 10 minutes | 20 minutes |
A more extensive service, with all LIRR South Side diverting to a separate line from the Main Line, perhaps the Atlantic Branch to Downtown Brooklyn, requires an increase in off-peak urban service:
| Segment | Peak | Off-peak |
| Penn Station-Garden City | 5 minutes | 5 minutes |
| Garden City-Hempstead | 10 minutes | 10 minutes |
| Garden City-Nassau Center | 10 minutes | 10 minutes |
Further increases in peak service may be warranted for capacity reasons if there is more redevelopment than currently planned or legal by city and suburban zoning codes.
Travel times
With rerating the LIRR equipment to its full acceleration rate, a fix to the Penn Station throat, and standard European schedule padding, the following timetable is feasible:
| Station | Time (current) | Time (future, M7) | Time (Euro-EMU) |
| Penn Station | 00:00 | 00:00 | 00:00 |
| Queensboro Plaza | — | 00:04 | 00:04 |
| Sunnyside Jct | — | 00:06 | 00:06 |
| Woodside | 00:10 | 00:09 | 00:09 |
| Triboro Jct | — | 00:12 | 00:11 |
| Forest Hills | 00:15 | 00:15 | 00:13 |
| Kew Gardens | 00:17 | 00:17 | 00:15 |
| Jamaica | 00:22 | 00:19 | 00:17 |
| Merrick Blvd | — | 00:21 | 00:19 |
| Hollis | 00:29 | 00:24 | 00:21 |
| Queens Village | 00:31 | 00:26 | 00:23 |
| Bellerose | 00:35 | 00:28 | 00:25 |
| Floral Park | 00:38 | 00:30 | 00:27 |
| Stewart Manor | 00:41 | 00:32 | 00:29 |
| Nassau Blvd | 00:44 | 00:34 | 00:31 |
| Garden City | 00:46 | 00:36 | 00:33 |
| Country Life Press | 00:49 | 00:38 | 00:35 |
| Hempstead | 00:52 | 00:40 | 00:37 |
| East Garden City | — | 00:38 | 00:35 |
| Nassau Center | — | 00:40 | 00:37 |
Providing peak service every 10 minutes to each of Hempstead and Nassau Center requires 20 trainsets, regardless of whether they are existing LIRR equipment or faster, lighter European trainsets.