Category: Amtrak

Amtrak Pays More Than Double for High-Speed Trains

Update 2016/8/16: the deal is on, per sources at Amtrak; the cost is $2.5 billion, as reported originally.

Update 9/24: as Alex Block notes in comments, sources at Amtrak deny the story, saying that Schumer spoke too soon, and there are still two bidders and Amtrak has not yet made its choice. If the cost turns out to be $1-1.25 billion rather than $2.5 billion, I will withdraw any and all criticism of the procurement process.

A press release from Senator Charles Schumer’s office is abuzz: Amtrak chose Alstom’s bid for its next order of high-speed trainsets, the Next-Generation Acelas. The press release mentions the size of the contract, $2.5 billion, and the number of jobs it would create, 750; it did not include any information relevant to passengers, such as the number of trains, the expected schedule of delivery, the expected frequency, and the expected travel time. Various media outlets have reprinted Schumer’s press release without such additional information, or indeed any analysis. Let me rectify this and provide some background as to why this order is a fleece.

The order is for 28 trainsets with 425 seats each. This can be seen here and here. Of those 28 sets, 25 should be available for maximum service, well below the 98% peak availability achieved by the TGV, but an improvement over the Acela’s current 16 trains available out of 20. There is no mention of the number of cars, which is how orders are usually priced. However, on page 30 of the technical specs, it is mentioned that the maximum length is 200 meters, equivalent to 8 cars. The capacity is equivalent to about six cars’ worth of seating at the normal seat density of economy-class HSR (including the Amtrak Regional coach), or about seven cars’ worth averaged over all occupied Acela cars. The RFP mentions half a bistro car with an option for a full car (page 21 of instructions to offerors), so eight cars per train is a reasonable assumption. I have seen references to ten cars per set, which I believe come from the option for two additional cars per train (the instructions phrase this as “an extra 33.33% capacity”). From Schumer’s press release it’s difficult to know whether the $2.5 billion figure is the base order or also the option.

Eight cars per train times 28 trains equals 224 cars. $2.5 billion divided by 224 equals $11.2 million per car; if I am wrong and these are ten-car trains, then it is $8.9 million per car. In China, a very high-speed train, capable of 350-380 km/h, costs $4 million per car; this is $900 million at the size of Amtrak’s order. In Europe, the new Eurostar order cost a total of €600-700 million for ten 16-car Velaro trainsets, about $4.7-5.5 million per car in PPP terms (see here and here); the uncertainty comes from euro:pound conversion rates and from the fact that a portion of the order is for refurbishment of the older trainsets. Siemens also sold 8-car Velaros to Deutsche Bahn for $5.2 million per car, again in PPP terms. Japanese trains are even cheaper, about $3 million per car in a recent N700 order, but only last 20 years, whereas European HSR trainsets last 40 and Amtrak specified a 30-year shelf life. The only non-US trainset order that I’ve seen that approaches the $10 million per car mark is the Velaro RUS, which is €600 million for eight 10-car trains, and this includes substantial modifications, such as winterization.

There is no excuse for such high costs. The technical specs are not particularly innovative: on page 22 of the document linked above, it is mentioned that cant deficiency should be 127 mm if the trains don’t tilt and 229 if they do, both of which figures are unimpressive by the respective standards of non-tilting and tilting trains. There is no explicit requirement for tilt. There is a requirement that trains be capable of traveling between New York and Washington in 2:21 (current trip time is 2:48) and between New Haven and Boston in 1:51 (current trip time is about 2 hours, skipping New London, which the specs require trains to stop at); there is no mention of which track upgrades are forthcoming, but given Amtrak’s heavy schedule padding, it is not difficult for a good train to meet the requirements. I do not bring these specs up to attack Amtrak for not demanding more of the trains, but to note that what Amtrak is asking is standard, so there is no reason for trains to be unusually expensive.

I will note that due to Buy America provisions, the trains will be manufactured in the US, at Alstom’s factory in Hornell. This has not caused cost blowouts for the large orders made by the New York subway, the LIRR, and Metro-North, but perhaps this order is small enough that requiring Alstom to build it at a new factory leads to major cost increases. It is also possible that due to difficulties in the bidding process, there are fewer bidders than is normal – Bombardier dropped out of the process last year, and in general, some US contracts have just one bid, with correspondingly elevated prices. But regardless of the reason, Amtrak’s order comes at a factor-of-two cost premium, and Schumer just expressed pride at the few hundred jobs that this waste would create.

NEC Future: Moving Sideways

The Northeast Corridor high-speed rail investment studies are moving forward, and four days ago the FRA released an early environmental impact study on the subject, as part of the NEC Future program. The study moves in part in the right direction, in that it considers many different segment-level improvements (for example, specific bypasses of curvy segments), but it still isn’t quite going in the right direction. It’s not a bad study in itself, but it does have a lot of drawbacks, and I would like to discuss the ultimate problems with its approach.


The EIS studies three alternatives, as well as an obligatory No Build option.

Alternative 1 includes minimal investment: capacity improvements already under consideration, including new Hudson tunnels; grade-separation of at-grade rail junctions, including Shell interlocking between the Metro-North New Haven Line to Grand Central and the NEC, which imposes a severe speed limit (30 mph, the worst outside major city stations) and a capacity constraint; and a limited I-95 bypass of the legacy NEC route in eastern Connecticut, to avoid the existing movable bridges. The bulk of the expense under this alternative, excluding the predominantly commuter-oriented new Hudson tunnels, involves replacing or bypassing obsolete or slow bridges with faster segments. I have advocated such an approach in certain cases for years, such as the Cos Cob Bridge; if anything, Alternative 1 does not do this enough, but I do appreciate that it uses this solution.

Alternative 2 constructs HSR along the NEC route, except for a major deviation to serve Hartford. It is also bundled with various bypasses and new stations elsewhere: under this alternative, Philadelphia and Baltimore get new stations, with extensive urban tunneling to reach those stations. Alternative 3 does the same, but considers more deviations, including a tunnel between Long Island and New Haven, and an inland route through Connecticut, closer to I-84 than to I-95 and the legacy NEC; it also constructs dedicated HSR tracks between New York and Washington.

The EIS does not include cost figures. It includes travel time figures on PDF-p. 51, which seem to be based on unfavorable assumptions: Alternative 2, called Run 5, does New York-Boston in 2:17 for trains making a few major-city intermediate stops; the Alternative 3 proposals vary widely depending on alignment, of which the fastest, the I-84 inland route, takes 1:51, again making intermediate stops.

The Good

First, the EIS includes service plan elements, stating the projected frequency of regional and express trains using the tracks. It also talks about clockface scheduling and proposes a pulse in Philadelphia, allowing timed transfers in all directions between local and express intercity trains as well as trains on the Keystone corridor. It goes further and discusses regional rail on the intercity tracks in the alternatives that include extensive new construction. In these ways, it focuses on regionwide rail integration far more than previous plans.

Second, in general, the correct way to think about NEC investment is component by component. The EIS gets closer to this ideal, by considering many different route combinations north of New York, and advancing several of them under the Alternative 3 umbrella.

And third, the concept of Alternative 1 is solid. In many cases, it is possible to bundle a trip time or capacity improvement into the replacement of an obsolete structure at very low additional cost. The example I keep coming back to is the Cos Cob Bridge, but it is equally true of the movable bridges east of New Haven. I also greatly appreciate that Alternative 1 recognizes the importance of grade-separating railroad junctions.

The Bad

Ultimately, the EIS does not take the three good concepts – integrated service planning, component-by-component thinking, and bundling trip-time improvements when the marginal cost of doing so is low – to their full conclusion. Thus, there is no attempt at running intercity trains at high speed on shared track with commuter rail with timed overtakes, as I have proposed for both the inner New Haven Line and the Providence Line. On the contrary, the plan for capacity investment on the Providence Line includes extensive three-tracking, rather than limited, strategic four-track bypass segments. This cascades to the trip times, which are quite slow between New York and New Haven (1:08, for an average speed of 103 km/h), and a bit slower than they could be between Providence and Boston (24 minutes, whereas about 21 is possible with about zero investment into concrete).

The concepts of Alternatives 1, 2, and 3 represent bundles of levels of investment. This is the wrong approach. Alternatives 2 and 3 include new tunneled city-center stations in Baltimore and Philadelphia; but wouldn’t we want to consider city-center station tunnels in those two cities separately? It’s possible for one to turn out to be cost-effective but not the other. It’s possible for neither to be cost-effective, but for other improvements included in Alternative 2, such as curve modification around Metropark and Metuchen, to pencil out.

There’s far more interaction between different macro-level alignments, by which I mean such questions as “inland route or coastal route?” and “serve Hartford on the mainline or put it on a branch?”, than between such micro-level investments as individual curve modifications and urban tunnels. This means that instead of discrete alternatives, there should be one umbrella, taking in Alternative 2 and 3 variants, proposing all of those options as possibilities. A future study, with detailed cost figures, could then rank those options in terms of trip time saving per unit of cost, or in terms of social and financial ROI. This way, there would be concrete proposals for what a $5 billion plan, a $10 billion plan, a $20 billion plan, and so on would be.

The Ugly

Two elements in the study are inexcusable. First, the service plan description explicitly keeps Amtrak’s current separation of premium-fare Regionals and even-more-premium-fare Acelas. This is not how the rest of the world structures HSR: even when the HSR fares are substantially higher than the legacy rail fares, as in Spain, the fare per passenger-km is not very high, and is not targeted exclusively at business travelers. In France, the intercity fare (including TGVs, which are the bulk of French intercity traffic) was on average €0.112 per passenger-km in 2011. Premium service is provided on the same TGVs as standard service, in first-class cars. In contrast, Amtrak charges about $0.29 per passenger-km on the Regional and $0.53 on the Acela.

And second, the investment alternatives appear to include more tunneling than is necessary. I will focus on the Hartford-Providence-Boston segment in Alternative 2, since it is less sensitive to assumptions on commuter rail track-sharing than the segments overlapping the New Haven Line. It is possible to go all the way from Hartford to the western margin of the Providence built-up area without any tunneling, and without outrageous bridging; see a past post of mine on the subject here, which concludes that it’s better to just go parallel to I-95 for trip time reasons. In Providence, tunnels are unavoidable, but can still be limited to short segments, mixed with elevated routes along pre-impacted freeway corridors. When I looked at it two years ago, I saw an alignment with just 2 km of tunnel, in Providence itself. In contrast, run A in figure 9 on PDF-p. 56 says that tunnels are about 27% of new construction between Hartford and Boston, which consists of, at a minimum, about 100 km of track between Hartford and Providence.


The EIS is a step in the right direction, insofar as it does consider issues of integrated service planning and prioritizing construction based on where it can be cheaply bundled into bridge replacement. However, it fails to consider cost limitations, as seen in the excessive tunneling proposed even in areas where high-speed tracks can run entirely above ground. It’s considering more options, which is good, but, Alternative 1, while representing a golden concept, is not sufficiently developed.

What I would like to see from a study in this direction is a mixture of the following:

  • Discussion of how to avoid tunnels, including various tradeoffs that have to be made (for example, above-ground construction may require more takings). Generally, I want to see much less tunneling than is currently proposed.
  • A well-developed incremental option, similar to Alternative 1 but more extensive, including for example I-95 bypasses all the way from New Haven to Kingston and along strategic segments of the New Haven Line, such as in Port Chester and Greenwich.
  • Greater integration with regional rail; one litmus test is whether the Providence Line is proposed to be three-tracked for long stretches, or four-tracked at a key bypass station (the options are Sharon and the Route 128-Readville segment), and another is discussion of high-acceleration electric multiple units on the Providence Line and the Penn Line.
  • Unbundling of projects within each alignment – there is no need to, for example, consider the Philadelphia and Baltimore tunnels together (I also think neither is a good idea, but that’s a separate discussion). The view should be toward an optimal set of projects within each alignment, since macro-level decisions such as whether to serve Hartford are more political than micro-level ones of which curves to fix. This permits explicit discussions such as “would you be willing to spend $2 billion and slow through-trains by 9 minutes to serve Hartford?”.

Except for the first, all are kind of present in this study, but in insufficient amount for me to view it as truly a step forward. The ultimate goal must be HSR in the Northeast on a reasonable budget – closer to $10 or even $20 billion than to the Amtrak Vision’s proposed $150 billion – and this requires carefully looking at which scope is required and which is not. The EIS has elements that can be used toward that goal, but ultimately it is a step sideways, not forward or in the wrong direction.

What’s Going on with Hudson Tunnel Cost Overruns?

Twenty-five billion dollars. The New York region’s political heavyweights – Andrew Cuomo, Chris Christie, Chuck Schumer, Cory Booker, Bill de Blasio – all want new Hudson tunnels, without any state funding for them; Schumer is proposing federal funding and a new interstate agency, parallel to the existing Port Authority, and a total budget of $25 billion. This is the highest figure I have seen so far; Amtrak still says $16 billion and Cuomo says $14 billion, and it’s likely the Gateway tunnels are indeed about $16 billion, while the remainder is for associated projects, such as fully four-tracking the line from Newark to the tunnel portal, a distance of about 11 kilometers. It is not my intention to criticize the cost; I’ve done that before.

Instead, I would like to point out that each time Gateway is the news, there usually seems to be a fresh cost escalation. Is it a $10 billion project? A $14 billion project? A $16 billion project? Or a $25 billion project? And what is included exactly? Amtrak does not make it clear what the various items are and how much they cost; I have not seen a single cost estimate that attempts to establish a baseline for new Hudson tunnels without the Penn Station South component, which would provide a moderate short-term boost to capacity but is not necessary for the project. The articles I’ve seen do not explain the origin of the $25 billion figure, either; it may include the tunnel and full four-tracking of Newark-New York, or it may include additional scope, for example Amtrak’s planned vertical circulation for a future (unnecessary) deep cavern for high-speed rail (see picture here).

The main issue here, the way I see it, is the interaction between public trust and political self-aggrandizement. It is common in all aspects of Israeli governance for new ministers to announce sweeping changes and reorganizations, just to remind the country that they exist and are doing something; this generally makes it harder to implement gradual reforms, and makes it completely impossible to do anything by consensus. Implementing a plan that was developed by consensus over many years makes one a bureaucrat; leaders change everything. In the US, this is the case not everywhere in government, but at least within public transportation infrastructure.

As we see in the case of Schumer’s call for a new interstate authority, the changes a heavyweight politician makes in order to appear as a leader have nothing to do with real problems that the project may have. Solving those problems requires detailed knowledge of the project at hand, which is the domain of bureaucrats and technocrats, and not of heavyweight politicians. Even a heavyweight who understands that there is a problem may not know or care about how to fix it: for example, Christie used the expression “tunnel to Macy’s basement,” invoking the deep cavern, to explain why ARC was wasteful, but chose to cancel the project rather than to remove the cavern and restore a track connection from the tunnel to Penn Station, which was in the official ARC Alt P plan until it was cut to limit the cost overruns. Managing a project is hard, and is, again, the domain of technocrats. The heavyweight will grandstand instead, regardless of whether it means canceling the project, or proposing an entirely new layer of government to build it.

As for trust, let us look at the benefits of new Hudson tunnels. The traditional, and least objectionable, is added capacity: the existing tunnels are currently at capacity during rush hour, and there’s much more demand for rail travel from New Jersey to Manhattan than they can accommodate. We can measure this benefit in terms of the combination of increased ridership from more service from more suburban areas, reduced crowding, and possibly slightly higher speeds. As a crude estimate of this benefit, current New Jersey Transit ridership at Penn Station is 87,000 per weekday in each direction. Doubling capacity means roughly doubling ridership, which would come from a combination of induced demand and diversion of traffic from cars, Port Authority buses, and commuter rail-PATH connections. This means the new tunnel can expect about 175,000 new commuter rail trips per weekday. At $10,000 per weekday trip, which is about average for very large non-US cities’ subway extensions, this justifies $1.75 billion. At $20,000, about the same as the projection for Grand Paris Express, Crossrail, and Second Avenue Subway Phase 1, all of which are justified on grounds of ridership and capacity on parallel lines, this is $3.5 billion. At $40,000, about the same as old projections for Second Avenue Subway Phase 2, which I used to analyze de Blasio’s Utica subway proposal, this is $7 billion. A $25 billion budget corresponds to a cost per rider well into the range of airport connectors.

Now, I’d like to think that informed citizens can look at these costs and benefits. At least, the fact that public transit projects only cost as much per rider as Gateway if they’re airport connectors (thus, of especial interest to the elites) or if something very wrong happened with the ridership projections, suggests that there is, normally, a ceiling to what the political system will fund. Even at $14-16 billion, the two states involved and the federal government groaned at funding Gateway, speaking to the fact that it’s not, in fact, worth this much money. In contrast, a bigger project, with bigger benefits, would be funded enthusiastically if it cost this much – for example, California already has almost this much money for high-speed rail, counting Prop 1A funds that are yet inaccessible due to the requirement of a 50/50 match from other sources.

Against this background, we see scare stories that Gateway must be built for reasons other than capacity and ridership. The old tunnels are falling apart, and Amtrak would like to shut them down one track at the time for long-term repairs. The more mundane reality is that the tunnels have higher maintenance costs than Amtrak would like since each track can only be shut down for short periods, on weekends and at night. This is buried in technical documents that don’t give the full picture, and don’t give differential costs for continuing the present regime of weekend single-tracking versus the recommended long-term closures. The given cost for Sandy-related North River Tunnel repairs is $350 million, assuming long-term closures, and it’s unlikely the present regime is billions of dollars more expensive.

I am reminded of the Tappan Zee Bridge replacement: the existing bridge has high maintenance costs due to its age and poor state, but the net present value of the maintenance cost is $2.5 billion and that of the excess maintenance cost is less, both figures well below the replacement cost. The bridge itself is structurally sound, but in popular media it is portrayed as structurally deficient. This relates to the problem of heavyweight politicians, for the Tappan Zee Bridge replacement is Cuomo’s pet project.

More fundamentally, who can trust any claim Amtrak makes about the structural soundness of tunnels? It says a lot that, when I asked on Twitter why transportation authorities do not immediately shut down unsafe pieces of infrastructure, various commenters answered “politics,” and on one (I believe James Sinclair) suggested that Amtrak order an emergency closure of one of the Hudson tunnel tracks just to drive home the point that new tunnels are necessary. I would like to stress that this is not Amtrak or a heavyweight proposing that, but the mere fact that commenters can seriously talk about it is telling. Most of the writers and commenters on the US transit blogosphere are very progressive and hate the Republicans; I have not seen a single comment recommending that the Democrats steal elections, fudge official statistics to make the party look more successful, or arrest Republican politicians on trumped-up charges, because in the US (and other first-world democracies), this is simply not done, and everyone except conspiracy theorists recognizes it. But politicizing the process of deciding which infrastructure projects are necessary for safety purposes and which are simply service expansions is normal enough that people can propose it half-seriously.

This brings me back to the issue of what I want the politicians to do, and what I expect them to do. What I want them to do is to be honest about costs and benefits, mediate between opposing interests (including different agencies that fight turf battles), and make decisions based on the best available information. This would necessarily limit costs, since, from the point of view of a member of Congress, if they get $25 billion for a piece of infrastructure then they cannot get $25 billion for another priority of theirs. They don’t do that, not in the US, and I’ve learned not to expect any better, as have the voters. Instead of working to make $25 billion go a longer way (to put things in perspective, I expect my regional rail tunnel proposal to cost $15-20 billion, at Crossrail 2 costs), Schumer is working to make $25 billion to sound like it’s going to a bigger deal than the new Hudson tunnels actually are.

None of this is a secret. American voters have learned to expect some kind of machine-greasing and politicking, to the point of losing the ability to trust either the politicians or the agencies, even in those cases when they are right. The result is that it’s possible to stretch the truth about how necessary a piece of infrastructure is, since people would believe or disbelieve it based on prior political beliefs anyway, and there is no expectation that the politicians or public authorities making those claims will have to justify them to the public in any detail. Lying to the public becomes trivially easy in this circumstance, and thus, costs can rise indefinitely, since everyone involved can pretend the benefits will rise to match them.

Penn Station Elimination Followup

Several commenters, both here and on Streetsblog, have raised a number of points about my proposal to eliminate above-ground Penn Station and reduce the station to a hole in the ground. A few of those points are things I’d already thought about when I wrote that post and didn’t want to clutter; others are new ideas that I’ve had to wrestle with.


On Streetsblog, Mark Walker says, “Getting on a train at Penn is not like using the subway. Instead of a train that runs every five minutes, you’re waiting for a train that runs once per hour (more or less),” implying nicer waiting areas and lounges are needed. My proposal, of course, does not have dedicated waiting areas. (That said, there’s an immense amount of space on the platforms under the escalators, which could be equipped with chairs, tables, and newsstands.)

However, I take exception to the notion that when the train runs every hour, passengers wait an hour. When I lived in Providence, a few trips to Boston, New Haven, and New York taught me the exact amount of time it’d take me to walk from my apartment to the train station: 21 minutes. I learned to time myself to get to the station 2 minutes before the train would leave, and as I recall, I missed the train twice out of maybe 30 trips, and one of those was when I had a lot of luggage and was in a taxi and couldn’t precisely gauge the extra travel time. Walking is that reliable. People who get to Penn Station by subway have to budget some extra time to account for missed subway trains, but from much of the city, including the parts of the CBD not within walking distance from Penn, the required spare time is less than 10 minutes. Moreover, Penn is at its most crowded at rush hour, which is precisely when subway frequency is the highest, and people can reliably time themselves to within less than 5 minutes.

Outlying train stations in Switzerland are deserted except a few minutes before a train shows up, because the connecting transit is all timed to meet the train. This is of course inapplicable at very large stations with many lines, but the modes of transportation that most Penn Station users take to the station are reliable and frequent, if you can even talk of frequency for walking. The result is that the amenities do not need to be extravagant on account of waiting passengers, and do not need to be more than those of a busy subway station in a busy area.


Several commenters raised the idea of shelter. One option, raised by James Sinclair, is an arched glass roof over the station, on the model of Milan. This involves above-ground infrastructure, but the arched structure is only supported at the margins of the compound, which means that the primary feature of a hole-in-the-ground station, the lack of anything that the track area must support the weight of, is still true. I do not think it’s a bad idea; I do, however, want to raise three additional options:

Do nothing. A large proportion of the usable area of the platforms would be located under the walkways above, or under the escalators and staircases. Having measured the depth more precisely, through Plate 14 here, I found it is 13 meters from street level to top of rail, or 12 from street level to platform level, translating to 21 meters of escalator length, plus 2.2-2.5 meters on each side for approach (see page 23 here). About 16 of those 21 (18.5 out of 25.7, counting approaches) meters offer enough space for passengers to stand below the escalators, leading to large areas that could be used for shelter, as noted in the waiting section above.

Build a simple shelter. Stockholm-area train stations have cheap corrugated metal roofs over most of the length of their platforms. These provide protection from rain. Of course those roofs require some structural support at the platform, but because they’re not supposed to hold anything except rainwater, those supports are narrow poles, easy to move around if the station is reconfigured.

Build a street-level glass pane. This may be structurally intricate, but if not, it would provide complete shelter from the elements on the track level, greatly improve passenger circulation, and create a new public plaza. But in summer, the station would be a greenhouse, requiring additional air conditioning.

Note that doing nothing or building a simple shelter would not protect any of the track level from heat or cold. This is fine: evidently, open-air stations are the norm both in cities with hotter summers than New York (Milan is one example, and Tokyo is another) and in cities with colder winters (for example, Stockholm). Passengers are usually dressed for the weather anyway, especially if they’re planning on walking to work from Penn or from the subway station they’re connecting to.


Multiple commenters have said that public art and architecture matter, and building spartan train stations is unaesthetic, representing public squalor. I agree! I don’t think a hole-in-the-wall Penn Station has to be drab or brutalist. It can showcase art, on the model of the mosaics on the subway, or the sculptures on the T-Bana. It can use color to create a more welcoming environment than the monotonous gray of many postwar creations, such as the Washington Metro. The natural sunlight would help a lot.

But more than that, the walkways themselves could be architectural signatures. The best way to build them without supporting them on the track level is some variant on the arch bridge – either the classical arch bridge (which would require three or four spans), or a through-arch. This gives a lot of room to turn the bridges into signature spans. The design work would raise their cost, but short pedestrian bridges tend not to display the same cost structure as massive vehicular ones; the Bridge of Strings, a Calatrava-designed light rail bridge on a line that cost far more to build than light rail should cost, was $70 million for 360 meters. The walkways would not carry light rail, and would be about 140 or 150 meters in span.


Commenters both here (Caelestor) and on Streetsblog (Bolwerk, Matthias, C2check) have brought up transit-oriented development as a reason to allow a tall building on top of the station. With respect, I think on top of a train station is exactly the wrong place to build a tower. Let’s Go LA has an explanation for why the engineering for air rights is so complicated, although he stresses that Penn Station and Grand Central, which were built with the expectation of future high-rise air rights, are exceptions. I’ll add that Penn Station track simplification would also remove many crossovers and switches, making it easier to build air rights. That said, the track spacing is not friendly to the column spacing he proposes.

In New York, the tallest and most expensive recent private-sector office tower on solid ground, the Bank of America Tower, cost around $6,000 per square meter of floor space, in today’s money. Some of the luxury residential towers are more expensive; so are the new World Trade Center buildings, e.g. One World Trade Center was $12,000 per m^2. But the office towers cluster in a specific band of cost, around $2,500 to $5,000 per square meter, with taller towers generally more expensive. The Hudson Yards air rights towers cost in the $10,000-14,000 per square meter range, as much as One World Trade Center. Contrary to Bloomberg’s promises of windfall property tax revenues as his justification for the 7 extension, the city has had to offer tax abatement to encourage developers to build at those prices. Amtrak’s plan for Penn Station South assumes the block immediately south of Penn Station would cost $769 million to $1.3 billion to acquire; when I roughly computed its floor area by counting floors per building, I got 100,000 m^2, which means the price of real estate in that area, $7,700-13,000/m^2, is no higher and may be lower than the construction cost of air rights towers.

In contrast, some sites on firm ground immediately surrounding Penn Station are ripe for redevelopment. The block south of Penn Station, as noted above, has about 100,000 m^2, for a block-wide floor area ratio of 6.7. The Empire State Building’s floor area ratio is 33, so replacing the block with closely spaced supertall towers would require developers to burn just 20% of their profit on acquiring preexisting buildings. To the north of Penn Station, the two sites at 7th and 8th Avenues, flanking One Penn Plaza, are flat; so is nearly all of the western part of the block northeast of Penn, between 33rd and 34th Streets and 6th and 7th Avenues. Eighth Avenue is not developed intensely at all in that latitude – it only becomes important near Times Square. Supertall buildings surrounding Penn Station could even be incorporated into the station complex: railroads using the station might decide to lease offices in some of them, and the exteriors of some of those buildings could incorporate large clocks, some signage, and even train departure boards.


TheEconomist, who has had some truly out-of-the-box ideas, raises a very good point: how to phase the deconstruction of Penn Station in ways that allow service to continue. I don’t have a complete answer to that. Arch bridges, in particular, require extensive falsework, which may complicate matters. However, a general phase plan could consist of knocking down the above-ground buildings, then removing the upper concourse (leaving only the lower), and then removing arms of the lower concourse one by one as the walkways above them are built.

Passenger Throughput

In comments here, people have suggested several alternatives to my proposal to reconfigure Penn Station to have 12 tracks and 6 island platforms between them. There should be 6 approach tracks, as I outlined here: southern approach tracks, combining new Hudson tunnels with a link to Grand Central (which I call Line 2); central tracks, combining the preexisting Hudson tunnels with the southern East River Tunnels (Line 1); and northern tracks, combining the realigned Empire Connection and West Side Yard with the northern East River Tunnels (Line 3).

In my view, each approach track should split into two platform tracks, flanking the same platform. In this situation, there is no need to announce track numbers in advance, as long as the platform is known. Stockholm does this on the commuter lines at Stockholm Central: the northbound lines use tracks 15 and 16 and the southbound lines use tracks 13 and 14, with a platform between each of these track pairs, and until a few minutes before a train arrives, it’s signed on the board as “track 13/14” or “track 15/16.”

The compound looks 140 or 150 meters wide; the maps are unclear about to what extent Penn extends under 31st and 33rd, but according to a diagram Joey shared in comments, it extends quite far, giving 150 meters or even a bit more. Under my proposal, this is enough for 6 platforms of 17 or 18 meters. It sounds like a lot, but it isn’t, especially on Line 3, where Penn Station is the only CBD train station, which implies entire trains would empty at Penn in the morning rush hour. (Line 2, which I expect to be the busiest overall because it’d serve both Penn and Grand Central, is the one I expect to have the least platform crowding problems, precisely because it’d serve both Penn and Grand Central.)

Staircases should be 3 meters wide. Escalators with 1-meter steps have 1.6-meter pits; their capacity is theoretically 9,000 passengers per hour, but practically only 6,000-7,000. Clearing 30 entire trains per hour, filled to seating capacity with 4 standees per square meter of standing space, requires moving about 75,000 passengers per hour. (Per meter of train length, this is comparable to the 4/5 trains and the RER A at their peaks.) With 6 access points, this requires 2 up escalators per access point. The minimum is then 3 escalators, running 2-and-1 at the peak; 4 is better.

In comments, Ari Ofesvit proposes the Spanish solution, which I’ve discussed in previous posts. I’m now convinced it is not the right solution, simply because it compels platforms to be too narrow (about 8.6 meters), which has room for exactly half of what a standard platform twice the width would have, without the possibility of running 4 escalators 3-and-1 at the peak. My comment in that post has more detail, albeit with the assumption that the compound is 140 meters wide.

Fbfree proposes something else: more platforms for intercity trains. Giving intercity trains more platforms (as is done in Stockholm, which has just two approach tracks to the south) gives them more time to dwell; unfortunately, it also narrows the platforms for the regional trains, precisely the ones that can expect the most crowding. Even a single-track platform would take up space out of proportion to the number of passengers it would serve.

Pedestrian throughput is, at the maximum, 81 people per meter of walkway width per minute; this assumes two-way flow, but the numbers for one-way and multiway flow aren’t too different. This is a little less than 5,000 per meter-hour. An escalator bank with two up escalators then needs almost 3 meters of unobstructed platform width on one side (the other side can be used as overflow, but most passengers would use the side of the platform the train discharged them on). This is easy to supply with a 4-escalator bank on a 17-meter platform (there would be 3.8 meters); on an 8.6-meter Spanish platform, there’s only one up escalator per bank, so half the width is required, and is indeed obtainable. But if there are extra platforms for intercity trains, this becomes more strained.

For maximum throughput, it is necessary to minimize separation between escalators on the platform, down to about 6 meters plus approaches, in order to allow wider walkways, which in this case would make the walkways about 25 meters wide. The point here is that the walkways have to have very high pedestrian capacity, since each of them is fed by escalators from all platforms. At 25 meters, the capacity is about 15% less than that of two up escalators per access point (121,500 vs. 144,000), which is fine since some platforms (Line 2 in both directions, Line 3 eastbound in the morning and westbound in the afternoon) would not have so much traffic. But putting in elevators would disrupt this flow somewhat.

I see two ways to increase capacity in the future, if train traffic warrants it: first, build the glass floor/ceiling I outlined above, in the shelter section. This is the simplest possibility. Second, build three more walkways, midway between 7th and 8th Avenues and the two walkways already discussed, and have each walkway or avenue serve only half the platforms – one serving eastbound platforms, one serving westbound platforms. At this point the station would be half-covered by walkways, if they are all about 24 meters wide, but the walkways could be narrowed; as long as they are longer than 15 meters, any passenger arriving on a platform by any of the included access points would be sheltered by the walkway serving platforms in the opposite direction. Elevators should go from each walkway to each platform still, which would facilitate transfers, but the workhorse escalators would spread the load among different walkways.


I’d originally thought that the walkways could host retail and food concessions. The calculation in the preceding section suggests that this wouldn’t be possible, unless the walkways are widened beyond the escalators, with concessions on the outside. Every meter of walkway width would be required for passenger circulation. Even information pamphlets might be restricted to the very edges of the walkways; train departure boards would have to be mounted in the air, for example on the support cables if the through-arch option were chosen for the walkways.

However, there is ample room directly beneath the escalators, staircases, and walkways. With the caveat that escalators of such length need an extra midway support point, they would still have a lot of space underneath: 15-16 meters with sufficient clearance for people to stand comfortably (say, at least 2.5 meters of clearance above); with the upper approaches and the walkways, this is 60-62 meters of largely unobstructed space, for a 60*10 space that could be used in almost any way. Even in the 5-6 meters with less clearance above to the escalator, it’d be possible to use the space at least partly – for example, for sitting, or for bathrooms, the minimum clearance is reduced (I’m writing this post from my apartment, where the ceilings slope down, and the ceiling height above my couch is about 1.5 meters).

There would be two such 60*10 spaces per platform, plus two smaller spaces, near 7th and 8th Avenues, depending on exact placement of access points to the subway. This gives us twelve 60*10 spaces. I doubt that they could ever host high-end concessions, such as full-service restaurants: passengers would probably not go out of their way, to a platform that they weren’t planning on using. This means newsstands could succeed, but not much else; food would have to be shunted to the streets, and presumably restaurants would pay extra to locate right outside the compound. In lieu of concessions, those spaces could host sundry uses, including additional circulation space, information pamphlets, busker performance space, waiting areas for passengers, public art displays, and waiting areas for train crew and cleaners.

Eliminate Penn Station

Note: this is a somewhat trollish proposal, but I do think it should be considered.

New York Penn Station is a mess. Its platforms are infamously narrow, with only enough room for single-direction escalators, leading to overcrowding during peak hours, as passengers scramble to find an up escalator or a staircase. Its two concourses are confusing and cramped, and have claustrophobic low ceilings. Trains’ track assignments are only announced minutes in advance (as at other major US stations), leading to last-minute passenger scrambles to get onto the platforms. Everyone with an opinion, from the city’s architect community to the Regional Plan Association to Amtrak, wants to build an alternative. Let me propose something simpler and cheaper, if uglier: eliminate all above-ground structures, and reduce Penn Station to a hole in the ground.

Most of the preexisting plans for Penn Station do not do anything about the track level. It’s assumed that the tracks will remain narrow, that trains will not run reliably enough for consistent track assignments, and that dwell times will remain high. The architects’ proposals involve a nice station headhouse to make passengers feel important. Amtrak wants to decamp to a nice headhouse at Moynihan Station, again to make its passengers feel important, and add a few extra tracks without fixing the existing ones. The RPA proposal is heavy on redevelopment but says nothing about moving trains in and out more efficiently. Only Penn Design’s proposal says anything about consolidating platforms, in addition to constructing a headhouse, but the need to maintain a pretty headhouse places constraints on the ability to move tracks and platforms.

Eliminating the headhouse moves the focus from making passengers feel important to getting passengers in and out as fast as possible. Most importantly, it means there’s no need for girders and columns all over the track level; they support the buildings above the station, including the headhouse, and would not be needed if the station were a simple open cut. Those girders make it hard to move the tracks and platforms – the only reasonable option if they are kept is to pave over pairs of tracks between platforms to create very wide platforms, which would not be well-aligned with the approach tracks.

In the hole in the ground scenario, the two blocks from 7th to 8th Avenue, from 31st to 33rd Streets, would have no above-ground infrastructure. This requires demolishing Two Penn Plaza and Madison Square Garden. Two Penn Plaza is a building of 140,000 m^2, in a city where the private sector builds office towers of such size for about $750 million (at least when they’re not above active railyards); the city has been making noises about moving Madison Square Garden, although in 2013 it extended its lease by ten years. The tracks and platforms would thus be in the open air, and even from the depth of the platforms, passengers could see the surrounding buildings, just as they can in the open cut west of 9th Avenue, just before trains head into the North River Tunnels.

The two-block compound would be trisected by a pair of wide walkways, as wide as a Manhattan street, parallel to 7th and 8th Avenues. Each of the two walkways would have an access point in each direction toward each platform; with the current narrow platforms this means single-direction escalators, but as tracks would be moved and platforms widened, this would be a pair of wide single-direction escalators flanking a wide staircase. There would be an additional access point heading west out of 7th Avenue and one heading east out of 8th, for a total of six per platform. This is an improvement over the current situation, in which the number of access points ranges from four to six, excluding the LIRR’s West End Concourse, which is west of 8th and thus excluded from this discussion; see diagram here. Penn Station’s tracks are about 14 meters below street level; with 30-degree escalator angles, this means that the escalators would be 24 meters long plus short approaches, say 28 meters total, and this provides adequate separation between access points on the platforms as well as on the two walkways, although unfortunately the spacing on the platform would not be even. For disabled access, elevators would be provided at 7th and 8th Avenues and on both walkways.

The main functions of a train station would be devolved to the surrounding streets and the two walkways. Large clocks, mounted on the high-rise towers next to the station, would show the time. Screens posted over the entire compound would show train departure and arrival times and track assignments. The walkways, and the sides of 7th and 8th Avenues facing the compound, would have ticket-vending machines, selling tickets for all railroads using the station; if the platforms were widened, then there would be room for TVMs and some retail on the platforms themselves. There might even be room for some kiosks on the walkways and food trucks on the streets and avenues. Large ticket offices are not required, and small ones can fit either on the walkways or in a building storefront on the perimeter of the compound.

The technological advances of the last half-century or so have largely made station headhouses obsolete. Train stations used to have telegraph operators; they no longer do. They used to have mail sorting space; mail is now carried by air and road, or electronically. TVMs allow passengers to obtain tickets without buying them at ticket offices, and nowadays e-tickets are making TVMs somewhat obsolete as well. Checked baggage is largely a thing of the past. Transportation companies that aim at low costs, including low-cost airlines and intercity express buses, barely have stations at all: intercity buses pick up at curbs, while low-cost airlines often prefer budget terminals with reduced infrastructure. As far as possible, this is the way forward for train stations as well. Recall that my proposal for a Fulton Street regional rail station followed the same logic, using the street as its mezzanine. This is the way forward for Penn Station, too.

On Penn Station South

There’s an article in the New York Times by its architecture critic Michael Kimmelman, making a forceful case for the Gateway Project’s necessity. Like nearly all transit activists in New York, I think new Hudson tunnels are the top infrastructure priority for regional rail; like nearly all transit activists, I groan at Amtrak’s proposed budget, now up to $16 billion (but unlike most, I think that it should not be built unless costs can be brought down – I’d peg their worth at $5 billion normally, or somewhat more in a crunch). I would like to explain one specific piece of scope in Amtrak’s plan that can be eliminated, and that in fact provides very little transportation value: Penn Station South.

Like all proposals for new Hudson tunnels, Gateway is not just a simple two-track tunnel between New Jersey and Penn Station. No: the feuding users of Penn Station all think it needs more tracks. The rejected ARC proposal had a six-track multilevel cavern, and Gateway has Penn Station South, a proposal to demolish an entire block south of Penn Station and build seven additional platform tracks. The cost of just the real estate acquisition for Penn South: $769 million to $1.3 billion, at today’s prices. Trains using the preexisting tunnels would have to go to the preexisting Penn Station tracks, which I will call Penn Classic; trains using the new tunnels could go to either Penn Classic or Penn South, but the junction is planned to be flat. For illustration, see PDF-p. 12 of a press release of the late Senator Lautenberg, and a clearer unofficial picture on

As a result of this proposed track arrangement, train services would initially suffer from the capacity limitations of flat junctions. Like Penn Station’s tracks 1-4, Penn South would be terminal tracks. This means that the only service possibilities are as follows:

1. Schedule all through-trains, such as Amtrak trains, through the preexisting tunnels.

2. Do not schedule any westbound trains from Penn South or any eastbound trains entering the preexisting Penn Station tracks: for example, no westbound trains from Penn South in the morning peak, and no eastbound trains entering Penn Classic in the afternoon peak.

3. Schedule around at-grade conflicts between opposing traffic.

Option #2 is impossible: Penn South has 7 tracks. If trains can enter but not leave in the morning, there will be room for 7 trains entering in the morning, a far cry from the several dozens expected. Option #1 is the better remaining option, but is ruled out, since Amtrak wants to use the new tunnels for its own trains. This leaves option #3, which restricts capacity, and complicates operations. Thanks to Amtrak’s imperialism, taking over regional rail projects for its own ends, Penn South has negative transportation value relative to just building new tunnels to Penn Classic’s tracks 1-4 (the transportation value relative to doing nothing is of course positive).

I emphasize that the negative transportation value of Penn South comes entirely from Amtrak’s involvement. The same infrastructure, used by passenger rail agencies that were more interested in providing high-quality public transportation than in turf wars, would have positive transportation value. However, as I explained to Kimmelman, this positive transportation value is low, and does not justify even the cost of real estate acquisition, let alone that of digging the station.

Briefly, as can be seen in the diagrams, the interlocking between the two new tunnel tracks and Penn’s eleven terminal tracks – tracks 1-4 of Penn Classic, and all of Penn South – is exceedingly complicated, which would limit approach speed, and not provide much flexibility relative to the number of tracks provided. This is to a large extent unavoidable when two approach tracks become eleven station tracks, but it does lead to diminishing returns from extra tracks. This is one of the reasons it’s easier if trains branch: it’s easier to turn 12 trains per hour on two tracks than to turn 24 on four (although both are done in Tokyo – indeed, the Chuo Line still turns 27 tph on two tracks).

Avoiding large crunches like this at urban terminals a benefit of through-running. This is hard to realize initially unless the new tunnel is what I call ARC-North. It’s still possible to through-run trains, pairing the new tunnels with the southern pair of East River Tunnels and the old tunnels with the northern pair, but it requires a lot of diverging moves at interlockings, limiting speed. Penn Station plans should be built with a long-term goal of simple moves at interlockings, to (slightly) increase speed and capacity and reduce maintenance needs.

However, it’s still possible to square the circle by requiring trains to turn fast on tracks 1-5 of Penn Station (track 5 splits to a terminating end and an end that runs through east of New York). Tokyo would be able to turn a full complement of 24 trains per hour on these tracks. Most other cities would not. However, as somewhat of a limiting European case, the RER A turns a peak train every 10 minutes on single track at Le Vésinet-Le Pecq, the next-to-last station on the Saint-Germain-en-Laye branch; Le Pecq has two through-tracks (also hosting a train every 10 minutes) and one terminal track. See map and schedule. This does not scale to 24 tph on four tracks; somewhat tellingly, those trains do not continue to the terminus, which is a three-track station, implying turning 12 tph on three tracks is problematic. The RER E turns 16 tph at the peak at Haussmann-Saint Lazare, a four-track city terminus, pending under-construction extension of the line to the west, which would make it a through-station.

If we accept 16 tph as the capacity of new Hudson tunnels without new Penn Station tracks, then the question should be what the most cost-effective way to raise future capacity is. An extra 9 tph, the equivalent of the difference between 16 tph and the 25 tph that the current tunnel runs and that Amtrak projects for Gateway, is within the capabilities of signaling improvements and better schedule discipline. Again looking to Paris for limiting cases, the combined RER B+D tunnel between Gare du Nord and Châtelet-Les Halles runs 32 tph, without any stations in the tunnel (the RER B and D use separate platforms), while the moving block signaling-equipped RER A runs 30 tph on its central segment, with stations (as do the S-Bahn systems of Berlin and Munich). The RER E was planned around a capacity of 18 tph, but only 16 tph are run today. 18+32 = 50 = 25+25. France is not Japan, with its famous punctuality: French trains are routinely late, and as far as I remember, the RER B has on-time performance of about 90% based on a 5-minute standard, worse than that of Metro-North in its better months.

More importantly, dropping Penn South from the Gateway plan saves so much money that it could all go to through-running, via a new tunnel from tracks 1-5 to Grand Central. This is about 2 km of tunnel, without any stations; in a normal city this would cost $500 million, the difficulty of building in Midtown canceling out with the lack of stations, and even at New York construction costs, keeping the tab to $2 billion should be doable. The 7 extension is $2.1 billion, but includes a station; an additional proposed infill station at 10th Avenue, dropped from the plan, would’ve $450 million, giving us $1.6 billion for about 1.6 revenue route-km, rising to 2.3 km including tail tracks – less than a billion dollars per kilometer.

At $2 billion, the premium over $1 billion of impossible-to-cut real estate acquisition costs is down to $1 billion. It’s unlikely the construction cost of Penn South could be just $1 billion, without general reductions in city construction costs, which would enable the Penn-Grand Central link to be cheaper as well. Each Second Avenue Subway station is about a billion dollars, and those stations, while somewhat deeper than Penn Station, are both much shorter and narrower than a full city block. The result is that building a Penn-Grand Central link is bound to be cheaper than building Penn South, while also providing equivalent capacity and service to a wider variety of destinations via through-running.

One difficulty is staging the tunnel-boring machines for such a connection: building a launch box involves large fixed costs, especially in such a crowded place as Midtown. One of the reasons Second Avenue Subway and the 7 extension are the world’s most expensive subway project per kilometer is that they’re so short, so those fixed costs are spread across less route length. The best way to mitigate this problem is to build the link simultaneously with the new Hudson tunnels. The staging would be done on Penn’s tracks 1-4, whose platforms would be temporarily stripped; the construction disruption involved in the tunnels is likely to require shutting those tracks down anyway. Depending on the geology, it may even be possible to use the same tunnel-boring machine from New Jersey all the way to Grand Central.

This doesn’t save as much money – the Penn-Grand Central link is extra scope, with its own costs and risks. However, unlike Penn South, it is useful to train riders. Penn South allows terminating trains at Penn Station more comfortably, without having to hit the limit of large-city terminal capacity; the Penn-Grand Central link creates this capacity, but also lets riders from New Jersey go to Grand Central and points north (such as Harlem, but also such more distant commercial centers as Stamford), and riders from Metro-North territory go to Penn Station and points west (such as Downtown Newark).

Normally, I advocate unbundling infrastructure projects, because of the tendency to lump too many things together into a single signature plan, which then turns into political football, a sure recipe for cost overruns. However, when projects logically lead to one another, then bundling is the correct choice. For example, building an entire subway line, with a single tunnel-boring machine and a single launchbox, usually costs less than building it in small stages, as is the case with Second Avenue Subway. New Hudson tunnels naturally lead into a new tunnel east of Penn Station, regardless of where this tunnel goes; and once a tunnel is built, its natural terminus is Grand Central.

Bergenline Avenue and New Hudson Tunnels

The main street of Hudson County from Jersey City north is Bergenline Avenue. It passes through the densest cities in the US (denser than New York, which is weighed down by outer-urban areas), and hosts frequent jitney service. Last decade, New Jersey began to document jitney service in North Jersey, producing a report in 2011 that identified major corridors; Bergenline is the busiest, with a jitney almost every minute, and almost as frequent additional jitney and New Jersey Transit service on the northern part of the route running into Manhattan via the Lincoln Tunnel. This was discussed extensively on Cap’n Transit’s blog three years ago, and I thought (and still think) Bergenline should eventually get a subway line. I bring this up because of a critical tie-in to Bergenline’s transit service: new mainline Hudson tunnels. If the new tunnels are built to host regional rather than intercity trains, then they should also make a stop at Bergenline to allow for easier transfers from the buses to Manhattan.

Unfortunately, there are no estimates of ridership on the Bergenline buses. The 2011 report did rough counts of passengers per hour passing through a single point, but that is not directly comparable to the usual metrics of ridership per day or per year. Moreover, the report assumed there are 16 passengers per jitney, where, at least in Cap’n Transit’s experience, the jitneys on Bergenline are considerably larger, in the 20-30 passenger range. Either way, they’re smaller than full-size buses, which means we can’t just compare the frequency on Bergenline with that on busy New York bus corridors. However, a bus in that size range almost every minute, both peak and off-peak, is bound to have comparable ridership to the busiest buses in New York: the single busiest, the M15, runs articulated buses every 3 minutes at the peak and every 4 off-peak.

There are several corridors heading into Manhattan. According to the summary on the report’s PDF-page 51, Bergenline has jitneys heading into Port Authority every 2-4 minutes at the peak, and New Jersey Transit buses (routes 156 and 159) every 5 minutes. Paralleling Bergenline, JFK Boulevard East has a jitney every 4-5 minutes (with larger vehicles than on Bergenline), and a New Jersey Transit bus almost every minute at the peak (route 128). There is also very frequent New Jersey Transit bus service, more than once per minute between routes 156, 159, and 166, running nonstop to Port Authority at the peak; unlike the jitneys, New Jersey Transit bus service is extremely peaky, with the combined routes 156 and 159 dropping to a bus every 15 minutes, and the Boulevard East routes (165, 166, 168) dropping to a bus every 9 minutes.

From the New Jersey Transit schedules, peak-hour buses spend 18-19 minutes getting into Port Authority from Bergenline, and 14 minutes getting into Port Authority from Boulevard East. In contrast, a train station located under Bergenline would have service to Penn Station taking about 3 minutes. Trains go through the existing older tunnel at about 100 km/h, and the new tunnel could support at least the same speed, while a through-running service plan would simplify the Penn Station interlockings enough that trains could enter and leave the station at speed. Even allowing for transfer time and for additional wait times, which are very short at the peak anyway, this represents an improvement of more than 10 minutes.

It goes without saying that the service should be frequent and affordable. The fare should be the same as on the subway, with free transfers. There’s some precedent in that PATH charges similar fares to the subway, but free transfers, a basic amenity in regions with integrated transportation planning, would be new to New York. At the peak, all trains would stop at Bergenline, since there’s not enough capacity to mix stopping and nonstop trains on the same tracks given expected traffic. But even off-peak, all trains should continue stopping at Bergenline – as well as at Secaucus – in order to maintain adequate frequency. Given how dense and close to Manhattan the area is, 10 minutes is the maximum acceptable headway, which corresponds to the combined off-peak frequency of all New Jersey Transit trains into Penn Station today.

While the busiest trunk line does not even enter Manhattan, the presence of fast, frequent regional rail with competitive fares is likely to change travel patterns. This is not the same as transit-oriented development: I am not assuming a single new building on top of the Palisades. Instead, some people who live and work in northern Hudson County would shift over time to working in New York, thanks to improved transportation links. In parallel, people working in New York would move to cheaper housing in Hudson County. In the other direction, companies that want to attract reverse commuters might locate to the area around the new station. The overall effect would integrate northern Hudson County into the core better, turning it into more of a bedroom community, like Brooklyn and Queens, while simultaneously concentrating its employment around the station. The upshot is that this station would already come equipped with a huge installed base of feeder buses, which run the route already without a connection to Manhattan. A longer-range plan to build a subway under Bergenline, from Fort Lee to Journal Square, would further integrate the entire west bank of the lower Hudson into the city core.

This tilts the best traffic plan for new tunnels away from Amtrak’s Gateway plan and back toward New Jersey Transit’s various flavors of ARC. First, it’s easier to build the station while the tunnel is excavated than to build the station in the preexisting tunnel. At the same time, whichever tunnel has the station should be the one without intercity trains: all peak trains would have to stop at the station for capacity reasons (there’s no room for bypass tracks), and this would slow down intercity trains unacceptably. Put together, this means Amtrak should stay in the old tunnels and all traffic in the new tunnels should be regional.

Second and more importantly, a high-grade new tunnel pair from New Jersey to Penn Station should also continue onward to Grand Central, with trains running through to Metro-North territory. The importance of through-running and good service to multiple urban nodes is greatest for local service and smallest for long-distance service. In Paris, the RER involves through-service for shorter-range commuter trains; the Transiliens, which terminate at the traditional terminal stations, serve farther-away suburbs. And in Tokyo, the local lines of the JR East network run through whereas the express lines either don’t or have only started doing so recently. The reason is similar to a pattern I mentioned before about airports: at long range, people only travel to the city for functions that their region lacks, and those are usually centered on the CBD, whereas at short range, people travel in all directions. The upshot of this discussion is that a Bergenline stop is likely to add many local travelers to the system, and they should get the service that’s more useful for their needs.

Of course, a good service plan will involve through-running in both the old and new tunnels. However, through-running is more valuable in the new tunnel, going to Grand Central, than in the old tunnel, going to Long Island and the Northeast Corridor. As a judgment call, I believe that through-running to Grand Central, Harlem, and the South Bronx connects to more neighborhoods than through-running to Sunnyside, Flushing, and Jamaica. It also has better subway connections, to the 4/5/6 if to nothing else, and local riders are accustomed to two-seat rides and subway connections. Finally, under a fuller regional rail plan, including service to Lower Manhattan, Grand Central has connections to Lower Manhattan and Downtown Brooklyn whereas Penn Station and Sunnyside don’t.

In contrast, Amtrak’s plan gets it exactly backward in proposing to use the Gateway tunnel for its own trains and some additional regional trains. The only advantage of this plan is that it would be possible for regional trains to maintain higher speed through the wider-diameter new tunnel (intercity trains could raise speeds more easily, since high-speed trains are pressurized to limit ear popping when they enter tunnels). But by hogging slots in the Penn Station-Grand Central tunnel, Amtrak would force many local and regional rail riders onto trains that do not serve their destination directly and do not have an easy transfer to it.

The only drawback of this plan is cost. The station would be located deep beneath the Palisades, complicating its construction. While the access shafts are not difficult – vertical bores for elevators are simply to build – the station itself would require blasting a cavern, or using a large-diameter bore. The cavern option is not cheap. I am not going to try coming up with a cost estimate, but I will note that the station caverns of Second Avenue Subway Phase 1, which are built cut-and-cover rather than blasted from inside, are around a billion dollars each. A large-diameter bore is more attractive, but is more expensive than twin small-diameter bores if there are no stations, and may well have difficulties emerging at the Manhattan end.

Without reliable estimates for either the incremental cost or the incremental ridership, I can’t say whether this is a cost-effective proposal. I suspect that it is, given the high ridership of the Bergenline buses and the high density of the region. Part of what makes an S-Bahn or RER system successful is its service to urban neighborhoods and not just suburbs and CBDs, and Bergenline could be a good addition to the system that the region should be building.

Is Low-Cost Intercity Rail Possible?

Update: see corrected Shinkansen staffing numbers below

The last few decades have seen the growth of airlines and bus operators that reduce operating costs using a variety of lean-production ideas, chiefly using the equipment for more hours per day to earn more revenue with the same fixed costs. This hasn’t generally happened for rail, even in the presence of competition between operators. There is one low-cost option, on the TGV network, which like Ryanair and easyJey cuts costs not only by leaner production but also by reducing passenger comfort and convenience. I contend that an intermediate solution should be investigated: lean like Southwest and JetBlue, but without the extra fees, which are lower on those two airlines than on legacy US airlines.

First, the preexisting fares. In Japan, JR Central charges an average of $0.228 per passenger-km on the Shinkansen, JR East charges $0.245, JR West charges $0.208. In Japan nearly all intercity service is Shinkansen; averaging all JR East rail other than Tokyo-area commuter rail, even commuter rail around Sendai and Niigata, drops the average marginally, to $0.217. European intercity rail fares per passenger-km are lower: €0.104 on RENFE (PDF-p. 27), €0.108 on DB, and €0.112 on SNCF. All of those companies are profitable and do not receive subsidies for intercity rail, with the exception of RENFE, which loses small amounts of money (-0.8% profit margin). This is far lower than Northeast Corridor fare, which, as of the most recent monthly report, averages $0.534 per passenger-km on the Acela and $0.292 on the Regional.

Now, we can try penciling what operating costs should be. The most marginal costs, which grow linearly with the addition of new service, look a lot like those of low-cost private bus operators: crew, cleaners, energy, rolling stock acquisition, rolling stock maintenance. I am specifically handwaving the peak factor – frequency is assumed to be constant, to establish the operating cost of the base rather than that of the peak. I am going to assume 1,120 seats per train, all coach, about the same as a 16-car Shinkansen with 2+2 standard-class seating, or 70 per car. First class should be thought of as an equivalent of buying extra seats – fares should scale with the amount of space per passenger, and at any rate most cars are coach. Occupancy rate will be taken to be 57%, for a round 40 passengers per car; this is well within the range of HSR occupancy.

The cost turns out to be quite low – this is similar to the analysis in Reason & Rail from 2 years ago, except for now I’m leaving out infrastructure costs, which in that analysis are the dominant term, and so excluding them leads to very low costs. It is about three cents per passenger-km in operating and maintenance costs. This is of course not what HSR currently costs, but should be thought of as a lower limit or as the marginal cost of increasing base service.

A crew on a high-speed train is a train driver and a conductor. A 16-car Shinkansen train appears to have one conductor judging by the single conductor’s compartment has three conductors (see Andrew in Ezo’s comment below); the TGV has much more staffing, with the low-cost TGV having four. US salaries are high because the railroads have good unions: according to the Manhattan Institute’s applet for public employees’ salaries, on the LIRR, the average train driver makes $103,000 a year (search for “engineer”) and on Metro-North $115,000 (search for “locomotive engineer”). This is higher than on the Shinkansen. A conductor makes $98,000 on the LIRR and $105,000 on Metro-North. Figure $240,000 per year for a two-person crew $440,000 per year for a four-person crew.

We need to convert this to operating hours. On the LIRR and Metro-North, there are about 4,500 revenue car-hours per driver-year, which translates to about 600 revenue train-hours. At an average speed of 200 km/h, HSR would cost $2 $3.67 per train-km, or $0.003125 $0.0057 per passenger-km. But Metro-North and the LIRR are inefficient due to a prominent peak making smooth scheduling difficult; HSR can schedule a simple shift with a roundtrip of about 6-7 hours plus rest time, and if each employee does this 5 days a week minus holidays this is 1,200 revenue hours. This halves the cost. Conversely, going to 4 conductors, with a five-person crew paid a total of $540,000 per year, raises the cost to $0.007 per passenger-km, still low.

Electricity consumption can be calculated from first principles based on acceleration characteristics, or based on real-life HSR consumption levels. For the latter, a UIC paper claims 73 Wh/passenger-km on PDF-p. 17; this appears to be based on an assumption (see PDF-p. 33) of 70% occupancy but a train that is smaller (397 seats for 8 cars) and heavier (425 t vs. 365 t for an 8-car Shinkansen). Correcting for these gives 54 Wh/p-km. When I try to derive this from first principles assuming Northeast Corridor characteristics but with substantial segments upgraded to 360 km/h, I get about 50 Wh/p-km; this doesn’t include losses between catenary and wheel or regenerative braking, which mostly cancel each other out with losses being a little bigger. Rounding up to 56 Wh/p-km and using a transportation-sector electricity cost of $0.125 per kWh, we get $0.007 in electricity cost per passenger-km.

Cleaning should be done as fast as possible, with large crews working to turn trains around in the minimum amount of time based on safety margins and schedule recovery. JR East cleans Shinkansen trains in 12 minutes of Tokyo turnaround time minus 5 minutes for letting passengers disembark; the team size is 1 cleaner per standard-class car and 2-3 per green car, for a total of 22. This does not mean we can pencil in just 7 minutes of cleaning, since this doesn’t take into account the cleaning crew’s time waiting for a train to arrive, or downtime in case trains don’t arrive exactly one turnaround time apart. For a 4 tph operation, 15 minutes are fine, but for a 6 tph one, 10 may not be enough, requiring going up to 20. This is once per train run, so once per 720 km. With a team size of 24, that’s 24 person-hours per 720 train-km, or 32 in the 6 tph version.

Again using Manhattan Institute data, cleaners make $50,000 a year; it’s possible wages will have to go up to attract people who can consistently clean a car on the tight schedules posited, but there’s no base of comparison of companies having both Japanese standards for scheduling and American union scales. Say $30 per hour on the job (including downtime and waiting for a train, but not scheduled breaks). In the 6 tph version, this costs $0.002 per passenger-km.

RENFE’s above-linked executive summary includes a breakdown of employees by category (regular, support, and managerial) and gender on PDF-p. 46, whence we can obtain that for each operations employee there are 0.2 managers and 0.07 support employees. For capital projects, the California HSR estimates add 20% for overhead, management, and design, not including contingency, and the Penn Design estimate adds 18% (PDF-p. 247). This should be taken as the marginal cost of extra managers to oversee extra employees hired to provide additional service. In total, this is roughly $0.019 per passenger-km assuming higher crew staffing, and $0.013 $0.0175 assuming lower staffing.

Rolling stock is more expensive, and should spend as much time earning revenue as feasible based on established maintenance protocols. A large share of the operating costs of high-speed rail comes from the rolling stock: 20% on Madrid-Barcelona according to a RENFE presentation to California HSR whose official source is now a dead link, and, from eyeballing, perhaps 25% according to PDF-p. 8 of a UIC presentation about track access charges. The low-cost TGV doubles train utilization to about a million kilometers a year. This should be routine on Northeast Corridor operations: two round-trips per train, about 14-15 hours per day including turnaround time, 1 million train-km a year. Procurement of new N700s costs about $3 million per car, and Japanese depreciation schedules are over 20 years. Other trains capable of more than 250 km/h cost $4 million per car in China; with mid-life refurbishment of non-trivial cost, they can last up to 40. With 4% interest cost, depreciation and interest are about $280,000 per car-year either way, and if a car travels a million km with 40 people on average, that’s another $0.007 per passenger-km, a substantial sum so far.

Rolling stock maintenance is also relatively expensive. California HSR’s 2012 business plan has a list of costs around the world on PDF-p. 136. JR Central’s rolling stock maintenance is $7.20 per trainset-mile, which with our assumptions translates to $0.007 per passenger-km. European rolling stock maintenance costs are $4.16 per trainset-mile, which appears to be for an 8-car train, so scaling up by a factor of two gives $0.008 per passenger-km. Note that the maintenance of the rolling stock costs as much as the depreciation and interest on its acquisition.

In reality, maintenance depends on both time and distance, so increasing rolling stock utilization leads to lower costs per train-km. Since with those assumptions, the rolling stock costs about as much as the actual operations, this is a major cost cutter, though not a game changer given other costs. Note that the RENFE presentation slide also includes a large array of fixed costs and infrastructure (maintenance, which is very cheap at about $100,000 per route-km per year, and depreciation and interest on construction, which aren’t so cheap) as well as managerial overheads, hence the 20%; the UIC presentation includes some overheads as well. However, those fixed costs are more affordable if they’re spread across more service. A line built to have a 6 tph capacity has the same infrastructure cost at any frequency up to 6 tph.

So far, adding up all the operating and rolling stock costs totals to about $0.03 $0.033 per passenger-km. This means $11 $12 direct operating costs between New York and Washington or New York and Boston. It’s also a quarter what the Europeans charge for HSR tickets, and an eighth of what the Japanese charge. Despite this, the California HSR numbers are similar, so this analysis passes a sanity check. Again referring to the business plan’s PDF-p. 136, the table claims operating costs per trainset-mile that, after scaling from 8- to 16-car trains, are $0.04 per passenger-km. They exclude rolling stock acquisition, but include maintenance; but the assumptions in the Operations and Maintenance Peer Review are worse than in this post, with worse train utilization (turnaround times are assumed to be 40 minutes on PDF-p. 21) and more staff on board each train (an engineer, a conductor, an assistant conductor, a ticket collector, and a special services employee per 8-car unit, for a total of ten employees for 16 cars).

Still, I have no expectation that anyone can charge $11 $12 profitably for HSR service between New York and Washington. However, I strongly believe costs could be brought substantially below current rates. I believe the reason SNCF has only begun to do that and other operators not at all comes from two places.

First, infrastructure charges, a third of the cost of both the TGV and the Madrid-Barcelona AVE, are not just about paying off infrastructure costs (both Spain and France are low-construction cost countries for HSR). They transfer profits from the HSR operator to the monopoly infrastructure owner: track access charges were specifically increased in France ahead of the opening of the European rail market to competition, ensuring HSR surplus would go to state-owned infrastructure owner RFF rather than to foreign companies or the customers.

And second, unlike in the US, in Europe low-cost airlines are associated with terrible service: low seat pitch, hidden fees, rigid policies toward carry-on baggage, rigid policies toward missed flights, worse customer satisfaction, secondary airports located far from the cities they purportedly serve. The US has some of this in Spirit Airlines and Allegiant Airways, but it also has Southwest, JetBlue, and Virgin Atlantic, which have high customer satisfaction, flexible tickets, secondary airports located close to city centers (such as Dallas Love Field), and seat pitch equal to or better than that of the legacy airlines, which have degraded service. Europeans hate low-cost flying; Americans hate flying. The result is that Ryanair tars any attempt to lower costs in Europe by associating lean production and high equipment utilization with no-frills third-class service. This might make managers more wary of adopting some of the more positive aspects of low-cost carriers. Japan has no major low-cost carriers, so although it does not have the stigma, it doesn’t have the domestic experience, either.

I do not believe it’s possible for a train to charge $11 $12 one-way between New York and Washington and stay in business. There needs to be some profit margin, plus paying back infrastructure construction costs. However, I do believe it’s possible to charge closer to that than to present European HSR fares for the same distance (about $45), let alone present Amtrak fares. California HSR is actually pointing the way, but has such high construction costs that paying off even part of construction represents a major rise in ticket fares. The Northeast can and should do better.

The Magic Triangle: Infrastructure-Timetable-Rolling Stock

In the last month, Amtrak decided not to purchase additional Acela cars, but instead replace the Acela fleet ahead of time, and try to buy trains that aren’t compliant with FRA regulations. More recently, Amtrak and the California HSR Authority decided to bundle their orders together. The latter decision drew plenty of criticism from some good transit advocates, such as Clem Tillier, and even the former decision did. Clem explained,

The whole notion of buying quicker trains for the NEC is ridiculous– the existing Acela Express trains have plenty of oomph (16 kW/tonne) to do anything they need to do. “Lighter” and “faster” isn’t the key to anything on the NEC, and dropping in a higher-performance train will not lead to material trip time improvements. They need to speed up the slow bits first, which isn’t something you do by blowing money on trains.

Clem’s criticism got a fair amount of flak in comments, from me and others, for underestimating how important getting around FRA regulations is. What nobody said in comments, and I only realized after the discussion died out, is how the choice of rolling stock depends heavily on what Amtrak plans to do with infrastructure and service planning in the Northeast. It doesn’t make sense in any case to tether Amtrak’s plans for a corridor that’s in many ways globally unique to the California HSR Authority’s for a fairly standard HSR implementation. But what rolling stock is required, and thus how bad the tethering is, depends on a concrete plan for infrastructure and schedule.

At the highest level, the unique issue with the Northeast Corridor is that significant parts can’t be feasibly upgraded to more than 200-250 km/h or easily bypassed, while others can. This means that there’s a tradeoff between top speed and cant deficiency, and the optimal choice depends on how much investment there is into speeding up segments. In any case it’s critical to improve station throats, interlockings, and railroad junctions, but after the 50 and 100 km/h zones are dealt with, the remaining questions are still nontrivial.

The more money is invested, the less it makes sense to run a 270 mm-cant deficiency, 250 km/h Pendolino, and the more it makes sense to run a Talgo AVRIL or E5/E6, both of which are capable of 350 km/h but only about 180 mm of cant deficiency (or N700-I, which is on paper capable of 330 km/h and about 135 mm and in practice could probably be run at 360 km/h and 175 mm). If there’s one segment that tilts the decision, it’s New Haven-Providence: using the legacy Shore Line, even with heavy upgrades, limits speeds and favors high cant deficiency, while bypassing it on I-95 favors high top speeds. But even the New York-Washington segment of today has a few curves strategically located at the worst locations, which make higher tilt degree a benefit.

In medium-speed territory, the Pendolino versus E5/AVRIL/N700-I decision is the muddiest. I ran rough simulations on an upgraded New Haven Line, with bypasses including those I advocated as a first step but also additional ones in the more difficult Stamford-New Haven segment. A train with E5 cant deficiency and N700-I acceleration did New York-New Haven in 32 minutes, and a Pendolino with all cars powered did it in 30. Neither is a standard trainset, though the former is very close to standard (and the Talgo AVRIL is also quite close). The Pendolino as it is, with about half the cars powered, has low power by HSR standards, and this is a problem for accelerating back from a slow zone at medium speed. With all cars powered (which is feasible, at higher acquisition cost) it’s still far from turbocharged, but can change speed more easily. An off-the-shelf Pendolino would not beat an E5 or AVRIL or N700-I on such a corridor, and of course would not beat it south of New York or north of New Haven.

Since nonstandard trains cost more, it’s important to also decide whether they’re worth the cost. Bearing in mind that Amtrak said a new noncompliant trainset costs $35-55 million, which is above the range for 8-car trains (China pays about $4 million per 350+ km/h car), so it may already be factoring in a premium, paying more for trains is worth it whenever the benefits to passengers are noticeable enough. This, like choosing very high-speed rolling stock rather than a Pendolino, is the most effective at high levels of infrastructure investment. An off-the-shelf Pendolino is good enough for most applications. So is an off-the-shelf N700-I without tilt. It’s okay to be 15 minutes slower than the cutting edge if the cutting edge is too expensive. But the effect of 15 minutes on ridership is more pronounced if it’s the difference between 1:35 and 1:50 than if it’s the difference between 3:00 and 3:15. In addition, the faster the service is, the more revenue each train earns, and this allows spreading the extra acquisition cost among more passengers.

Another factor that’s neglected, at least in public statements, is the service plan. Amtrak service is heavily padded: the fastest northbound Acela is scheduled to do Providence-Boston in 47 minutes, but in the opposite direction it’s 34. Remove the Route 128 stop and this can get close to 30 or even below it. About the fastest trains can go with no schedule padding is 19.25 minutes, and reasonable but not onerous padding raises it to about 20.5. Clearly, more of the difference comes from operating efficiencies than from any speed raising; the Acela already goes 240 km/h between Providence and Boston and already has about 180 mm (7″) cant deficiency.

The limiting factor here is more MBTA ownership and operating culture. A good service plan would make it clear how trains can share the corridor (and the same is true on the New Haven Line, another unduly slowed commuter-owned segment), and because MBTA trains are so slow, any cooperation would involve public statements regarding upgrades to the MBTA. The Acela has level boarding at every stop except New London, which is the easiest to cut out and should be bypassed together with the rest of Shore Line East. It’s the MBTA that has non-level boarding, which remains one of the biggest schedule risks, requiring plenty of recovery time to deal with possible long dwell times coming from above-average crowds.

The problem is that Amtrak has made no statements regarding how to integrate the three legs of the magic triangle. It proposed the Vision plan, which even political transit bloggers like Ben Kabak note the extreme cost of; there’s no funding, and the first segment for which it’s trying to obtain funding, the Gateway Tunnel, is very far from the top priority for speed or even for intercity rail capacity. It now proposes new rolling stock, but is unclear about what the trains are supposed to do except be very fast. (Bundling with a new-build line like California makes sense only if all curves are straightened to a radius of 4+ kilometers, even extremely expensive ones.)

Perhaps it’s a feature of opaque government, that Amtrak refuses to say how much money it needs to meet each timetable and capacity goal. For example, it could say that if Congress gives it $10 billion it could reduce travel time from Washington to Boston from the present 6:45 to 5:45 while also running a peak of 4 long trains per hour at that speed. (I think for $10 billion it’s possible to get down to 3:30 or at worst 4:00, but this is a matter of cost control and not just transparency, though transparency can indirectly lead to better cost control.) This would involve heavy cooperation with the commuter railroads that share its tracks and joint plans, as well as detailed public plans for how much to spend on each segment and for what purpose. This is routine in Swiss rail infrastructure planning, since all major projects have to be approved by referendum, but does not happen in the US. It could be that Amtrak knows what it’s doing but acts like it doesn’t because the structure of government in the US is such that these decisions are made behind closed doors.

But more likely, Amtrak doesn’t know what it’s doing, and is just proposing new initiatives that make it seem forward-looking. Changing FRA rules is an unmixed blessing. Bundling an order with California HSR is not. The fact that Amtrak is doing so, while keeping mum about even what kind of rolling stock it thinks it needs, suggests that it reverses the usual way reform should be: instead of a need for reform producing good results and thence good headlines, a need to get good headlines about reform produces reform ideas that sound good. Some of those good-sounding ideas really are good, but not all are. It’s important for good transit advocates to distinguish the two both privately and publicly.

I feel like in the last two years, we’ve seen important American transit and railroad managers say correct things. Shortly after I started making noise in comments about New York’s outsized subway construction costs, Jay Walder said as much in a report entitled Making Every Dollar Count. Joe Lhota proposed through-running on commuter rail as a solution to improve efficiency. Scott Stringer, too, talked publicly about comparative construction costs, and for all of my criticisms of transit managers who say that, I thought it was enough for him to say that as a political candidate for a medium-term office to deserve my endorsement for the mayoral election, which he unfortunately bowed out of. The FRA proposed to start working on new rules for rolling stock last year. At Amtrak, we’ve just now seen Joseph Boardman propose noncompliant rolling stock. Perhaps I’d be more optimistic if Walder and Lhota had stayed at the MTA for longer to implement their positive reform ideas, instead of using it as a springboard to secure a higher-paying job or run for mayor, but increasingly it looks like the good reform talk is not generally accompanied by good actions.

This is, again, where good transit advocates can have the most influence. We more or less know which reforms are required and which are not. There are disagreements at times (Clem, for one, has much better credentials as a good transit activist than I do), but on most of the agenda items there’s agreement. We already know what details we might want to see from a good plan of action, and the advantage of this is that we can check proposed plans against them. That Amtrak’s gotten so many details wrong suggests that it still doesn’t know what the best practices for rail construction are, even if the basic idea of getting around FRA rules is sound. I wish I didn’t have to say it, but I’ll believe Amtrak’s improved when I see it.

Washington Union Station

Amtrak’s announcement that it needs $7 billion to improve Union Station, in a way that is tangential to train or passenger capacity, has gotten some deserved flak already on other blogs. What I want to discuss instead is a pair of issues relating to capacity: passenger circulation, and track capacity. Especially on the latter, Union Station does have some problems, not at current traffic, but enough that future traffic increases may require difficult at-grade merges. The core of the problem is that the terminal tracks are located to the west of the through-tracks, with an at-grade junction, rather than between them.

Fortunately, the passenger circulation capacity issue is easier. Although Amtrak claims 100,000 passengers use the station every day, in reality the number is beefed up with Metro riders, similarly to Penn Station’s 600,000 daily passengers statistic, of which nearly half is subway ridership. Total ridership on MARC and VRE is 53,000 per weekday, and Amtrak has a total of 13,000 boardings and alightings per day there (not per weekday, but intercity traffic does not have the weekday peak of commuter traffic). This is 66,000 boardings and alightings, assuming every MARC and VRE trip begins or ends at Union Station. In contrast, on just two tracks with ordinary subway platforms, Metro has 34,000 boardings at the station; page 13 of Amtrak’s announcement shows the relative scale of Metro and mainline infrastructure. The mainline half of the station’s ridership is passengers who are likelier to be carrying luggage or not be local, but the main difference between it and the Metro half is that the Metro half is using Metro turf and the mainline half is using the station above which Amtrak’s headquarters is located.

If there is a problem, it comes from Amtrak’s practice of corralling riders at waiting points, instead of letting them filter onto the platforms or the stations whenever they like, as is done every day on trains in France and Germany, or on the less busy stations of the Northeast Corridor. Stephen Smith tells me that unlike in New York or Boston, where the waiting areas are at least adjacent to the platform and the problem is one of having just one access point (or just one official access point in New York), in Washington there is another antechamber between the passengers and the train. An extra 100 meters of walking adds about a minute of travel time in a congested space, and perhaps 45 seconds in a clear one; Amtrak’s current practice adds multiple minutes to door-to-door travel time, and also forces pedestrian congestion once it clears passengers to access the platform.

Adding access points is also a good thing, but that does not cost $7 billion, and does not require redoing the entire main concourse. But possibly the most important thing to do in the near term is making all platforms high, also nowhere near a $7 billion project; the diagrams on Amtrak’s announcement suggest all terminal tracks and most through-tracks will be high-platform, but one through-platform will remain low.

Now, track capacity is where things get more interesting, because potentially there is a problem, coming from terminal layout. A not very clear, but public, diagram can be found here: look for Washington Union Terminal, and within it, Interlockings C (the outer station throat and a nearby yard), K (the inner throat and the actual tracks), and A (the connection from the through-tracks to First Street Tunnel). Note that terminating tracks 7-20 are to the west of through-tracks 22-29, and the junction is at grade, which represents a problem for easy cookie-cutter planning.

The operationally simplest but most expensive to deal with this is to build a grade separation. If it’s anything like Harold, expect a $300 million price tag. At present and expected levels of traffic, this is overkill.

I claim that if MARC and VRE trains continue to terminate at Union Station, no special work is needed: Brunswick and Camden Line traffic can be segregated on tracks 7-9 (and the turnaround capacity, easily about 12 tph for 3 tracks, is more than those lines will need between them), VRE traffic can be segregated on tracks 24-25, and Penn Line traffic can use the same tracks as the terminating intercity trains.

The only at-grade conflict would be between northbound trains originating at Washington, and southbound ones continuing through to Virginia, and even high possible traffic levels (say, 12 tph terminating including the Penn Line sprawled across 11 tracks of which 3 already have long platforms and arguably 3 more can be lengthened, 2 tph through across 4 tracks) can be scheduled in a similar manner to all-terminating stations, treating the through-trains as terminating trains that have to use specific tracks and have no limit on dwell time.

Specifically, because Penn Line (or local HSR) trains would leave immediately after express HSR trains to reduce the number of required overtakes, at worst we’d have trains originating at :00 and :02, repeating every 10 minutes, and then there’s an 8-minute window within which to schedule southbound through-trains.

So instead let us assume commuter trains run through, in which case we may as well assume they have good reliability so that they can be scheduled with 2-minute headways. Current peak traffic is 3 tph Brunswick, 2 tph Camden, 3 tph Penn, and lower combined traffic on the Virginia side. Assume that peak traffic will grow to 3 tph Brunswick and Camden and 6 tph combined Penn and through-HSR; in fact the most potential for growth is off-peak, and because multiple platforms are very long, long trains may be used if there are capacity problems.

We now have 6 tph terminating HSR, 6 tph through-traffic on the Penn Line (including HSR), and 6 tph through-commuter traffic on the Camden and Brunswick Lines; Camden and Brunswick are physically to the west of the Northeast Corridor, and so in addition to conflicts between terminating and through trains, we have conflicts between through-Camden/Brunswick and southbound through-Penn/HSR.

In this situation, we can have southbound terminating HSR and through-Penn/HSR trains clearing the throat at :00 and :02 again. Northbound terminating HSR trains have to depart 2 minutes after the arrival of southbound through-Penn/HSR trains, e.g. :04, and then northbound through-Camden/Brunswick trains can depart between :06 and :08; northbound through-Penn/HSR trains are always to the east of everything else and so do not conflict with anything.

Because southbound through-Camden/Brunswick trains conflict with terminating trains, they can be scheduled at the same time as northbound through-trains of some kind, which constrains the symmetry axis we choose but is otherwise workable. For example, if Camden/Brunswick trains both depart and arrive at :07 then with the terminating trains arriving :00 and departing :04, we have a symmetry axis ending in a 2 or a 7 (and through-Penn/HSR trains would arrive and depart at :02). But then the terminating trains also arrive just before the through-Penn/HSR trains and depart just after, implying they are slower or else there would be an overtake just north of the station. We can instead switch the trains – and then terminating trains arrive and depart :02, and through-Penn/HSR arrive southbound :00 and depart northbound :04. Note that there is no conflict between northbound terminating trains and southbound through-trains.

So it is possible to do this without extra infrastructure beside longer and level-boarding platforms, which are cheap. Let us finish by seeing what extra trains can be scheduled into the above 18 tph schedule. Scheduling 6 tph of terminating trains is easy: trains arriving :04 and departing :00, the opposite of the terminating HSR trains discussed above, will be adequately separated. The problem then is just the need to overtake the :02 through-trains along the tracks; however, at such a level of demand, 18 tph combined HSR and commuter on the Northeast Corridor, full four-tracking there would be necessary anyway.

But no extra through-traffic can be realistically scheduled into the same timetable, because the southbound :04 trains would conflict with the northbound :04 terminating trains. Changing the schedule so that it’s the terminating trains that arrive and depart at the same time is, however, possible: since we’re four-tracking the entire Baltimore-Washington line at this stage, we can have terminating trains arrive and depart :02, Camden/Brunswick trains do the same :07, and through-Penn/HSR trains arrive and depart :00 and :04. That said, this means it’s impossible to schedule more than 6 terminating tph into Union Station; I believe it’ll be easier to fill all those extra intercity trains into Washington than fill 18 tph going from Washington toward Virginia, both intercity and commuter.

Of course, the traffic levels discussed here are all very high, especially for HSR. An HSR system that fills even 6 tph is one that can pay for future capacity increases out of operating profits. The importance should be getting a starter system with reasonable capacity for the next few years and then build capacity projects as required, with immediate construction done only on the most critical segments or those that would be hard to reconstruct with more future traffic.

So we’re back to the question of what needs to be done with Union Station, and the answer is hardly anything. It’s not even Moynihan Station, which is also sold as a bigger transportation benefit than it is, but is at least billed as a grand station to be named after a politician more than anything (and is only about $1.5 billion). It’s even worse than Gateway and the Market East station, which would have positive transportation value, and are just very cost-ineffective. It’s not solving any problem for the foreseeable future; it’s just using big numbers about current traffic and growth to scare people into thinking more capacity is needed, and mostly it’s using small increases in track capacity to justify throwing billions of dollars on beautifying Amtrak’s headquarters.